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Editor: Abstract

For 1 dimension reduction inl1, the method ofCauchy random projectionsmultiplies the orig-
inal data matrixA ∈ R

n×D with a random matrixR ∈ R
D×k (k ≪ min(n, D)) whose entries

are i.i.d. samples of the standard CauchyC(0, 1). Because of the impossibility results, one can
not hope to recover the pairwisel1 distances inA from B = AR ∈ R

n×k, using linear estimators
without incurring large errors. However, nonlinear estimators are still useful for certain applications
in data stream computation, information retrieval, learning, and data mining.

We propose three types of nonlinear estimators: the bias-corrected sample median estimator,
the bias-corrected geometric mean estimator, and the bias-corrected maximum likelihood estimator.
The sample median estimator and the geometric mean estimator are asymptotically (ask → ∞)
equivalent but the latter is more accurate at smallk. We derive explicit tail bounds for the geometric
mean estimator and establish an analog of the Johnson-Lindenstrauss (JL) lemma for dimension
reduction inl1, which is weaker than the classical JL lemma for dimension reduction inl2.

Asymptotically, both the sample median estimator and the geometric mean estimators are about
80% efficient compared to the maximum likelihood estimator (MLE). We analyze the moments of
the MLE and propose approximating the distribution of the MLE by an inverse Gaussian.

Keywords: Dimension reduction,l1 norm, Cauchy Random projections, JL bound

1. Introduction

This paper focuses on dimension reduction inl1, in particular, on the method based onCauchy
random projections(Indyk, 2000), which is special case oflinear random projections.

The idea oflinear random projectionsis to multiply the original data matrixA ∈ R
n×D with

a random projection matrixR ∈ R
D×k, resulting in a projected matrixB = AR ∈ R

n×k. If
k ≪ min(n,D), then it should be much more efficient to compute certain summary statistics (e.g.,

1. Revised December 29, 2013. The original version, titledPractical Procedures for Dimension Reduction inl1, is
available as a technical report in Stanford Statistics achive (report No. 2006-04, June, 2006).
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pairwise distances) fromB as opposed toA. Moreover,B may be small enough to reside in physical
memory whileA is often too large to fit in the main memory.

The choice of the random projection matrixR depends on which norm we would like to work
with. Indyk (2000) proposed constructingR from i.i.d. samples ofp-stable distributions, for di-
mension reduction inlp (0 < p ≤ 2). In the stable distribution family (Zolotarev, 1986), normal is
2-stable and Cauchy is 1-stable. Thus, we will call random projections forl2 andl1, normal random
projectionsandCauchy random projections, respectively.

In normal random projections(Vempala, 2004), we can estimate the original pairwisel2 dis-
tances ofA directly using the correspondingl2 distances ofB (up to a normalizing constant).
Furthermore, the Johnson-Lindenstrauss (JL) lemma (Johnson and Lindenstrauss, 1984) provides
the performance guarantee. We will reviewnormal random projectionsin more detail in Section 2.

For Cauchy random projections, we should not use thel1 distance inB to approximate the
original l1 distance inA, as the Cauchy distribution does not even have a finite first moment. The
impossibility results (Brinkman and Charikar, 2003; Lee and Naor, 2004; Brinkman and Charikar,
2005) have proved that one can not hope to recover thel1 distance using linear projections and linear
estimators (e.g., sample mean), without incurring large errors. Fortunately, the impossibility results
do not rule out nonlinear estimators, which may be still useful in certain applications in data stream
computation, information retrieval, learning, and data mining.

Indyk (2000) proposed using the sample median (instead of the sample mean) inCauchy ran-
dom projectionsand described its application in data stream computation. In this study, we provide
three types of nonlinear estimators: the bias-corrected sample median estimator, the bias-corrected
geometric mean estimator, and the bias-corrected maximum likelihood estimator. The sample me-
dian estimator and the geometric mean estimator are asymptotically equivalent (i.e., both are about
80% efficient as the maximum likelihood estimator), but the latter is more accurate at small sample
sizek. Furthermore, we derive explicit tail bounds for the bias-corrected geometric mean estimator
and establish an analog of the JL Lemma for dimension reduction in l1.

This analog of the JL Lemma forl1 is weaker than the classical JL Lemma forl2, as the
geometric mean estimator is a non-convex norm and hence is not a metric. Many efficient al-
gorithms, such as some sub-linear time (using super-linearmemory) nearest neighbor algorithms
(Shakhnarovich et al., 2005), rely on the metric properties(e.g., the triangle inequality). Neverthe-
less, nonlinear estimators may be still useful in importantscenarios.

• Estimatingl1 distances online
The original data matrixA ∈ R

n×D requiresO(nD) storage space; and hence it is often
too large for physical memory. The storage cost of all pairwise distances isO(n2), which
may be also too large for the memory. For example, in information retrieval,n could be the
total number of word types or documents at Web scale. To avoidpage fault, it may be more
efficient to estimate the distances on the fly from the projected data matrixB in the memory.

• Computing all pairwisel1 distances
In distance-based clustering and classification applications, we need to compute all pairwise
distances inA, at the cost of timeO(n2D). UsingCauchy random projections, the cost can
be reduced toO(nDk + n2k). Becausek ≪ min(n,D), the savings could be enormous.

• Linear scan nearest neighbor searching
We can always search for the nearest neighbors by linear scans. When working with the pro-
jected data matrixB (which is in the memory), the cost of searching for the nearest neighbor
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for one data point is timeO(nk), which may be still significantly faster than the sub-linear
algorithms working with the original data matrixA (which is often on the disk).

We briefly comment oncoordinate sampling, another strategy for dimension reduction. Given
a data matrixA ∈ R

n×D, one can randomly samplek columns fromA and estimate the sum-
mary statistics (includingl1 and l2 distances). Despite its simplicity, there are two major disad-
vantages in coordinate sampling. First, there is no performance guarantee. For heavy-tailed data,
we may have to choosek very large in order to achieve sufficient accuracy. Second, large datasets
are often highly sparse, for example, text data (Dhillon andModha, 2001) and market-basket data
(Aggarwal and Wolf, 1999; Strehl and Ghosh, 2000). Li and Church (2005) and Li et al. (2006a)
provide an alternative coordinate sampling strategy, called Conditional Random Sampling (CRS),
suitable for sparse data. For non-sparse data, however, methods based onlinear random projections
are superior.

The rest of the paper is organized as follows. Section 2 reviews linear random projections.
Section 3 summarizes the main results for three types of nonlinear estimators. Section 4 presents
the sample median estimators. Section 5 concerns the geometric mean estimators. Section 6 is
devoted to the maximum likelihood estimators. Section 7 concludes the paper.

2. Introduction to Linear Random Projections

We give a review onlinear random projections, includingnormalandCauchy random projections.
Denote the original data matrix byA ∈ R

n×D, i.e., n data points inD dimensions. Let
{uT

i }n
i=1 ∈ R

D be theith row of A. Let R ∈ R
D×k be a random matrix whose entries are i.i.d.

samples of some random variable. The projected data matrixB = AR ∈ R
n×k. Denote the entries

of R by {rij}D
i=1

k
j=1 and let{vT

i }n
i=1 ∈ R

k be theith row of B. Thenvi = R
Tui, with entries

vi,j = R
T
j ui, i.i.d. j = 1 to k, whereRj is thejth column ofR.

For simplicity, we focus on the leading two rows,u1 andu2, in A, and the leading two rows,v1

andv2, in B. Define{xj}k
j=1 to be

xj = v1,j − v2,j =

D
∑

i=1

rij (u1,i − u2,i) , j = 1, 2, ..., k (1)

If we samplerij i.i.d. from astable distribution(Zolotarev, 1986; Indyk, 2000), thenxj ’s are
also i.i.d. samples of the same stable distribution with a different scale parameter. In the family of
stable distributions, normal and Cauchy are two important special cases.

2.1 Normal Random Projections

Whenrij is sampled from the standard normal, i.e.,rij ∼ N(0, 1), i.i.d., then

xj = v1,j − v2,j =
D
∑

i=1

rij (u1,i − u2,i) ∼ N

(

0,
D
∑

i=1

|u1,i − u2,i|2
)

, j = 1, 2, ..., k, (2)

because a weighted sum of normals is also normal.
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Denote the squaredl2 distance betweenu1 andu2 by dl2 = ‖u1 − u2‖2
2 =

∑D
i=1 |u1,i − u2,i|2.

