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On Principal Hessian Directions for Data Visualization
and Dimension Reduction: Another Application

KER-CHAU LI*

of Stein’s Lemma

Modern graphical tools have enhanced our ability to learn many things from data directly. With much user-friendly graphical software
available, we are encouraged to plot a lot more often than before. The benefits from direct interaction with graphics have been
enormous. But trailing behind these high-tech advances is the issue of appropriate guidance on what to plot. There are too many
directions to project a high-dimensional data set and unguided plotting can be time-consuming and fruitless. In a recent article, Li
set up a statistical framework for study on this issue, based on a notion of effective dimension reduction (edr) directions. They are
the directions to project a high dimensional input variable for the purpose of effectively viewing and studying its relationship with
an output variable. A methodology, sliced inverse regression, was introduced and shown to be useful in finding edr directions. This
article introduces another method for finding edr directions. It begins with the observation that the eigenvectors for the Hessian
matrices of the regression function are helpful in the study of the shape of the regression surface. A notation of principal Hessian
directions (pHd’s) is defined that locates the main axes along which the regression surface shows the largest curvatures in an aggregate
sense. We show that pHd’s can be used to find edr directions. We further use the celebrated Stein lemma for suggesting estimates.
The sampling properties of the estimated pHd’s are obtained. A significance test is derived for suggesting the genuineness of a view
found by our method. Some versions for implementing this method are discussed, and simulation results and an application to real

data are reported. The relationship of this method with exploratory projection pursuit is also discussed.

KEY WORDS: Projection pursuit; Sliced inverse regression; Statistical graphics; Stein’s lemma.

1. INTRODUCTION

Statistical graphics is indispensable for data analysis. His-
tograms, stem-and-leaf plots, normal probability plots, box
plots, and scatterplots, for instance, have been routinely used
for describing features, summarizing information, suggesting
models, and guiding statistical inference. With modern
computing power, graphics can now be easily created on
personal computers through software such as MacSpin, S,
Systat, NCSS, Xlisp.stat, Data Desk, and so on. Tukey’s
works and influence have nourished the growth in this area;
see the collection of Tukey’s works on graphics edited by
Cleveland (1988). The dynamic features such as brushing,
slicing, linking, and animating, together with 3-dimensional
rotation and scatterplot matrix techniques have become
popular; see Cleveland and MacGill (1988) and Wegman
and Depriest (1986).

With such powerful graphical tools now available, there
is also a growing need for guidance on what to plot (Cook
and Weisberg 1989). This is particularly the case when an-
alyzing high-dimensional data. For instance, a data set with
10 variables can yield (') = 120 rotation plots for inspection.
Without proper guidance, this can become a time-consum-
ing, fruitless task. To meet this need, many projection pursuit
methods (commonly associated with the names of Fisfer-
keller, Friedman, Huber, Kruskal, Switzer, Tukey, and
Wright) have been invented. These methods find useful
viewing angles by machine-picking the most interesting pro-
jections via the maximization of some projection index
Friedman 1987; Huber 1985). The complexity of these al-

* Ker-Chau Li is Professor of Mathematics at University of California,
Los Angeles, Los Angeles, CA 90024. The authors’ interest in data visual-
ization was inspired by Dennis Cook, who introduced Tierney’s Xlisp.stat
to him; thanks to Dennis’s and Ray Carroll’s interests in SIR, the author
was encouraged to pursue this work.

gorithms, however, has limited our understanding about their
statistical properties. Only a few such theoretical works are
available (Chen 1991; Donoho and Johnstone 1989; Hall
1989a,b).

For suggesting what to plot, Li (1991) formulated the high-
dimensional data visualization problem through a dimen-
sion-reduction model

(1.1)

Here we have assumed a variable of primary interest y and
want to see its relationship with p other variables, x. The
B;’s are unknown vectors to be estimated from data, and ¢
is the random error. The set, B, of any linear combination
of 8;’s will be referred to as the effective dimension reduction
(edr) space. Model (1.1) looks like a nonlinear regression
model except for one difference: g is completely unknown.
This difference is very important. For instance, when K = 2,
it yields the needed flexibility for allowing any pattern in the
plot of y against 8’ x, 85x to occur. Model (1.1) represents
the weakest form for expressing the wish that useful infor-
mation about y from a high-dimensional covariate x can be
retrieved from its low-dimensional projected variable
(B1x, ..., Bxx) when K is small. In fact, we could have
allowed K to be equal to p, in which case (1.1) becomes
redundant and we do not assume any model at all. But we
cannot anticipate a typical data set of size, say less than 1,000,
to reveal all 10 dimensional nonlinear structures if K = p
= 10, say. A method called sliced inverse regression (SIR) is
used for finding edr directions. SIR does not depend on K.

y= g(ﬁ’lx’ LI} ﬁ’Kx9 8)-
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In practice, this is desirable because most often we do not
know K in advance. Indeed, Li suggested a chi-squared cri-
terion for determining whether or not an estimated com-
ponent represents a real structure. In this way, he curtailed
the difficult problem of estimating K by offering a useful
lower bound based on the data.

The estimation of g has been deliberately avoided. SIR
does not need to estimate g to find the correct edr directions.
This makes the principal behind SIR distinct from other
nonparametric modeling techniques such as ACE (Breiman
and Friedman 1985), PPR (Friedman and Stuetzle 1981),
generalized additive models (Stone 1986), and partly spline
models (Rice 1986; Wahba 1986). The issue of finding im-
portant variables, or linear factors (i.e., 85x), can be distin-
guished from the issue of data fitting or functional approx-
imation. On the one hand it is not necessary to approximate
the unknown regression function or to model the data before
selecting the crucial variables or linear factors. On the other
hand, once crucial variables or linear factors are found, we
could proceed with any analysis, depending on what we have
seen from the projected data. We could estimate the regres-
sion function (either parametrically or nonparametrically),
build an empirical model, estimate the quantiles of ¢, impose
suitable constraints on the functional form for g, conduct
heteroscedasticity analysis, seek for clusters, or simply decide
that the reduced data set does not provide needed clues to
meet the study’s major goal. Clearly, data analysis has a wider
scope than data-model fitting. Other powerful tools that can
be used for data reduction include recursive partition and
classification (Breiman, Friedman, Olshen, and Stone 1984;
Loh and Vanichsetakul 1988) and many nonlinear multi-
variate analysis techniques, including correspondence anal-
ysis (Gifi 1990).

The first moment-based SIR has received more extensive
studies (Duan and Li 1991; Hsing and Carroll 1991; Li
1989b, 1991). However, one major restriction has been its
vulnerability to the symmetry of g about the mean of x. For
example, if y = x} and x,, the first coordinate variable in x,
is symmetric about its mean, then the inverse regression
curve, E(x| y)is degenerated. But at least with the proposed
chi-squared test, SIR would conservatively admit that no
interesting direction is found. Suggestions for remedy can
be offered based on second moments (Cook and Weisberg
1991; Li 19890, 1991 [rejoinder]).

This article presents another method for finding the edr
space, which can handle many symmetric cases. The moti-
vation comes from the observation that the Hessian matrix
H,(x) of the regression function f(x) = E(y|x) at any point
X, as defined by the p by p matrix, [(8?/dx;dx;)f(x)], will
be degenerate along any directions that are orthogonal to B.
Based on this, we use a notion of principal Hessian directions
(pHAd’s) for identifying the edr space. Roughly, the pHd’s
form a new coordinate system with the property that the
curvatures of the regression function along the p coordinate
axes are successively the largest possible in an average sense
as measured by second-partial derivatives. (See Sec. 2 for
details.)

