Neuromechanical Justification of Lower-Limb Functional Tests for a Return to

Running: A Muscle Coordination Analysis

Hiroki Saito^{1,2*}, Ayu Yamano¹, Nanae Suzuki¹, Kazuya Matsushita³, Hikaru

Yokoyama⁴, Atsushi Sasaki^{5,6}, Tatsuya Takahashi MD⁷, Kimitaka Nakazawa PhD²

¹ Department of Physical Therapy, Tokyo University of Technology, Tokyo, Japan

² Graduate School of Arts and Sciences, Department of Life Sciences, The University of

Tokyo, Tokyo, Japan

³ Aobadai Takeda Orthopedic, Tokyo, Japan

⁴ Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan

⁵ Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan

⁶ Japan Society for the Promotion of Science, Tokyo, Japan

⁷ Toyota Memorial Hospital, Aichi, Japan

Correspondence Author: Hiroki Saito

Department of Physical Therapy, Tokyo University of Technology, Tokyo, Japan

Email: saitohhrk@stf.teu.ac.jp

1	ABSTRACT
2	Introduction
3	This study aimed to explore the shared muscle synergies between running and
4	functional tests that are commonly used when considering the return to running (RTR)
5	after sports-related injuries. We hypothesized that shared muscle synergies would differ
6	among tasks, providing insights into prioritizing functional tests in the context of RTR.
7	Methods
8	Ten healthy male participants were recruited to perform running and 9 functional tasks
9	and their 16 lower limb and trunk muscle activities were recorded using
10	electromyography (EMG). Non-negative matrix factorization (NMF) was applied to the
11	collected EMG data to explore shared muscle synergies between running and the
12	functional tasks. We compared the percentages of shared synergies and temporal
13	patterns between running and each functional test.
14	Results
15	Although all functional tests exhibited shared muscle synergies with running, the walk

- 16 (75% [40%-100%]), single leg hops with 30% of maximum distance (SLH30) (60%
- 17 [20%-100%]), and stepup (63% [0%-100%]) tasks displayed significantly higher
- 18 percentages of shared synergies compared to other tests. However, significant

- 19 differences in temporal patternss were observed between running and all functional
- 20 tasks, indicating varying activation profiles of shared muscle synergies.
- 21 Conclusion
- 22 Although all functional tests shared muscle synergies with running, variations in the
- 23 degree of shared synergies and temporal patterns imply that walking, SLH30, and step-
- 24 up tests may be the most beneficial in predicting running behavior post-ACL injuries.
- 25 However, functional tests cannot fully replicate running dynamics, suggesting the need
- 26 for a careful interpretation when assessing readiness for RTR.
- 27
- 28 keyword: Return to run, functional tests, muscle synergies.

29	INTRODUCTION
30	Returning to running (RTR) represents a key milestone in the rehabilitation
31	process following sports-related injuries (1-4). The time frame for RTR can vary
32	greatly; for instance, in the case of anterior cruciate ligament (ACL) injuries, the median
33	time frame for RTR is approximately 12 weeks postoperatively, with a range of 5-39
34	weeks (1, 2). This phase signifies the transition from early and mid-stage
35	rehabilitation—focused on restoring basic knee function such as regaining adequate
36	knee joint range of motion and resuming everyday activities-to the later stages of
37	rehabilitation. These later stages involve high-intensity training, encompassing activities
38	like jumping, cutting, and sport-specific tasks (5, 6).
39	Functional tests, which are frequently used as assessment-based criteria, are
40	designed to replicate the physical demands of running. These tests include walk analysis,
41	single leg hops, single leg squats (SLS), and various balance tasks (1, 2). However, it is
42	critical to validate these functional tests as practical benchmarks for facilitating a safe
43	and effective return to running post-injury. This is particularly important for validating
44	tests that share motor control characteristics between running and functional tests.
45	The role of muscles in motor function is interconnected (7, 8). Essentially,
46	motor control of lower limbs entails the coordinated activation of several lower limb

47	and trunk muscles in response to specific demands requiring both stability and
48	movement. (9). The central nervous system (CNS) is thought to employ an efficient
49	strategy to select the control signal from a large subspace. This is achieved by using a
50	limited set of motor modules or muscle synergies, formed by the flexible combination
51	of muscle activation (10). Thus, exploring the shared muscle synergies between running
52	and commonly used functional tests in clinical settings may provide the
53	neuromechanical rationale for functional tests as RTR criteria following sports-related
54	injuries.
54 55	injuries. The objective of this study was to determine whether functional tests share
55	The objective of this study was to determine whether functional tests share
55 56	The objective of this study was to determine whether functional tests share muscle synergies with running tasks. Our hypothesis posited that running and functional
55 56 57	The objective of this study was to determine whether functional tests share muscle synergies with running tasks. Our hypothesis posited that running and functional tests would display shared muscle synergies, but the extent of these synergies would

METHODS

62 Participants

63	Ten healthy males with a mean (SD) age of 21 (±0.3) years old were recruited
64	from the local university. Each participant provided written informed consent for
65	participation in the study. The study was conducted following the principles of the
66	Declaration of Helsinki and approved by the local ethics committee of the University of
67	Tokyo (746).