We can estimatedl2 from the sample squaredl2 distance:

d̂l2 =
1

k

k
∑

j=1

x2
j . (3)

It is easy to show that (e.g., (Vempala, 2004; Li et al., 2006b))

E
(

d̂l2

)

= dl2 , Var
(

d̂l2

)

=
2

k
d2

l2 , (4)

Pr

(∣

∣

∣d̂l2 − dl2

∣

∣

∣ ≥ ǫdl2

)

≤ 2 exp

(

−k

4
ǫ2 +

k

6
ǫ3

)

, ǫ > 0 (5)

We would like to bound the error probabilityPr

(∣

∣

∣
d̂l2 − dl2

∣

∣

∣
≥ ǫdl2

)

by δ. Since there are in

total n(n−1)
2 < n2

2 pairs amongn data points, we need to bound the tail probabilities simultaneously
for all pairs. By the Bonferroni union bound, it suffices if

n2

2
Pr

(∣

∣

∣d̂l2 − dl2

∣

∣

∣ ≥ ǫdl2

)

≤ δ. (6)

Using (5), it suffices if

n2

2
2 exp

(

−k

4
ǫ2 +

k

6
ǫ3

)

≤ δ (7)

=⇒k ≥ 2 log n − log δ

ǫ2/4 − ǫ3/6
. (8)

Therefore, we obtain one version of the JL lemma:
If k ≥ 2 log n−log δ

ǫ2/4−ǫ3/6
, then with probability at least1− δ, the squaredl2 distance between any pair

of data points (amongn data points) can be approximated within1 ± ǫ fraction of the truth, using
the squaredl2 distance of the projected data after normal random projections.

Many versions of the JL lemma have been proved (Johnson and Lindenstrauss, 1984; Frankl and Maehara,
1987; Indyk and Motwani, 1998; Arriaga and Vempala, 1999; Dasgupta and Gupta, 2003; Indyk,
2000, 2001; Achlioptas, 2003; Arriaga and Vempala, 2006; Ailon and Chazelle, 2006).

Note that we do not have to userij ∼ N(0, 1) for dimension reduction inl2. For example,
we can samplerij from somesub-Gaussian distributions(Indyk and Naor, 2006), in particular, the
following sparse projection distribution:

rij =
√

s







1 with prob. 1
2s

0 with prob.1 − 1
s

−1 with prob. 1
2s

. (9)

When1 ≤ s ≤ 3, Achlioptas (2003) proved the JL lemma for the above sparse projection, which
can also be shown by sub-Gaussian analysis (Li et al., 2006c). Recently, Li et al. (2006d) proposed
very sparse random projectionsusings =

√
D in (9), based on two practical considerations:

• D should be very large, otherwise there would be no need for dimension reduction.

4
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• The originall2 distance should make engineering sense, in that the second (or higher) mo-
ments should be bounded (otherwise variousterm-weightingschemes will be applied).

Based on these two practical assumptions, the projected data are asymptotically normal at a fast
rate of convergence whens =

√
D. Of course,very sparse random projectionsdo not have worst

case performance guarantees.

2.2 Cauchy Random Projections

In Cauchy random projections, we samplerij i.i.d. from the standard Cauchy distribution, i.e.,
rij ∼ C(0, 1). By the 1-stability of Cauchy (Zolotarev, 1986), we know that

xj = v1,j − v2,j ∼ C

(

0,

D
∑

i=1

|u1,i − u2,i|
)

. (10)

That is, the projected differencesxj = v1,j − v2,j are also Cauchy random variables with the scale
parameter being thel1 distance,d = |u1 − u2| =

∑D
i=1 |u1,i − u2,i|, in the original space.

Recall that a Cauchy random variablez ∼ C(0, γ) has the density

f(z) =
γ

π

1

z2 + γ2
, γ > 0, −∞ < z < ∞ (11)

The easiest way to see the 1-stability is via the characteristic function,

E
(

exp(
√
−1z1t)

)

= exp (−γ|t|) , (12)

E

(

exp

(

√
−1t

D
∑

i=1

cizi

))

= exp

(

−γ
D
∑

i=1

|ci|t
)

, (13)

for z1, z2, ...,zD, i.i.d. C(0, γ), and any constantsc1, c2, ...,cD.
Therefore, inCauchy random projections, the problem boils down to estimating the Cauchy

scale parameter ofC(0, d) from k i.i.d. samplesxj ∼ C(0, d). Unfortunately, unlike innormal
random projections, we can no longer estimated from the sample mean (i.e.,1

k

∑k
j=1 |xj |) because

E(xj) = ∞.
Although the impossibility results (Lee and Naor, 2004; Brinkman and Charikar, 2005) have

ruled out estimators that are metrics, there is enough information to recoverd from k samples
{xj}k

j=1, with a high accuracy. For example, Indyk (2000) proposed using the sample median as
an estimator. The problem with the sample median estimator is the inaccuracy at smallk and the
difficulty in deriving explicit tail bounds needed for determining the sample sizek.

This study focuses on deriving better estimators and explicit tail bounds forCauchy random
projections. Our main results are summarized in the next section, beforewe present the detailed
derivations. Casual readers may skip these derivations after Section 3.

3. Main Results

We propose three types of nonlinear estimators: the bias-corrected sample median estimator (d̂me,c),
the bias-corrected geometric mean estimator (d̂gm,c), and the bias-corrected maximum likelihood
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estimator (̂dMLE,c). d̂me,c andd̂gm,c are asymptotically equivalent but the latter is more accurate at
small sample sizek. In addition, we derive explicit tail bounds for̂dgm,c, from which an analog of
the Johnson-Lindenstrauss (JL) lemma for dimension reduction in l1 follows. Asymptotically, both
d̂me,c and d̂gm,c are 8

π2 ≈ 80% efficient compared to the maximum likelihood estimatord̂MLE,c.

We propose accurate approximations to the distribution andtail bounds ofd̂MLE,c, while the exact
closed-form answers are not attainable.

3.1 The Bias-corrected Sample Median Estimator

Denoted byd̂me,c, the bias-corrected sample median estimator is

d̂me,c =
d̂me

bme
, (14)

where

d̂me = median(|xj |, j = 1, 2, ..., k) (15)

bme =

∫ 1

0

(2m + 1)!

(m!)2
tan

(π

2
t
)

(

t − t2
)m

dt, k = 2m + 1 (16)

Here, for convenience, we only considerk = 2m + 1, m = 1, 2, 3, ...
Some key properties of̂dme,c:

• E
(

d̂me,c

)

= d, i.e, d̂me,c is unbiased.

• Whenk ≥ 5, the variance of̂dme,c is

Var
(

d̂me,c

)

= d2







(m!)2

(2m + 1)!

∫ 1
0 tan2

(

π
2 t
) (

t − t2
)m

dt
(

∫ 1
0 tan

(

π
2 t
)

(t − t2)m dt
)2 − 1






, k ≥ 5 (17)

Var
(

d̂me,c

)

= ∞ if k = 3.

• As k → ∞, d̂me,c converges to a normal in distribution

√
k
(

d̂me,c − d
)

D
=⇒ N

(

0,
π2

4
d2

)

. (18)

3.2 The Bias-corrected Geometric Mean Estimator

Denoted byd̂gm,c, the bias-corrected geometric mean estimator is defined as

d̂gm,c = cosk
( π

2k

)

k
∏

j=1

|xj |1/k, k > 1 (19)

Important properties of̂dgm,c include:

6
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• This estimator is a non-convex norm, i.e., thelp norm withp → 0.

• It is unbiased, i.e., E
(

d̂gm,c

)

= d.

• Its variance is (fork > 2)

Var
(

d̂gm,c

)

= d2

(

cos2k
(

π
2k

)

cosk
(

π
k

) − 1

)

=
π2

4

d2

k
+

π4

32

d2

k2
+ O

(

1

k3

)

. (20)

• For0 ≤ ǫ ≤ 1, its tail bounds can be represented in exponential forms

Pr

(

d̂gm,c − d > ǫd
)

≤ exp

(

−k

(

ǫ2

8(1 + ǫ)

))

(21)

Pr

(

d̂gm,c − d < −ǫd
)

≤ exp

(

−k

(

ǫ2

8(1 + ǫ)

))

, k ≥ π2

1.5ǫ
(22)

• These exponential tail bounds yield an analog of the Johnson-Lindenstrauss (JL) lemma for
dimension reduction inl1:

If k ≥ 8(2 log n−log δ)
ǫ2/(1+ǫ)

≥ π2

1.5ǫ , then with probability at least1− δ, one can recover the original
l1 distance between any pair of data points (among alln data points) within1±ǫ (0 ≤ ǫ ≤ 1)
fraction of the truth, usinĝdgm,c, i.e.,|d̂gm,c − d| ≤ ǫd.