In Section 3 we propose a simple method for estimating
the average Hessian matrix and the pHd’s, based on a cel-
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ebrated Stein’s lemma (Stein 1981). This method leads to
three variants of estimates, all shown to be Fisher consistent,
under the assumption that the distribution of x is normal.
Two of them take the form of a weighted covariance matrix
of x with the weighted factor determined by y, the dependent
variable, or r, the residual after fitting a linear model. The
other variant is related with quadratic polynomial fitting,
They are all very simple to compute.

In Section 4 we study large sample properties, establish
the root # consistency, evaluate a closeness measure between
the estimated edr space and the true edr space as defined in
Li (1991), and propose significance tests for assessing the
number of components K. In Section 5 we show how trans-
formations on y can be applied to the pHd methodology. In
particular, this brings up a connection with second-moment-
based SIR.

In Section 6 we study the behavior of our estimates under
the linear conditional expectation condition for x, a much
weaker assumption used in formalizing the theory of SIR.
We show that the estimated pHd’s are still useful in finding
edr directions without the normality assumption on the input
variable.

We discuss the projection pursuit aspect of our approach
in Section 7, arguing for its merit as means of constructing
descriptive statistics. For readers interested mainly in the
application of the pHd methodology, Sections 5-7 may be
skipped during the first reading.

In Section 8 we present some simulation results to illustrate
the theory and apply our method to a real data set. We il-
lustrate how pHd and SIR can be used to complement each
other in finding interesting features in the data. We conclude
in Section 9 by discussing some general issues in the area of
data visualization and dimension reduction.

The longer proofs of Theorems 4.1 and 4.2 are given in
Appendix B; other proofs are presented in Appendix A. Re-
mark 1.1 gives a brief account for the relationship between
this work and Brillinger (1977, 1983).

Remark 1.1. The distinction between the design of ex-
periment approach and the correlation approach to regres-
sion analysis often emerges in the literature. One issue is
whether or not one should condition on regressors. For ex-
perimental data, this has been controversial due to the role
of randomization. In the observational study, however, the
interplay between the two sides has greatly enriched the the-
ory of regression analysis.

Yet despite the awareness of the merit in treating the re-
gressors as random, it has been a surprise to find out that
regressors with a Gaussian distribution can enjoy many ro-
bustness properties against link violation. The first of these
is the discovery in Brillinger (1977, 1983). Brillinger showed
that the least squares estimate for the slope vector in multiple
linear regression is still root # consistent up to a proportion-
ality scalar, even if the linear model assumption is violated
and the true model takes the form of model (1.1) with K
= 1. Brillinger proved his result under the condition that x
is Gaussian, but pointed out the key linearity condition,
similar to (6.1) in Section 6 of this article. He also linked his
result to Stein’s lemma. Brillinger’s result was extended by
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Li and Duan (1989) to most regression estimates. (See the
references given in that article for other related works.) Bril-
linger’s influence on the development of SIR and on this
article is clear. Corollary 3.2, for example, can be viewed as
a generalization of his result to polynomial regression.

Remark 1.2. Stein’s lemma has many applications in
statistics. The most well known is in the discovery of the
inadmissibility of the sample mean for estimating a multi-
variate normal mean, the beginning of a new era in decision
theory. More recently, Stein’s estimate and its unbiased risk
estimate have been applied to nonparametric smoothing, es-
tablishing the connection with the generalized cross-valida-
tion, and constructing honest confidence regions for non-
parametric regression; see Li and Hwang (1984) and Li (1985,
1986, 1987, 1989a). Stein’s lemma and its generalization
also have a wide application in probability theory; see Stein
(1986).

2. PRINCIPAL HESSIAN DIRECTIONS AND EFFECTIVE
DIMENSION REDUCTION DIRECTIONS

In this section we define principal Hessian directions and
discuss their roles in finding edr directions for dimension
reduction.

2.1 Principal Hessian Directions

The Hessian matrix typically varies as x changes unless
the surface is quadratic. Let the mean of the Hessian matrix
be H, = EH,(x). We define the pHd’s with respect to the
distribution of x as the eigenvectors by, . . . , b, of the matrix
H,Z,, where =, denotes the covariance matrix of x:

H,2.b,=\b, j=1,...,p

NN @.1)

Because any scale multiple of an eigenvector is also an ei-
genvector, we now restrict that b;Z4 b, = 1 to avoid ambi-
guity. The pHd’s are the directions to form a new set of
coordinate axes along which the average curvatures of the
regression function E(y|x) are successively the largest in
terms of second partial derivatives, as illustrated in the fol-
lowing paragraph.

First, observe from the chain rule that the Hessian matrix,
H; (%) = [(8%/0%0%;) f(X)], taken with respect to a new
coordinate system X = Ax, is related to Hy(x):

Hyi(X) = A’ 'Hy (x)A ™"

This implies that Hy = A’ '"HL,A™!. The new coordinate
variables are restricted to be uncorrelated and have equal
length in the sense that cov X = AZ,A’ = I, an identity
matrix. Next, we want to find one system that has the largest
absolute value for the expected second partial derivative
along the first axis:

max |etA’"'H,A e ],
AZA'=1

(2.2)

where ¢; = (1,0, ...,0).

Lemma 2.1. The first row of any matrix A maximizing
(2.2) must be equal to b'.
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After fixing the first axis, we can find the second axis sim-
ilarly by maximizing |e5Hze, |, where e, = (0, 1,0, .. ., 0)".
By the same argument as in Lemma 2.1, this axis is deter-
mined by b,. The same interpretation holds for other 5;’s.
Therefore, the pHd’s can be used to form a new coordinate
system for visualizing the relationship between x and y, with
the property that the average curvatures of the regression
function along the coordinate axes are successively the largest.
In reverse order, the same coordinate system yields the
smallest absolute values for the average curvatures succes-
sively.

From this interpretation, we see that our definition of
pHd’s is affine invariant. Specifically, consider any invertible
matrix T and any vector a. Transform x to X = a + Tx.
Then the pHd’s with respect to X are the eigenvectors, 5,-’5,
for the matrix ﬁgz,-‘ = T'_lﬁxsz'; T’_lﬁxExT’Ej = in)j.
Multiply T’ on both sides of this identity to obtain that
T'b, = bjand \; = \,. Therefore, we see that b; = T'~'5, and
that the new projected variable lf}i 1s the same as the original
one, b)x.

Remark 2.1. Any plot needs a suitable scale that fits in
the visual perception. Our restriction on the coordinate sys-
tem takes the standard deviation as the scaling factor. Ob-
viously, we could choose others that may have better ro-
bustness properties (cf. Donoho et al. 1985; Fill and
Johnstone 1984; Li and Chen 1985). Another aspect for
modification is that we may allow Z, in (2.2) to be replaced
by other appropriate matrices for incorporating subjective
opinions on the relative importance among the input vari-
ables.

2.2 Dimension Reduction

Recall model (1.1) from Section 1. We now study the
properties of the average Hessian matrix H, and the asso-
ciated pHd’s under (1.1).

Under (1.1), the regression function takes the form

E(yIx) =f(x) = h(B1x, ..., BkX)

for some function 4. Assume that /4 is twice differentiable.

(2.3)

Lemma 2.2. Under (2.3), the rank of the average Hessian
matrix, H,, is at most K. Moreover, the pHd’s with nonzero
eigenvalues are in the edr space, B.