68 Experimental procedures

69	Participants were asked to freely perform running and nine functional tasks
70	commonly used when considering the return to running following ACL injuries (1), as
71	described in Figure 1. Of note, the average velocities for running and walk were
72	observed to be 2.1 \pm 0.28 m/s and 1.2 \pm 0.12 m/s, respectively. Each functional test was
73	repeated five times and the order of the tasks was randomly assigned.
74	
75	Data collection
76	Unilateral surface EMG data were recorded from 16 lower limb and trunk
77	muscle groups: rectus abdominis (RA) (3cm lateral to umbilicus)(11), oblique externus
78	(OE) (15cm lateral to umbilicus)(12), erector spinae at L1 (ESL1) (3cm lateral to the L1
79	spinous process)(11), gluteus maximus (GM), gluteus medius (Gmed), biceps femoris
80	(long head, BF), semitendinosus (ST), tensor fasciae latae (TFL), adductor longus
81	(ADD), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), tibialis
82	anterior (TA), gastrocnemius medialis (MG), soleus (SOL) and peroneus longus (POL).
83	The EMG sensor placements in lower limb were based on SENIAM (surface EMG for a
84	non-invasive assessment of muscles) (13). A wireless EMG system (Trigno Wireless
85	System; DELSYS, Boston, MA, USA) was used to record EMG activity. Each electrode
86	had an inter-electrode spacing of 10 mm. The EMG signals were band-pass filtered (20-

450 Hz), amplified (with a 300-gain preamplifier), and sampled at 2000 Hz using an

88 analog-to-digital converter (Power lab/16SP, AD Instruments, Australia).

89	Marker coordinate data were collected at 120 Hz using an eight-camera motion
90	capture system (Vicon, Centennial, CO) with a 25-marker set. This set incorporated
91	markers for the head, arms, trunk, pelvis, thighs, shanks, and feet, based on the Vicon
92	Plug-in-Gait model. Marker coordinate data were interpolated using cubic spline
93	interpolation to remove gaps in the data and filtered with a low-pass third-order
94	Butterworth filter at 20 Hz. This data was then combined with subject-specific
95	anthropometric data to create an eight-segment whole-body model. The kinematic
96	profiles, calculated by the Vicon Plug-in-Gait model, were used to define the start and
97	end of each trial for each task.

98 EMG processing

99 Raw EMG signals were high-pass filtered at 30 Hz to remove motion artifacts,

100 and then demeaned. The signals were then full-wave-rectified and low-pass filtered at

- 101 10 Hz, using a fourth-order Butterworth filter. The smoothed EMG envelopes were
- 102 time-interpolated to generate 200 time points between the start and end points for each

trial so that the EMG data of each trial contributed to the extracted muscle synergies

104 equally.

- 105 We created single-task EMG matrices for each task for each participant (that is,
- 106 the matrix was composed of 16 muscles \times 1000 timepoints (the no. of repetitions/cycles
- 107 (5) \times 200 samples)) to extract the muscle synergies for each task. Each EMG from each
- 108 muscle was normalized to the maximum amplitude across all tasks.

109 Independent muscle synergy extraction

110 To extract muscle synergies, NMF was applied to the single-task EMG matrix.

111 NMF has previously been described as a linear decomposition technique (14, 15)

112 according to equation (1):

113

$$M = W \cdot C + e \ (1)$$

114

115 Where M ($m \Box \times \Box t$ matrix, where m is the number of muscles, t is the number of 116 samples [i.e., spatiotemporal profiles of muscle activity]) is a linear combination of 117 muscle synergies, W ($m \Box \times \Box n$ matrix, where n is the number of muscle synergies), C118 ($n \Box \times \Box t$ matrix, representing temporal patterns), and e is the residual error matrix. We

119	applied NMF to extract possible n values from 1 to 16 for each dataset. To estimate the
120	optimal number of muscle synergies, the variance accounted for (VAF) by the
121	reconstructed EMG (M) was calculated at each iteration (16). VAF was defined as 100
122	\times the square of the uncentered Pearson's correlation coefficient (16, 17). Considering
123	the local minima inherent in NMF, each synergy extraction was repeated 50 times, and
124	the VAF was calculated at each iteration. Iterations with the highest VAF were
125	maintained (18-21). VAFs > 0.9 were used to identify the optimal number of synergies
126	commonly used in the literature (20-25).

