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ABSTRACT 1 

Introduction  2 

This study aimed to explore the shared muscle synergies between running and 3 

functional tests that are commonly used when considering the return to running (RTR) 4 

after sports-related injuries. We hypothesized that shared muscle synergies would differ 5 

among tasks, providing insights into prioritizing functional tests in the context of RTR. 6 

Methods  7 

Ten healthy male participants were recruited to perform running and 9 functional tasks 8 

and their 16 lower limb and trunk muscle activities were recorded using 9 

electromyography (EMG). Non-negative matrix factorization (NMF) was applied to the 10 

collected EMG data to explore shared muscle synergies between running and the 11 

functional tasks. We compared the percentages of shared synergies and temporal 12 

patterns between running and each functional test. 13 

Results  14 

Although all functional tests exhibited shared muscle synergies with running, the walk 15 

(75% [40%-100%]), single leg hops with 30% of maximum distance (SLH30) (60% 16 

[20%-100%]), and stepup (63% [0%-100%]) tasks displayed significantly higher 17 

percentages of shared synergies compared to other tests. However, significant 18 
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differences in temporal patternss were observed between running and all functional 19 

tasks, indicating varying activation profiles of shared muscle synergies. 20 

Conclusion  21 

Although all functional tests shared muscle synergies with running, variations in the 22 

degree of shared synergies and temporal patterns imply that walking, SLH30, and step-23 

up tests may be the most beneficial in predicting running behavior post-ACL injuries. 24 

However, functional tests cannot fully replicate running dynamics, suggesting the need 25 

for a careful interpretation when assessing readiness for RTR. 26 

 27 

keyword: Return to run, functional tests, muscle synergies.  28 
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INTRODUCTION  29 

Returning to running (RTR) represents a key milestone in the rehabilitation 30 

process following sports-related injuries  (1-4). The time frame for RTR can vary 31 

greatly; for instance, in the case of anterior cruciate ligament (ACL) injuries, the median 32 

time frame for RTR is approximately 12 weeks postoperatively, with a range of 5-39 33 

weeks (1, 2). This phase signifies the transition from early and mid-stage 34 

rehabilitation—focused on restoring basic knee function such as regaining adequate 35 

knee joint range of motion and resuming everyday activities—to the later stages of 36 

rehabilitation. These later stages involve high-intensity training, encompassing activities 37 

like jumping, cutting, and sport-specific tasks  (5, 6).  38 

Functional tests, which are frequently used as assessment-based criteria, are 39 

designed to replicate the physical demands of running. These tests include walk analysis, 40 

single leg hops, single leg squats (SLS), and various balance tasks (1, 2). However, it is 41 

critical to validate these functional tests as practical benchmarks for facilitating a safe 42 

and effective return to running post-injury. This is particularly important for validating 43 

tests that share motor control characteristics between running and functional tests. 44 

The role of muscles in motor function is interconnected (7, 8). Essentially, 45 

motor control of lower limbs entails the coordinated activation of several lower limb 46 
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and trunk muscles in response to specific demands requiring both stability and 47 

movement. (9). The central nervous system (CNS) is thought to employ an efficient 48 

strategy to select the control signal from a large subspace. This is achieved by using a 49 

limited set of motor modules or muscle synergies, formed by the flexible combination 50 

of muscle activation (10). Thus, exploring the shared muscle synergies between running 51 

and commonly used functional tests in clinical settings may provide the 52 

neuromechanical rationale for functional tests as RTR criteria following sports-related 53 

injuries. 54 

The objective of this study was to determine whether functional tests share 55 

muscle synergies with running tasks. Our hypothesis posited that running and functional 56 

tests would display shared muscle synergies, but the extent of these synergies would 57 

vary between tasks. Additionally, differences in the temporal profiles of these synergies 58 

were expected. Such variability could provide critical insights for prioritizing functional 59 

tests when evaluating readiness to RTR. 60 
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METHODS 61 