This lemma indicates that if we can estimate the average
Hessian matrix well, then the associated pHd’s with signif-
icant nonzero eigenvalues can be used to find edr directions.
In Section 3 we shall use Stein’s lemma to suggest an estimate
of the average Hessian matrix.

Remark 2.2. Another way to motivate the definition of
pHd’s is through the Mahalanobis metric, which defines the
distance between two points Xx;, X,, in R? as ((x;
—x;)' 2% (X; — X3)) /2. Let v denote a unitary vector in the
Mahalanobis metric, v'Z;' v = 1. For each v, consider the
associated bundle of curves on the regression surface gen-
erated by moving each point x in R? along direction v with
the unitary speed. Measure the local nonlinearity of each
curve at time ¢ = 0 by the second derivative (8%/dt?)f(x
+ tv)|,=0, which is seen to be v'H,(x)v. Let v, be the direc-
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tion of movement v that maximizes the absolute value of
the aggregate nonlinearity |v'H,v| = |Ev'H,(x)v| for the
associated bundle of regression curves. Subject to being or-
thogonal to v, in the Mahalanobis metric, v'2%'v, = 0, let
v, be the v that maximizes |v'H,v|. Define vs, ..., v,ina
similar way. It is easy to check that v;’s are the eigenvectors
for =,H,. Furthermore, multiplying =, on both sides of (2.1),
we see that v; = Z,b;. It follows that bjv;, = 0 if j # j'. Now
suppose we want to reduce the dimensionality of x to just 1
by choosing a suitable projection direction 5. Because the
movement of any point in R? along a direction v perpen-
dicular to b will not be detected from the projected variable
b'x, possible interesting nonlinear structures on the associated
bundle of curves on the regression surface are obscured after
projection. To minimize this loss, the orthogonal comple-
ment of b should contain the directions of movement for
which the associated bundle of regression curves are as linear
as possible. This suggests the choice of b = b,, because its
orthogonal complement is spanned by v,, . . ., v,, the sub-
space with dimension p — 1 that generates bundles of least
nonlinear regression curves. In particular, if all second de-
rivatives are identically 0 as we move points along any di-
rections v in the space spanned by v,, . . ., v,, then the non-
linear structure in the response surface can be perfectly
revealed from the first pHd direction, ;. This argument
applies to the cases where projections on more than one
dimension are desirable.

Remark 2.3. In Remark 2.2, a better nonlinearity mea-
sure is to take the absolute value of the second derivative
before taking the expectation. But its implementation prob-
ably is not simple.

Remark 2.4. The relationship between v,’s and b,’s are
mathematically more transparent from the theory of repro-
ducing kernel Hilbert space (see, for example, Parzen 1961).
The Mahalanobis metric 3! is the reproducing kernel for
the random vector x with covariance X,. The duality rela-
tionship between b} and v;, b; = =" v;, is now clear. Based
on this, we can also generalize our method to the case in
which x is a stochastic process with a reproducing kernel
Hilbert space structure.

3. STEIN’S LEMMA AND ESTIMATES OF THE
PRINCIPAL HESSIAN DIRECTIONS

We shall show how to use Stein’s Lemma to estimate the
pHd’s when the distribution of x is normal.

3.1 Stein’s Lemma
Recall Stein’s Lemma from Stein (1981, Lemma 4).

Lemma 3.1. If the random variable z is normal, with
mean ¢ and variance 1, then

E(z — £)I(z) = El(2)
E(z — £)2(z) = El(z) + El(2),

where, in each case, all derivatives involved are assumed to
exist, in the sense that an indefinite integral of each is the
next preceding one, and to have finite expectations.
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Using Stein’s lemma, it is easy to derive the following
corollary.

Corollary 3.1. Suppose that x is normal with mean pu,
and covariance Zy. Letp, be the mean of y. Then the average
Hessian matrix H, is related to the weighted covariance

2y = E(y — py)(x — B ) (X — py)’
through the identity
H, =27'2,. 2"

From this corollary, we can find pHd’s based on the
weighted covariance matrix Zy, as the following theorem
suggests.

Theorem 3.1. When x is normal, the pHd’s b;, j = 1,
., D, can be obtained by the eigenvectors for the eigenvalue
decomposition of =, with respect to Z,:

2y b= NZb;, for j=1,...,p.

Observe that adding or subtracting a linear function of x
from y does not change the Hessian matrix. Hence, instead
of using y in Theorem 3.1, we may replace it by the residual
after the linear least squares fit.

Theorem 3.2. Suppose that x is normal. Letr = y — a
— bjsx be the residual for the linear regression of y on x,
where a, b, are the least squares estimates so that Er = 0
and cov(r, x) = 0. Then we have

H, = 2{' 224,
where
Erxx = Er(x — Mx )(X — Mx ),~

Moreover, the pHd’s b;, j = 1, ..., p, can be obtained by
an eigenvalue decomposition of X,,, with respect to Z,:

2 b= NZb;, for j=1,...,p.

Remark 3.1. Corollary 3.1 can also be applied to show
that polynomial regression can be used to estimate pHd’s,
as the following corollary suggests.

Corollary 3.2. Suppose that x is normal and consider a
polynomial fitting:

minE(y — Q(x))?,
2(x)

where Q(x)is any polynomial function of x with total degrees
no greater than g. Then the average Hessian matrix for the
fitted polynomial is the same as the average Hessian matrix
for y, if g is larger than 1.

3.2 Estimates for Principal Hessian Directions

Theorem 3.1 can be used to suggest estimates for pHd’s
from an iid sample (3, X;), ..., (Vx, X»). Let X and 2, be
the sample mean and sample covariance of x. Then:

1. Form the matrix £,,, = 1/n 2%, (y; — P)(x; — X)
X (Xi - i)’
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2. Conduct an eigenvalue decomposition of fiyxx with re-
spect to 2, :

2yxxbyj = S‘yjixbyj’
I xyl | =

Instead of this y-based method, we may use Theorem 3.2
and suggest the same procedure, but with y; — y replaced by
the residual 7, = y; — d — b',x;, where d, b, are the least
squares estimates for the linear regression of y against x:

j=1...,p

<= A,

1. Find the residuals #,, i = 1, . . ., n.

2. Form the matrix 2, = 1/n 2% Fi(x, — X)(X; — X)'.

3. Conduct the eigenvalue decomposition of 3 With
respect to 2, :

zrxxbry = xrjﬁxbrj,

Rl = e

J=L...,p
> [\l

Remark 3.2. Corollary 3.2 suggests yet another way of
finding the edr directions. First, fit y by a quadratic poly-
nomial of x. The Hessian matrix for the fitted quadratic
function, say B, can be easily formed from the estimated
quadratic and cross product terms. Next, take the eigenvalue
decomposition of the matrix B2, to get the pHd’s. This
method (hereinafter called the g-based pHd) is related to
the canonical analysis for exploring and exploiting quadratic
response surfaces where the eigenvalue decomposition is
taken for the Hessian matrix of the fitted quadratic surface
with respect to the identity matrix. Box (1954) and Box and
Draper (1987), for example, have illustrated well how their
techniques have been used successfully to locate stationary
points and to obtain a parsimonious description of these
points in many designed chemical experiments. A funda-
mental assumption they made is that the response surface
is well approximated by a quadratic polynomial in the region
covered by the design points. But our study in this article
suggests that this restriction can be relaxed because the sur-
face fitting often can be improved by many low-dimension
smoothing or model-fitting techniques after we have found
the edr space. Further study on this subject is underway re-
garding possible ill effects due to estimating too many qua-
dratic terms when p is large compared to the sample size.