127 Shared and specific muscle synergy extraction

128 To extract the number of shared and running-specific, test-specific muscle 129 synergies, we used a modified version of the NMF algorithm based on the previous 130 studies (24, 26-28) that simultaneously extracts motor modules that are shared across 131 running and each task and those that are specific to each task from a data matrix 132 containing EMG from both conditions. We defined shared synergies as one that 133 activated in both task and thus, temporal pattern components have non-zero coefficients 134 in both tasks. To identify task-specific muscle synergies, the coefficients, C, 135 corresponding to running are set to zero (i.e., test-specific synergies), and to each task

136	are set to zero (i.e., run-specific synergies). Detailed descriptions of this method are in
137	elsewhere (24, 26-28). Briefly, as independent synergy extraction, the number of shared,
138	running specific and task-specific synergies for each participant was determined by the
139	minimum number of total muscle synergies that were required so that the VAF
140	exceeded 90%. We defined the percentage of shared muscle synergies between running
141	and each task as the ratio of the number of shared modules over the number of total
142	motor modules across the two tasks. This modification is thought to improve the
143	accuracy shared and task-specific muscle synergies by minimizing the possibility in
144	which the numbers of synergies are underestimated when synergies are extracted from
145	the EMG of each task independently, and compare the similarity of synergies between
146	tasks to identify shared and task-specific synergies (26, 29).
147	We identified representative shared, running-specific and test-specific synergies
148	across participants using hierarchical clustering analysis (Ward's method, Euclidian
149	distance) of muscle weighting components (19). To determine the optimal number of
150	clusters, we computed the gap statistic (30), which measures the compactness of the
151	clustering achieved against those in reference data sets without any obvious clustering
152	similar to a previous study (31). Reference data sets (N \square = \square 500) were initially
153	generated by sampling uniformly from within the bounds of the original muscle-synergy

154 set; each of them was then clustered by the hierarchical cluster, at 2–20 clusters. The

155 optimal number of clusters was then the smallest number, h, such that

156

157
$$Gap(h) \ge Gap(h+1) - sd(h+1)$$

158

159 where Gap(k) represents the gap statistic at h clusters, and sd(h) signifies the standard

160 deviation of the clustering compactness within the reference data sets (30).

161

162 We defined shared, running-specific and test-specific synergy clusters as having each

163 three types of synergies from $\geq 1/2$ of synergies within a cluster. If the cluster was not

164 contributed by any types of synergies, we defined it as "none".

165 Statistics

- 166 We compared the percentage of shared muscle synergies between tasks. The
- 167 values were compared using the Friedman test, which is a non-parametric method for
- 168 multiple comparisons of independent samples, as a normal distribution was not
- 169 observed in the data (tested using the Shapiro–Wilk test). When the Friedman test

170	showed significant effects,	multiple c	omparison post	t-hoc analyses	were performed
-----	-----------------------------	------------	----------------	----------------	----------------

474	• .1	XX 7°1	• 1 1	
171	using the	W/11COVOn	signed-rank	tect
1/1	using uic	W IICOAOII	Signou-rank	usi.

- 172 Temporal pattern components were compared between running and functional
- tests using statistical parametric mapping (SPM) (spm1d v0.4.7 for MATLAB, Institute
- 174 of Neurology, London, UK) (32). Since each single-task EMG matrix contained 5
- 175 repetitions/cycles, the extracted temporal pattern components of running and functional
- tests were converted into an averaged repetition/cycles for each participant before
- 177 comparing temporal pattern components using SPM analysis.
- 178 The p values obtained from were corrected using the false discovery rate (FDR)
- 179 correction for multiple comparisons (33). The significance level for all tests was set
- 180 at $p \square < \square 0.05$. When there was a significant difference between the groups, effect sizes
- 181 (ES) were calculated using Cohen's d (34). We recruited ten participants without an a
- 182 priori power analysis, thus, we instead conducted a sensitivity analysis in G*Power,
- 183 which indicated that an effect size of 0.71 would be necessary to obtain a power of 80%

184 at an α of 0.05.

185	RESULTS
186	Muscles synergies for running and functional tests
187	Table 1 presents the VAF values between the groups for running and functional
188	tests. Figure 2 depicts the percentage of muscle synergies shared between running and
189	each respective functional test. The median percentage of shared synergies for each test
190	were as follows: walk (75% [40%-100%]), SLH30 (60% [20%-100%]), SLH60 (50%
191	[28%-75%]), SLH100 (50% [28%-80%]), SLS (32% [16%-50%]), Ybalance (40%
192	[25%-80%]), Hraise (22% [20%-60%]), stepup (63% [0%-100%]), and Tbalance (40%
193	[20%-80%]). The percentage of shared synergies was significantly different among the
194	nine representative speeds in non-runners and runners ($p = 0.000079$ for both groups,
195	Friedman test one-way ANOVA). Statistically significant differences were observed
196	between the following pairings: Walk and SLS ($p = 0.0038$, ES = 2.18), Walk and
197	Hraise (p = 0.0098, ES = 2.05), SLH30 and SLS (p =0.0017, ES = 1.56), SLH30 and
198	Hraise (p = 0.0039 , ES = 1.47), SLH and stepup (p = 0.0072 , ES = 1.31), and Hraise
199	and stepup (p = 0.0176, ES = 1.25).
200	
201	Figure 3 shows representative shared, running-specific, and test-specific muscle

Figure 3 shows representative shared, running-specific, and test-specific muscle synergies identified by cluster analysis (muscle weighting components (W) and temporal pattern components (C)). All functional tests shared the muscle synergies with

- running although the number of shared synergies differed between functional tests. We
- also identified the running-specific and test-specific muscle synergies in all functional
- 206 tests except walk task. The SPM analysis found significant differences in temporal
- 207 pattern components between running and each functional task (p < 0.05).