Participants 62 

 Ten healthy males with a mean (SD) age of 21 (±0.3) years old were recruited 63 

from the local university. Each participant provided written informed consent for 64 

participation in the study. The study was conducted following the principles of the 65 

Declaration of Helsinki and approved by the local ethics committee of the University of 66 

Tokyo (746). 67 
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Experimental procedures 68 

Participants were asked to freely perform running and nine functional tasks 69 

commonly used when considering the return to running following ACL injuries (1), as 70 

described in Figure 1. Of note, the average velocities for running and walk were 71 

observed to be 2.1 ± 0.28 m/s and 1.2 ± 0.12 m/s, respectively. Each functional test was 72 

repeated five times and the order of the tasks was randomly assigned.  73 

 74 

Data collection 75 

Unilateral surface EMG data were recorded from 16 lower limb and trunk 76 

muscle groups: rectus abdominis (RA) (3cm lateral to umbilicus)(11), oblique externus 77 

(OE) (15cm lateral to umbilicus)(12), erector spinae at L1 (ESL1) (3cm lateral to the L1 78 

spinous process)(11), gluteus maximus (GM), gluteus medius (Gmed), biceps femoris 79 

(long head, BF), semitendinosus (ST), tensor fasciae latae (TFL), adductor longus 80 

(ADD), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), tibialis 81 

anterior (TA), gastrocnemius medialis (MG), soleus (SOL) and peroneus longus (POL). 82 

The EMG sensor placements in lower limb were based on SENIAM (surface EMG for a 83 

non-invasive assessment of muscles) (13). A wireless EMG system (Trigno Wireless 84 

System; DELSYS, Boston, MA, USA) was used to record EMG activity. Each electrode 85 

had an inter-electrode spacing of 10 mm. The EMG signals were band-pass filtered (20–86 
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450 Hz), amplified (with a 300-gain preamplifier), and sampled at 2000 Hz using an 87 

analog-to-digital converter (Power lab/16SP, AD Instruments, Australia).  88 

Marker coordinate data were collected at 120 Hz using an eight-camera motion 89 

capture system (Vicon, Centennial, CO) with a 25-marker set. This set incorporated 90 

markers for the head, arms, trunk, pelvis, thighs, shanks, and feet, based on the Vicon 91 

Plug-in-Gait model. Marker coordinate data were interpolated using cubic spline 92 

interpolation to remove gaps in the data and filtered with a low-pass third-order 93 

Butterworth filter at 20 Hz. This data was then combined with subject-specific 94 

anthropometric data to create an eight-segment whole-body model. The kinematic 95 

profiles, calculated by the Vicon Plug-in-Gait model, were used to define the start and 96 

end of each trial for each task. 97 

EMG processing 98 

Raw EMG signals were high-pass filtered at 30 Hz to remove motion artifacts, 99 

and then demeaned. The signals were then full-wave-rectified and low-pass filtered at 100 

10 Hz, using a fourth-order Butterworth filter. The smoothed EMG envelopes were 101 

time-interpolated to generate 200 time points between the start and end points for each 102 
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trial so that the EMG data of each trial contributed to the extracted muscle synergies 103 

equally.  104 

 We created single-task EMG matrices for each task for each participant (that is, 105 

the matrix was composed of 16 muscles × 1000 timepoints (the no. of repetitions/cycles 106 

(5) × 200 samples)) to extract the muscle synergies for each task. Each EMG from each 107 

muscle was normalized to the maximum amplitude across all tasks.  108 

Independent muscle synergy extraction 109 

To extract muscle synergies, NMF was applied to the single-task EMG matrix. 110 

NMF has previously been described as a linear decomposition technique (14, 15) 111 

according to equation (1): 112 

 113 

� � � · � � � 	1� 

 114 

Where M (m�×�t matrix, where m is the number of muscles, t is the number of 115 

samples [i.e., spatiotemporal profiles of muscle activity]) is a linear combination of 116 

muscle synergies, W (m�×�n matrix, where n is the number of muscle synergies), C 117 

