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Editor: Abstract

For?® dimension reduction ify, the method o€auchy random projectionsultiplies the orig-
inal data matrixA € R™*? with a random matrixR € RP** (k < min(n, D)) whose entries
are i.i.d. samples of the standard Cauchip, 1). Because of the impossibility results, one can
not hope to recover the pairwigedistances il fromB = AR € R™**, using linear estimators
without incurring large errors. However, nonlinear estionaare still useful for certain applications
in data stream computation, information retrieval, leagnand data mining.

We propose three types of nonlinear estimators: the biagated sample median estimator,
the bias-corrected geometric mean estimator, and thecbi@seted maximum likelihood estimator.
The sample median estimator and the geometric mean estiar@@symptotically (a8 — o)
equivalent but the latter is more accurate at shalle derive explicit tail bounds for the geometric
mean estimator and establish an analog of the Johnson+istrdess (JL) lemma for dimension
reduction inly, which is weaker than the classical JL lemma for dimensidacgon inl,.

Asymptotically, both the sample median estimator and tloagric mean estimators are about
80% efficient compared to the maximum likelihood estimator (ML®/e analyze the moments of
the MLE and propose approximating the distribution of theBvthy an inverse Gaussian.

Keywords. Dimension reduction; norm, Cauchy Random projections, JL bound

1. Introduction

This paper focuses on dimension reductioninin particular, on the method based Gauchy
random projectionglndyk,|2000), which is special case lofear random projections

The idea oflinear random projectionss to multiply the original data matriA € R™*? with
a random projection matriR € RP**, resulting in a projected matriB = AR € R"*%, If
k < min(n, D), then it should be much more efficient to compute certain samrstatistics (e.g.,

1. Revised December 29, 2013. The original version, tiReakctical Procedures for Dimension Reductionlin is
available as a technical report in Stanford Statisticsvacfreport No. 2006-04, June, 2006).
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pairwise distances) froB as opposed td. Moreover,B may be small enough to reside in physical
memory whileA is often too large to fit in the main memory.

The choice of the random projection matidepends on which norm we would like to work
with. lIndyk (2000) proposed constructidg from i.i.d. samples op-stable distributions, for di-
mension reduction if, (0 < p < 2). In the stable distribution family (Zolotarev, 1986), nal is
2-stable and Cauchy is 1-stable. Thus, we will call randoojegtions forl; andi;, normal random
projectionsandCauchy random projectionsespectively.

In normal random projectiongVempala, 2004), we can estimate the original pairwisdis-
tances ofA directly using the correspondinfy distances ofB (up to a normalizing constant).
Furthermore, the Johnson-Lindenstrauss (JL) lemma (dohesd Lindenstrauss, 1984) provides
the performance guarantee. We will reviearmal random projections1 more detail in Sectiofl 2.

For Cauchy random projectionsve should not use thg distance inB to approximate the
original [ distance inA, as the Cauchy distribution does not even have a finite firshemb. The
impossibility resultsi(Brinkman and Charikar, 2003; Led &laor, 2004} Brinkman and Charikar,
2005) have proved that one can not hope to recovdj ttistance using linear projections and linear
estimators (e.g., sample mean), without incurring largersr Fortunately, the impossibility results
do not rule out nonlinear estimators, which may be still ukigf certain applications in data stream
computation, information retrieval, learning, and datainm.

Indyk (2000) proposed using the sample median (insteadeo$dimple mean) i€auchy ran-
dom projectionsand described its application in data stream computatiothi$ study, we provide
three types of nonlinear estimators: the bias-correctethamedian estimator, the bias-corrected
geometric mean estimator, and the bias-corrected maxiriketihbod estimator. The sample me-
dian estimator and the geometric mean estimator are asyiogip equivalent (i.e., both are about
80% efficient as the maximum likelihood estimator), but thedats more accurate at small sample
sizek. Furthermore, we derive explicit tail bounds for the biasrected geometric mean estimator
and establish an analog of the JL Lemma for dimension reatuatil; .

This analog of the JL Lemma fdy is weaker than the classical JL Lemma fgr as the
geometric mean estimator is a non-convex norm and hencetia nwetric. Many efficient al-
gorithms, such as some sub-linear time (using super-limeanory) nearest neighbor algorithms
(Shakhnaravich et al., 2005), rely on the metric propel(geg., the triangle inequality). Neverthe-
less, nonlinear estimators may be still useful in import@narios.

e Estimating/; distances online
The original data matrixA ¢ R™*P requiresO(nD) storage space; and hence it is often
too large for physical memory. The storage cost of all paieadistances i€ (n?), which
may be also too large for the memory. For example, in infoionatetrieval,n could be the
total number of word types or documents at Web scale. To gyaig fault, it may be more
efficient to estimate the distances on the fly from the preg:data matrixB in the memory.

e Computing all pairwise; distances
In distance-based clustering and classification apptinatiwe need to compute all pairwise
distances inA, at the cost of tim&(n2D). Using Cauchy random projectionghe cost can
be reduced t®(n Dk + n?k). Becausé: < min(n, D), the savings could be enormous.

e Linear scan nearest neighbor searching
We can always search for the nearest neighbors by lineas.se¢démen working with the pro-
jected data matriB (which is in the memory), the cost of searching for the neareghbor
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for one data point is timé(nk), which may be still significantly faster than the sub-linear
algorithms working with the original data matrix (which is often on the disk).

We briefly comment oroordinate samplinganother strategy for dimension reduction. Given
a data matrixA € R"*P, one can randomly sample columns fromA and estimate the sum-
mary statistics (includind; and i, distances). Despite its simplicity, there are two majoadis
vantages in coordinate sampling. First, there is no pedioca guarantee. For heavy-tailed data,
we may have to choosevery large in order to achieve sufficient accuracy. Secardgel datasets
are often highly sparse, for example, text data (Dhillon Eiadiha,l 2001) and market-basket data
(Aggarwal and Wolf] 1999; Strehl and Ghbsh, 2000). Liandi€hy2005) and Li et al.| (2006a)
provide an alternative coordinate sampling strategyedallonditional Random Sampling (CRS)
suitable for sparse data. For non-sparse data, howevédrpdsebased olinear random projections
are superior.

The rest of the paper is organized as follows. Sedflon 2 wevimear random projections
SectionB summarizes the main results for three types oimeanl estimators. Sectidh 4 presents
the sample median estimators. Sec{ibn 5 concerns the geommetan estimators. Secti@h 6 is
devoted to the maximum likelihood estimators. Sediion Zhkates the paper.

2. Introduction to Linear Random Projections

We give a review otinear random projectionsincludingnormalandCauchy random projections
Denote the original data matrix bx € R"*P| i.e., n data points inD dimensions. Let
{u]l}*_, € RP be theith row of A. LetR € RP** be a random matrix whose entries are i.i.d.
samples of some random variable. The projected data mBtgxAR € R"**. Denote the entries
of R by {r;;}22, 5_, and let{v]}}_; € R* be theith row of B. Thenv; = RTu;, with entries

Vi = R]Tul i.i.d. j = 1tok, whereR; is thejth column ofR.
For simplicity, we focus on the leading two rows, andus, in A, and the leading two rows;
anduvy, in B. Define{z;}¥_, to be

D

xj = 2)17j — UQJ = ZTU (ulﬂ- — u27i) N ] = 1, 2, vouy k (1)
=1

If we sampler;; i.i.d. from astable distribution(Zolotarev, 1986} Indyk, 2000), thery’s are
also i.i.d. samples of the same stable distribution withffeidint scale parameter. In the family of
stable distributions, normal and Cauchy are two importpatil cases.

2.1 Normal Random Projections

Whenr;; is sampled from the standard normal, isg;,~ N(0, 1), i.i.d., then
D D
xj = 2}17j — Q}QJ = Zrij (ul,i — u27i) ~ N (0, Z ]ul,i — ’U,QJ"z) s j = 1, 2, veny k, (2)
1=1

i=1

because a weighted sum of normals is also normal.
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Denote the squardd distance between; anduy by dy, = |lu1 — ua|3 = 322, |u1; — ug.|?.
We can estimate;, from the sample squarégd distance:

k
a2, ®)
j=1

It is easy to show that (e.gL, (Vempéla, 2004; Li etlal., 2Q)P6b

dj, =

=

) ) 2

E <de> = dy,, Var (db) =, (4)
k

> ede) < 2exp <—§EQ + —€3> , €>0 (5)

Pr (‘(ib —d, 5

We would like to bound the error probabililyr (‘Jb —d,

total "("2_1) < %2 pairs among. data points, we need to bound the tail probabilities sinmeltaisly

for all pairs. By the Bonferroni union bound, it suffices if

> ed12> by 6. Since there are in

2

n a
~Pr ((dl2 —dy| > ed,) <5, 6)
Using [3), it suffices if
n? ko kg
— —= —e ) <
22exp< 1€ +66>_5 (7)
2logn — log
—k>
k2 €2/4—€e3/6 ®

Therefore, we obtain one version of the JL lemma:

If k > %, then with probability at least — §, the squared, distance between any pair
of data points (among data points) can be approximated withint ¢ fraction of the truth, using
the squared, distance of the projected data after normal random prof@tdi

Many versions of the JL lemma have been proved (Johnson amfghstrauss, 1984 ; Frankl and Maehara,
1987;lIndvk and Motwahi, 1998; Arriaga and Vempala, 1999sddata and Gupta, 2003; Indyk,
2000,/2001; Achlioptas, 2008; Arriaga and Vempala, 200&mand Chazelle, 2006).