208	DISCUSSION
209	In this study, we applied the NMF algorithm to large-scale and high-dimensional
210	EMG data to investigate shared muscle synergies between running and functional tasks
211	that are commonly used to determine when individuals with ACL injuries can return to
212	running activities. Overall, although all functional tests shared muscle synergies with
213	running, our results suggest that walking, SLH, and step-up tests could be the most
214	beneficial because the percentages of shared synergies between running and these tests
215	were significantly higher than those with other functional tests. However, despite these
216	shared muscle synergies, there were notable differences in the temporal patterns
217	between running and functional tasks. These discrepancies suggest the need for caution
218	when using functional tests alone to predict running capabilities post-injury.
219	We hypothesized that a high degree of shared synergies between running and
220	functional tests would signify these tests as strong predictors of running behavior, due
221	to similar motor control characteristics, including the coordination of multiple muscles.
222	Firstly, our results showed that the percentage of shared synergies (muscle weighting
223	components) between running and walking was 75% [40%-100%], with all synergies
224	between the two tasks being shared. This aligns with a previous study that suggested
225	consistent muscle weighting components for walking and running, facilitating the

226	transition from walking to running. (35, 36). Similarly, we found that the step-up test
227	shared a significant amount of muscle synergies with running, which is reasonable
228	given that both activities share the same mechanical goal of propelling the body's center
229	of mass forward. (37-39). This action requires dynamic balance with appropriate
230	activations of lower and trunk muscles. The SLH test, particularly the SLH30 variant,
231	exhibited a higher degree of shared muscle synergies with running compared to other
232	non-jumping tests. Conversely, SLH60 and SLH100 demonstrated a relatively low
233	number of shared synergies, as they also generated test-specific synergies beneficial for
234	longer forward jumping.
235	NMF also extracted temporal pattern components, signifying the activation
235 236	NMF also extracted temporal pattern components, signifying the activation profiles of muscle weighting components. Notably, there were significant differences in
236	profiles of muscle weighting components. Notably, there were significant differences in
236 237	profiles of muscle weighting components. Notably, there were significant differences in some temporal pattern components of muscle synergies between running and all
236 237 238	profiles of muscle weighting components. Notably, there were significant differences in some temporal pattern components of muscle synergies between running and all functional tests. From a neuromechanical perspective, these temporal patterns reflect the
236 237 238 239	profiles of muscle weighting components. Notably, there were significant differences in some temporal pattern components of muscle synergies between running and all functional tests. From a neuromechanical perspective, these temporal patterns reflect the specific timing and intensity of muscle activation, illustrating that even though muscle
236 237 238 239 240	profiles of muscle weighting components. Notably, there were significant differences in some temporal pattern components of muscle synergies between running and all functional tests. From a neuromechanical perspective, these temporal patterns reflect the specific timing and intensity of muscle activation, illustrating that even though muscle synergies may be similar, the way they are employed in different activities can differ

244	41). From a clinical perspective, these differences suggest that functional tests cannot
245	fully replicate running behavior. Specifically, the characteristics of temporal
246	components of walking, SLH30, and stepup tasks that exhibited higher percentages of
247	shared synergies, differed significantly compared to those in running. These disparities
248	in temporal patterns, despite shared muscle synergies, can limit the interpretation of the
249	results, suggesting that the differing activation profiles of shared muscle synergies in
250	these functional tests may impede their predictability of safe running performance.
251	Clinicians should consider that while these functional tests can help assess readiness for
252	running by reflecting certain shared muscle activation patterns, they do not perfectly
253	mimic the exact dynamics of running. Therefore, clinicians should utilize functional
254	tests in combination with running evaluations in a clinical setting using a treadmill
255	whenever possible. Additionally, other assessments such as knee range of motion,
256	strength, and psychological readiness for running should be taken into account. A
257	comprehensive assessment will aid in detecting basic function for running and
258	deviations from normal running patterns before athletes resume running outside a
259	clinical setting (1, 2).
260	Steady progress through high-quality rehabilitation is essential for functional
261	recovery (42). Resuming sports activities prematurely can elevate the risk of secondary

262	injuries (43), while excessively slow progress might adversely affect motivation and
263	psychological preparedness for sports performances (44). Consequently, determining
264	the appropriate timing for a return to running (RTR) is a crucial milestone in the
265	effective rehabilitation continuum for a return to sports (1, 2). Our findings provide a
266	novel rationale for using functional tests in decision-making for RTR. Further
267	exploration into the degree of shared synergies between running and functional tests
268	among individuals with and without lower-limb sports injuries could yield intriguing
269	results. This, along with investigating the relationship between the degree of shared
270	synergies and future injuries, could potentially offer valuable biomarkers for injury
271	prevention.
272	Note of caution in interpreting the study findings is warranted. Although
273	numerous functional tests mimic the motor control patterns or muscle synergies of
274	running, the running speed employed in this study was relatively low, averaging 2.1 \pm
275	0.28 m/s. This raises uncertainty regarding whether the functional tests used also
276	capture the muscle synergy variations of high-speed running, direction changes, and
277	cutting movements, all of which are high-risk activities for lower limb sports injuries.
278	Indeed, a previous study highlighted distinct muscle synergies at different speeds (19),

279 If the tests used don't replicate these running variations, we might not accurately predict280 running ability and may need to consider other functional test batteries.

