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IMPORTANCE There is no widespread effective treatment to halt the progression of retinitis
pigmentosa. Consequently, adequate assessment and estimation of residual visual function
are important clinically.

OBJECTIVE To examine whether deep learning can accurately estimate the visual function
of patients with retinitis pigmentosa by using ultra-widefield fundus images obtained on
concurrent visits.

DESIGN, SETTING, AND PARTICIPANTS Data for this multicenter, retrospective, cross-sectional
study were collected between January 1, 2012, and December 31, 2018. This study included
695 consecutive patients with retinitis pigmentosa who were examined at 5 institutions.
Each of the 3 types of input images—ultra-widefield pseudocolor images, ultra-widefield
fundus autofluorescence images, and both ultra-widefield pseudocolor and fundus
autofluorescence images—was paired with 1 of the 31 types of ensemble models
constructed from 5 deep learning models (Visual Geometry Group–16, Residual Network–50,
InceptionV3, DenseNet121, and EfficientNetB0). We used 848, 212, and 214 images for the
training, validation, and testing data, respectively. All data from 1 institution were used
for the independent testing data. Data analysis was performed from June 7, 2021,
to December 5, 2022.

MAIN OUTCOMES AND MEASURES The mean deviation on the Humphrey field analyzer,
central retinal sensitivity, and best-corrected visual acuity were estimated. The image
type–ensemble model combination that yielded the smallest mean absolute error was
defined as the model with the best estimation accuracy. After removal of the bias of
including both eyes with the generalized linear mixed model, correlations between
the actual values of the testing data and the estimated values by the best accuracy model
were examined by calculating standardized regression coefficients and P values.

RESULTS The study included 1274 eyes of 695 patients. A total of 385 patients were
female (55.4%), and the mean (SD) age was 53.9 (17.2) years. Among the 3 types of images,
the model using ultra-widefield fundus autofluorescence images alone provided the best
estimation accuracy for mean deviation, central sensitivity, and visual acuity. Standardized
regression coefficients were 0.684 (95% CI, 0.567-0.802) for the mean deviation estimation,
0.697 (95% CI, 0.590-0.804) for the central sensitivity estimation, and 0.309 (95% CI,
0.187-0.430) for the visual acuity estimation (all P < .001).

CONCLUSIONS AND RELEVANCE Results of this study suggest that the visual function
estimation in patients with retinitis pigmentosa from ultra-widefield fundus autofluorescence
images using deep learning might help assess disease progression objectively. Findings also
suggest that deep learning models might monitor the progression of retinitis pigmentosa
efficiently during follow-up.
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R etinitis pigmentosa (RP) is associated with many pho-
toreceptor-specific gene variations. Thus, the degen-
eration of photoreceptor cells presents different pro-

gressive patterns.1,2 Although new treatments for RP are being
developed,3-5 current practice mainly involves care for re-
sidual visual function and surgery or medical therapy for com-
plications. Hence, an appropriate clinical evaluation and es-
timation method for residual visual function in patients with
RP should be established.

Fundus autofluorescence (FAF) reflects retinal pigment
epithelium functions by visualizing the accumulation of
lipofuscin.6 Fundus autofluorescence images of patients
with RP show hyperfluorescence in the early disease
stages, whereas hypofluorescence corresponds to lesions in
later stages. In typical RP, an AF ring, which represents a
hyperfluorescent ring in FAF images, might be observed at
the border separating the dysfunctional from the functional
retina.7,8 Ultra-widefield pseudocolor (UWPC) and ultra-
widefield FAF (UWFAF) imaging using a scanning laser
ophthalmoscope enables clinicians to obtain fundus images
with a 200° angle of view both easily and noninvasively.
Several studies have reported correlations between the find-
ings of FAF, such as AF rings in RP, and each finding of the
following techniques: Goldmann perimetry, Humphrey field
analyzer (HFA), and optical coherence tomography
(OCT).9-15

In recent years, image-processing approaches using
deep learning (DL) models have been applied to various
diagnostic imaging applications.16-20 Previously, we reported
several applications of image-processing technologies
using DL in ophthalmology.21-26 However, we believe
that there are few applications of image-processing technol-
ogy using DL models to quantitatively estimate visual
function in RP. In this study, we investigated whether DL
models can estimate visual function in patients with RP by
using ultra-widefield fundus images obtained on concurrent
visits.