Remark 3.3. Hirdle and Stoker (1989) proposed an es-
timate of the average slope for the regression function without
the normality assumption of x. Their method can be ex-
tended to estimate the average Hessian H,. But the needed
estimation for the score function of x is severely subject to
the curse of dimensionality.

4. SAMPLING PROPERTIES

We shall demonstrate the root »n consistency of our esti-
mates, compute the expected value for a closeness measure
between the estimated edr space the the true edr space, and
find two significance tests for determining the number of
components K. Our development follows Li (1991) closely.
Proofs are given in Appendix B.

First, because estimates for 2, and Z, . are based on the
method of moments, root n consistency needs no proof. To
evaluate how close the estimated edr space, ﬁy (B,), is to
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the true edr space, we consider the measure used in Li (1991),
namely, the squared trace correlation, R*(B,) (R*(3B,)),
which is the average of the squared canonical correlation
coefficients between bl;x,j=1,..., K(byx,j=1,...,
K),and 8jx,j=1,..., K. Thecloser to 1 that this measure
is, the sharper the viewing angle will be. The following theo-
rem gives an approximation for the expected value of this
quantity.

Theorem 4.1. Assume that x is normal and that =,
has rank K. Then, under (2.3), we have '

R*(B,)=1~-(p-K)n™'

X %} (=1 + N2var((y — wy)bj(x — ux))) + o(n7') (4.1)
j=
and

R¥(B,)=1-(p—K)n™'

X § (=1 + N 2var(rbi(x — uy))) + o(n7"). (4.2)
j=1

Theorem 4.2. Under the same conditions as in Theorem

4.1, we have

2 S K~ N, 2(p — kyvar(+))

ekt

(4.3)

V4
n > A~ 2var(*)X{pken—k)/25 (4.4)

Jj=k+1
where A; denotes A, or A,,, var(-) equals var y or var r, and
k =< K is the rank of the weighted covariance matrix 2y,
= Erxx .

We can use Theorem 4.2 to suggest whether a component
found is likely to be real or not, by estimating var y (var r)
with the sample variance of y (the mean squares for residuals
(n—p)"' ZLF})

i=1 1)

Remark 4.1. Theorem 4.2 suggests that the residual-
based estimate is more powerful in detecting a real compo-
nent because var r is typically smaller than var y. But Theo-
rem 4.1 indicates that in terms of offering a sharper viewing
angle, there is no clear winner between the two.

Remark 4.2. For the g-based method suggested in Re-
mark 3.2, the asymptotic result will be similar. We need only
replace r by the residual of the quadratic fit.

5. EXTENSION

We can extend the list of possible estimates by considering
nonlinear transformations of y before applying the methods
in Section 3. For example, we may want to trim out large y
values to decrease the sensitivity to outliers. We may also
use the absolute value of the residual to form the estimate.

We now draw a connection between what is suggested
here and second-moment-based SIR methodology. First,
consider the population case. Partition the range of y into
H intervals, I, » = 1, ..., H. Then apply the indicator
transformation y = §,(y) = 1, or 0, depending on whether
or not y falls into the Ath interval. Denote p, = P{y € I;}.
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Then we have
Zixx = E(0n(¥) = Pr)(X — px ) (X — uy)’
= pr[E((x — px)(x — uy)' |y E L) — Z,].

Now we can apply Theorem 3.1 to the transformed vari-
able J.

Corollary 5.1. Assume that x is normal. For each slice
h, conduct the eigenvalue decomposition of the sliced sec-
ond-moment matrix E((x — uy) (X — py)'| y € I;) with re-
spect to Z,. Then the eigenvectors with eigenvalues distinct
from 1 are edr directions.

The sample version is easy to obtain. First, form the sliced
second-moment matrix (1, — 1)~ ez, (x; — X)(x; — X)/,
where 7, is the number of cases in the Ath slice. Then take
the eigenvalue decomposition of this matrix with respect to
Z,. Let the eigenvalues },;’s be arranged to have the order
Ay — 1] = o oo = [\ — 1.

Large sample results can be derived from Theorems 4.1
and 4.2. Because J is dichotomous, the resulting formulas
are in fact simpler. In particular, we have var(-) = var y
= pp(1 — py,) for (4.3) and (4.4).

The sliced second-moment matrix E((x — puy ) (X — uy)'| ¥
€ I;;) discussed earlier is closely related to the conditional
covariance cov(x|y € I,), the core of some specific sugges-
tions for applying second moments in the SIR approach
(Cook and Weisberg 1991; rejoinder to Li 1991). The dif-
ference between these two matrices is just a rank 1 matrix,
(mp = px)(my — py)', where my, = E((X — uy) | ¥ € Iy) is the
core of the first-moment-based SIR estimate.

Remark 5.1—Limitations.  All methods have limitations.
SIR and pHd are no exceptions. We shall identify cases in
which edr directions cannot be estimated from any trans-
formation version of pHd. For simplicity of discussion, take
K =1 and concentrate on the case where E(x|y) = Ex,
which is the condition to nullify the power of the first-mo-
ment-based SIR. Under this condition, the least squares es-
timate by is equal to 0. Thus the residual-based estimate is
the same as the y-based estimate. We are interested in know-
ing when the weighted covariance matrix Zr¢ ) = E(T()
—ET(»))(x — ux)(x — uy)' will be degenerated to O for any
transformation T(y), in which case no edr directions can be
detected. The following Lemma offers an answer.

Lemma 5.1. Assume that x is normal and consider (1.1)
with K = 1. Then,

Zrxxx = 0, for any transformation T(y),
if and only if

E[(B81(x — ux))?|y] does not depend on y. (5.1)

It is easy to interpret this result from the inverse regression
point of view. In general, the conditional distribution of
'x given y should depend on y under (1.1). But if this
dependence is only through moments of order higher than
2, then (5.1) will hold; pHd or any first- or second-moment-
based SIR will not find any significant directions. This leaves
room for introducing more complicated procedures based
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on features other than the first two moments of the inverse
regression.

6. LINEAR CONDITIONAL EXPECTATION FOR X

In this section we shall study the behavior of the eigen-
vectors b;’s as defined in Theorem 3.1, under the following
weaker condition on the distribution of x used in Li (1991).
For any b € R?

E(b’x|Bjx,j=1,...,K) islinearin 8jx’s. (6.1)

This condition includes any elliptical symmetric distri-
butions. See Remark 6.2 for more discussion.

Theorem 6.1. Under (1.1) and (6.1), the edr space B is
invariant under the transformation induced by the matrix
23" 2 x, in the sense that

(Zpob:bE B} {Zb:bE B},

Because the invariance spaces of a matrix are spanned by its
eigenvectors, this theorem suggests that the eigenvectors b,’s
can be used to find edr directions. For instance, if K = 1,
then one of the b;’s must be an edr direction unless 2,0,
= 0, or equivalently,

cov(y, (B1x — pux)?) = 0. (6.2)

Thus, although it is not clear which ; is the right one to use,
for the purpose of data visualization we can display all p
bivariate plots, y against ,’s, and then choose the one that
shows the most interesting structure. If (6.2) does happen,
then we cannot find the edr direction by this method. In
such a situation, we can still hope that some transformation
on y might avoid (6.2). Suitably combining second-moment
SIR estimates is likely to be more productive. Likewise, the
case where K = 2 leads to viewing (5) sets of three-dimen-
sional plots. Some troubles may begin to occur when X is
larger, because the combination number increases quickly.
But our experience shows that eigenvalues still offer good
indication of the importance of the associated directions,
even though pathological cases can exist.

Now we consider the elliptically symmetric distribution
in further detail.