3.3 The Bias-corrected Maximum Likelihood Estimator

Denoted byd̂MLE,c, the bias-corrected maximum likelihood estimator is

d̂MLE,c = d̂MLE

(

1 − 1

k

)

, (23)

whered̂MLE solves a nonlinear MLE equation

− k

d̂MLE

+

k
∑

j=1

2d̂MLE

x2
j + d̂2

MLE

= 0. (24)

Some properties of̂dMLE,c:

• It is nearly unbiased, E
(

d̂MLE,c

)

= d + O
(

1
k2

)

.

• Its asymptotic variance is

Var
(

d̂MLE,c

)

=
2d2

k
+

3d2

k2
+ O

(

1

k3

)

, (25)

i.e.,
Var(d̂MLE,c)
Var(d̂me,c)

→ 8
π2 ,

Var(d̂MLE,c)
Var(d̂gm,c)

→ 8
π2 , ask → ∞. ( 8

π2 ≈ 80%)

7
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• Its distribution can be accurately approximated by an inverse Gaussian, at least in the small
deviation range. Based on the inverse Gaussian approximation, we suggest the following
approximate tail bound

Pr

(

|d̂MLE,c − d| ≥ ǫd
) ∼
≤ 2 exp

(

− ǫ2/(1 + ǫ)

2
(

2
k + 3

k2

)

)

, 0 ≤ ǫ ≤ 1, (26)

which has been verified by simulations for the tail probability ≥ 10−10 range.

4. The Sample Median Estimators

Recall in Cauchy random projections,B = AR, we denote the leading two rows inA by u1, u2

∈ R
D, and the leading two rows inB by v1, v2 ∈ R

k. Our goal is to estimate thel1 distance
d = |u1 − u2| =

∑D
i=1 |u1,i − u2,i| from {xj}k

j=1, xj = v1,j − v2,j ∼ C(0, d), i.i.d.
It is easy to show (e.g., Indyk (2000)) that the population median of |xj | is d. Therefore, it is

natural to consider estimatingd from the sample median,

d̂me = median{|xj |, j = 1, 2, ..., k}. (27)

As illustrated in the following lemma (proved in Appendix A), the sample median estimator,
d̂me, is asymptotically unbiased and normal. For small samples (e.g.,k ≤ 20), however,d̂me is
severely biased.

Lemma 1 The sample median estimator,d̂me, defined in (27), is asymptotically unbiased and nor-
mal

√
k
(

d̂me − d
)

D
=⇒ N

(

0,
π2

4
d2

)

(28)

Whenk = 2m + 1, m = 1, 2, 3, ..., therth moment of̂dme can be represented as

E
(

d̂me

)r
= dr

(
∫ 1

0

(2m + 1)!

(m!)2
tanr

(π

2
t
)

(

t − t2
)m

dt

)

, m ≥ r (29)

If m < r, then E
(

d̂me

)r
= ∞.

For simplicity, we only considerk = 2m + 1 when evaluating E
(

d̂me

)r
.

Once we know E
(

d̂me

)

, we can remove the bias of̂dme using

d̂me,c =
d̂me

bme
, (30)

where the bias correction factorbme is

bme =
E
(

d̂me

)

d
=

∫ 1

0

(2m + 1)!

(m!)2
tan

(π

2
t
)

(

t − t2
)m

dt. (31)

bme can be numerically evaluated and tabulated, at least for small k.2

2. It is possible to expressbme as an infinite sum. Note that(2m+1)!

(m!)2

(

t − t2
)m

, 0 ≤ t ≤ 1, is the probability density
of a Beta distributionBeta(m + 1, m + 1).

8
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Obviously,d̂me,c is unbiased, i.e., E
(

d̂me,c

)

= d. Its variance would be

Var
(

d̂me,c

)

= d2







(m!)2

(2m + 1)!

∫ 1
0 tan2

(

π
2 t
) (

t − t2
)m

dt
(

∫ 1
0 tan

(

π
2 t
)

(t − t2)m dt
)2 − 1






, k = 2m + 1 ≥ 5 (32)

Of course,d̂gm,c andd̂gm are asymptotically equivalent, i.e.,
√

k
(

d̂me,c − d
)

D
=⇒ N

(

0, π2

4 d2
)

.

Figure 1 plotsbme as a function ofk, indicating thatd̂me is severely biased whenk ≤ 20. When
k > 50, the bias becomes negligible. Note that, becausebme ≥ 1, the bias correction not only
removes the bias of̂dme but also reduces its variance.

0 5 10 15 20 25 30 35 40 45 50
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1.2

1.3
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1.5

1.6

1.7
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ct
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Figure 1: The bias correction factor,bme in (31), as a function ofk = 2m + 1. After k > 50, the
bias is negligible. Note thatbme = ∞ whenk = 1.

The sample median is a special case of sample quantile estimators (Fama and Roll, 1968, 1971).
For example, one version of the quantile estimators given byMcCulloch (1986) would be

d̂or =
ˆ|x|.75 − ˆ|x|.25

2.0
, (33)

where ˆ|x|.75 and ˆ|x|.25 are the .75 and .25 sample quantiles of{|xj |}k
j=1, respectively.

Our simulations indicate that̂dme actually slightly outperformŝdor. This is not surprising.̂dor

works for any Cauchy distribution whose location parameterdoes not have to be zero, whilêdme

takes advantage of the fact that the Cauchy location parameter is always zero in our case.

5. The Geometric Mean Estimators

This section derives estimators based on the geometric mean, which are more accurate than the
sample median estimators. The geometric mean estimators allow us to derive tail bounds in ex-
plicit forms and (consequently) an analog of the Johnson-Lindenstrauss (JL) lemma for dimension
reduction inl1.

Recall, our goal is to estimated from k i.i.d. samplesxj ∼ C(0, d). To help derive the ge-
ometric mean estimators, we first study two nonlinear estimators based on the fractional moment,
i.e., E(|x|λ) (|λ| < 1) and the logarithmic moment, i.e, E(log(|x|)), respectively, as presented in
Lemma 2. See the proof in Appendix B.

9
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Lemma 2 Assumex ∼ C(0, d). Then

E
(

|x|λ
)

=
dλ

cos(λπ/2)
, |λ| < 1 (34)

E(log(|x|)) = log(d), (35)

Var(log(|x|)) =
π2

4
, (36)

from which we can derive two biased estimators ofd fromk i.i.d. samplesxj ∼ C(0, d):

d̂λ =





1

k

k
∑

j=1

|xj |λ cos(λπ/2)





1/λ

, |λ| < 1, (37)

d̂log = exp





1

k

k
∑

j=1

log(|xj |)



 , (38)

whose variances are, respectively,

Var
(

d̂λ

)

=
d2

k

sin2(λπ/2)

λ2 cos(λπ)
+ O

(

1

k2

)

, |λ| < 1/2 (39)

Var
(

d̂log

)

=
π2d2

4k
+ O

(

1

k2

)

. (40)

The termsin2(λπ/2)
λ2 cos(λπ)

decreases with decreasing|λ|, reaching a limit

lim
λ→0

sin2(λπ/2)

λ2 cos(λπ)
=

π2

4
. (41)

In other words, the variance of̂dλ converges to that of̂dlog as |λ| approaches zero.

Note thatd̂log can in fact be written as thegeometric mean:

d̂log = d̂gm =
k
∏

j=1

|xj |1/k. (42)

d̂λ is a non-convex norm (lλ) becauseλ < 1. d̂gm is also a non-convex norm (thelλ norm as
λ → 0). Both d̂λ andd̂gm do not satisfy the triangle inequality.

We proposêdgm,c, the bias-corrected geometric mean estimator. Lemma 3 derives the moments
of d̂gm,c, proved in Appendix C.

Lemma 3

d̂gm,c = cosk
( π

2k

)

k
∏

j=1

|xj |1/k, k > 1 (43)

10
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is unbiased, with the variance (valid whenk > 2)

Var
(

d̂gm,c

)

= d2

(

cos2k
(

π
2k

)

cosk
(

π
k

) − 1

)

=
d2

k

π2

4
+

π4

32

d2

k2
+ O

(

1

k3

)

. (44)

The third and fourth central moments are (fork > 3 andk > 4, respectively)

E
(

d̂gm,c − E
(

d̂gm,c

))3
=

3π4

16

d3

k2
+ O

(

1

k3

)

(45)

E
(

d̂gm,c − E
(

d̂gm,c

))4
=

3π4

16

d4

k2
+ O

(

1

k3

)

. (46)

The higher (third or fourth) moments may be useful for approximating the distribution of̂dgm,c.
In Section 6, we will show how to approximate the distribution of the maximum likelihood estimator
by matching the first four moments (in the leading terms). We could apply the similar technique to
approximated̂gm,c. Fortunately, we do not have to do so because we are able to derive the exact tail
bounds ofd̂gm,c in Lemma 4, which is proved in Appendix D.