281

282

CONCLUSION

283 Our study suggests that the walk, SLH, and step-up tests can be reliable 284 indicators of running behavior due to their shared muscle synergies with running. 285 Despite different temporal pattern components in these tests compared to running, they 286 offer a practical means to assess running ability. However, clinicians should be aware 287 that these functional tests may not fully emulate the physical demands of running. 288 Therefore, these tests should be incorporated as key components in the comprehensive 289 decision-making process for a return to running.

291	Declarations
292	
293	Ethics approval and consent to participate
294	All experimental protocols were approved by the local ethics committee of the
295	University of Tokyo, and all participants gave their written informed consent.
296	
297	Consent for publication
298	The participant depicted in the photos gave their written consent for publication.
299	
300	Availability of data and materials
301	The datasets used and/or analyzed during the current study are available from the
302	corresponding author on reasonable request.
303	
304	Acknowledgements
305	Not applicable.
306	
307	Conflicts of interest

308 The authors declare no conflict of interest.

- 310 Funding statement: N/A

314	References
315 316	
317	1. Rambaud AJM, Ardern CL, Thoreux P, Regnaux JP, Edouard P. Criteria
318	for return to running after anterior cruciate ligament reconstruction: a scoping
319	review. British journal of sports medicine. 2018;52(22):1437-44. Epub 20180502.
320	doi: 10.1136/bjsports-2017-098602. PubMed PMID: 29720478.
321	2. Van Cant J, Pairot de Fontenay B, Douaihy C, Rambaud A.
322	Characteristics of return to running programs following an anterior cruciate
323	ligament reconstruction: A scoping review of 64 studies with clinical
324	perspectives. Phys Ther Sport. 2022;57:61-70. Epub 20220719. doi:
325	10.1016/j.ptsp.2022.07.006. PubMed PMID: 35921783.
326	3. Macdonald B, McAleer S, Kelly S, Chakraverty R, Johnston M, Pollock N.
327	Hamstring rehabilitation in elite track and field athletes: applying the British
328	Athletics Muscle Injury Classification in clinical practice. British journal of sports
329	medicine. 2019;53(23):1464-73. Epub 20190712. doi: 10.1136/bjsports-2017-
330	098971. PubMed PMID: 31300391.
331	4. Vergani L, Cuniberti M, Zanovello M, Maffei D, Farooq A, Eirale C.
332	Return to Play in Long-Standing Adductor-Related Groin Pain: A Delphi Study

333	Among Experts. Sports Med Open. 2022;8(1):11. Epub 20220118. doi:
334	10.1186/s40798-021-00400-z. PubMed PMID: 35043267; PubMed Central
335	PMCID: PMC8766680.
336	5. Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric
337	versus dynamic stabilization and balance training on lower extremity
338	biomechanics. Am J Sports Med. 2006;34(3):445-55.
339	6. Buckthorpe M, Della Villa F. Optimising the 'Mid-Stage' Training and
340	Testing Process After ACL Reconstruction. Sports medicine (Auckland, NZ).
341	2020;50(4):657-78. doi: 10.1007/s40279-019-01222-6. PubMed PMID:
342	31782065.
343	7. Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S. How
344	animals move: an integrative view. Science. 2000;288(5463):100-6. doi:
345	10.1126/science.288.5463.100. PubMed PMID: 10753108.
346	8. Chiel HJ, Ting LH, Ekeberg O, Hartmann MJ. The brain in its body: motor
347	control and sensing in a biomechanical context. J Neurosci. 2009;29(41):12807-
348	14. doi: 10.1523/JNEUROSCI.3338-09.2009. PubMed PMID: 19828793;
349	PubMed Central PMCID: PMC2794418.

350 9. Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, et
351 al. Neuromechanical principles underlying movement modularity and their
352 implications for rehabilitation. Neuron. 2015;86(1):38-54. doi:
353 10.1016/j.neuron.2015.02.042.

354 10. d'Avella A, Portone A, Fernandez L, Lacquaniti F. Control of fast355 reaching movements by muscle synergy combinations. J Neurosci.
356 2006;26(30):7791-810. doi: 10.1523/JNEUROSCI.0830-06.2006. PubMed

357 PMID: 16870725; PubMed Central PMCID: PMC6674215.

358 11. McGill S, Juker D, Kropf P. Appropriately placed surface EMG electrodes

reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the

360 lumbar spine. Journal of biomechanics. 1996;29(11):1503-7. doi: 10.1016/0021-

361 9290(96)84547-7. PubMed PMID: 8894932.