(n�×�t matrix, representing temporal patterns), and e is the residual error matrix. We 118 
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applied NMF to extract possible n values from 1 to 16 for each dataset. To estimate the 119 

optimal number of muscle synergies, the variance accounted for (VAF) by the 120 

reconstructed EMG (M) was calculated at each iteration (16). VAF was defined as 100 121 

× the square of the uncentered Pearson's correlation coefficient (16, 17). Considering 122 

the local minima inherent in NMF, each synergy extraction was repeated 50 times, and 123 

the VAF was calculated at each iteration. Iterations with the highest VAF were 124 

maintained (18-21). VAFs > 0.9 were used to identify the optimal number of synergies 125 

commonly used in the literature (20-25).  126 

Shared and specific muscle synergy extraction 127 

 To extract the number of shared and running-specific, test-specific muscle 128 

synergies, we used a modified version of the NMF algorithm based on the previous 129 

studies (24, 26-28) that simultaneously extracts motor modules that are shared across 130 

running and each task and those that are specific to each task from a data matrix 131 

containing EMG from both conditions. We defined shared synergies as one that 132 

activated in both task and thus, temporal pattern components have non-zero coefficients 133 

in both tasks. To identify task-specific muscle synergies, the coefficients, C, 134 

corresponding to running are set to zero (i.e., test-specific synergies), and to each task 135 
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are set to zero (i.e., run-specific synergies). Detailed descriptions of this method are in 136 

elsewhere (24, 26-28). Briefly, as independent synergy extraction, the number of shared, 137 

running specific and task-specific synergies for each participant was determined by the 138 

minimum number of total muscle synergies that were required so that the VAF 139 

exceeded 90%. We defined the percentage of shared muscle synergies between running 140 

and each task as the ratio of the number of shared modules over the number of total 141 

motor modules across the two tasks. This modification is thought to improve the 142 

accuracy shared and task-specific muscle synergies by minimizing the possibility in 143 

which the numbers of synergies are underestimated when synergies are extracted from 144 

the EMG of each task independently, and compare the similarity of synergies between 145 

tasks to identify shared and task-specific synergies (26, 29). 146 

 We identified representative shared, running-specific and test-specific synergies 147 

across participants using hierarchical clustering analysis (Ward's method, Euclidian 148 

distance) of muscle weighting components (19). To determine the optimal number of 149 

clusters, we computed the gap statistic (30), which measures the compactness of the 150 

clustering achieved against those in reference data sets without any obvious clustering 151 

similar to a previous study (31). Reference data sets (N�=�500) were initially 152 

generated by sampling uniformly from within the bounds of the original muscle-synergy 153 
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set; each of them was then clustered by the hierarchical cluster, at 2–20 clusters. The 154 

optimal number of clusters was then the smallest number, h, such that  155 

 156 

Gap (h) ≥ Gap (h+1) – sd (h+1) 157 

 158 

where Gap(k) represents the gap statistic at h clusters, and sd(h) signifies the standard 159 

deviation of the clustering compactness within the reference data sets (30). 160 

 161 

We defined shared, running-specific and test-specific synergy clusters as having each 162 

three types of synergies from ≥ 1/2 of synergies within a cluster. If the cluster was not 163 

contributed by any types of synergies, we defined it as “none”.    164 

Statistics 165 

We compared the percentage of shared muscle synergies between tasks. The 166 

values were compared using the Friedman test, which is a non-parametric method for 167 

multiple comparisons of independent samples, as a normal distribution was not 168 

observed in the data (tested using the Shapiro–Wilk test). When the Friedman test 169 
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showed significant effects, multiple comparison post-hoc analyses were performed 170 