Lemma 4

Pr

(

d̂gm,c ≥ (1 + ǫ)d
)

≤ coskt∗1
(

π
2k

)

cosk
(

πt∗1
2k

)

(1 + ǫ)t
∗

1

, ǫ ≥ 0 (47)

where

t∗1 =
2k

π
tan−1

(

(

log(1 + ǫ) − k log cos
( π

2k

)) 2

π

)

. (48)

Pr

(

d̂gm,c ≤ (1 − ǫ)d
)

≤ (1 − ǫ)t
∗

2

cosk
(

πt∗2
2k

)

coskt∗2
(

π
2k

)

, 0 ≤ ǫ ≤ 1, k ≥ π2

8ǫ
(49)

where

t∗2 =
2k

π
tan−1

(

(

− log(1 − ǫ) + k log cos
( π

2k

)) 2

π

)

. (50)

By restricting0 ≤ ǫ ≤ 1, the tail bounds can be written in exponential forms:

Pr

(

d̂gm,c ≥ (1 + ǫ)d
)

≤ exp

(

−k
ǫ2

8(1 + ǫ)

)

(51)

Pr

(

d̂gm,c ≤ (1 − ǫ)d
)

≤ exp

(

−k
ǫ2

8(1 + ǫ)

)

, k ≥ π2

1.5ǫ
(52)

11
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An analog of the JL bound forl1 follows from the exponential tail bounds (51) and (52).

Lemma 5 Using d̂gm,c with k ≥ 8(2 log n−log δ)
ǫ2/(1+ǫ)

≥ π2

1.5ǫ , then with probability at least1 − δ, thel1
distance,d, between any pair of data points (amongn data points), can be estimated with errors
bounded by±ǫd, i.e.,|d̂gm,c − d| ≤ ǫd.

Remarks on Lemma 5: (1) We can replace the constant “8” in Lemma 5 with better (i.e.,
smaller) constants for specific values ofǫ. For example, Ifǫ = 0.2, we can replace “8” by “5”. See
the proof of Lemma 4. (2) This Lemma is weaker than the classical JL Lemma for dimension reduc-
tion in l2 as reviewed in Section 2.1. The classical JL Lemma forl2 ensures that thel2 inter-point
distances of the projected data points are close enough to the originall2 distances, while Lemma 5
merely says that the projected data points contain enough information to reconstruct the originall1
distances. On the other hand, the geometric mean estimator is a non-convex norm; and therefore
it does contain some information about the geometry. We leave it for future work to explore the
possibility of developing efficient algorithms using the geometric mean estimator.

Figure 2 presents the simulated histograms ofd̂gm,c for d = 1, with k = 5 andk = 50. The
histograms reveal some characteristics shared by the maximum likelihood estimator we will discuss
in the next section:

• Supported on[0,∞), d̂gm,c is positively skewed.

• The distribution ofd̂gm,c is still “heavy-tailed.” However, in the region not too far from the
mean, the distribution of̂dgm,c may be well captured by a gamma (or a generalized gamma)
distribution. For largek, even a normal approximation may suffice.
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Figure 2: Histograms of̂dgm,c, obtained from106 simulations. At least in the range not too far
from the mean, the distribution of̂dgm,c resembles a gamma and also resembles a normal
whenk is large enough.

Figure 3 compareŝdgm,c with the sample median estimatorŝdme and d̂me,c, in terms of the
mean square errors.̂dgm,c is considerably more accurate thand̂me at smallk. The bias correction
significantly reduces the mean square errors ofd̂me.
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Figure 3: The ratios of the mean square errors (MSN),MSE(d̂me)

MSE(d̂gm,c)
and MSE(d̂me,c)

MSE(d̂gm,c)
, demonstrate that

the bias-corrected geometric mean estimatord̂gm,c is considerably more accurate than
the sample median estimatord̂me. The bias correction on̂dme considerably reduces the
MSE. Note that whenk = 3, the ratios are∞.

6. The Maximum Likelihood Estimators

This section is devoted to analyzing the maximum likelihoodestimators (MLE), which are “asymp-
totically optimum.” In comparisons, the sample median estimators and geometric mean estimators
are not optimum. Our contribution in this section includes the higher-order analysis for the bias and
moments and accurate closed-from approximations to the distribution of the MLE.

The method of maximum likelihood is widely used. For example, Li et al. (2006b) applied the
maximum likelihood method tonormal random projectionsand provided an improved estimator of
the l2 distance by taking advantage of the marginal information.

The Cauchy distribution is often considered a “challenging” example because of the “multiple
roots” problem when estimating the location parameter (Barnett, 1966; Haas et al., 1970). In our
case, since the location parameter is always zero, much of the difficulty is avoided.

Recall our goal is to estimated from k i.i.d. samplesxj ∼ C(0, d), j = 1, 2, ..., k. Thelog joint
likelihood of{xj}k

j=1 is

L(x1, x2, ...xk; d) = k log(d) − k log(π) −
k
∑

j=1

log(x2
j + d2), (53)

whose first and second derivatives (w.r.t.d) are

L′(d) =
k

d
−

k
∑

j=1

2d

x2
j + d2

, (54)

L′′(d) = − k

d2
−

k
∑

j=1

2x2
j − 2d2

(x2
j + d2)2

= −L′(d)

d
− 4

k
∑

j=1

x2
j

(x2
j + d2)2

. (55)

13
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The maximum likelihood estimator ofd, denoted bŷdMLE, is the solution toL′(d) = 0, i.e.,

− k

d̂MLE

+

k
∑

j=1

2d̂MLE

x2
j + d̂2

MLE

= 0. (56)

BecauseL′′(d̂MLE) ≤ 0, d̂MLE indeed maximizes the joint likelihood and is the only solution to
the MLE equation (56). Solving (56) numerically is not difficult (e.g., a few iterations using the
Newton’s method). For a better accuracy, we recommend the following bias-corrected estimator:

d̂MLE,c = d̂MLE

(

1 − 1

k

)

. (57)

Lemma 6 concerns the asymptotic moments ofd̂MLE andd̂MLE,c, proved in Appendix E.

Lemma 6 Bothd̂MLE andd̂MLE,c are asymptotically unbiased and normal. The first four moments
of d̂MLE are

E
(

d̂MLE − d
)

=
d

k
+ O

(

1

k2

)

(58)

Var
(

d̂MLE

)

=
2d2

k
+

7d2

k2
+ O

(

1

k3

)

(59)

E
(

d̂MLE − E(d̂MLE)
)3

=
12d3

k2
+ O

(

1

k3

)

(60)

E
(

d̂MLE − E(d̂MLE)
)4

=
12d4

k2
+

222d4

k3
+ O

(

1

k4

)

(61)

The first four moments of̂dMLE,c are

E
(

d̂MLE,c − d
)

= O

(

1

k2

)

(62)

Var
(

d̂MLE,c

)

=
2d2

k
+

3d2

k2
+ O

(

1

k3

)

(63)

E
(

d̂MLE,c − E(d̂MLE,c)
)3

=
12d3

k2
+ O

(

1

k3

)

(64)

E
(

d̂MLE,c − E(d̂MLE,c)
)4

=
12d4

k2
+

186d4

k3
+ O

(

1

k4

)

(65)

The orderO
(

1
k

)

term of the variance, i.e.,2d2

k , is known, e.g., (Haas et al., 1970). We derive the

bias-corrected estimator,̂dMLE,c, and the higher order moments using stochastic Taylor expansions
(Bartlett, 1953; Shenton and Bowman, 1963; Ferrari et al., 1996; Cysneiros et al., 2001).