Theorem 6.2. Assume that x follows an elliptically sym-
metric distribution. Under (1.1), for the eigenvalues \; de-
fined in Theorem 3.1, at least p — K of them take a common
value. In addition, all other eigenvectors are edr directions
if p — K is greater than K.

This theorem does not say anything about the size of the
common eigenvalue. But we expect it to be small for most
cases. One can see this from the last term of the expression
in the proof of this theorem given in Appendix A.6. If p is
large, the random variable, [|x||2 — || Pix||? = | Px|?, be-
comes nearly independent of P;x and hence is nearly inde-
pendent of y.

Remark 6.1. Clearly, our discussion applies to the resid-
ual-based eigenvectors as defined in Theorem 3.2.

Remark 6.2. Li (1989b, 1991) argued that (6.1) is ex-
pected to hold approximately for many data sets, based on
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the result of Diaconis and Freedman (1984), who showed
that almost all low-dimension projections of high-dimension
data are approximately normal. This is now more rigorously
stated and proved in Hall and Li (1992). Li (1989b) dem-
onstrated the ability of SIR to find the directions for which
(6.1) are severely violated. Brillinger (1991) demonstrated
how to achieve (6.1) by normal subsampling; see also Li and
Duan (1989) for more discussion.

7. PROJECTION INDEX

Like SIR, we can also discuss the pHd method in terms
of projection pursuit. (See Huber 1985 for a comprehensive
account.) Projection pursuit finds interesting directions by
maximizing a projection index defined for each direction.
Different projection indices lead to different projection pur-
suit methods.

First, observe that for any b € R”, we have b'Z, b
= cov(y, (b'(x — uy))?). It follows that the first eigenvector
b, as defined in Theorem 3.1, is the solution of the max-
imization problem:

_max |cov(y, (b'(x — rx )
Subject to being uncorrelated to the proceeding solutions,
maximization can be achieved by the b,’s. Therefore, the y-
based pHd method can be viewed as a projection pursuit
method if, for each projected variable u = b’x, the projection
indexes is set to be |cov(y, (1 — u,)?)|, where p, is the mean
of u.

Similarly, the residual-based pHd’s are the directions
found by using |cov(r, (¥ — u,)?)| = |cov(r, u?)| as the
projection index. This index is related to the index given by
the R-squared value for fitting r with a quadratic polynomial
of u, which, after a straightforward derivation, turns out to
be

cov(u?, u) )2
R I

var u

corr(r, u? —

Indeed, when x is elliptically symmetric with mean 0, cov(u?,
1) = 0 and the standard deviation of u? is the same for any
direction b, implying that maximum cov is the same as
maximizing corr. Therefore, these two projection indices lead
to the same solution.

As we have seen from the preceding discussion, the pro-
jection index for pHd is more like fitting a quadratic function
on each direction. This can be compared to the more com-
plicated projection pursuit regression (PPR) index based on
nonparametric curve fitting (Friedman and Stuetzle 1981).
It is interesting to observe that simple indices like those dis-
cussed here can still work well for a complicated model like
(1.1), which can be very different from a quadratic one; see
Section 8 for some specific examples. For users of PPR, it
would then be interesting to find out how much additional
help PPR can offer to solve those cases where pHd fails.

The limitation of pHd is also better understood from the
associated projection index: pHd can fail if the R-squared
value of the quadratic fit is too small. For such cases, trans-
formation on y can be applied to increase the R-square value
(see Remark 7.1). On the other hand, incorporation of
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transformation on y is not so simple for the already com-
plicated PPR, where many obscured aspects of smoothing
might affect the algorithm substantially.

Remark 7.1. Li (1989b) showed that the first-moment-
based SIR can be derived from the projection pursuit view-
point by introducing the following projection index for a
projection direction b:

max corr(7(y), b'x),
7(+)

where T'(+) can be any transformation. This can be compared
to the PPR index

max corr?(y, T(b'x)).
7(+)

One may wish to propose a new index based on transfor-
mations on both sides, but the question is how to do this
effectively.

We can apply transformation on y to pHd. For each di-
rection b with var(d'x) = 1, define the projection index as

max cov(T(y), (b'(x — px))?).
varT(y)=1

Maximization can be achieved by taking the transformation
T(y) = c;'E((b'(x — ux))?| y), where c3 equals var(E((d'(x
— 11x))?| »)). The maximum equals ¢,. Maximization of this
projection index is related to the SIR-II estimate; see the
rejoinder to Li (1991).

Remark 7.2. We could apply transformation to the g-
based pHd method as well. To find the “optimal” transfor-
mation, we can apply SIR for y against the linear and the
second-order variables, X, . . ., X,, X3, ..., X3, X1 X2, . - .
X-1)X,p. Details will be reported elsewhere.

8. EXAMPLES

Three simulation examples are reported to demonstrate
the performance of the pHd method. The fourth example
applies SIR and pHd to help analyze the ozone data taken
from Breiman and Friedman (1985). All works were done
on a Macll, using Xlisp.stat (Tierney 1990).

Example 8.1. The model used to generate the data is

given by
y = cos(2B1x) — cos(B2x) + .5¢, 8.1

where x has p = 10 dimensions, 8; = (1,0, -+ +)’, 8, = (0,
1,0, - - ), and all coordinates of x and e are iid standard

{ T L) 1
0.85 0.9 0.95 1

Figure 1. Histogram of R?(B) for 100 Runs.
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Figure 2. Best Views for Example 8.1.

normal random variables. For n = 400, we study the per-
formance of the residual-based estimate b,;’s after 100 sim-
ulation runs. A histogram of the closeness measure
R?(8,) is given in Figure 1. The views from the first two
directions found in a typical run are given in Figure 3, com-
pared to the best views, views from 8, 8,, given in Figure

Figure 3. Views Found by pHd for Example 8.1.
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Table 1. One Simulation Output for Model (8.1)

bn 07 -93 -05 09 -25 -03 —-10 -19 —11 .05
by, 97 01 -05 -05 04 -—01 -—-17 13 04 .15
Eigenvalues .78 63 26 20 .15 .13 11 06 .05 .01
p values 0 o 71 92 97 97 97 99 94 .90

2. One could better appreciate how the views are similar to
each other by spinning the two rotation plots and view the
data cloud from all angles. Table 1 gives the output directions,
the absolute eigenvalues, and the p values based on Theorem
4.2. The jth p value is calculated under the null hypothesis
that there are j — 1 components that are real, so a small
value supports the genuineness for the jth direction. Only
two directions are found to be significant.