Note that we do not have to usg; ~ N(0,1) for dimension reduction i,. For example,
we can sample;; from somesub-Gaussian distributiongndyk and Naar, 2006), in particular, the

following sparse projection distributian

1 with prob. &
rij=+s4 0 withprob.1—1 . 9)
—1  with prob. &

Whenl < s < 3,lAchlioptai (2003) proved the JL lemma for the above spagegtion, which
can also be shown by sub-Gaussian analysis (Lilet al., 208@&xently| Li et al.[(2006d) proposed
very sparse random projectionsings = +/D in (@), based on two practical considerations:

e D should be very large, otherwise there would be no need foengion reduction.
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e The originall, distance should make engineering sense, in that the seootigper) mo-
ments should be bounded (otherwise varitars-weightingschemes will be applied).

Based on these two practical assumptions, the projectachdaasymptotically normal at a fast
rate of convergence when= /D. Of courseyery sparse random projectiom® not have worst
case performance guarantees.

2.2 Cauchy Random Projections

In Cauchy random projectionsve sampler;; i.i.d. from the standard Cauchy distribution, i.e.,
ri; ~ C(0,1). By the 1-stability of Cauchy (Zolotarey, 1986), we knowttha

D
zj=v1j— vz~ C (07 Dl — U2,z'|> : (10)
i=1

That is, the projected differences = v, ; — vz ; are also Cauchy random variables with the scale
parameter being thig distanced = |u; — us| = Zi’il |u1,; — ug,4|, in the original space.
Recall that a Cauchy random variable- C'(0,~) has the density

IO g —

—m, v >0, —00 < 2 < 00 (11)
m

The easiest way to see the 1-stability is via the charatiefisiction,

E (exp(vT1)) = exp (1) 12)
D D

E (exp (\/—_1t Z cz-zZ)) = exp (—’y Z ]cﬁt) , (13)
i=1 i=1

for z1, 29, ..., zp, i.i.d. C(0,~), and any constants, cs, ...,cp.

Therefore, inCauchy random projectionghe problem boils down to estimating the Cauchy
scale parameter af' (0, d) from k i.i.d. samplesz; ~ C(0,d). Unfortunately, unlike imormal
random projectionswe can no longer estimatefrom the sample mean (i.e}g,zg?:l |z;|) because
E (.Z'J) = OQ.

Although the impossibility results_(Lee and Nabr, 2004;iRman and Charikat, 2005) have
ruled out estimators that are metrics, there is enough rimdtion to recoverd from k& samples
{xj}é‘?:l, with a high accuracy. For example, Indyk (2000) proposedguthe sample median as
an estimator. The problem with the sample median estimattirei inaccuracy at smatl and the
difficulty in deriving explicit tail bounds needed for dat@ning the sample sizk.

This study focuses on deriving better estimators and dakpéit bounds forCauchy random
projections Our main results are summarized in the next section, befergpresent the detailed
derivations. Casual readers may skip these derivatiors @éctior 3.

3. Main Results

We propose three types of nonlinear estimators: the biaeaed sample median estimatci;;%@vc),
the bias-corrected geometric mean estimadiy,(-), and the bias-corrected maximum likelihood
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estimator (ZM LE,c)- sze,c anchgWC are asymptotically equivalent but the latter is more adeuaa
small sample sizé&. In addition, we derive explicit tail bounds fdg]m ¢ from which an analog of
the Johnson- Llndenstrauss (JL) lemma for dimension ramtuai /; follows. Asymptotlcally, both
dmec anddgmc are ~ 80% efficient compared to the maximum likelihood estimaief; -
We propose accurate approximations to the distributiontaihounds ofdy 1, E,¢,» While the exact
closed-form answers are not attainable.

3.1 TheBias-corrected Sample M edian Estimator

Denoted bﬁm@c: the bias-corrected sample median estimator is

5 dme
me,c — ) 14
Tmese =3 -
where
dme = mediar(|z;],j = 1,2, ..., k) (15)
L@2m +1)! ™ o\ m
bme = /0\ W tan (Et) (t —t ) dt, k =2m + 1 (16)

Here, for convenience, we only considee= 2m +1,m =1, 2, 3, ...
Some key properties @f,. .:

¢ E(dnec) = d,i:€,dpne.c is unbiased.

e Whenk > 5, the variance ofl,,,. .. is

(m)> [y tan® (51) (t—13)"dt k>5  (17)

Var (dme,c) = d?

Var (cime,c> = oo if k = 3.

e Ask — oo, che,c converges to a normal in distribution
R 2
Vi (dme,c - d) LN <o, %d2> . (18)

3.2 TheBias-corrected Geometric Mean Estimator

Denoted bﬁgm,c, the bias-corrected geometric mean estimator is defined as

k
dym,c = cos® (%) [Tlzl%, &k>1 (19)
j=1

Important properties odfgmvc include:
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e This estimator is a non-convex norm, i.e., th@orm withp — 0.
o ltis unbiased, i.e., Edyn,c) = d.

e lts variance is (fok > 2)

52 () 22 a2
_ 2 k -
Var(dgmc) =4 ( cos® (F) 1) 4k R 32 k2 +0 <k:3> (20)

e For0 < e < 1, its tail bounds can be represented in exponential forms

ma €

~ 62
Pr (dgm,c —d> ed) < exp (—k <m>> (1)
62 2
Pr (dgmc —d< —ed> < exp <—k (W)) k> H (22)

e These exponential tail bounds yield an analog of the Johhsutenstrauss (JL) lemma for
dimension reduction ihl'

If & > % > 7 then with probability at least — ¢, one can recover the original

[, distance between any palr of data pomts (amongualhta points) withinl ¢ (0 < € < 1)
fraction of the truth, usmglgm o L€, \dgmc d| < ed.

3.3 TheBias-corrected Maximum Likelihood Estimator

Denoted bﬁMLE,C, the bias-corrected maximum likelihood estimator is

N A 1

dvree=dure (1 — 7 (23)
whered,; 1 solves a nonlinear MLE equation

k A
k 2d
e =0, (24)

dyre 5 33 +d2
Some properties af /5 .

e Itis nearly unbiased, [édMLE C) =d+0 (3%).

e Its asymptotic variance is

. 2d°  3d? 1
Var (dMLE',c) = + 2 +0 (ﬁ) ) (25)

Var(dMLE,C) 8 Var(dAILE,C)

8 8
Nadme) T Nar(dgn,) w0 35k = 00 (77 ~ 80%)



L1, HASTIE, AND CHURCH

e lIts distribution can be accurately approximated by an sweépaussian, at least in the small
deviation range. Based on the inverse Gaussian approgimatie suggest the following
approximate tail bound

. ~ 2/(1
Pr (\dMLE,C _d > ed) < 2exp «%) , 0<e<l, (26)
ETE2

which has been verified by simulations for the tail probapitt 10~'° range.

4. The Sample M edian Estimators

Recall in Cauchy random projectiorB, = AR, we denote the leading two rows & by uq, uso
€ RP, and the leading two rows iB by v, v € R¥. Our goal is to estimate thi distance
d=|up —ug| = 32 |ur; — ug,| from {xj};?:l, xj =v; — v, ~ C(0,d),i.id.

It is easy to show (e.g.. Indyk (2000)) that the populatiordiae of |z ;| is d. Therefore, it is
natural to consider estimatingfrom the sample median,

dme = media|z;],j = 1,2, ..., k}. (27)

As illustrated in the following lemma (proved in Appendid ,Ahe sample median estimator,
dme, is asymptotically unbiased and normal. For small sammes, < 20), however,d,,. is
severely biased.