We will propose an inverse Gaussian distribution to approximate the distribution of̂dMLE,c, by
matching the first four moments (at least in the leading terms).
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6.1 A Numerical Example

The maximum likelihood estimators are tested on MSN Web crawl data, a term-by-document matrix
with D = 216 Web pages. We conduct Cauchy random projections and estimate thel1 distances
between words. In this experiment, we compare the empiricaland (asymptotic) theoretical mo-
ments, using one pair of words. Figure 4 illustrates that thebias correction is effective and these
(asymptotic) formulas for the first four moments ofd̂MLE,c in Lemma 6 are accurate, especially
whenk ≥ 20.
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Figure 4: One pair of words are selected from an MSN term-by-document matrix withD = 216

Web pages. We conduct Cauchy random projections and estimate thel1 distance between
one pair of words using the maximum likelihood estimatord̂MLE and the bias-corrected
version d̂MLE,c. Panel (a) plots the biases of̂dMLE and d̂MLE,c, indicating that the
bias correction is effective. Panels (b), (c), and (d) plot the variance, third moment, and
fourth moment ofd̂MLE,c, respectively. The dashed curves are the theoretical asymptotic
moments. Whenk ≥ 20, the theoretical asymptotic formulas for moments are accurate.

6.2 Approximation Distributions

Theoretical analysis on the exact distribution of a maximumlikelihood estimator is difficult.3 In
statistics, the standard approach is to assume normality, which, however, is quite inaccurate. The

3. In fact, conditional on the observationsx1, x2, ...,xk, the distribution ofd̂MLE can be exactly characterized (Fisher,
1934). Lawless (1972) studied the conditional confidence interval of the MLE. Later, Hinkley (1978) proposed the
normal approximation to the exact conditional confidence interval and showed that it was superior to the uncondi-
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so-calledEdgeworth expansion4 improves the normal approximation by matching higher moments
(Feller, 1971; Bhattacharya and Ghosh, 1978; Severini, 2000). For example, if we approximate
the distribution ofd̂MLE,c using an Edgeworth expansion by matching the first four moments of
d̂MLE,c derived in Lemma 6, then the errors will be on the order ofO

(

k−3/2
)

. However, Edgeworth
expansions have some well-known drawbacks. The resultant expressions are quite sophisticated.
They are not accurate at the tails. It is possible that the approximate probability has values below
zero. Also, Edgeworth expansions consider the support is(−∞,∞), while d̂MLE,c is non-negative.

We propose approximating the distributions ofd̂MLE,c directly using some well-studied com-
mon distributions. We will first consider a gamma distribution with the same first two (asymptotic)
moments of̂dMLE,c. That is, the gamma distribution will be asymptotically equivalent to the normal
approximation. While a normal has zero third central moment, a gamma has nonzero third central
moment. This, to an extent, speeds up the rate of convergence. Another important reason why a
gamma is more accurate is because it has the same support asd̂MLE,c, i.e., [0,∞).

We will furthermore consider ageneralized gammadistribution, which allows us to match the
first three (asymptotic) moments of̂dMLE,c. Interestingly, in this case, the generalized gamma ap-
proximation turns out to be an inverse Gaussian distribution, which has a closed-form probability
density. More interestingly, this inverse Gaussian distribution also matches the fourth central mo-
ment of d̂MLE,c in the O

(

1
k2

)

term and almost in theO
(

1
k3

)

term. By simulations, the inverse
Gaussian approximation is highly accurate.

Note that, since we are interested in the very small (e.g.,10−10) tail probability range,O
(

k−3/2
)

is not too meaningful. For example,k−3/2 = 10−3 if k = 100. Therefore, we will have to rely on
simulations to assess the accuracy of the approximations. On the other hand, an upper bound may
hold exactly (verified by simulations) even if it is based on an approximate distribution.

As the related work, Li et al. (2006e) applied gamma and generalized gamma approximations
to model the performance measure distribution in some wireless communication channels using
random matrix theory and produced accurate results in evaluating the error probabilities.

6.2.1 THE GAMMA APPROXIMATION

The gamma approximation is an obvious improvement over the normal approximation.5 A gamma
distribution,G(α, β), has two parameters,α andβ, which can be determined by matching the first
two (asymptotic) moments of̂dMLE,c. That is, we assume that̂dMLE,c ∼ G(α, β), with

αβ = d, αβ2 =
2d2

k
+

3d2

k2
, =⇒ α =

1
2
k + 3

k2

, β =
2d

k
+

3d

k2
. (66)

tional normality approximation. Unfortunately, we can nottake advantage of the conditional analysis because our
goal is to determine the sample sizek before seeing any samples.

4. The so-calledSaddlepoint approximationin general improves Edgeworth expansions (Jensen, 1995), often very con-
siderably. Unfortunately, we can not apply the Saddlepointapproximation in our case (at least not directly), because
the Saddlepoint approximation needs a bounded moment generating function.

5. In normal random projectionsfor dimension reduction inl2, the resultant estimator of the squaredl2 distance has a
chi-squared distribution (e.g., (Vempala, 2004, Lemma 1.3)), which is a special case of gamma.
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Assuming a gamma distribution, it is easy to obtain the following Chernoff bounds6:

Pr

(

d̂MLE,c ≥ (1 + ǫ)d
) ∼
≤ exp (−α (ǫ − log(1 + ǫ))) , ǫ ≥ 0 (67)

Pr

(

d̂MLE,c ≤ (1 − ǫ)d
) ∼
≤ exp (−α (−ǫ − log(1 − ǫ))) , 0 ≤ ǫ < 1, (68)

where we use
∼
≤ to indicate that these inequalities are based on an approximate distribution.

Note that the distribution of̂dMLE/d (and hencêdMLE,c/d) is only a function ofk as shown
in (Antle and Bain, 1969; Haas et al., 1970). Therefore, we can evaluate the accuracy of the gamma
approximation by simulations withd = 1, as presented in Figure 5.
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Figure 5: We considerk = 10, 20, 50, 100, 200, and 400. For eachk, we simulate standard
Cauchy samples, from which we estimate the Cauchy parameterby the MLEd̂MLE,c and
compute the tail probabilities. Panel (a) compares the empirical tail probabilities (thick
solid) with the gamma tail probabilities (thin solid), indicating that the gamma distribution
is better than the normal (dashed) for approximating the distribution of d̂MLE,c. Panel (b)
compares the empirical tail probabilities with the gamma upper bound (67)+(68).

Figure 5(a) shows that both the gamma and normal approximations are fairly accurate when the
tail probability≥ 10−2 ∼ 10−3; and the gamma approximation is obviously better.

Figure 5(b) compares the empirical tail probabilities withthe gamma Chernoff upper bound
(67)+(68), indicating that these bounds are reliable, whenthe tail probability≥ 10−5 ∼ 10−6.

6.2.2 THE INVERSE GAUSSIAN (GENERALIZED GAMMA ) APPROXIMATION

The distribution ofd̂MLE,c can be well approximated by an inverse Gaussian distribution, which
is a special case of the three-parameter generalized gamma distribution (Hougaard, 1986; Gerber,
1991), denoted byGG(α, β, η). Note that the usual gamma distribution is a special case with η = 1.

6. Using the Chernoff inequality (Chernoff, 1952), we boundthe tail probability byPr (Q > z) = Pr
(

eQt > ezt
)

≤

E
(

eQt
)

e−zt; and we then chooset that minimizes the upper bound.
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If z ∼ GG(α, β, η), then the first three moments are

E(z) = αβ, Var(z) = αβ2, E(z − E(z))3 = αβ3(1 + η). (69)

We can approximate the distribution ofd̂MLE,c by matching the first three moments, i.e.,

αβ = d, αβ2 =
2d2

k
+

3d2

k2
, αβ3(1 + η) =

12d3

k2
, (70)

from which we obtain

α =
1

2
k + 3

k2

, β =
2d

k
+

3d

k2
, η = 2 + O

(

1

k

)

. (71)

Taking only the leading term forη, the generalized gamma approximation ofd̂MLE,c would be

GG

(

1
2
k + 3

k2

,
2d

k
+

3d

k2
, 2

)

. (72)

In general, a generalized gamma distribution does not have aclosed-form density function al-
though it always has a closed-from moment generating function. In our case, (72) is actually an
inverse Gaussian distribution, which has a closed-form density function. Assumingd̂MLE,c ∼
IG(α, β), with parametersα andβ defined in (71), the moment generating function (MGF), the
probability density function (PDF), and cumulative density function (CDF) would be (Seshadri,
1993, Chapter 2) (Tweedie, 1957a,b)7

E
(

exp(d̂MLE,ct)
)

∼
= exp

(

α
(

1 − (1 − 2βt)1/2
))

, (73)

Pr(d̂MLE,c = y)
∼
=

α
√

β√
2π

y−
3
2 exp

(

−(y/β − α)2

2y/β

)

=

√

αd

2π
y−

3
2 exp

(

−(y − d)2

2yβ

)

, (74)