Vera-Garcia FJ, Moreside JM, McGill SM. Abdominal muscle activation
changes if the purpose is to control pelvis motion or thorax motion. Journal of
electromyography and kinesiology : official journal of the International Society of
Electrophysiological Kinesiology. 2011;21(6):893-903. Epub 20110916. doi:
10.1016/j.jelekin.2011.08.003. PubMed PMID: 21925900.

367	13. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of
368	recommendations for SEMG sensors and sensor placement procedures.
369	Journal of electromyography and kinesiology : official journal of the International
370	Society of Electrophysiological Kinesiology. 2000;10(5):361-74. doi:
371	10.1016/s1050-6411(00)00027-4. PubMed PMID: 11018445.
372	14. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix
373	factorization. Nature. 1999;401(6755):788-91. doi: 10.1038/44565.
374	15. Tresch MC, Cheung VCK, d'Avella A. Matrix factorization algorithms for
375	the identification of muscle synergies: evaluation on simulated and experimental
376	data sets. J Neurophysiol. 2006;95(4):2199-212. doi: 10.1152/jn.00222.2005.
377	16. Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization
378	is robust across a variety of postural perturbations. J Neurophysiol.
379	2006;96(3):1530-46. doi: 10.1152/jn.00810.2005.
380	17. Zar JH. Biostatistical analysis: Pearson Education India; 1999 1999.
381	18. Yokoyama H, Kato T, Kaneko N, Kobayashi H, Hoshino M, Kokubun T,
382	et al. Basic locomotor muscle synergies used in land walking are finely tuned
383	during underwater walking. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-
384	98022-8.

Yokoyama H, Ogawa T, Kawashima N, Shinya M, Nakazawa K. Distinct
sets of locomotor modules control the speed and modes of human locomotion.
Sci Rep. 2016;6:36275. doi: 10.1038/srep36275. PubMed Central PMCID:
PMC5090253.

20. Saito H, Yokoyama H, Sasaki A, Kato T, Nakazawa K. Evidence for basic units of upper limb muscle synergies underlying a variety of complex human manipulations. J Neurophysiol. 2022;127(4):958-68. Epub 20220302.

doi: 10.1152/jn.00499.2021. PubMed PMID: 35235466.

393 21. Saito H, Yokoyama H, Sasaki A, Kato T, Nakazawa K. Flexible
394 Recruitments of Fundamental Muscle Synergies in the Trunk and Lower Limbs
395 for Highly Variable Movements and Postures. Sensors. 2021;21(18). doi:
396 10.3390/s21186186.

397 22. Botzheim L, Laczko J, Torricelli D, Mravcsik M, Pons JL, Oliveira Barroso

398 F. Effects of gravity and kinematic constraints on muscle synergies in arm

399 cycling. J Neurophysiol. 2021;125(4):1367-81. doi: 10.1152/jn.00415.2020.

400 23. Stamenkovic A, Ting LH, Stapley PJ. Evidence for constancy in the

401 modularity of trunk muscle activity preceding reaching: Implications for the role

402 of preparatory postural activity. J Neurophysiol. 2021. doi: 403 10.1152/jn.00093.2021.

404 24. Sawers A, Allen JL, Ting LH. Long-term training modifies the modular
405 structure and organization of walking balance control. J Neurophysiol.
406 2015;114(6):3359-73. doi: 10.1152/jn.00758.2015. PubMed Central PMCID:
407 PMC4868379.

408 25. Hug F, Turpin NA, Couturier A, Dorel S. Consistency of muscle synergies
409 during pedaling across different mechanical constraints. J Neurophysiol.
410 2011;106(1):91-103. doi: 10.1152/jn.01096.2010.

411 Cheung VCK, d'Avella A, Tresch MC, Bizzi E. Central and sensory 26. 412 contributions to the activation and organization of muscle synergies during 413 natural motor behaviors. J Neurosci. 2005;25(27):6419-34 doi: 414 10.1523/JNEUROSCI.4904-04.2005. PubMed Central PMCID: PMC6725265. 415 27. Cheung VCK, d'Avella A, Bizzi E. Adjustments of motor pattern for load 416 compensation via modulated activations of muscle synergies during natural 417 behaviors. J Neurophysiol. 2009;101(3):1235-57. doi: 10.1152/jn.01387.2007.

418 PubMed Central PMCID: PMC2666413.

419	28. Allen JL, McKay JL, Sawers A, Hackney ME, Ting LH. Increased
420	neuromuscular consistency in gait and balance after partnered, dance-based
421	rehabilitation in Parkinson's disease. J Neurophysiol. 2017;118(1):363-73. Epub
422	20170405. doi: 10.1152/jn.00813.2016. PubMed PMID: 28381488; PubMed
423	Central PMCID: PMC5501921.
424	29. Cheung VC, d'Avella A, Bizzi E. Adjustments of motor pattern for load
425	compensation via modulated activations of muscle synergies during natural
426	behaviors. J Neurophysiol. 2009;101(3):1235-57. Epub 20081217. doi:
427	10.1152/jn.01387.2007. PubMed PMID: 19091930; PubMed Central PMCID:
428	PMC2666413.
429	30. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a
430	data set via the gap statistic. J R Stat Soc Series B Stat Methodol.
431	2001;63(2):411-23. doi: 10.1111/1467-9868.00293.
432	31. Cheung VCK, Cheung BMF, Zhang JH, Chan ZYS, Ha SCW, Chen C-Y,
433	et al. Plasticity of muscle synergies through fractionation and merging during
434	development and training of human runners. Nat Commun. 2020;11(1):4356.
435	doi: 10.1038/s41467-020-18210-4. PubMed Central PMCID: PMC7459346.