Lemmal The sample median estimatdf,,., defined in[(2I7), is asymptotically unbiased and nor-
mal

. 2
vk (dme —a) &N (o, 1d2> (28)
4
Whenk = 2m + 1, m =1, 2, 3, ..., ther” moment of‘:Zme can be represented as
5\ L (2m +1)! T o
= T - r — — >
E (dme> d (/0 ()2 tan <2t> (t—1t7) dt> , m=>r (29)

If m < r, then E(cime)r = 0.

For simplicity, we only considet = 2m + 1 when evaluating Eécimey-

Once we know E(dme> , we can remove the bias df,. using

7 dme
me,c — 5 30
d ’ bme ( )
where the bias correction factby,. is
E (sz€> L@2m+1)! s
—_ N 7 _ RS a _42\m
bme = 7 /O ()2 tan (275) (t—t%)" dt. (31)

bme can be numerically evaluated and tabulated, at least foll $mia

2. ltis possible to expreds,. as an infinite sum. Note thé?&%)é)! (t — t2)m, 0 <t < 1, is the probability density
of a Beta distributioBeta(m + 1, m + 1).
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Obviously,d, . . is unbiased, i.e., Iécime,c> = d. Its variance would be

1 2(xw _2\™m
er (i) = ((m!>2 Jotan® (G (L) 7t ) o155 ()

dme,c
2m +1)! <f01 tam (X¢) (¢ — £2)™ dt)2

~

Of coursedgmc anchgm are asymptotically equivalent, i.a/k (dme,c — d> LN (0, 7rT2d2>.

Figurell plot9,,,. as a function of, indicating thatd, ,, is severely biased when< 20. When
k > 50, the bias becomes negligible. Note that, becaduge > 1, the bias correction not only
removes the bias af,,,. but also reduces its variance.

1.7
516
1.5f
1.4f
1.3}

1.2f
o 1.1¢

tion fac

1as correc

105 10 15 20 25 30 35 40 45 50
Sample size k

Figure 1: The bias correction factdr,,. in 1), as a function ok = 2m + 1. After k > 50, the
bias is negligible. Note thadt,,. = co whenk = 1.

The sample median is a special case of sample quantile ¢stgrigama and Roll, 1968, 1971).
For example, one version of the quantile estimators givellogulloch {1986) would be

~ X — |
dm _ | |.752 0| |.25’ (33)

where|:2|_75 and|§:|_25 are the .75 and .25 sample quantileq |afj|}§?:1, respectively.
Our simulations indicate that,,. actually slightly outperforms,,.. This is not surprisingd,,
works for any Cauchy distribution whose location paramdtss not have to be zero, whilg,.

takes advantage of the fact that the Cauchy location paearisedlways zero in our case.

5. The Geometric Mean Estimators

This section derives estimators based on the geometric,mdaoh are more accurate than the
sample median estimators. The geometric mean estimalorg a$ to derive tail bounds in ex-
plicit forms and (consequently) an analog of the Johnsoniémnstrauss (JL) lemma for dimension
reduction ini;.

Recall, our goal is to estimatéfrom k i.i.d. samplest; ~ C(0,d). To help derive the ge-
ometric mean estimators, we first study two nonlinear estrsébased on the fractional moment,
i.e., E]z|*) (]A] < 1) and the logarithmic moment, i.e,(bg(|x|)), respectively, as presented in
Lemmd2. See the proof in Appendik B.
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Lemma2 Assume: ~ C(0,d). Then

d)\
A)
E(\x! > ~ cos(Am/2)’ Al<1 (34)
E (log(|z[)) = log(d), (35)
2
s
Var (log(|z))) = -, (36)
from which we can derive two biased estimatord &@bm £ i.i.d. samplesc; ~ C(0,d):
3 1/A
- 1
dy = Ez_: |;|* cos(Ar/2) . N <1, (37)
A 1
dlog = €xXp E Z 10g(|$]|) ’ (38)
=1
whose variances are, respectively,
d? sin?(\7/2) 1
Va —_-— — 1/2 39
I‘(d)\> k A2 cos(An) +0 <k‘2> o Pl (39)
A w2d?
Var (dlog> =t @) <k2> (40)
The termifig% decreases with decreasing|, reaching a limit
sin?(\r/2) w2
DO N2 cos(Am) 4 (41)
In other words, the variance af, converges to that af;,,, as|\| approaches zero.
Note thatcilog can in fact be written as thgeometric mean
R R k
diog = dgm = [ lz;"/*. (42)
j=1

dy is a non-convex normiy) because\ < 1. dgm is also a non-convex norm (tlig norm as
A — 0). Bothdy, andd,,, do not satisfy the triangle inequality.

We proposeigm,c, the bias-corrected geometric mean estimator. Lefima @edetfie moments
of g, proved in AppendikT.

Lemma 3

k
ng,c = cos” (%) H |a:j|1/k, k>1 (43)
j=1

10
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is unbiased, with the variance (valid whén> 2)

R cos?k (1) & ntd? 1
Var (dppe) =d? | ——2E2 1) = - 4+ — — — . 44
ar(g ’) (cosk(%) k74+32k72+0<k73> (44)
The third and fourth central moments are (for> 3 andk > 4, respectively)
. . 3 3t d? 1
E (dyme —E(dpme) ) = Te 5+ 0 <E> (45)
. . 4 3rtat 1

The higher (third or fourth) moments may be useful for appr@ting the distribution oﬂgmvc.
In Sectior®, we will show how to approximate the distribataf the maximum likelihood estimator
by matching the first four moments (in the leading terms). W@d apply the similar technique to
approximateigm,c. Fortunately, we do not have to do so because we are ableite dee exact tail

bounds 0fdy,, .. in Lemmd3, which is proved in AppendiX D.

Lemma4
. kty (@
Pr <dgm,c > (1 + E)d) < COSt* (Qk) - e>0 (47)
cosk <%) (1+e)h
where
x 2](3 _1 T 2
t] = — tan ((log(l + €) — klog cos (%)) ;) . (48)
R 1—¢)3 2
Pr(dgmc§(1—6>d>s (t* ke . 0<e<l, k> (49)
cosk (2—,3) costz () 8¢
where
x 2k _1 T 2
ty = — tan <<—log(1 —€) + klogcos <%>) %> . (50)
By restricting0d < e < 1, the tail bounds can be written in exponential forms:
~ 62
> < —h—
Pr (dgm,e > (1+ €)d) < exp < b 6)> (51)
. 2 2
P me < (1 — < —k——, > — 52
r <dg < e)d) exp< k8(1+e)> k TEe (52)

11
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An analog of the JL bound fdy follows from the exponential tail bounds{51) andl(52).

Lemma5 Usingdg,, . with & > % > = 5 , then with probability at least — ¢, thel;

distance,d, between any pair of data points (amonglata points), can be estimated with errors
bounded byted, i.e.,|dgn, . — d| < ed.

Remarks on Lemma& (1) We can replace the constant “8” in Lemida 5 with bettes. (i.
smaller) constants for specific valuescoFor example, I£ = 0.2, we can replace “8” by “5”. See
the proof of Lemma&l4. (2) This Lemma is weaker than the clasdicLemma for dimension reduc-
tion in [, as reviewed in Section 2.1. The classical JL Lemmddf@ansures that thg inter-point
distances of the projected data points are close enougle wrigjinal/; distances, while Lemnid 5
merely says that the projected data points contain enodghmation to reconstruct the original
distances. On the other hand, the geometric mean estinsatonédn-convex norm; and therefore
it does contain some information about the geometry. Weeld@afor future work to explore the
possibility of developing efficient algorithms using theogeetric mean estimator.

Figure[2 presents the simulated histogramsigqtﬁ for d = 1, with £ = 5 andk = 50. The
histograms reveal some characteristics shared by the maxiikelihood estimator we will discuss
in the next section:

e Supported orf0, oo) gm,c IS poOsitively skewed.

e The distribution ofd,,, .. is still “heavy-tailed.” However, in the region not too fapm the

mean, the distribution aof,,, . may be well captured by a gamma (or a generalized gamma)
distribution. For large:, even a normal approximation may suffice.

x 10 x 10

IS
=

Frequency
Frequency

N
N

0

0051152253354 455 . . 25
X X

@k=5 (b) k = 50

Figure 2: Histograms oﬂgm@, obtained from10° simulations. At least in the range not too far
from the mean, the distribution @f,, . resembles a gamma and also resembles a normal
whenk is large enough.

Figure[3 comparedgm . with the sample median estlmatodsw and dmec, in terms of the
mean square errorslgm ¢ Is considerably more accurate th(a,ge at smallk. The bias correction
significantly reduces the mean square errorg,gf.