Example 8.2. This example is used to study how vio-
lation of the linear conditional expectation condition (6.1)
might affect the estimation. We consider the model

y = B'x sin(26x), 8.2)

where x is uniform on a 10-dimensional cube, [—4, 4]'°.
First, when a direction for 8 is chosen at random, the pHd
method finds the true direction as well as if x were indeed
normal. This confirms Remark 6.2. Instead of reporting these
favorable cases, however, we want to study the worst situa-
tion. Consider 8'x as a sum of p independent random vari-
ables and borrow insight from the central limit theorem. We
can anticipate the worst case to happen when £ is 0 on all
but two coordinates, the case when 8'x is the least normal
in a sense. Now for those directions on the plan spanned by
first two coordinates, there are four good directions for which
the linear conditional expectation condition holds: the two
coordinate axes and the two diagonal lines. Hence we decide
tochoose 8=(1,2,0, - « +) on the grounds that this direction
is midway between the two good directions (1, 1, - - - )" and
0, 1,0, - - ). We generate n = 400 observations and use
the y-based method to find the edr direction. From the output
given in Table 2, we see some bias in the first direction found.
But a close look at the p values reveals that the second di-
rection is marginally significant. In fact, a combination of
the first two directions, as shown in Figure 4 (right side),
yields a high-quality reconstruction of the true curve, shown
on the left side. By pitching the rotation plots used to produce
Figure 4 until the y axis is perpendicular to the screen. Figure
5 shows how well the distribution for the first two projected
directions matches the distribution of the first two coordi-
nates of x. This demonstrates the potential of our method
to find directions b that violate the linear conditional ex-
pectation most seriously. One can also argue that under our
parameter specification, we can view (8.2) as a two-com-
ponent model with 8, = (1,0, - - <)’ and 8, = (0, 1, - - -)".
The linear conditional expectation condition is now satisfied,
explaining why we can find two directions. Of course, the p

Table 2. One Simulation Output for Model (8.2)

by, -54 -84 .03 -014 -01 -05 -03 -06 .04 -—00
by, -78 52 -07 -05 -19 .02 04 -05 .13 .21
Eigenvalues 78 63 .26 .20 .15 13 11 06 05 .01
p values 0 o 71 92 97 97 97 99 94 .90
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Figure 4. Best View (top) and pHd's View (bottom) for Example 8.2.

values are only suggestive, because of the violation of nor-
mality. Judgment based on the pattern of the whole sequence
of p values should be more informative than the individual
numbers. We see the drastic increase from .07 to .70 as a

Figure 5. Distribution of the First Two Coordinates of x (top), Compared

With That for the First Two pHd Directions (bottom).
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strong indication that the third component is not likely to
be informative. The residual-based method is also attempted;
it yields almost the same result as the one reported here. We
conclude this example by reporting that as we enlarge the
range of x so that the response curve looks more like an M-
shape, pHd begins to lose power in detecting the edr direction.
This is because the conditional variance of 3'x given y be-
comes more homogeneous, and Lemma 5.1 begins to take
effect. It would be interesting to see how well PPR works in
such cases.

Example 8.3. This example shows how simple transfor-
mations can help pHd. We consider the model

1
y=3 (B1%)* — (B1x)(B2x)?

for generating the data. The surface of this function is known
as the “monkey saddle;” see Figure 6. We take 8, = (1, O,

Y and 8, = (0, 1, 0, - - +)" and generate » = 300 data
points. First, a histogram of y (Fig. 7) suggests a long-tail
distribution. To avoid the dominance of large y in the anal-
ysis, we cut out those cases with the absolute value of y greater
than 2. This leaves 261 points in the sample. We find the y-
based and the residual-based methods unsuccessful, as in-
dicated by the p values. Then we take the absolute value
transformation on the residuals, treat them as y, and proceed
with the pHd method. Two directions are found significant
(see Table 3). The best views for y and the views based on
the estimated directions are given in Figures 8-9. Three
branches going upward and downward in the monkey saddle
can be identified well by spinning these plots on the com-
puter. Other transformations and other methods of handling
large y values are worth trying.

Example 8.4. This example demonstrates how the pHd
method can be used to complement SIR. For illustration,
we take a data set from Breiman and Friedman (1985), the
data for studying the atmospheric ozone concentration in
the Los Angeles basin. We use the daily measurement of
ozone concentration in Upland as the output variable y and

1
=1 53 —xy?
z 3X Xy

l
'," h' !% \\\

s

e
“’0‘ \\\\\\ ;i’::’t’

Figure 6. A Monkey Saddle.
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Figure 7. A Histogram for y Generated by (8.3).

want to find its relationship with eight meteorological vari-
ables (see Table 4). There are n = 330 observations in the
study. First, we apply SIR to the data and find one significant
component. This component is almost identical to the
bi,x, the component found by the linear least squares fitting.
For certain slice sizes, we can find a marginally significant
second component as well, but we decide to ignore this. We
then use a forward selection method to find the important
variables contributing to the first component. Three vari-
ables, x;, x;, and Xx¢, are found that explain more than 99%
of the total variation of the first component. We run SIR
again using only Xx;, x;, and Xg as the input variables. The
scatterplot of y against b'x, the first component found, is
given in Figure 10(a). We use 30 slices here for SIR, but
other choices yield almost identical scenes. The correlation
between bj,x and b’x is above .99 as well. The value of b, is
given in the first row of Table 5.

A quadratic trend is visible in Figure 10(a). After fitting
a quadratic polynomial,

Yy =0 + cup + Czu% + e, (84)

where u, denotes the variable b.x. A summary is given in
Table 6, and the residual plot is given in Figure 10(b).
Now we take a closer look at the residual by applying the
pHd method, treating the residual as y. One component is
found to be significant. Again we use a forward selection
procedure to find that this component can be explained by
X3, X5, and x¢ with about 90% R-squared. (If including xg,

Table 3. One Simulation Output for Model (8.3)

b,

b,
Eigenvalues
p values

.05 -.07
.08
.01

.81

-.37
9
.32

0

91
.29
.20
.03

—-.06
-.18
14
.58

-.02
10
10
.92

—-.05
.07
.08
.96

A2
-.16
.07
.99

—-.08
.02
.04
.99

.07
—-.02
.03
.99

.01
.98

then R-squared can be about 96%.) We then rerun pHd,
using only x3, X5, and X as the regressors. Again one com-
ponent is found, denoted as 13,,;,4 (see Table 5). Figure 10(c)
gives the plot of the residual against this component. A qua-
dratic pattern in this figure is detected by eye and is confirmed
by fitting a quadratic polynomial (see Table 7). For com-
parison, we also apply SIR to the residual and find one sig-
nificant component, which gives the view in Figure 10(d).

Figure 8. Best Views for Model (8.3).
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Table 4. Variables Used for the Ozone Data

X4 Sandburg Air Force Base temperature (C°)
Xz Inversion base height (ft)

X3 Dagget pressure gradient

Xq Visibility (miles)

Xs Vandenburg 500 millibar height (m)

Xs Humidity (percent)

X7 Inverse base temperature (F°)

Xg Wind speed (mph)

These two viewing angles have a low correlation of about .2.
They do reveal different patterns. SIR fails to find the view
of Figure 10(c), because the pattern is more or less symmetric
about the y axis. On the other hand, the untransformed pHd
method used here cannot detect Figure 10(d), because it is
symmetric about the x axis. We also take transformation on
the residuals (e.g., the absolute value, or the logarithm of the
absolute value) before applying the pHd method to further
3 R study the heteroscedasticity aspect of the residuals. The re-
R sults are not reported here.

L 9. CONCLUSIONS

In this article we have introduced another method for
finding edr directions. This method is based on the estimation
Figure 9. Views Found by pHd for (8.3). of the pHd’s. We have discussed when and why this method

o 10 20 30
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(c) (d)

Figure 10. Plots Used in the Ozone Study. (a) Ozone against the first direction of SIR; (b) Residual plot for model (8.4); (c) Residuals against the
direction found by pHd; (d) Residuals against the direction found by SIR.
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Table 5. Significant Directions Found for the Ozone Data

Journal of the American Statistical Association, December 1992

Table 7. A Summary for Quadratic Regression for the Residual of (8.4)

b .046 1.7e-4 0 0 0 -.014 0 0
Eigenvalues .76 1 .08 — — —_ — —
p values 0 .22 42 — —_ — —_ _
bong 0 0 -.03 0 -.0072 .051 0 0
Eigenvalues 15 .68 .33 — — — — -_
p values 0 A2 .29 — — — — —

is likely to be useful. We have provided some versions for
the implementation.