Pr

(

d̂MLE,c ≤ y
)

∼
= Φ

(
√

α2β

y

(

y

αβ
− 1

)

)

+ e2αΦ

(

−
√

α2β

y

(

y

αβ
+ 1

)

)

= Φ

(
√

αd

y

(y

d
− 1
)

)

+ e2αΦ

(

−
√

αd

y

(y

d
+ 1
)

)

, (75)

whereΦ(.) is the standard normal CDF, i.e.,Φ(z) =
∫ z
−∞

1√
2π

e−
t2

2 dt. Here we use
∼
= to indicate

that these equalities are based on an approximate distribution.
Assumingd̂MLE,c ∼ IG(α, β), then the fourth central moment should be

E
(

d̂MLE,c − E
(

d̂MLE,c

))4 ∼
= 15αβ4 + 3

(

αβ2
)2

= 15d

(

2d

k
+

3d

k2

)3

+ 3

(

2d2

k
+

3d2

k2

)2

=
12d4

k2
+

156d4

k3
+ O

(

1

k4

)

. (76)

7. The inverse Gaussian distribution was first noted as the distribution of the first passage time of the Brownian
motion with a positive drift. It has many interesting properties such as infinitely divisible. Two monographs
(Chhikara and Folks, 1989; Seshadri, 1993) are devoted entirely to the inverse Gaussian distributions. For a quick
reference, one can checkhttp://mathworld.wolfram.com/InverseGaussianDistribution.html.
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Lemma 6 has shown the true asymptotic fourth central moment:

E
(

d̂MLE,c − E
(

d̂MLE,c

))4
=

12d4

k2
+

186d4

k3
+ O

(

1

k4

)

. (77)

That is, the inverse Gaussian approximation matches not only the leading term,12d4

k2 , but also almost

the higher order term,186d4

k3 , of the true asymptotic fourth moment ofd̂MLE,c.

Assumingd̂MLE,c ∼ IG(α, β), the tail probability ofd̂MLE,c can be expressed as

Pr

(

d̂MLE,c ≥ (1 + ǫ)d
)

∼
= Φ

(

−ǫ

√

α

1 + ǫ

)

− e2αΦ

(

−(2 + ǫ)

√

α

1 + ǫ

)

, ǫ ≥ 0 (78)

Pr

(

d̂MLE,c ≤ (1 − ǫ)d
)

∼
= Φ

(

−ǫ

√

α

1 − ǫ

)

+ e2αΦ

(

−(2 − ǫ)

√

α

1 − ǫ

)

, 0 ≤ ǫ < 1. (79)

Assumingd̂MLE,c ∼ IG(α, β), it is easy to show the following Chernoff bounds:

Pr

(

d̂MLE,c ≥ (1 + ǫ)d
) ∼
≤ exp

(

− αǫ2

2(1 + ǫ)

)

, ǫ ≥ 0 (80)

Pr

(

d̂MLE,c ≤ (1 − ǫ)d
) ∼
≤ exp

(

− αǫ2

2(1 − ǫ)

)

, 0 ≤ ǫ < 1. (81)

To see (80). Assumez ∼ IG(α, β). Then, using the Chernoff inequality:

Pr (z ≥ (1 + ǫ)d) ≤E(zt) exp(−(1 + ǫ)dt)

= exp
(

α
(

1 − (1 − 2βt)1/2
)

− (1 + ǫ)dt
)

,

whose minimum isexp
(

− αǫ2

2(1+ǫ)

)

, attained att =
(

1 − 1
(1+ǫ)2

)

1
2β . We can similarly show (81).

Combining (80) and (81) yields a symmetric bound

Pr

(

|d̂MLE,c − d| ≥ ǫd
) ∼
≤ 2 exp

(

− ǫ2/(1 + ǫ)

2
(

2
k + 3

k2

)

)

, 0 ≤ ǫ ≤ 1 (82)

Figure 6 compares the inverse Gaussian approximation with the same simulations as presented
in Figure 5, indicating that the inverse Gaussian approximation is highly accurate. When the tail
probability≥ 10−4 ∼ 10−6, we can treat the inverse Gaussian as the exact distributionof d̂MLE,c.
The Chernoff upper bounds for the inverse Gaussian are always reliable in our simulation range (the
tail probability≥ 10−10).

7. Conclusion

It is well-known that thel1 distance is far more robust than thel2 distance against “outliers.”
There are numerous success stories of using thel1 distance, e.g., Lasso (Tibshirani, 1996), LARS
(Efron et al., 2004), 1-norm SVM (Zhu et al., 2003), and Laplacian radial basis kernel (Chapelle et al.,
1999; Ferecatu et al., 2004).
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Figure 6: We compare the inverse Gaussian approximation with the same simulations as presented
in Figure 5. Panel (a) compares the empirical tail probabilities with the inverse Gaussian
tail probabilities, indicating that the approximation is highly accurate. Panel (b) com-
pares the empirical tail probabilities with the inverse Gaussian upper bound (80)+(81).
The upper bounds are all above the corresponding empirical curves, indicating that our
proposed bounds are reliable at least in our simulation range.

Dimension reduction in thel1 norm, however, has been provedimpossibleif we uselinear ran-
dom projectionsandlinear estimators. In this study, we propose three types of nonlinear estimators
for Cauchy random projections: the bias-corrected sample median estimator, the bias-corrected
geometric mean estimator, and the bias-corrected maximum likelihood estimator. Our theoretical
analysis has shown that these nonlinear estimators can accurately recover the originall1 distance,
even though none of them can be a metric.

The bias-corrected sample median estimator and the bias-corrected geometric mean estimator
are asymptotically equivalent but the latter is more accurate at small sample size. We have derived
explicit tail bounds for the bias-corrected geometric meanestimator and have expressed the tail
bounds in exponential forms. Using these tail bounds, we have established an analog of the Johnson-
Lindenstrauss (JL) lemma for dimension reduction inl1, which is weaker than the classical JL
lemma for dimension reduction inl2.

We conduct theoretic analysis on the bias-corrected maximum likelihood estimator (MLE),
which is “asymptotically optimum.” Both the sample median estimator and the geometric mean
estimator are about80% efficient as the MLE. We propose approximating its distribution by an
inverse Gaussian, which has the same support and matches theleading terms of the first four mo-
ments of the proposed estimator. Approximate tail bounds have been provide based on the inverse
Gaussian approximation. Verified by simulations, these approximate tail bounds hold at least in the
≥ 10−10 tail probability range.

Although these nonlinear estimators are not metrics, they are still useful for certain applications
in (e.g.,) data stream computation, information retrieval, learning and data mining, whenever the
goal is to compute thel1 distances efficiently using a small storage space.
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The geometric mean estimator is a non-convex norm (i.e., thelp norm asp → 0); and therefore
it does contain some information about the geometry. It may be still possible to develop certain
efficient algorithms using the geometric mean estimator by avoiding the non-convexity. We leave
this for future work.
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Appendix A. Proof of Lemma 1

Assumex ∼ C(0, d). The probability density function (PDF) and the cumulativedensity function
(CDF) of |x| would be

Pr(|x| = z) =
2d

π

1

z2 + d2
, z ≥ 0 (83)

Pr(|x| ≤ z) =
2

π
tan−1 z

d
, z ≥ 0 (84)

The asymptotic normality of̂dme follows from the asymptotic results on sample quantiles (Shao,
2003, Theorem 5.10).

√
k
(

d̂me − d
)

D
=⇒ N

(

0,
1

2

(

1 − 1

2

)

/ (Pr(|x| = z)|z=d)
2

)

= N

(

0,
π2

4
d2

)

(85)

The probability density of̂dme can be derived from the probability density of order statistics
(Shao, 2003, Example 2.9). For simplicity, we only considerk = 2m + 1, m = 1, 2, ...,

Pr(d̂me = z) =
(2m + 1)!

(m!)2
(Pr(|x| ≤ z))m (1 − Pr(|x| ≤ z))m

Pr(|x| = z)

=
(2m + 1)!

(m!)2

(

2

π
tan−1 z

d

)m(

1 − 2

π
tan−1 z

d

)m 2d

π

1

z2 + d2
. (86)
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Therth moment ofd̂me would be

E
(

d̂me

)r
=

∫ ∞

0
zr (2m + 1)!

(m!)2

(

2

π
tan−1 z

d

)m(

1 − 2

π
tan−1 z

d

)m 2d

π

1

z2 + d2
dz

= dr

∫ 1

0

(2m + 1)!