12
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2.4 ——No correction |
22 ——Bias—corrected}

MSE ratios

1.2&\
15770 15 20 25 30 35 40 45 50
Sample size k

_ _ : E(dme) MSE(dme.c)
Figure 3: The ratios of the mean square errors (M%@m and MSE(d o)
the bias-corrected geometric mean estimalgy, .. is considerably more accurate than
the sample median estimai@y,.. The bias correction od,,. considerably reduces the

MSE. Note that whet = 3, the ratios areoc.

, demonstrate that

6. The Maximum Likelihood Estimators

This section is devoted to analyzing the maximum likelihestimators (MLE), which are “asymp-
totically optimum.” In comparisons, the sample medianneatbrs and geometric mean estimators
are not optimum. Our contribution in this section includes higher-order analysis for the bias and
moments and accurate closed-from approximations to thedison of the MLE.

The method of maximum likelihood is widely used. For examhlest all (20060) applied the
maximum likelihood method taormal random projectionand provided an improved estimator of
thel, distance by taking advantage of the marginal information.

The Cauchy distribution is often considered a “challenyjiexpmple because of the “multiple
roots” problem when estimating the location parameter riBibji 1966| Haas etlal., 1970). In our
case, since the location parameter is always zero, mucleafitticulty is avoided.

Recall our goal is to estimatéfrom £ i.i.d. samples:; ~ C(0,d),j = 1,2, ..., k. Thelog joint
likelihood of {;}%_, is

k
L(x1, 29, ...x%;d) = klog(d) — klog(m) — Zlog(:n? + d?), (53)
j=1

whose first and second derivatives (w.i}.are

k
k 2d
L) == - 54
(d) = - ;w%ﬂ, (54)
k 2 2 2
" _ ] _ ]
Vi) =-g -2 arer="a ‘L@ier (53)
j=1 \j j=1 i
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The maximum likelihood estimator af denoted byrZMLE, is the solution td’/(d) = 0, i.e.,

k

k 2d
e =0, (56)

T
dyre =%+ dy g

Becausel”(dy5) < 0, dyr g indeed maximizes the joint likelihood and is the only santto
the MLE equation[(36). Solvind(b6) numerically is not diffic(e.g., a few iterations using the
Newton’s method). For a better accuracy, we recommend tlwviog bias-corrected estimator:

1

dyrpe=dyure <1 - E) . (57)

Lemmd® concerns the asymptotic moments f ; anchMLEvc, proved in AppendiXE.

Lemma6 Bothd, g anchMLEvc are asymptotically unbiased and normal. The first four mamen
of CZMLE are

E (dye —d) = % +0 (%) (58)
Var <cZMLE> = % + %2 +0 <%> (59)
E (dyrs - E(CZMLE)>3 = 112—;[3 +0 <%> (60)
E <JMLE - E(CZMLE)>4 = 12—34 + 22]€L3d4 +0 (%) (61)

The first four moments @y 1.z . are

E (dMLE,C ~d)=0 <%> (62)
Var (i) = 254 32 10 <%> (63)
E (CZMLEvc - E(CZMLE,C))3 - 12—33 +0 (%) (64)
E <JJ\/[LE,C - E(CZMLE,C))4 = 12—(34 + %636[4 + O (%) (65)

The orderO (%) term of the variance, i.e%, is known, e.g. [(Haas etlal., 1970). We derive the

bias-corrected estimatoi‘M 1.E.c, and the higher order moments using stochastic Taylor estpas
(Bartlett,| 1953 Shenton and Bowman, 1963; Ferrari et P63 Cysneiros et al., 2001).

We will propose an inverse Gaussian distribution to appnaxe the distribution of ;1. B, DY
matching the first four moments (at least in the leading tgrms

14
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6.1 A Numerical Example

The maximum likelihood estimators are tested on MSN Web ldata, a term-by-document matrix
with D = 216 Web pages. We conduct Cauchy random projections and estiimat; distances
between words. In this experiment, we compare the empiandl (asymptotic) theoretical mo-
ments, using one pair of words. Figuide 4 illustrates thatbilas correction is effective and these
(asymptotic) formulas for the first four momentsdbg‘m;,c in Lemma[® are accurate, especially
whenk > 20.

0.12 1
Variance
0.1
0.8
0.08
[0}
g 006 é 0.6
@ 0.04 504l ,
S04
0.02
0.2
0
_0'0%.0 20 30 4050 100 010 20 30 40 50 100
k k
. . . . 5 2\ 1/2
(8)E(dmre—d)/dv.s. BEdyip,c—d)/d (b) (E(dMLE,c —E(dmLE,.))?/d )
1 1
Third Fourth
0.8 moment -~ 0.8 moment
“E c
) [0]
E06 Eo6
IS €
T 04 £04
e
[ o
0.2 “o2
9.0 20 30 40 50 100 010 20 30 40 50 100
k k
. . 1/3 . . 1/4
(c) (E(dMLE,c - E(dIVILE,c))S/d3> (d) (E(dMLE,c - E(dMLE,c))4/d4)

Figure 4: One pair of words are selected from an MSN term-iyuchent matrix withD = 216
Web pages. We conduct Cauchy random projections and estthdi distance between
one pair of words using the maximum likelihood estimatgr; z and the bias-corrected
versiondy i Panel (a) plots the biases @f;.r and dy .., indicating that the
bias correction is effective. Panels (b), (c), and (d) phet variance, third moment, and
fourth moment ol . E,, respectively. The dashed curves are the theoretical asyimp
moments. Wherk > 20, the theoretical asymptotic formulas for moments are ateur

6.2 Approximation Distributions

Theoretical analysis on the exact distribution of a maxinikelihood estimator is difficulé In
statistics, the standard approach is to assume normalifighwhowever, is quite inaccurate. The

3. In fact, conditional on the observations, z, ..., zx, the distribution ofix; .= can be exactly characterizéd (Fisher,
1934). Lawless (1972) studied the conditional confidentenial of the MLE. Later._Hinkley (1978) proposed the
normal approximation to the exact conditional confidenderiral and showed that it was superior to the uncondi-
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so-calledEdgeworth expansidrimproves the normal approximation by matching higher masien
(Feller,11971 ] Bhattacharya and Ghosh, 1878; Severini0R0Gor example, if we approximate
the distribution ofdMLE’C using an Edgeworth expansion by matching the first four masneh
dpi1e. derived in Lemméle, then the errors will be on the ordeDd—3/2). However, Edgeworth
expansions have some well-known drawbacks. The resuligmegsions are quite sophisticated.
They are not accurate at the tails. It is possible that thecxppate probability has values below
zero. Also, Edgeworth expansions consider the supp6rtis, o), while cZMLE’C iS non-negative.

We propose approximating the distributions(ﬁq;\j[u;,c directly using some well-studied com-
mon distributions. We will first consider a gamma distribatiwith the same first two (asymptotic)
moments of:ZMLEﬁ. That is, the gamma distribution will be asymptotically eqlent to the normal
approximation. While a normal has zero third central momamamma has nonzero third central
moment. This, to an extent, speeds up the rate of convergekather important reason why a
gamma is more accurate is because it has the same supﬂ@ﬁ@g, i.e.,[0,00).

We will furthermore consider generalized gammdistribution, which allows us to match the
first three (asymptotic) moments 4731f/ILE7c- Interestingly, in this case, the generalized gamma ap-
proximation turns out to be an inverse Gaussian distribytighich has a closed-form probability
density. More interestingly this inverse Gaussian dstion also matches the fourth central mo-
ment of dy/ i iN the O (/%) term and almost in th® (%) term. By simulations, the inverse
Gaussian approximation is highly accurate.

Note that, since we are interested in the very small (€0g:1°) tail probability range( (k~3/2)
is not too meaningful. For example;3/2 = 10~ if k = 100. Therefore, we will have to rely on
simulations to assess the accuracy of the approximationgh®other hand, an upper bound may
hold exactly (verified by simulations) even if it is based oregproximate distribution.

As the related work,_Li et all (2006e) applied gamma and gdized gamma approximations
to model the performance measure distribution in some ggeecommunication channels using
random matrix theory and produced accurate results in atrafuithe error probabilities.

6.2.1 THE GAMMA APPROXIMATION

The gamma approximation is an obvious improvement over dneal approximatio. A gamma
distribution, G(«, /3), has two  parameters, and g, which can be determined by matching the first
two (asymptotic) moments @JMLE c Thatis, we assume thdMLE <~ G(a,3), with

242 3d? 1 2d  3d
O‘ﬁ da O‘ﬁ k + k72 ’ « %+ %7 ﬁ k + k72 ( )

tional normality approximation. Unfortunately, we can make advantage of the conditional analysis because our
goal is to determine the sample sizbefore seeing any samples.