using the Wilcoxon signed-rank test.  171 

Temporal pattern components were compared between running and functional 172 

tests using statistical parametric mapping (SPM) (spm1d v0.4.7 for MATLAB, Institute 173 

of Neurology, London, UK) (32). Since each single-task EMG matrix contained 5 174 

repetitions/cycles, the extracted temporal pattern components of running and functional 175 

tests were converted into an averaged repetition/cycles for each participant before 176 

comparing temporal pattern components using SPM analysis.     177 

The p values obtained from were corrected using the false discovery rate (FDR) 178 

correction for multiple comparisons (33). The significance level for all tests was set 179 

at p�<�0.05. When there was a significant difference between the groups, effect sizes 180 

(ES) were calculated using Cohen’s d (34). We recruited ten participants without an a 181 

priori power analysis, thus, we instead conducted a sensitivity analysis in G*Power, 182 

which indicated that an effect size of 0.71 would be necessary to obtain a power of 80% 183 

at an α of 0.05.184 
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RESULTS 185 

Muscles synergies for running and functional tests 186 

Table 1 presents the VAF values between the groups for running and functional 187 

tests. Figure 2 depicts the percentage of muscle synergies shared between running and 188 

each respective functional test. The median percentage of shared synergies for each test 189 

were as follows: walk (75% [40%-100%]), SLH30 (60% [20%-100%]), SLH60 (50% 190 

[28%-75%]), SLH100 (50% [28%-80%]), SLS (32% [16%-50%]), Ybalance (40% 191 

[25%-80%]), Hraise (22% [20%-60%]), stepup (63% [0%-100%]), and Tbalance (40% 192 

[20%-80%]). The percentage of shared synergies was significantly different among the 193 

nine representative speeds in non-runners and runners (p = 0.000079 for both groups, 194 

Friedman test one-way ANOVA). Statistically significant differences were observed 195 

between the following pairings: Walk and SLS (p = 0.0038, ES = 2.18), Walk and 196 

Hraise (p = 0.0098, ES = 2.05), SLH30 and SLS (p =0.0017, ES = 1.56), SLH30 and 197 

Hraise (p = 0.0039, ES = 1.47), SLH and stepup (p = 0.0072, ES = 1.31), and Hraise 198 

and stepup (p = 0.0176, ES = 1.25). 199 

 200 

Figure 3 shows representative shared, running-specific, and test-specific muscle 201 

synergies identified by cluster analysis (muscle weighting components (W) and 202 

temporal pattern components (C)). All functional tests shared the muscle synergies with 203 
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running although the number of shared synergies differed between functional tests. We 204 

also identified the running-specific and test-specific muscle synergies in all functional 205 

tests except walk task. The SPM analysis found significant differences in temporal 206 

pattern components between running and each functional task (p < 0.05). 207 
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DISCUSSION 208 

In this study, we applied the NMF algorithm to large-scale and high-dimensional 209 

EMG data to investigate shared muscle synergies between running and functional tasks 210 

that are commonly used to determine when individuals with ACL injuries can return to 211 

running activities. Overall, although all functional tests shared muscle synergies with 212 

running, our results suggest that walking, SLH, and step-up tests could be the most 213 

beneficial because the percentages of shared synergies between running and these tests 214 

were significantly higher than those with other functional tests. However, despite these 215 

shared muscle synergies, there were notable differences in the temporal patterns 216 

between running and functional tasks. These discrepancies suggest the need for caution 217 

when using functional tests alone to predict running capabilities post-injury. 218 

We hypothesized that a high degree of shared synergies between running and 219 

functional tests would signify these tests as strong predictors of running behavior, due 220 

to similar motor control characteristics, including the coordination of multiple muscles. 221 