436	32. Pataky TC. Generalized n-dimensional biomechanical field analysis
437	using statistical parametric mapping. Journal of biomechanics.
438	2010;43(10):1976-82. doi: 10.1016/j.jbiomech.2010.03.008. PubMed PMID:
439	20434726.

- 440 33. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A
- Practical and Powerful Approach to Multiple Testing. Journal of the Royal 441
- 442 Statistical Society: Series B (Methodological). 1995;57(1):289-300. doi:
- 443 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
- 444 34. Cohen J. Statistical power analysis for the behavioral sciences. Abingdon.
- England: Routledge. 1988. 445

- 446 35. Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor Patterns in
- 447 Human Walking and Running. Journal of Neurophysiology. 2006;95(6):3426-37.
- doi: 10.1152/jn.00081.2006. 448
- 449 Hagio S, Fukuda M, Kouzaki M. Identification of muscle synergies 36.
- 450 associated with gait transition in humans. Front Hum Neurosci. 2015;9:48. doi:
- 451 10.3389/fnhum.2015.00048. PubMed Central PMCID: PMC4322718.
- 452 37. Cook TM, Zimmermann CL, Lux KM, Neubrand CM, Nicholson TD. EMG
- 453 Comparison of Lateral Step-up and Stepping Machine Exercise. J Orthop

454 Sports Phys Ther. 1992;16(3):108-13. doi: 10.2519/jospt.1992.16.3.108.
455 PubMed PMID: 18796761.

456 38. Simenz CJ, Garceau LR, Lutsch BN, Suchomel TJ, Ebben WP.

457 Electromyographical analysis of lower extremity muscle activation during

458 variations of the loaded step-up exercise. Journal of strength and conditioning

459 research / National Strength & Conditioning Association. 2012;26(12):3398-405.

460 doi: 10.1519/JSC.0b013e3182472fad. PubMed PMID: 22237139.

461 39. Wang MY, Flanagan S, Song JE, Greendale GA, Salem GJ. Lower-

462 extremity biomechanics during forward and lateral stepping activities in older

463 adults. Clin Biomech (Bristol, Avon). 2003;18(3):214-21. doi: 10.1016/s0268-

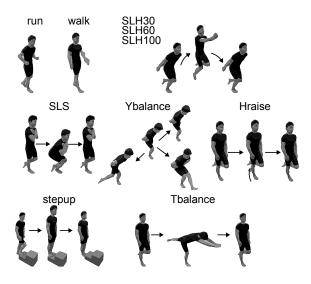
464 0033(02)00204-8. PubMed PMID: 12620784; PubMed Central PMCID:

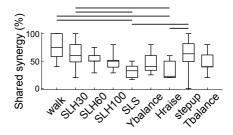
465 PMC3460801.

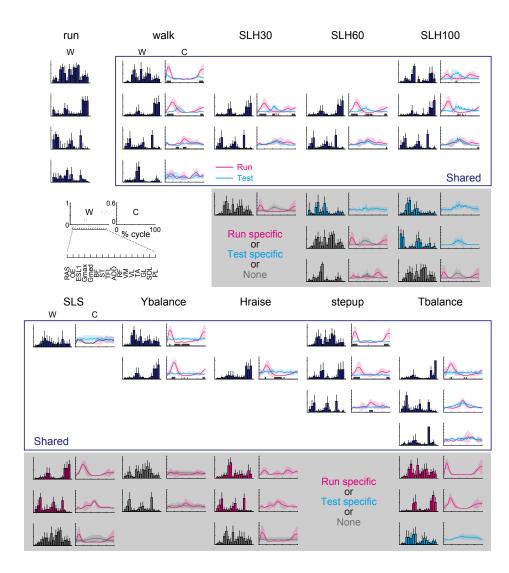
466 40. d'Avella A, Bizzi E. Shared and specific muscle synergies in natural
467 motor behaviors. Proc Natl Acad Sci U S A. 2005;102(8):3076-81. doi:

468 10.1073/pnas.0500199102. PubMed Central PMCID: PMC549495.