Methods
Study Design and Overview
This retrospective, multicenter, cross-sectional study was
conducted from January 1, 2012, to December 31, 2018,
according to the Declaration of Helsinki27 and was approved
by the institutional review boards of Saneikai Tsukazaki
Hospital, Tokushima University, Kyoto University, Chiba
University, and Kobe City Eye Hospital, Japan; and written
informed consent without incentive was obtained from all
patients. This study followed the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE)
reporting guideline.

We retrieved the UWPC and UWFAF images and clinical
data of consecutive patients with RP from the clinical
databases of the 5 mentioned institutions. We diagnosed RP
based on patient clinical findings and results from fluores-
cein angiography and full-field electroretinograms with
the recording protocol conforming to the International

Society for Clinical Electrophysiology of Vision standards.28

All patients with RP showed distinctive fundus findings,
such as retinal vessel constriction, optic disc atrophy,
bone-spicule pigment clumping, and rod-cone dystrophy,
detected with electroretinography. We excluded patients
with atypical RP, such as unilateral or sector RP, and those
with uveitis or other conditions that can present with fundus
findings similar to RP. Eyes with dense cataracts that pre-
cluded ultra-widefield scanning laser ophthalmoscope
examinations, macular edema, epiretinal membrane, or
myopia with posterior staphyloma were also excluded.
A total of 1274 images obtained from the 1274 eyes of 695
patients with RP were studied, 1 image of each eye. The pres-
ence or absence of AF rings on UWFAF images was con-
firmed. The presence of an AF ring was determined indepen-
dently by 2 authors (T. Sogawa and T. Shinohara), for whom
the clinical data were masked. In the case of disagreement,
another author (M.E.) joined the discussion and assisted
with the final decision. In this context, 757 eyes from
419 patients had the AF ring, whereas 517 eyes from 304
patients were without it.

We obtained UWPC and UWFAF images from the
“all-eyes” group by using an ultra-widefield scanning laser
ophthalmoscope (Optos 200Tx; Optos PLC), and we mea-
sured the best-corrected visual acuity (BCVA), mean devia-
tion (MD), and mean sensitivity of central 12 test points
(CENT12) using the HFA 10-2 program (Carl Zeiss Meditec
AG). The BCVA was measured with a standard Japanese
Landolt visual acuity chart at a test distance of 5 m, was
corrected on the basis of the subjective and objective refrac-
tion test results, and was converted into logMAR units.
We used the Swedish interactive threshold algorithm stan-
dard’s testing algorithm in the HFA measurement. All oph-
thalmologic examinations were performed on the same day.
The all-eyes data set included 3 types of input images:
UWPC, UWFAF, and both UWPC and UWFAF images.
The DL model estimated MD, CENT12, and BCVA in the
all-eyes group.

To examine whether the presence or absence of AF rings
was associated with the estimation accuracy of the DL

Key Points
Question Can artificial intelligence estimate the visual function
of eyes with retinitis pigmentosa from ultra-widefield fundus
images?

Findings In this multicenter cross-sectional study of 1274 eyes
of 695 patients with retinitis pigmentosa, the standardized
regression coefficient was 0.309 in estimating visual acuity based
on ultra-widefield fundus autofluorescence images using a deep
learning model, 0.684 in estimating the mean deviation on the
Humphrey field analyzer, and 0.697 in estimating central retinal
sensitivity.

Meaning Findings suggest that this estimation method of visual
function using artificial intelligence with ultra-widefield fundus
autofluorescence images assists in objectively evaluating the
progression of retinitis pigmentosa.
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model, we prepared the data sets of the presence or absence
of AF rings by using only UWFAF images. Thereafter, we
analyzed a total of 6 patterns in which the DL model esti-
mated MD, CENT12, and BCVA in both groups, AF rings
present or absent.