This method can be used to complement the first-moment-
based SIR, which tends to be more stable than the pHd
method because the latter involves second moments. On the
other hand, the pHd method is more useful for symmetric
cases that the first-moment-based SIR fails to handle. Of
course, we often do not know how symmetric the case under
study is before analyzing the data, so we cannot decide which
one may work better in the beginning. It may also happen
that each method finds only part of the edr directions. In
view of this, our suggestion is to use both SIR and pHd all
the time. In addition to any subjective decision that can be
made after inspecting the scatterplots found by either
method, we can also rely on significance tests to judge
whether or not a direction is real. We have demonstrated
one possible way of analyzing the ozone data, using both
SIR and pHd.

We have mentioned the gain of robustifying the procedure
by trimming out large values in y. The more difficult task is
to handle outliers in x. A two-stage procedure like the fol-
lowing is worth trying: (1) Run one round of pHd and plot
y against the first few components, and (2) exclude outliers
in the plots and then run the pHd method again.

Any method in statistics has its own limitation. We do
not anticipate that SIR and pHd will always find structures.
This is why it is important to have a measure to indicate
whether or not component found is likely to be spurious. It
is also important to know, at least at the conceptual level,
what types of structures are likely to be found or missed by
our methods. For SIR the shape of inverse regression curve
is the determining factor. For pHd the determining factor is
the average curvature of the regression surface as measured
by the average Hessian matrix. Thus for K = 1, if the regres-
sion curve has too many turns, then the positive curvature
on convex portions of the curve is likely to cancel out the
negative curvature on the concave portions. This leaves room
for inventing other methods to handle such situations. We
have thought about subsampling techniques, for example.
A suitable split of the data set, either linearly or spherically
on the input variables, is worth trying. A more systematic
strategy for splitting is to be studied.

We have also related our method to simple projection
indices. In addition to the phase of statistical inference, the
estimated pHd’s can also be considered as descriptive statis-

Table 6. A Summary for Quadratic Regression (8.4)

Constant 7.5(2.1)
Linear 5.20 (1.42)
Quadratic 1.86 (.22)
R-squared 74

Constant —-911 (216)
Linear —46.9 (11.1)
Quadratic —.60 (.14)
R-squared .05

tics. Some messages on projection pursuit from our limited
experience with SIR and pHd’s can be summarized in the
following list. Some of these may echo those found in the
context of exploratory projection pursuit (see, for example,
Friedman 1987, Hall 1989b; and Huber 1985).

1. Under (1.1) there is more than one projection index
that can be used to find edr directions.

2. Any index has its own strength and weakness; it is im-
portant to know what patterns it might miss.

3. Use of two simple, complementary indices may be
preferable to a single complex index.

4. For any index, it is necessary to have a criterion for
suggesting how spurious a projection might be.

5. Even if data fitting might be one of the ultimate goals,
good projection indices are not necessarily confined to those
directly translated from goodness-of-fit criteria; it is useful
to distinguish the issue of data fitting from the issue of di-
mension reduction.

6. Sampling properties are easier to analyze for some pro-
jection indices than for others. Other things being equal, this
becomes an important factor in guiding the choice of pro-
jection indices.

APPENDIX A: PROOFS FOR SECTIONS 2, 3, AND 6

A.1 Proof of Lemma 2.1

The restriction on A implies that we can represent A as
0Z'? for some unitary matrix @. Plugging this into (2.2), our
problem reduces to finding a unitary vector a = @’¢;, so that
|a’ZY?H, Z¥?a| is maximized. The solution a is the largest ei-
genvector (in terms of the absolute value of the eigenvalues) for the
eigenvalue decomposition of ZY2H, =Y?, which is seen to be
=1/ b,, after multiplying £1/? on both sides of the identity (2.1).
Now we see that the first row of A equals

1A =\ 02 = a'ZV = (b 251?22 = b,
as desired. The proof is now complete.

A.2 Proof of Lemma 2.2

Let B=(8,...,8¢)and t = (B}x, ..., Bxx) = B'x. Then
f(x) = h(B'x) and, by the chain rule, H,(x) = BH,(t)B’. Now it
is clear that for any direction, v, in the orthogonal complement of
B, we have H,(x)v = 0. Hence the rank of H, is at most K. In
addition, for any pHd b; with A; # 0, we have 0 = v'H, ) Z,b, = v'\;b;,
implying that b; is orthogonal to v. Therefore, b; falls into the edr
space B. The proof is complete.

A.3 Proof of Corollary 3.1

First, standardize x to have mean 0 and the identity covariance
by an affine transformation like z = 2;'/2(x — p). Define H, to
be the average Hessian matrix when the partial derivatives are taken
with respect to z. Then, applying Stein’s lemma, we see that

H,=E(y - p)zz.
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The relationship between H,(x) and H,(z) is obtained by the
chain rule: H,(x) = 25'?H,(z)Z3'/2. On the other hand, =,
=ZV2E(y — w,)2zz'2Y? = TY*H, ZV/?. Now it is clear that H,
=3'2,wZx', as desired. The proof is complete.

A.4 Proof of Coroliary 3.2

Let 7 be the residual, y — O(x), where O(x) is the fitted poly-
nomial. Then 7is uncorrelated with any polynomial of x with degree
g or less. In particular, it is uncorrelated with any element in the
random matrix (x — uy)(x — uy)'. Now we see that

E(y - /‘y)(x - /‘x)(x — Hx )I
=E(y—F— m)(x = ) (X — px)'
= E(O(x) — EQ(x))(x — px)(X — px)".

Corollary 3.1 implies that the average Hessian matrices for y and
Q(x) are the same, completing the proof.

A.5 Proof of Theorem 6.1

Consider any vector u such that u’=,b = 0 for any b in B. Then
(6.1) implies that E(u'x|8)x,j =1, ..., K) = 0. It follows that
wZ,ub = E(y — p)EWX|Bx,j=1,..., K)x'b) = 0. This
completes the proof.

A.6 Proof of Theorem 6.2

Due to affine invariance, it suffices to consider the case where x
is spherically symmetric with identity covariance and mean 0. Let
P, be the projection matrix of rank K with B as the range space,
and let P, = I — P,. We need only show that the range of P, is a
subspace of some eigenspace of Z,,. First, the result of Theorem
6.1 implies that P,Z,,,P, = 0, or equivalently, that Z,,,P;
= P,2,,,P,. Fundamental properties from elliptical distributions
show that, given Pyx and [x||%, Pyx is still spherically symmetric
with mean 0, and the covariance matrix is (p — K)~'(/x|?
— |P,x||»)P,. From this we see that

PSnyx P, = E((J’ - [.I.y)E(szlezlPlX, ”X” 2))
=(p— K)'[EW — w)([x]1* = [Px]|?)]P,.
Thus Z,,,P; is proportional to P,, implying that the range space
of P, is contained in an eigenspace of 2. This proves the theorem.

APPENDIX B: PROOFS OF THEOREMS 4.1 AND 4.2

We need the following lemma from perturbation theory (see, for
example, Kato 1976). It has been used in Li (1991). Let the su-
perscript * denote the Moore-Penrose generalized inverse of a ma-
trix.