Firstly, our results showed that the percentage of shared synergies (muscle weighting 222 

components) between running and walking was 75% [40%-100%], with all synergies 223 

between the two tasks being shared. This aligns with a previous study that suggested 224 

consistent muscle weighting components for walking and running, facilitating the 225 
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transition from walking to running. (35, 36). Similarly, we found that the step-up test 226 

shared a significant amount of muscle synergies with running, which is reasonable 227 

given that both activities share the same mechanical goal of propelling the body's center 228 

of mass forward. (37-39). This action requires dynamic balance with appropriate 229 

activations of lower and trunk muscles. The SLH test, particularly the SLH30 variant, 230 

exhibited a higher degree of shared muscle synergies with running compared to other 231 

non-jumping tests. Conversely, SLH60 and SLH100 demonstrated a relatively low 232 

number of shared synergies, as they also generated test-specific synergies beneficial for 233 

longer forward jumping. 234 

NMF also extracted temporal pattern components, signifying the activation 235 

profiles of muscle weighting components. Notably, there were significant differences in 236 

some temporal pattern components of muscle synergies between running and all 237 

functional tests. From a neuromechanical perspective, these temporal patterns reflect the 238 

specific timing and intensity of muscle activation, illustrating that even though muscle 239 

synergies may be similar, the way they are employed in different activities can differ 240 

significantly. This discrepancy could be attributed to the unique demands of each task. 241 

Even though similar muscle groups may be engaged (thus the shared synergies), the 242 

coordination, timing, and intensity of muscle activation might not perfectly align. (40, 243 
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41). From a clinical perspective, these differences suggest that functional tests cannot 244 

fully replicate running behavior. Specifically, the characteristics of temporal 245 

components of walking, SLH30, and stepup tasks that exhibited higher percentages of 246 

shared synergies, differed significantly compared to those in running. These disparities 247 

in temporal patterns, despite shared muscle synergies, can limit the interpretation of the 248 

results, suggesting that the differing activation profiles of shared muscle synergies in 249 

these functional tests may impede their predictability of safe running performance. 250 

Clinicians should consider that while these functional tests can help assess readiness for 251 

running by reflecting certain shared muscle activation patterns, they do not perfectly 252 

mimic the exact dynamics of running. Therefore, clinicians should utilize functional 253 

tests in combination with running evaluations in a clinical setting using a treadmill 254 

whenever possible. Additionally, other assessments such as knee range of motion, 255 

strength, and psychological readiness for running should be taken into account. A 256 

comprehensive assessment will aid in detecting basic function for running and 257 

deviations from normal running patterns before athletes resume running outside a 258 

clinical setting (1, 2).  259 

Steady progress through high-quality rehabilitation is essential for functional 260 

recovery (42). Resuming sports activities prematurely can elevate the risk of secondary 261 
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injuries (43), while excessively slow progress might adversely affect motivation and 262 

psychological preparedness for sports performances (44). Consequently, determining 263 

the appropriate timing for a return to running (RTR) is a crucial milestone in the 264 

effective rehabilitation continuum for a return to sports (1, 2). Our findings provide a 265 

novel rationale for using functional tests in decision-making for RTR. Further 266 

exploration into the degree of shared synergies between running and functional tests 267 

among individuals with and without lower-limb sports injuries could yield intriguing 268 

results. This, along with investigating the relationship between the degree of shared 269 

synergies and future injuries, could potentially offer valuable biomarkers for injury 270 

prevention. 271 

Note of caution in interpreting the study findings is warranted. Although 272 

numerous functional tests mimic the motor control patterns or muscle synergies of 273 

running, the running speed employed in this study was relatively low, averaging 2.1 ± 274 

0.28 m/s. This raises uncertainty regarding whether the functional tests used also 275 

capture the muscle synergy variations of high-speed running, direction changes, and 276 

cutting movements, all of which are high-risk activities for lower limb sports injuries. 277 