469 41. Bizzi E, Cheung VCK. The neural origin of muscle synergies. Front


470 Comput Neurosci. 2013;7:51. doi: 10.3389/fncom.2013.00051. PubMed Central


471 PMCID: PMC3638124.


472	42. Grindem H, Granan LP, Risberg MA, Engebretsen L, Snyder-Mackler L,
473	Eitzen I. How does a combined preoperative and postoperative rehabilitation
474	programme influence the outcome of ACL reconstruction 2 years after surgery?
475	A comparison between patients in the Delaware-Oslo ACL Cohort and the
476	Norwegian National Knee Ligament Registry. British journal of sports medicine.
477	2015;49(6):385-9. Epub 20141028. doi: 10.1136/bjsports-2014-093891.
478	PubMed PMID: 25351782; PubMed Central PMCID: PMC4351141.
479	43. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL
480	graft rupture: not meeting six clinical discharge criteria before return to sport is
481	associated with a four times greater risk of rupture. Br J Sports Med.
482	2016;50(15):946-51. doi: 10.1136/bjsports-2015-095908.
483	44. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE.
484	Psychological responses matter in returning to preinjury level of sport after
485	anterior cruciate ligament reconstruction surgery. Am J Sports Med.
486	2013;41(7):1549-58. Epub 20130603. doi: 10.1177/0363546513489284.
487	PubMed PMID: 23733635.
488 489	

490	FIGURE 1. Running and Nine Functional Tests. Participants independently performed
491	running at a jogging pace and a walk. As a result, the average velocities for running and
492	walk were noted to be 2.1 \pm 0.28 m/s and 1.2 \pm 0.12 m/s, respectively. In the single leg
493	hops (SLH) tests, participants executed a forward jump at 30% (SLH30), 60% (SLH60),
494	and 100% (SLH100) of their maximum distance. A single leg squat (SLS) was carried
495	out with approximately 45 degrees of knee flexion. Hraise refers to the heel raise task,
496	while stepup denotes a forward step up onto a 10 cm height box. Tbalance describes an
497	exercise where the participant stands on the injured leg, forms a 'T' shape with the body,
498	drives upward to a standing position, and then slowly returns to the 'T' position.
499	
499 500	FIGURE 2. The percent of shared muscle synergies between running and each
	FIGURE 2. The percent of shared muscle synergies between running and each functional test. Median values are indicated as horizontal lines inside the boxes. The
500	
500 501	functional test. Median values are indicated as horizontal lines inside the boxes. The
500 501 502	functional test. Median values are indicated as horizontal lines inside the boxes. The edges of the boxes represent the 25th and 75th percentiles. ($p = 0.000079$ for both
500 501 502 503	functional test. Median values are indicated as horizontal lines inside the boxes. The edges of the boxes represent the 25th and 75th percentiles. ($p = 0.000079$ for both groups, Friedman test one-way ANOVA). Statistically significant differences were
500 501 502 503 504	functional test. Median values are indicated as horizontal lines inside the boxes. The edges of the boxes represent the 25th and 75th percentiles. ($p = 0.000079$ for both groups, Friedman test one-way ANOVA). Statistically significant differences were observed between the following pairings: Walk and SLS ($p = 0.0038$, ES = 2.18), Walk
500 501 502 503 504 505	functional test. Median values are indicated as horizontal lines inside the boxes. The edges of the boxes represent the 25th and 75th percentiles. ($p = 0.000079$ for both groups, Friedman test one-way ANOVA). Statistically significant differences were observed between the following pairings: Walk and SLS ($p = 0.0038$, ES = 2.18), Walk and Hraise ($p = 0.0098$, ES = 2.05), SLH30 and SLS ($p = 0.0017$, ES = 1.56), SLH30

509	FIGURE 3. Representative shared, running-specific, and test-specific muscle synergies
510	identified by cluster analysis (muscle weighting components (W) and temporal pattern
511	components (C)). The gray sections on the X-axis of C represent the temporal pattern
512	components where a significant difference between running and functional tasks was
513	observed (p < 0.05). RA: rectus abdominis, OE: oblique externus, ESL1(erector spinae
514	at L1), GM: gluteus maximus, Gmed: gluteus medius, BF: biceps femoris, ST:
515	semitendinosus, TFL: tensor fasciae latae, ADD: adductor longus, RF: rectus femoris,
516	VM: vastus medialis, VL: vastus lateralis, TA: tibialis anterior, MG: gastrocnemius
517	medialis, SOL: Soleus (SOL) and POL: peroneus longus.
518 519	

		VAF values	Number of synergies
Running		0.92 (± 0.01)	3.9 (± 0.31)
Functional tests	Walk	0.92 (± 0.01)	3.8 (± 0.63)
	SLH30	0.92 (± 0.01)	4.3 (± 0.67)
	SLH60	0.91 (± 0.01)	4.6 (± 0.51)
	SLH90	0.91 (± 0.01)	5.1 (± 0.56)
	SLS	0.92 (± 0.01)	2.4 (± 0.51)
	Ybalance	0.92 (± 0.01)	3.6 (± 0.84)
	Hraiese	0.92 (± 0.01)	2.3 (± 0.67)
	Steuup	0.91 (± 0.01)	4.5 (± 0.97)
	Tbalance	0.92 (± 0.01)	3.4 (± 0.69)

TABLE 1. Variance account for (VAF) and number of muscle synergies for running and functional tests