B.1 LemmaB.1

Consider the expansion
T(w) =T + wT® + o(w),

where T(w), T, and T are symmetric matrices. Suppose that T
has rank k. Let A(w) be the sum of the p — k eigenvalues of T(w)
with absolute values closest to 0, and let II(w) be the projection
matrix associated with corresponding p — k eigenvectors. Let IT be
the projection matrix associate with the null space of T so that IIT
= TII = 0. Then we have

I(w) =T — wIITOT*T*TPI + o(w)
A(w) = wAD + o(w),

where A = tr TVII. In addition, if we have a second-order ex-
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pansion, then
T(w) =T+ wT® + w’T? + o(w?),
where T® is also symmetric. Then
Aw) = wA®D + w\@ 4+ o(w?),
where A@ = tr[T®II — TOT*TVII].
B.2 Proof of Theorem 4.2 for the y-Based Estimate

Due to the affine invariance of the problem, we shall assume that

ux =0, py =0, covx =],

without loss of generality. First, we shall apply Lemma B.1 to find
the asymptotic expansion of 2 /-1y A,,. To do this, we have to
find the expansion for the matrix £;'/23,,, 37"/ first, because it
gives the needed eigenvalues.

It is straightforward to obtain

2 =07 2 pixx) = 1) = X(Ex'y) — (Eyx)X' + 0,(n™'"?).

=1
(B.1)
To simplify the expression, define
A =Eyxx, b=Eyx, ¢ =yi(xXx;
Then (B.1) becomes
S = A+ Y —Xb' = bX' + 0,(n”""?)

and we also have

-IN—A, &=xx;—1.

Ec=T+E+0,(n'?).
It follows that
23:72,,2'?=A+B,+D,
B, =y — xb' — bX' — 1/2EA — 1/2AE, (B.2)

where D, is of the order 0,(n"'/?).

Now Lemma B.1 can be applied. Let P, be the projection matrix
associated with the null space of A. Here we take A, n'/’B,,, and
P, as T, TV, and II and note that A has rank k. Hence

p
> A, =trB,Py+ 0,(n7'/?).
J= (k1)

Using the fact that AP, = 0 and P,b = 0, the right side of (B.3) can
be simplified as

trn” 2 4Py + 0,(n7'?)

(B.3)

=n7' 3 par((Px,)(Pox;) — Py) + 0,(n'/?).
Due to the independence between y; and P,x;, we can verify that
E(y,tr((Pox,)(P2x;) — Py)) = Ey,E tr((Px,)(P2x;) — Py) =0
and
var(p,tr((Px,)(P2x,) — Py))
= E)’E tr((Px;)(P2x,) — P2) = 2(p — k)Ey*.

Now, applying the central limit theorem, we complete the proof of
the first part of Theorem 4.2.

We proceed with the pfoof of the second part of Theorem 4.2
by observing that 2/, A2 equals the sum of the smallest p — k
eigenvalues of the matrix

(B2, ) EPEWEL Y,
which can be expanded as

AA + (B,A + AB,) + (B,B, + D,A + AD,) + 0,(n7").
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Now, by Lemma B.1, we have

i A% = tr(B,A + AB,)P; + [tr(B,B, + D,A + AD,)P,
J=k+1
— tr(B,A + AB,)(AA)*(B,A + AB,)P,] + op(n_’)
= [tr P,B,B,P, — tr P,B,A(AA)*AB,P,] + o,(n7")
= tr P,B,P,B,P, + 0,(n7").
Now
P,B,P, = n! éyitr Py(x;x; — )Py + 0,(n7")

i=1
=n"1"2C, + 0,(n7Y).

Due to the independence between y; and P,x;, C, is asymptoti-
cally normal with mean 0. A straightforward computation shows
that the asymptotic variance for each diagonal element is 2 var(y)
and the asymptotic variance for each off-diagonal element is var(y).
C, is symmetric, but all distinct elements have asymptotic covari-
ances equal to 0. Finally, the trace of the matrix, » tr P,B,P,B,P,,
equals the sum of the squares of the elements in C,,, which in turn
follows a rescaled X2 distribution with (p — k + 1)(P — k)/2 degrees
of freedom asymptotically. The proof of Theorem 4.2 is complete.

B.3 Proof of Theorem 4.1 for the y-Based Estimate

We make the same assumptions and adopt the same notations
as in the proof of Theorem 4.2. The strategy of our proof is similar
to the argument given in Li (1991, app. A.2). First, the squared
trace correlation R2(B) reduces to

K 'tr PP, =1 — K 'tr(P, — P)P,(P, — P),

where P; and P, are symmetric projection matrices associated with
the edr space B and the estimated space B. In our case, B is spanned
by the first X coordinate axes. Let P, be the projection matrix as-
sociated with the first K eigenvectors for the eigenvalue decom-
position of £5'22,,, 2/

P, is related to Pl via

P, =3212(P2P) + 2512 (B.4)

Furthermore, we need the following approximation, which follows
from Lemma B.1:

I—P, =P, — (PB,A* + A*B,Py) + 0,(n~'/?).
Then, from (B.4) and (B.5), we can derive
Py = (I-172D)[B(I - ©)PITU — 1/28) + 0,(n'"?)
= (I - 1/25)P,(I1 + ©)P\(I = 1/2E) + 0,(n™'"?)
=P, + (P,B,A* + A*B,P))
+ (PP, — 1/2EP, — 1/2P§) + 0,(n~"?).
Hence, using A*P; = A* and (B.2), we have
(P, — P)P, = P,B,A* — 1/2P,EP, + 0,(n""/?)
= Po(JAT + Xb'AY) — PREP, + 0,(n7'/?)

(B.5)

=n7' 2 (iPxixiAY — Px;b'AY — PytiPy)

+ 0,(n7"?)
*za+%mW%
It remains to calculate
ER*(B)=1-K'n'"Etr §;{} + 0,(n7").
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Now it is straightforward to see that {; = Pox;((y;x; — b)A*
— x4 P;). By independence between P,x; and Px;, y, and the identity
A* =K, bb}, we have

E tr §;{; = E[Px; [ 2El (yix; — b)A* — x,Py||?
2
= (p=K)E

G (yixi = b — Nx;)'b;bj

i=1

K
= (p—K) Z N’E((yixi — b)'b; -

J=1

)\J'X;‘ bj)Z

K
= (p — K) 3 Nj%(var(y;x;b;) + N var x b,

Jj=1

— 2NbiEyixx; by)

K
= (p = K) 2 [\?var(yixiby) — 1],
j=1
where the last identity uses the fact that b, is the jth eigenvector for
Ey;x;x}. The proof is complete.

B.4 Proof of Theorems 4.2 and 4.1 for the r-Based
Estimate

This is similar to the proof of Theorems 4.2 and 4.1 for the y-
based estimate. First, we make the same assumptions as were made
to standardize x and y. Let r; = y; — b;X;, where b;; = Eyx = b.
Now a straightforward expansion for the least squares leads to

n
F=ri—r— (n“ > r,-xj-)x,» + 0,(n7'?),

Jj=1

where 7 = n~! 2%, r,. It follows that
2‘:rxx = n_l 2 (ri - F)(X,‘ - i)(xi - ’_(),
i=1
n n
-n'y [n“ > r,x}]xiij,- + 0,(n7""?)
i=1 J=1
_ n n
=A+¢—n'3 [n" > rix}]xi‘g’i + 0,(n7'?), (B.6)
i=1 j=1

where ¢ = n~' 20, ¢;and ¢; = ri(x;x; — I) — A. A straightforward
evaluation of the variance of the third term in (B.6) shows that it
is negligible. Therefore, we have

Sx=A+ ¢+ o, (n'?).

The rest of the proof is omitted, because it follows the same ma-
nipulation starting from (B.2) by ignoring b and replacing ¢
with .

[Received March 1990. Revised August 1991.]
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