Indeed, a previous study highlighted distinct muscle synergies at different speeds (19), 278 
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If the tests used don't replicate these running variations, we might not accurately predict 279 

running ability and may need to consider other functional test batteries.  280 

 281 

CONCLUSION 282 

Our study suggests that the walk, SLH, and step-up tests can be reliable 283 

indicators of running behavior due to their shared muscle synergies with running. 284 

Despite different temporal pattern components in these tests compared to running, they 285 

offer a practical means to assess running ability. However, clinicians should be aware 286 

that these functional tests may not fully emulate the physical demands of running. 287 

Therefore, these tests should be incorporated as key components in the comprehensive 288 

decision-making process for a return to running.289 
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FIGURE 1. Running and Nine Functional Tests. Participants independently performed 490 

running at a jogging pace and a walk. As a result, the average velocities for running and 491 

walk were noted to be 2.1 ± 0.28 m/s and 1.2 ± 0.12 m/s, respectively. In the single leg 492 

hops (SLH) tests, participants executed a forward jump at 30% (SLH30), 60% (SLH60), 493 

and 100% (SLH100) of their maximum distance. A single leg squat (SLS) was carried 494 

out with approximately 45 degrees of knee flexion. Hraise refers to the heel raise task, 495 

while stepup denotes a forward step up onto a 10 cm height box. Tbalance describes an 496 

exercise where the participant stands on the injured leg, forms a 'T' shape with the body, 497 

drives upward to a standing position, and then slowly returns to the 'T' position. 498 

 499 

FIGURE 2. The percent of shared muscle synergies between running and each 500 

functional test. Median values are indicated as horizontal lines inside the boxes. The 501 

edges of the boxes represent the 25th and 75th percentiles. (p = 0.000079 for both 502 

groups, Friedman test one-way ANOVA). Statistically significant differences were 503 

observed between the following pairings: Walk and SLS (p = 0.0038, ES = 2.18), Walk 504 

and Hraise (p = 0.0098, ES = 2.05), SLH30 and SLS (p =0.0017, ES = 1.56), SLH30 505 

and Hraise (p = 0.0039, ES = 1.47), SLH and stepup (p = 0.0072, ES = 1.31), and 506 

Hraise and stepup (p = 0.0176, ES =1.25). 507 

 508 
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FIGURE 3. Representative shared, running-specific, and test-specific muscle synergies 509 

identified by cluster analysis (muscle weighting components (W) and temporal pattern 510 

components (C)). The gray sections on the X-axis of C represent the temporal pattern 511 

components where a significant difference between running and functional tasks was 512 

observed (p < 0.05). RA: rectus abdominis, OE: oblique externus, ESL1(erector spinae 513 

at L1), GM: gluteus maximus, Gmed: gluteus medius, BF: biceps femoris, ST: 514 

semitendinosus, TFL: tensor fasciae latae, ADD: adductor longus, RF: rectus femoris, 515 

VM: vastus medialis, VL: vastus lateralis, TA: tibialis anterior, MG: gastrocnemius 516 

medialis, SOL: Soleus (SOL) and POL: peroneus longus.  517 

 518 

 519 
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TABLE 1. Variance account for (VAF) and number of muscle synergies for running 

and functional tests 

 

  VAF values Number of synergies 

Running  0.92 (± 0.01) 3.9 (± 0.31) 

Functional tests Walk 0.92 (± 0.01) 3.8 (± 0.63) 

 SLH30 0.92 (± 0.01) 4.3 (± 0.67) 

 SLH60 0.91 (± 0.01) 4.6 (± 0.51) 

 SLH90 0.91 (± 0.01) 5.1 (± 0.56) 

 SLS 0.92 (± 0.01) 2.4 (± 0.51) 

 Ybalance 0.92 (± 0.01) 3.6 (± 0.84) 

 Hraiese 0.92 (± 0.01) 2.3 (± 0.67) 

 Steuup 0.91 (± 0.01) 4.5 (± 0.97) 

 Tbalance 0.92 (± 0.01) 3.4 (± 0.69) 
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