4. The so-calleaddlepoint approximatioim general improves Edgeworth expansidns (Jensen, 1988y, wery con-
siderably. Unfortunately, we can not apply the Saddlepaapiroximation in our case (at least not directly), because
the Saddlepoint approximation needs a bounded momenta@refunction.

5. In normal random projectionfor dimension reduction iy, the resultant estimator of the squaledlistance has a
chi-squared distribution (e.gl,(Vemnala, 2004, Lemma)Lvéhich is a special case of gamma.
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Assuming a gamma distribution, it is easy to obtain the foilhg Chernoff bounds

Pr <JMLE7C > (1+ e)d) ; exp (—a (e —log(l+¢€))), €>0

Pr <JMLE7C <(1- e)d) ; exp (—a(—e—1log(l —¢))), 0<e<l,

where we useg to indicate that these inequalities are based on an appabteidchstribution.

(67)

(68)

Note that the distribution ofy/7;/d (and hencely; 1z ./d) is only a function ofk as shown
in (Antle and Bain, 1969; Haas etlal., 1970). Therefore, weasaluate the accuracy of the gamma

approximation by simulations witth = 1, as presented in Figuké 5.

- .. \
— Empirical Y,
\
- - -Gamma Bound

10° 10° s
b 10_2 z, 10_2 [
S 5.
10 | 810
S S
S10° 210"
< — iri T
o Empirical ° .
10 ° ——Gamma 10
_10|~ ~ ~Normal -
107" ‘ ‘ ‘ ‘ 10 ‘
0 0.2 0.4 0.6 0.8 1 0 0.2

(@)

04 06
€

(b)

Figure 5: We considek = 10, 20, 50, 100, 200, and 400. For edghwe simulate standard
Cauchy samples, from which we estimate the Cauchy paraimgtee MLEdAMLEﬁ and
compute the tail probabilities. Panel (a) compares the goapitail probabilities (thick
solid) with the gamma tail probabilities (thin solid), iledting that the gamma distribution
is better than the normal (dashed) for approximating thteiligion ochMLE,C. Panel (b)

compares the empirical tail probabilities with the gammpardound[(&7)£(88).

Figurel®(a) shows that both the gamma and normal approxinsatre fairly accurate when the
tail probability > 102 ~ 10~3; and the gamma approximation is obviously better.
Figure[®(b) compares the empirical tail probabilities wiile gamma Chernoff upper bound

@2)+(68), indicating that these bounds are reliable, wthertail probability> 1075 ~ 107°.

6.2.2 THE INVERSE GAUSSIAN (GENERALIZED GAMMA ) APPROXIMATION

The distribution oerMLEc can be well approximated by an inverse Gaussian distributighich
is a special case of the three-parameter generalized gaisiribution {(Hougaard, 1986; Gerber,
1991), denoted b&G(«, 3, 7). Note that the usual gamma distribution is a special cagenwit 1.

6. Using the Chernoff inequality(Cherridff, 1952), we botinel tail probability byPr (Q > z) = Pr (e > e*") <

E (e“") e~ *"; and we then choosethat minimizes the upper bound.
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If z ~ GG(a, B, 1), then the first three moments are

E(z) =af, Var(z)=af’, E(z-E(2)’=ap*1+n). (69)
We can approximate the distribution d}f/[LE,C by matching the first three moments, i.e.,
2d>  3d? 12d3
_ 2 3
af=d, af —74‘?7 aB’(1+n) = 2 (70)
from which we obtain
1 2d  3d 1
a=—=, [B=—+—, n:2+0<—>. (71)
% + F?’Z ko k2 k

Taking only the leading term foy, the generalized gamma approximatiorri@jLEvc would be

1 2d  3d
= — + 5,2 ]. 72

In general, a generalized gamma distribution does not halesad-form density function al-
though it always has a closed-from moment generating fonctin our case[{12) is actually an
inverse Gaussian distribution, which has a closed-formsitheriunction. AssumingiMLE,c ~
IG(a, ), with parametersy and 3 defined in [7lL), the moment generating function (MGF), the
probability density function (PDF), and cumulative depdiinction (CDF) would bel(Seshadri,
1993, Chapter 2) (Tweedie, 19574d,b)

E (exp(chLE,ct)> = exp (a (1 —(1-2p1) 1/2>> (73)
. \ e
Pr (dMLEc = y) = a—\/\g_fy 3 exp < (y/gy/ﬂa) ) = %ly_§ exp <—(y27?)> , (74)

7 ~ Oé2ﬁ Y 2c Oﬂﬁ Yy
<) 2 ey _ &P
PI‘(dMLE,c_y) CI)< (aﬁ 1>>+e <I>< aﬁ+1
_ Oéd Y 2 _ Oé_d g
—<I>< ?(3—1)>+e <I>< ,/y(d+1)>, (75)
2
L_o—2dt. Here we usé to indicate

where®(.) is the standard normal CDF, i.e(z) = [_ r

that these equalities are based on an approximate digbribut
Assumingd/ g, ~ IG(w, ), then the fourth central moment should be

. . 4 9
E (dMLE,c —E (dMLE,c>> = 1508 + 3 (af?)
2d  3d\° 2d?  3d%\°
_15d<k ﬁ) +3<T+ﬁ>
12d*  1564* 1
:?—FT—FO(E). (76)

7. The inverse Gaussian distribution was first noted as theilglition of the first passage time of the Brownian
motion with a positive drift. It has many interesting prajes such as infinitely divisible. Two monographs
(Chhikara and Folks, 1989; Seshiadri, 1993) are devotedebntd the inverse Gaussian distributions. For a quick
reference, one can chebkp://mathworld.wolfram.com/InverseGaussianDisitibn.html
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Lemmd® has shown the true asymptotic fourth central moment:

E(dMLE,C—E(cZMLE,C))A‘: 12—34+%63d4+0<%>. (77)

Thatis, the inverse Gaussian approximation matches ngtloaleading term}i—gﬂ, but also almost

the higher order term{%‘”, of the true asymptotic fourth moment@f; . ...

Assuminch]V[LE,c ~ IG(«, (3), the tail probability ochMLEC can be expressed as

Pr (cZMLE,c > (1+e)d) ay <—e,/1i€> Y <—(2+e),/1i6> L €>0 (78)
Pr (CZMLE,C <@ —e)d) =) <—e 11) + e <—(2—e),/£> , 0<e<1. (79)

AssuminchMLE,c ~ IG(a, B), itis easy to show the following Chernoff bounds:

Pr (CZ > (1+ )d) S exp (0 >0 (80)
MLE,c Z € =~ €xXp 2(1 T 6) ) €2
A ~ Oé€2
< — < _ < .
Pr (dMLEC < e)d) < exp ( T E)> . 0<e<l1 (81)

To see[(8D). Assume ~ IG(«, 3). Then, using the Chernoff inequality:
Pr(z > (1 + €)d) <E(zt)exp(—(1 + €)dt)
=exp (a (1 —(1- 2625)1/2) -1+ e)dt) ,

2

whose minimum igxp (—ﬁ) attained at = (1 — ﬁ;) % We can similarly show{81).

Combining [8D) and{81) yields a symmetric bound

~ 2
Pr (|(iMLE,c —d| > Ed) < 2exp (—%) , 0<e<1 (82)
2(7+7%)

Figure[® compares the inverse Gaussian approximation hétlsame simulations as presented
in Figure[®, indicating that the inverse Gaussian approtionas highly accurate. When the tail
probability > 10~ ~ 1075, we can treat the inverse Gaussian as the exact distributiaim[LE,c.
The Chernoff upper bounds for the inverse Gaussian are almdigble in our simulation range (the
tail probability > 10~19).

7. Conclusion

It is well-known that thel; distance is far more robust than thedistance against “outliers.”
There are numerous success stories of usindtkéstance, e.g., Lassb (Tibshitani, 1996), LARS
(Efron et al.| 2004), 1-norm SVNL(Zhu etlal., 2003), and Lajada radial basis kernel (Chapelle et al.,
1999;| Ferecatu et al., 2004).
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Figure 6: We compare the inverse Gaussian approximatidnthét same simulations as presented
in Figure[®. Panel (a) compares the empirical tail probidmsliwith the inverse Gaussian
tail probabilities, indicating that the approximation iglily accurate. Panel (b) com-
pares the empirical tail probabilities with the inverse &aan upper bound{BOJ+(81).
The upper bounds are all above the corresponding empincaes, indicating that our
proposed bounds are reliable at least in our simulationerang

Dimension reduction in thg norm, however, has been proviedpossiblef we uselinear ran-
dom projectionsaindlinear estimators In this study, we propose three types of nonlinear estiraato
for Cauchy random projectionsthe bias-corrected sample median estimator, the biasated
geometric mean estimator, and the bias-corrected maxirkaetihbod estimator. Our theoretical
analysis has shown that these nonlinear estimators camadelyurecover the origindl distance,
even though none of them can be a metric.