(m!)2
tanr

(π

2
t
)

(

t − t2
)m

dt, (87)

by substitutingt = 2
π tan−1 z

d .
Whent → 1 − 0, tan

(

π
2 t
)

→ ∞, but t − t2 = t(1 − t) → 0. Aroundt = 1 − 0, tan
(

π
2 t
)

=
1

tan(π
2
(1−t))

= 2
π

1
1−t + ..., by the Taylor expansion. Therefore, in order for E

(

d̂me

)r
< ∞, we

must havem ≥ r.
We complete the proof of Lemma 1.

Appendix B. Proof of Lemma 2

Assumex ∼ C(0, d). The first moment oflog(|x|) would be

E(log(|x|)) =
2d

π

∫ ∞

0

log(y)

y2 + d2
dy

=
1

π

∫ ∞

0

log(d)y−1/2

y + 1
+

1/2 log(y)y−1/2

y + 1
dy

= log(d), (88)

with the help of the integral tables (Gradshteyn and Ryzhik,1994, 3.221.1, 4.251.1).
Thus, given i.i.d. samplesxj ∼ C(0, d), j = 1, 2, ..., k, a nonlinear estimator ofd would be

d̂log = exp





1

k

k
∑

j=1

log(|xj |)



 . (89)

We can derive another nonlinear estimator from E
(

|x|λ
)

, |λ| < 1. Using the integral tables
(Gradshteyn and Ryzhik, 1994, 3.221.1), we obtain

E
(

|x|λ
)

=
2d

π

∫ ∞

0

yλ

y2 + d2
dy

=
dλ

π

∫ ∞

0

y
λ−1

2

y + 1
dy

=
dλ

cos(λπ/2)
, (90)

from which a nonlinear estimator follows immediately

d̂λ =





1

k

k
∑

j=1

|xj|λ cos(λπ/2)





1/λ

, |λ| < 1 (91)
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Both nonlinear estimatorŝdlog and d̂λ are biased. The leading terms of their variances can be
obtained by theDelta Method(Shao, 2003, Corollary 1.1).

With the help of (Gradshteyn and Ryzhik, 1994, 4.261.10), weobtain

E
(

log2(|x|)
)

= log2(d) +
π2

4
, i.e., Var

(

log2(|x|)
)

=
π2

4
. (92)

Thus,

E





1

k

k
∑

j=1

log(|xj |)



 = log d, Var





1

k

k
∑

j=1

log(|xj |)



 =
1

k

π2

4
. (93)

By theDelta Method, the asymptotic variance of̂dlog should be

Var
(

d̂log

)

=
1

k

π2

4
exp2 (log(d)) + O

(

1

k2

)

=
π2d2

4k
+ O

(

1

k2

)

. (94)

Similarly, the asymptotic variance of̂dλ is

Var
(

d̂λ

)

=
d2

k

sin2(λπ/2)

λ2 cos(λπ)
+ O

(

1

k2

)

, |λ| < 1/2 (95)

Var
(

d̂λ

)

→ ∞ as|λ| → 1
2 . Var

(

d̂λ

)

converges to Var
(

d̂log

)

asλ → 0, because

lim
λ→0

sin2(λπ/2)

λ2 cos(λπ)
=

π2

4
. (96)

This completes the proof of Lemma 2.

Appendix C. Proof of Lemma 3

Assume thatx1, x2, ...,xk, are i.i.d.C(0, d). The estimator,̂dgm,c, expressed as

d̂gm,c = cosk
( π

2k

)

k
∏

j=1

|xj |1/k, (97)

is unbiased, because, from Lemma 2,

E
(

d̂gm,c

)

= cosk
( π

2k

)

k
∏

j=1

E
(

|xj|1/k
)

= cosk
( π

2k

)

k
∏

j=1

(

d1/k

cos
(

π
2k

)

)

= d. (98)
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The variance is

Var
(

d̂gm,c

)

= cos2k
( π

2k

)

k
∏

j=1

E
(

|xj |2/k
)

− d2

= d2
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cos2k
(
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)

(99)

=
π2

4

d2

k
+

π4

32

d2
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+ O
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1

k3

)

, (100)

because

cos2k
(

π
2k

)

cosk
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π
k

) =
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1

2
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1
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1
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. (101)

Some more algebra can similarly show the third and fourth central moments:

E
(

d̂gm,c − E
(

d̂gm,c

))3
=

3π4

16

d3

k2
+ O

(

1

k3

)

(102)

E
(

d̂gm,c − E
(

d̂gm,c

))4
=

3π4

16

d4

k2
+ O

(

1

k3

)

. (103)

Therefore, we have completed the proof of Lemma 3.

Appendix D. Proof of Lemma 4

This section proves the tail bounds ford̂gm,c. Note thatd̂gm,c does not have a moment generating

function because E
(

d̂gm,c

)t
= ∞ if t ≥ k. However, we can still use the Markov moment bound.8

For anyǫ ≥ 0 and0 ≤ t < k, the Markov inequality says

Pr

(

d̂gm,c ≥ (1 + ǫ)d
)

≤
E
(

d̂gm,c

)t

(1 + ǫ)tdt
=

coskt
(

π
2k

)

cosk
(

πt
2k

)

(1 + ǫ)t
, (104)

which can be minimized by choosing the optimumt = t∗1, where

t∗1 =
2k

π
tan−1

(

(

log(1 + ǫ) − k log cos
( π

2k

)) 2

π

)

. (105)

8. In fact, even when the moment generating function does exist, for any positive random variable, the Markov moment
bound is always sharper than the Chernoff bound, although the Chernoff bound will be in an exponential form. See
Philips and Nelson (1995); Lugosi (2004).
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We need to make sure that0 ≤ t∗1 < k. t∗1 ≥ 0 becauselog cos(.) ≤ 0; andt∗1 < k because
tan−1(.) ≤ π

2 , with equality holding only whenk → ∞.

For 0 ≤ ǫ ≤ 1, we can prove an exponential bound forPr

(

d̂gm,c ≥ (1 + ǫ)d
)

. First of all,

note that we do not have to choose the optimumt = t∗1. By the Taylor expansion, for smallǫ, t∗1 can
be well approximated by

t∗1 ≈ 4kǫ

π2
+

1

2
≈ 4kǫ

π2
= t∗∗1 . (106)

Therefore, takingt = t∗∗1 = 4kǫ
π2 , the tail bound becomes

Pr

(

d̂gm,c ≥ (1 + ǫ)d
)

≤ coskt∗∗1
(

π
2k

)

cosk
(

πt∗∗1
2k

)
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∗∗

1

=

(

cost∗∗1
(

π
2k

)

cos
(

2ǫ
π

)

(1 + ǫ)4ǫ/π2

)k

≤
(

1

cos
(

2ǫ
π

)

(1 + ǫ)4ǫ/π2

)k

= exp

(

−k

(

log

(

cos

(

2ǫ

π

))

+
4ǫ

π2
log(1 + ǫ)

))

≤ exp

(

−k
ǫ2

8(1 + ǫ)

)

, 0 ≤ ǫ ≤ 1 (107)

The last step in (107) needs some explanations. First, by theTaylor expansion,

log

(

cos

(

2ǫ

π

))

+
4ǫ

π2
log(1 + ǫ)

=

(

−2ǫ2

π2
− 4

3

ǫ4

π4
+ ...

)

+
4ǫ

π2

(

ǫ − 1

2
ǫ2 + ...

)

=
2ǫ2

π2
(1 − ǫ + ...) (108)

Therefore, we can seek the smallest constantγ1 so that

log

(

cos

(

2ǫ

π

))

+
4ǫ

π2
log(1 + ǫ) ≥ ǫ2

γ1(1 + ǫ)
=

ǫ2

γ1
(1 − ǫ + ...) (109)

It is easy to see that asǫ → 0, γ1 → π2

2 . Figure 7(a) illustrates that it suffices to letγ1 = 8,
which can be numerically verified. This is why the last step in(107) holds. Of course, we can get a
better constant if (e.g.,)ǫ = 0.5.
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Now we need to show the other tail boundPr

(

d̂gm,c ≤ (1 − ǫ)d
)

:

Pr

(

d̂gm,c ≤ (1 − ǫ)d
)

= Pr



cos
( π

2k

)k
k
∏

j=1

|xj |1/k ≤ (1 − ǫ)d





=Pr





k
∑

j=1

log
(

|xj |1/k
)

≤ log

(

(1 − ǫ)d

cosk
(

π
2k

)

)





=Pr



exp





k
∑

j=1

log
(

|xj |−t/k
)



 ≥ exp

(

−t log

(

(1 − ǫ)d

cosk
(

π
2k

)

))



 , 0 ≤ t < k

≤
(

(1 − ǫ)

cosk
(

π
2k

)

)t
1

cosk
(

πt
2k

) , (Chernoff bound) (110)

which is minimized att = t∗2

t∗2 =
2k

π
tan−1

(

(

− log(1 − ǫ) + k log cos
( π

2k

)) 2

π

)

, (111)

providedk ≥ π2

8ǫ , otherwiset∗2 may be less than 0.
Again, t∗2 can be replaced by its approximation

t∗2 ≈ t∗∗2 =
4kǫ

π2
, (112)

providedk ≥ π2

4ǫ , otherwise the probability upper bound may exceed one. Therefore,

Pr

(

d̂gm,c ≤ (1 − ǫ)d
)

≤
(

(1 − ǫ)

cosk
(

π
2k

)

)t∗∗2
1

cosk
(

πt∗∗2
2k

)

= exp

(

−k

(

log

(

cos
2ǫ

π

)

− 4ǫ

π2
log(1 − ǫ) +

4kǫ

π2
log
(

cos
π

2k

)

))

.