DL Model and Its Training
To construct ensemble models, we used the following 5 DL
models: Visual Geometry Group–16, Residual Network–50,
InceptionV3, DenseNet121, and EfficientNetB0. Because
there were 31 combinations to build an ensemble model con-
sisting of 1 to 5 models using these 5 DL models, 31 different
ensemble models were constructed. After training these
models, we evaluated the performance of each one.29-33 In
the all-eyes group, we used 848, 212, and 214 images of the
data from patients for the training, validation, and testing
data, respectively. In the groups with AF rings present or
absent, we used 502 and 343 images for the training data,
126 and 86 images for the validation data, and 129 and 88
images for the testing data, respectively. The splits of data
were done at the patient level. All data from Chiba University
were used for the independent testing data but not for train-
ing or validation.

The aspect ratio of the original ultra-widefield fundus
images was 3900 × 3072 pixels. A study reported that
the performance of a DL model depends on the image reso-
lution and cropping range.34 Our preliminary study indi-
cated that the estimation accuracy was higher for images
of 512 × 512 pixels without cropping (eAppendix, eFigure 1,
eTable 1, and eTable 2 in Supplement 1). Therefore, further
analyses were performed after image resizing to 512 × 512
pixels without cropping. Because the RGB (red, green,
and blue) image input ranges from 0 to 255, we divided
the value by 255 and normalized it to a range of 0 to 1.
Then we trained the deep neural network by using data
augmentation techniques for each epoch, such as brightness
adjustment, gamma correction, and noise addition.21-23

For the estimation of both UWPC and UWFAF images, we
used 2 image modalities passing through different convolu-
tional neural networks and added a network that combined
them.

In this network training process, we used the same pro-
cess as in previous reports,26,29-31,35,36 up to the flattening
process. For the remaining processes, we performed global
mean pooling in 2 dimensions and converted the data to 1
dimension. The obtained data were then compressed to 256
units by using a fully connected layer, which we used again
to output 1 value. In the concatenated network, each of the
input UWFAF and UWPC images was compressed into 256
units of features and concatenated. Then they passed
through a 64-unit, fully connected layer and output as a
single estimation.

As for the transfer learning, we performed fine-tuning or
fully retraining using the parameters of the model that
learned the ImageNet data set (Stanford Vision Lab) as the
initial values for the layers before the flattening process. This
step enabled the network to achieve high performance even
with a small amount of data.37 We performed model training

and validation with Keras, an application programming
interface of Python TensorFlow.38

Statistical Analysis
For each of the 3 image types of the all-eyes group,
we estimated the visual functions with the 31 different
kinds of DL ensemble models. Then we evaluated the perfor-
mance of estimation on the visual function for 93 types of
total image-model combinations, which were 93 patterns
obtained by combining 31 ensemble models with 3 types
of images. Similarly, we used these 31 DL models to estimate
the visual function from the UWFAF images alone in the
groups with AF rings present or absent. When the
DL models were combined to construct an ensemble
model,the mean of each model’s output was used as the
output of the ensemble model. Validation data were
used to determine which ensemble model was optimal.
We calculated the mean absolute error (MAE), the root-
mean-square error (RMSE), and the Pearson correlation
coefficient and compared the magnitude of errors between
the estimated values and the actual values for each image-
model combination. We used the MAE as the performance
metric and adopted the image-model combination with
the smallest MAE as the combination with the best estima-
tion accuracy.