The bias-corrected sample median estimator and the braseted geometric mean estimator
are asymptotically equivalent but the latter is more adeuah small sample size. We have derived
explicit tail bounds for the bias-corrected geometric meatimator and have expressed the tail
bounds in exponential forms. Using these tail bounds, we katablished an analog of the Johnson-
Lindenstrauss (JL) lemma for dimension reduction;inwhich is weaker than the classical JL
lemma for dimension reduction ig.

We conduct theoretic analysis on the bias-corrected manirtiikelihood estimator (MLE),
which is “asymptotically optimum.” Both the sample mediastimator and the geometric mean
estimator are abowk0% efficient as the MLE. We propose approximating its distiifnutby an
inverse Gaussian, which has the same support and matchiesdlireg terms of the first four mo-
ments of the proposed estimator. Approximate tail bounds baen provide based on the inverse
Gaussian approximation. Verified by simulations, these@fmate tail bounds hold at least in the
> 10~'° tail probability range.

Although these nonlinear estimators are not metrics, thegtl useful for certain applications
in (e.g.,) data stream computation, information retrieledrning and data mining, whenever the
goal is to compute thg distances efficiently using a small storage space.
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The geometric mean estimator is a non-convex norm (i.el,therm asp — 0); and therefore
it does contain some information about the geometry. It magthl possible to develop certain
efficient algorithms using the geometric mean estimatorvmyding the non-convexity. We leave
this for future work.

Acknowledgment

We are grateful to Piotr Indyk and Assaf Naor for the very ¢artdive comments on various
versions of this manuscript. We thank Dimitris Achliopt&jristopher Burges, Moses Charikar,
Jerome Friedman, Tze L. Lai, Art B. Owen, John Platt, Joseqhd®o, Tim Roughgarden, Yiyuan
She, and Guenther Walther for helpful conversations or esigrg relevant references. We also
thank Silvia Ferrari and Gauss Cordeiro for clarifying squaets of their papers.

Trevor Hastie was partially supported by grant DMS-05058@61 the National Science Foun-
dation, and grant 2R01 CA 72028-07 from the National In&t#wof Health.

References

Dimitris Achlioptas. Database-friendly random projeaoJohnson-Lindenstrauss with binary coidsur-
nal of Computer and System Sciend&@&{4):671-687, 2003.

Charu C. Aggarwal and Joel L. Wolf. A new method for simikaiitdexing of market basket data. Rroc.
of SIGMOND pages 407-418, Philadelphia, PA, 1999.

Nir Ailon and Bernard Chazelle. Approximate nearest negghltand the fast Johnson-Lindenstrauss trans-
form. In Proc. of STOCpages 557-563, Seattle, WA, 2006.

Charles Antle and Lee Bain. A property of maximum likelihassdimators of location and scale parameters.
SIAM Reviewl11(2):251-253, 1969.

Rosa Arriaga and Santosh Vempala. An algorithmic theorgafriing: Robust concepts and random projec-
tion. In Proc. of FOCSpages 616-623, New York, 1999.

Rosa Arriaga and Santosh Vempala. An algorithmic theorgaifing: Robust concepts and random projec-
tion. Machine Learning63(2):161-182, 2006.

V. D. Barnett. Evaluation of the maximum-likelihood estimawhere the likelihood equation has multiple
roots. Biometrikg 53(1/2):151-165, 1966.

M. S. Bartlett. Approximate confidence intervals, Biometrikg 40(3/4):306-317, 1953.

R. N. Bhattacharya and J. K. Ghosh. On the validity of the fdrBdgeworth expansionThe Annals of
Statistics 6(2):434—451, 1978.

Bo Brinkman and Mose Charikar. On the impossibility of dirsiem reduction iri;. In Proc. of FOCSpages
514-523, Cambridge, MA, 2003.

Bo Brinkman and Mose Charikar. On the impossibility of dirsiem reduction irl;. Journal of ACM 52(2):
766-788, 2005.

Olivier Chapelle, Patrick Haffner, and Vladimir N. VapnilSupport vector machines for histogram-based
image classificationlEEE Trans. Neural Network4.0(5):1055-1064, 1999.

21



L1, HASTIE, AND CHURCH

Herman Chernoff. A measure of asymptotic efficiency ford@sta hypothesis based on the sum of observa-
tions. The Annals of Mathematical Statistj@3(4):493-507, 1952.

Raj S. Chhikara and J. Leroy Folk§he Inverse Gaussian Distribution: Theory, Methodology Applica-
tions Marcel Dekker, Inc, New York, 1989.

Francisco Jose De. A. Cysneiros, Sylvio Jose P. dos Samtds;ass M. Cordeiro. Skewness and kurtosis
for maximum likelihood estimator in one-parameter expdiatiamily models. Brazilian Journal of
Probability and Statistics15(1):85-105, 2001.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof okarém of Johnson and Lindenstrauss.
Random Structures and Algorithn22(1):60 — 65, 2003.

Inderjit S. Dhillon and Dharmendra S. Modha. Concept deawsitjpns for large sparse text data using
clustering.Machine Learning42(1-2):143-175, 2001.

Bradley Efron, Trevor Hastie, lain Johnstone, and Robdssfirani. Least angle regressiofhe Annals of
Statistics 32(2):407-499, 2004.

Eugene F. Fama and Richard Roll. Some properties of symmséihle distributionslournal of the American
Statistical Associatior53(323):817-836, 1968.

Eugene F. Fama and Richard Roll. Parameter estimates fanstnn stable distributionsJournal of the
American Statistical Associatipf6(334):331-338, 1971.

William Feller. An Introduction to Probability Theory and Its Applicatiofdolume I} John Wiley & Sons,
New York, NY, second edition, 1971.

Marin Ferecatu, Michel Crucianu, and Nozha Boujemaa. Bwtiof difficult image classes using SVD-
based relevance feedback. Pmof. of Multimedia Information Retrievapages 23-30, New York, NY,
2004.

Silvia L. P. Ferrari, Denise A. Botter, Gauss M. Cordeiraj &nancisco Cribari-Neto. Second and third order
bias reduction for one-parameter family mod&sat. and Prob. Letters$80:339-345, 1996.

R. A. Fisher. Two new properties of mathematical likeliho®toceedings of the Royal Society of London
144(852):285-307, 1934.

P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemthtna sphericity of some graph3ournal of
Combinatorial Theory A44(3):355-362, 1987.

Hans U. Gerber. From the generalized gamma to the genatalizgative binomial distribution.Insur-
ance:Mathematics and Economid€)(4):303-309, 1991.

I. S. Gradshteyn and I. M. RyzhiRable of Integrals, Series, and Producfscademic Press, New York, fifth
edition, 1994.

Gerald Haas, Lee Bain, and Charles Antle. Inferences fo€thechy distribution based on maximum likeli-
hood estimationBiometrikg 57(2):403—-408, 1970.

David V. Hinkley. Likelihood inference about location anche parametersBiometrikg 65(2):253—-261,
1978.

P. Hougaard. Survival models for heterogeneous popuktienived from stable distribution&iometrika
73(2):387-396, 1986.

22



CAUCHY RANDOM PROJECTIONS

Piotr Indyk. Stable distributions, pseudorandom genesatmbeddings and data stream computation. In
FOCS pages 189-197, Redondo Beach,CA, 2000.

Piotr Indyk. Algorithmic applications of low-distortionepmetric embeddings. IRroc. of FOCS pages
10-33, Las Vegas, NV, 2001.

Piotr Indyk and Rajeev Motwani. Approximate nearest neaghb Towards removing the curse of dimen-
sionality. InProc. of STOCpages 604613, Dallas, TX, 1998.

Piotr Indyk and Assaf Naor. Nearest neighbor preservingeztdings. ACM Transactions on Algorithms (to
appear) 2006.

Jens Ledet JenseBaddlepoint approximation®©xford University Press, New York, 1995.

W. B. Johnson and J. Lindenstrauss. Extensions of Lipsohigping into Hilbert spaceContemporary
Mathematics26:189-206, 1984.

J. F. Lawless. Conditional confidence interval proceduwetie location and scale parameters of the Cauchy
and logistic distributionsBiometrikg 59(2):377-386, 1972.