We can bound4kǫ
π2 log

(

cos π
2k

)

by restrictingk.

In order to attainPr

(

d̂gm,c ≤ (1 − ǫ)d
)

≤ exp
(

−k
(

ǫ2

8(1+ǫ)

))

, we have to restrictk to be

larger than a certain value. For no particular reason, we like to express the restriction ask ≥ π2

γ2ǫ ,

for some constantγ2. We findk ≥ π2

1.5ǫ suffices, although readers can verify that a slightly better

(smaller) restriction would bek ≥ 1
4/π2−1/4

1
ǫ = π2

1.5326ǫ .

If k ≥ π2

1.5ǫ , then 4kǫ
π2 log

(

cos π
2k

)

≥ 8
3 log

(

cos ǫ
3π

)

. Therefore,

Pr

(

d̂gm,c ≤ (1 − ǫ)d
)

≤ exp

(

−k

(

log

(

cos
2ǫ

π

)

− 4ǫ

π2
log(1 − ǫ) +

8

3
log
(

cos
ǫ

3π

)

))

≤ exp

(

−k
ǫ2

8(1 + ǫ)

)

, k ≥ π2

1.5ǫ
(113)

This completes the proof of Lemma 4.
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Figure 7: (a): ǫ2/(1+ǫ)

log(cos( 2ǫ
π ))+ 4ǫ

π2 log(1+ǫ)
as a function ofǫ. (b): ǫ2/(1+ǫ)

log(cos 2ǫ
π )− 4ǫ

π2 log(1−ǫ)+ 8
3

log(cos ǫ
3π )

as a function ofǫ. Graphically, we know that it suffices to use a constant 8 in (107) and
(113). The optimal constant will be different for differentǫ. For example, ifǫ = 0.2, we
could replace the constant 8 by a constant 5.

Appendix E. Proof of Lemma 6

Assumex ∼ C(0, d). Thelog likelihood (l(x; d)) and first three derivatives are

l(x; d) = log(d) − log(π) − log(x2 + d2), (114)

l′(d) =
1

d
− 2d

x2 + d2
(115)

l′′(d) = − 1

d2
− 2x2 − 2d2

(x2 + d2)2
(116)

l′′′(d) =
2

d3
+

4d

(x2 + d2)2
+

8d(x2 − d2)

(x2 + d2)3
(117)

The MLE d̂MLE is asymptotically normal with meand and variance 1
kI(d) , where I(d), the

expected Fisher Information, is

I = I(d) = E
(

−l′′(d)
)

=
1

d2
+ 2E

(

x2 − d2

(x2 + d2)2

)

=
1

2d2
, (118)

because

E

(

x2 − d2

(x2 + d2)2

)

=
d

π

∫ ∞

−∞

x2 − d2

(x2 + d2)3
dx

=
d

π

∫ π/2

−π/2

d2(tan2(t) − 1)

d6/ cos6(t)

d

cos2(t)
dt

=
1

d2π

∫ π/2

−π/2
cos2(t) − 2 cos4(t)dt

=
1

d2π

(

π

2
− 2

3

8
π

)

= − 1

4d2
(119)
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Therefore, we obtain

Var
(

d̂MLE

)

=
2d2

k
+ O

(

1

k2

)

. (120)

General formulas for the bias and higher moments of the MLE are available in (Bartlett, 1953;
Shenton and Bowman, 1963). We need to evaluate the expressions in (Shenton and Bowman, 1963,
16a-16d), involving tedious algebra:

E
(

d̂MLE

)

= d − [12]

2kI2
+ O

(

1

k2

)

(121)

Var
(

d̂MLE

)

=
1

kI
+

1

k2

(

−1

I
+

[14] − [122] − [13]

I3
+

3.5[12]2 − [13]2

I4

)

+ O

(

1

k3

)

(122)

E
(

d̂MLE − E
(

d̂MLE

))3
=

[13] − 3[12]

k2I2
+ O

(

1

k3

)

(123)

E
(

d̂MLE − E
(

d̂MLE

))4
=

3

k2I2
+

1

k3

(

− 9

I2
+

7[14] − 6[122] − 10[13]

I4

)

+
1

k3

(−6[13]2 − 12[13][12] + 45[12]2

I5

)

+ O

(

1

k4

)

, (124)

where, after re-formatting,

[12] = E(l′)3 + E(l′l′′), [14] = E(l′)4, [122] = E(l′′(l′)2) + E(l′)4,

[13] = E(l′)4 + 3E(l′′(l′)2) + E(l′l′′′), [13] = E(l′)3. (125)

We will neglect most of the algebra. To help readers verifying the results, the following formula
we derive may be useful:

E

(

1

x2 + d2

)m

=
1 × 3 × 5 × ... × (2m − 1)

2 × 4 × 6 × ... × (2m)

1

d2m
, m = 1, 2, 3, ... (126)

Without giving the detail, we report

E
(

l′
)3

= 0, E
(

l′l′′
)

= −1

2

1

d3
, E

(

l′
)4

=
3

8

1

d4
,

E(l′′(l′)2) = −1

8

1

d4
, E

(

l′l′′′
)

=
3

4

1

d4
. (127)

Hence

[12] = −1

2

1

d3
, [14] =

3

8

1

d4
, [122] =

1

4

1

d4
, [13] =

3

4

1

d4
, [13] = 0. (128)

Thus, we obtain

E
(

d̂MLE

)

= d +
d

k
+ O

(

1

k2

)

(129)

Var
(

d̂MLE

)

=
2d2

k
+

7d2

k2
+ O

(

1

k3

)

(130)

E
(

d̂MLE − E
(

d̂MLE

))3
=

12d3

k2
+ O

(

1

k3

)

(131)

E
(

d̂MLE − E
(

d̂MLE

))4
=

12d4

k2
+

222d4

k3
+ O

(

1

k4

)

. (132)
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BecausêdMLE hasO
(

1
k

)

bias, we recommend the bias-corrected estimator

d̂MLE,c = d̂MLE

(

1 − 1

k

)

, (133)

whose first four moments are

E
(

d̂MLE,c

)

= d + O

(

1

k2

)

(134)

Var
(

d̂MLE,c

)

=
2d2

k
+

3d2

k2
+ O

(

1

k3

)

(135)

E
(

d̂MLE,c − E
(

d̂MLE,c

))3
=

12d3

k2
+ O

(

1

k3

)

(136)

E
(

d̂MLE,c − E
(

d̂MLE,c

))4
=

12d4

k2
+

186d4

k3
+ O

(

1

k4

)

, (137)

by brute-force algebra. First, it is obvious that

E
(

d̂MLE − d
)2

=
2d2

k
+

8d2

k2
+ O

(

1

k3

)

. (138)

Then

Var
(

d̂MLE,c

)

= E
(

d̂MLE,c − E(d̂MLE,c)
)2

= E

(

d̂MLE

(

1 − 1

k

)

− d + O

(

1

k2

))2

= E

(

(

d̂MLE − d
)

(

1 − 1

k

)

− d

k
+ O

(

1

k2

))2

= E
(

d̂MLE − d
)2
(

1 − 2

k

)

+
d2

k2
− 2

d

k

(

1 − 1

k

)

+ O

(

1

k3

)

=
2d2

k
+

3d2

k2
+ O

(

1

k3

)

. (139)

We can evaluate the higher central moments ofd̂MLE,c similarly, but we skip the algebra.
Therefore, we have completed the proof for Lemma 6.
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