James R. Lee and Assaf Naor. Embedding the diamond grdplaird dimension reduction in. Geometric
And Functional Analysisl4(4):745-747,2004.

Ping Li and Kenneth W. Church. Using sketches to estimate-viap and multi-way associa-
tions.  Technical Report TR-2005-115, Microsoft Resear¢h, shorter version is available at
www.stanford.edu/pingli98/publications/Repa$ketch.pdf), Redmond, WA, September 2005.

Ping Li, Kenneth W. Church, and Trevor J. Hastie. Conditiomadom sampling: A sketched-based
sampling technique for sparse data. Technical report, @eat of Statistics, Stanford University
(www.stanford.edu/ pingh98/publications/CRS tr.pdf ), 2006a.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Improviaxgdom projections using marginal information.
In Proc. of COLT Pittsburgh, PA, 2006b.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Sub-Gamssi random
projections. Technical report, Department of  Statistics,Stanford  University
(www.stanford.edu/ pingh98/report/subg rp.pdf ), 2006¢.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very spaeselom projections. IfProc. of KDD,
Philadelphia, PA, 2006d.

Ping Li, Debashis Paul, Ravi Narasimhan, and John Cioffi.Hemtstribution of SINR for the MMSE MIMO
receiver and performance analydEEE Trans. Inform. Theornb2(1):271-286, 2006e.

Gabor Lugosi. Concentration-of-measure inequalitiexture Notes2004.

J. Huston McCulloch. Simple consistent estimators of stalidtribution parametersCommunications on
Statistics-Simulationl5(4):1109-1136, 1986.

Thomas K. Philips and Randolph Nelson. The moment boundlger than Chernoff’s bound for positive
tail probabilities. The American Statisticia®9(2):175-178, 1995.

V. Seshadri.The Inverse Gaussian Distribution: A Case Study in Expaakfamilies Oxford University
Press Inc., New York, 1993.

Thomas A. SeveriniLikelihood Methods in Statistic©xford University Press, New York, 2000.

23


www.stanford.edu/~pingli98/publications/CRS_tr.pdf
www.stanford.edu/~pingli98/report/subg_rp.pdf

L1, HASTIE, AND CHURCH

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indykit@d. Nearest-Neighbor Methods in Learning
and Vision, Theory and Practicdhe MIT Press, Cambridge, MA, 2005.

Jun ShaoMathematical StatisticsSpringer, New York, NY, second edition, 2003.

L. R. Shenton and K. Bowman. Higher moments of a maximunliliked estimate. Journal of Royal
Statistical Society B25(2):305-317, 1963.

Alexander Strehl and Joydeep Ghosh. A scalable approachlémded, high-dimensional clustering of
market-baskets. IRroc. of HiPG pages 525-536, Bangalore, India, 2000.

Robert Tibshirani. Regression shrinkage and selectiothaadasso.Journal of Royal Statistical Society, B
58(1):267—-288, 1996.

M. C. K. Tweedie. Statistical properties of inverse Gaussistributions. I. The Annals of Mathematical
Statistics 28(2):362—-377,1957a.

M. C. K. Tweedie. Statistical properties of inverse Gaussistributions. Il. The Annals of Mathematical
Statistics 28(3):696—705, 1957b.

Santosh Vempalalhe Random Projection Methodmerican Mathematical Society, Providence, RI, 2004.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshidfanorm support vector machines. NPS
2003.

V. M. Zolotarev. One-dimensional Stable Distributiong\merican Mathematical Society, Providence, RI,
1986.

Appendix A. Proof of Lemmall

Assumez ~ C(0,d). The probability density function (PDF) and the cumulatiesity function
(CDF) of |z| would be

2d 1
PI’(’(L" :Z):?m, ZZO (83)
2 z
P <z)=tan' 2 > 84
r(|z| < z2) Wtan 7 z2>0 (84)

The asymptotic normality ot,,,. follows from the asymptotic results on sample quantllesafh
2003, Theorem 5.10).

vk (dme — d) = N <0% (1 - %) / (Pr(lz| = z)lzzd)2> =N (0, ”sz2> (85)

The probability density ofl,,. can be derived from the probability density of order stefsst
(Shab| 2003, Example 2.9). For simplicity, we only consiket 2m + 1, m = 1,2, ...,

Prdye = 2) = 2 (Pr(ol < 2)” (1~ Pr(la] < 2)" Pr(e] = 2)
2m+ 1) /2 ;2\ 2 _,z\"2d 1
:((mi!)z) <;tan 18) <1—;tan 18) T AR (86)



CAUCHY RANDOM PROJECTIONS

Thert" moment ofd,,,. would be

5N [ Cm4D) (2 2\ 2 ,2\"2d 1
E (dne) —/0 e =) TR g) Taee®

—dr /01 % tan” (gt> (t—12)" dt, (87)

by substitutingt = 2 tan~! Z.
Whent — 1— 0, tan (5t) — oo, butt —t? = ¢(1 —t) — 0. Aroundt = 1 — 0, tan (5t) =
1 _ EL . . N r
wn(3020) =1 + .-, by the Taylor expansion. Therefore, in order fo(d—;m) < 00, We
must haven > r.
We complete the proof of Lemniih 1.

Appendix B. Proof of Lemmal2

Assumer ~ C(0,d). The first moment ofog(|z|) would be

E (log(|z])) = 2;6[/000 lgg(y) dy

y? + d?
_ 1 [®log(d)y'?  1/2log(y)y” '/
T /0 y+1 y+1 Y
= log(d), (88)

with the help of the integral tables (Gradshteyn and Ryz1804, 3.221.1, 4.251.1).
Thus, given i.i.d. samples; ~ C(0,d), j = 1,2, ..., k, anonlinear estimator @f would be

=1

k
dlog = €Xp (; Z log(|x]|) : (89)

We can derive another nonlinear estimator frorf#*), |A\| < 1. Using the integral tables
(Gradshteyn and Ryzhik, 1994, 3.221.1), we obtain

2d X y)\
A\ S
E(‘x! >_ T /0 y2—|—d2dy

d)\ 0o , 2=t
= — y ? dy
™ Jo Yy +1
d)\
= 90
cos(Ar/2)’ (%0)
from which a nonlinear estimator follows immediately
) y 1/A
dy = %Z: |25 cos(Arr/2) . A <1 (91)
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Both nonlinear estimatorélog and cZA are biased. The leading terms of their variances can be
obtained by thdelta Method(Shao| 2003, Corollary 1.1).
With the help of (Gradshteyn and Ryzhik, 1994, 4.261.10)pht@in

2

E(log2(|x|)):10g2(d)+%, ie., Var(log?(jz])) = = (92)

2
Z.
Thus,

k k
1 1 172
E (k E log(xj)> = log d, Var (k E log(wj)) AR (93)
j=1 j=1

By the Delta Method the asymptotic variance dfog should be

X 1 72 1 242 1
Var (dlog) - %%exp2 (log(d)) + O <ﬁ> = Z—k +0 <ﬁ> . (94)

Similarly, the asymptotic variance df is

s\ d?sin?(Ar/2) 1

Var (cZA) — oo as|\| — 1. Var (cZA) converges to Va(dlog) as\ — 0, because

sin?(Am/2) w2

DO N2 cos(A) T4 (96)
This completes the proof of Lemriih 2.
Appendix C. Proof of Lemmal3
Assume thatry, =9, ...,xg, are i.i.d.C'(0,d). The estimatordgmﬁ, expressed as
k
~ T
d!]m,c = cos” (%) H |xj|1/kv (97)
j=1
is unbiased, because, from Lemiha 2,
A T k
() = oo () TTE (")
j=1
k 1/k
e (T d
= COS - p
=d. (98)
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The variance is

Var (ngm7c) = cos?k (%) H E (\xj\z/k> —d?
(
(

1
cosZk (Z
k
2 d? 7t d? 1
:Z?+3_2ﬁ+0<ﬁ>7 (100)
because
cos?k (%)

7_<1+1<;>>’“
cosk (£)  \2 2 \cos(n/k)

172 5 o 1\\"
:<1+Zﬁ+£ﬁ+0<ﬁ>>

2 4 . 2 4\ 2
:1+l<:<17r—+37r—>JrM<17T + 57T> +..

4k2 " A8 KA 2 4k T A8kt
Some more algebra can similarly show the third and fourtbraemoments:
E (dyme ~ E (dgm,c))3 = 31—7§Z—z +0 <%> (102)
E (dyme —E (czgm,c>)4 = 31—7212—2 +0 <%> . (103)

Therefore, we have completed the proof of Leniiha 3.

Appendix D. Proof of Lemmal

This section proves the tail bounds fdy,, .. Note thatd,,, . does not have a moment generating

~ t
function because édgmvc) = oo if t > k. However, we can still use the Markov moment bodnd.
For anye > 0 and0 < t < k, the Markov inequality says

. t
. E (dgm,c) coskt (£
_ 2k
Pr (dgm’c = (1+ 6)d> = (1+e)td  cosk (Z) (14 €)t’ (104)

which can be minimized by choosing the optimurs ¢7, where

2k

t] = — tan~! ((log(l + €) — klog cos (%)) %) . (105)

8. In fact, even when the moment generating function does,dgir any positive random variable, the Markov moment
bound is always sharper than the Chernoff bound, althougiCtrernoff bound will be in an exponential form. See
Philips and Nelsorl (1985); Lugbsi (2004).
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We need to make sure that< t7 < k. t] > 0 becausdog cos(.) < 0; andt] < k because
tan~1(.) < %, with equality holding only whei — oo.
For0 < e < 1, we can prove an exponential bound or (dgmvc > (1+ e)d>. First of all,

note that we do not have to choose the optinmust;. By the Taylor expansion, for smail¢] can
be well approximated by

4ke
N — =t 106
2 —h (106)

IN

Pr (dgm,c > (14 e)d)

(e g\
B (cos (%) (1+ 6)46/”2>

k
~ \ cos (%) (1 + €)de/m*

= exp <_1<; <10g <cos <%>> + %log(l + 6)>>

2
< —k— <e<
_exp( k8(1+e)>’ 0<e<1 (207)

The last step iM{107) needs some explanations. First, byayler expansion,

2 4
log <cos <—€>> + —; log(1+¢€)
s v

IO L W Y G
= 7'('2 37(_4 71'2 € 26
9 2
:W—2(1—e+...) (108)

Therefore, we can seek the smallest constarso that

2 2

2¢ 4e € €
1 — + —log(l4+e€)>——=—(1—€+... 109
g((ﬂ» lop(l 49 2 e = St ) (109)

It is easy to see that as— 0, v; — %2 Figurel[T(a) illustrates that it suffices to et = 8,
which can be numerically verified. This is why the last steffliiid) holds. Of course, we can get a
better constant if (e.g.g= 0.5.
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Now we need to show the other tail bouRat (dgmﬁ <(1- e)d):

k
lgme < (1 — e)d) = Pr | cos (%)k H |z |'* < (1 —e)d

.
Il
—_

j=1 2k
k
(1—e)d
=Pr [ exp log ( |z] t/k > exp (—tlog ( - , 0<t<k
( (; ( ) cos ()
t
(1—¢) 1
< Chernoff bound 110
: <cosk<%> ot (7)) ) o
which is minimized at = ¢}
., 2k 2
t2—?tan << log(1 — €) + klog cos <2k7>) > (1112)

providedk > Z-, otherwiset; may be less than 0.
Again, t5 can be replaced by its approximation

4ke

w2’

oty = (112)

providedk > ”—i otherwise the probability upper bound may exceed one.€efbe,

sk

(I—¢) 1

Pr (dyne < (1 - )d) < (k (%)> | cost ()

2k

2¢ 4e 4ke T
= exp (—k‘ <log (cos ?> = log(l —¢€) + — — 5 log (cos %>>>

We can bounds log (cos Z-) by restrictingk.
In order to attainPr (cigmc <(1- e)d) < exp (—k: (8(16—_2”» we have to restrict to be

larger than a certain value. For no part|cular reason, wetbkexpress the restriction &s> =

Y2€’
for some constant,. We findk > “ - suffices, although readers can verify that a slightly better
(smaller) restriction would bé > 57— 1/4i - 5752266.
If £ > 1”5 , then=3 Ake 1og (cos 2k) log (cos 3= ) Therefore,
Pr (cz me < (1— e)d) <exp | —k | log ( cos 2y _ & log(1—¢€)+ §log (cos i)
gme = - T w2 3 3
2 2
<exp | —h— ), E>-1_ (113)
8(1+¢€) 1.5¢

This completes the proof of Lemriih 4.
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oOI—‘I\)OO-bU‘IG’\IOO

0 02 04 06 08 1 02 04 06 08 1

@) (b)

€2 /(1+e) €2/(14+¢)
log(cos(%))—l—% log(1+¢€) log(cos %)—:—; log(l—s)—i—% log(cos é)
as a function ot. Graphically, we know that it suffices to use a constant §jland
(II3). The optimal constant will be different for differentFor example, it = 0.2, we
could replace the constant 8 by a constant 5.

Figure 7: (a): as a function ok. (b):

Appendix E. Proof of Lemmal@

Assumer ~ C(0,d). Thelog likelihood ((x; d)) and first three derivatives are

I(x;d) = log(d) — log(w) — log(z? + d?), (114)
I(d) = é _ x22+d - (115)
(d) = —% _ % (116)
I"(d) = % T2 idd2)2 + S(i(f i;;? (117)

The MLE dy 15 is asymptotically normal with mead and varianc%, where [d), the
expected Fisher Information, is
2 g2
E <(957d> L (118)

2i@)e) T

22 — 2 d [*® 22—-d?
E( ——— | =— —  _dx
(22 + d&2)2 7 ) o (@2 + d2)3

_d /W d?(tan?(t) —1) d ”

| =1(d) =E(-1"(d)) = % +

because

T J_nsp d®/cosS(t) cos?(t)
L " cos®(t) — 2cost(t)dt
d* —7/2
1 ™ 3 1
- (%) - 9
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Therefore, we obtain
. 242 1
Var (dMLE> =——+0 <ﬁ> : (120)
General formulas for the bias and higher moments of the MleEaaailable inl(Bartlett, 1953;

Shenton and Bowman, 1963). We need to evaluate the expnessifShenton and Bowmlan, 1963,
16a-16d), involving tedious algebra:

E (CZMLE> —d— % +o0 <%> (121)

s 1 1 1 [14 —[122] — [13] = 3.5[12]%> — [13]? 1
Var<dMLE> - St T <—|—+[ ] [|3] 13 | 35l ]|4 1] >+O<E> (122)
E <JMLE —E (JMLE)>3 = [13]1;273[12] + 0 (%) (123)

E (CZMLE -E (CZMLE)>4 = % + % <_I% + - 6[1|242] — 10[13])
1 [ —6[1%]% — 12[13][12] + 45[12]2 1
+E< [17] [g[]+ []>+0<y>v (124)
where, after re-formatting,

[12] =E()* +E(T"), [ =EC)',  [1*2)=EQ"()?) +E)",

[13] = E()* + 3E(I"(1")*) + E(I'1"), [13] = E(I')%. (125)

We will neglect most of the algebra. To help readers vergitime results, the following formula
we derive may be useful:

1 T 1Ix3x5x..x(2m—1) 1 _
<w2+d2> T 2X4X6X%...x (2m)  d2m’ m=123,.. (126)
Without giving the detail, we report
11 4 31
E()° = EW) = —-— EW) ==
(l ) 07 ( ) 2 d3’ ( ) 8 d4’
11 31
2
E(l//(l/) ) — —gg, E (l/l///) — Z@ (127)
Hence
_ 11 g_31 2 11 _31 3 _
12 =5 [=54 D=, W= o D=0 (129
Thus, we obtain
5 d 1
E(dMLE) :d+%+0<ﬁ> (129)
5 2d*>  7d? 1
Var (dMLE> =+ 7 +0 <E> (130)
. . 3 1243 1
E (dMLE —-E ( MLE)) =7t @) (ﬁ) (131)
. . 4 124 222d* 1
E(dMLE—E( MLE)) :7+T+O<ﬁ>. (132)
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Becausely i hasO (+) bias, we recommend the bias-corrected estimator

. . 1
dyvire,e=duLE <1 - E) , (133)
whose first four moments are
A 1
R 2d%2  3d? 1
Var (dMLEvC> == +5+0 <E> (135)
- 5 3 1243 1
E (dMLE,c —E (dMLE,c)) =2 T O (ﬁ) (136)
- 5 4 124* 186d* 1
E (dMLE,c -E (dMLE,c)) =7 + 3 +0 <ﬁ> , (137)

by brute-force algebra. First, it is obvious that

. 2 2%  8d? 1
E(dMLE—d) :T+?+O<E>. (138)

Then

Var (dMLE,C> -E

s 2 2 ¢ _d 1 1
E(dMLE—d) (1_E>+ﬁ_2E<1_E>+O<E>

24> 3d? 1
:74'?-1—0(@) (139)

We can evaluate the higher central momentéj@tEvc similarly, but we skip the algebra.
Therefore, we have completed the proof for Lenitnha 6.
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