The MAE and RMSE are common metrics used to com-
pare the accuracy of machine learning models.39,40 Never-
theless, according to several artificial intelligence (AI)
studies,39,41,42 we used MAE as a basis for selecting the best
model in our study because, compared with RMSE, it is less
sensitive to outliers and has a better metric for selecting the
best model among the ensemble models.43

For the image-model combination with the smallest
MAE, we computed standardized regression coefficients
(SRCs) of estimated and actual values in the testing data.
For regression analysis, we used the restricted maxi-
mum likelihood approach.44 To eliminate bias due to the in-
clusion of both eyes of a patient in the analysis, we con-
structed generalized linear mixed models for the SRC, its
95% CIs, and P values, as follows: pred′[n] ~ Normal
(α[PID[n]] + β × actual′[n], σp), α[k] = αa l l + α i d[k],
αid[k] ~ Normal (0, σα), where pred′ is an estimated value
that is standardized so that it has a mean of 0 and a variance
of 1, actual′ is an actual value processed in the same way, PID
is a variable that stores which data belong to which patient,
Normal indicates normal distribution, σ indicates SD, α indi-
cates intercept, and β indicates slope. The P values were
2-sided and not adjusted for multiple analyses. We used
Statsmodels (Statsmodels developers) version 0.13.5,45 a
Python package, for SRC analysis and SciPy (version 1.7.3),46

another Python library, for statistical analyses other than
SRC. Data analysis was performed from June 7, 2021,
to December 5, 2022.

Heat Map
We generated a heat map to illustrate where the 5 DL
models focused on UWFAF images to estimate MD.
We used the Score-CAM method to create the heat map47
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and the ReLU function to correct the loss function during
back-propagation. The target layer was the final con-
volutional layer of the fifth block. We used tf-keras-vis,
version 0.8.2 (Keisen)48 a Python package, to create heat
maps.

Results
A total of 1668 eyes of 856 Japanese patients with RP
were consecutively extracted from the clinical data-
bases. After the exclusion criteria were applied, 1274 eyes
of 695 patients were included in this study. A total
of 310 patients were male (44.6%), 385 were female (55.4%),
and the mean (SD) age was 53.9 (17.2) years. Table 1 presents
the clinical characteristics of the all-eyes group with AF

rings present or absent. The mean age was higher in the
group without AF rings than with AF rings (mean [SD]
age, 55.5 [16.9] years vs 52.8 [17.4] years; difference,
2.7 [95% CI, 0.8-4.6]; P = .005), whereas the MD,
CENT12, and BCVA in the group without AF rings were
worse than those of the group with AF rings (mean [SD]:
MD, −22.7 [10.1] vs −14.5 [9.6]; difference, −8.2 [95% CI,
−9.3 to −7.1]; CENT12, 14.8 [10.8] vs 25.2 [8.7]; dif-
ference, −10.4 [95%CI, −11.5 to −9.2]; BCVA, 0.55 [0.61]
vs 0.22 [0.45]; difference, 0.33 [95% CI, 0.26-0.39]; all
P < .001).

The image type in which the model yielded the smallest
MAE value in the all-eyes group was the UWFAF image
alone for estimating MD, CENT12, and BCVA (Table 2). As for
the DL models, the ensemble model with the best estimation
accuracy comprised EfficientNetB0 and InceptionV3,
InceptionV3 and Visual Geometry Group–16, and Efficient-
NetB0 and Visual Geometry Group–16 for estimating MD,
CENT12, and BCVA, respectively. The SRC was 0.684
(95% CI, 0.567-0.802; P < .001) for MD estimation, 0.697
(95% CI, 0.590-0.804; P < .001) for CENT12 estimation, and
0.309 (95% CI, 0.187-0.430; P < .001) for BCVA estimation
(Table 2; Figure 1).

The data sets for the presence or absence of AF
rings were used to examine whether the presence or
absence of AF rings in UWFAF images affected the estima-
tion accuracy of DL models. For estimations in the group
with the presence of AF rings, the SRC values for esti-
mating MD, CENT12, and BCVA were 0.568 (95% CI,
0.398-0.738; P < .001), 0.660 (95% CI, 0.513-0.807;
P < .001), and 0.279 (95% CI, 0.086-0.472; P = .005)
(Table 2 and eFigure 2 in Supplement 1), respectively.
The SRC values for estimating MD, CENT12, and BCVA
in the group without the presence of AF rings were
0.274 (95% CI, 0.030-0.518; P = .03), 0.186 (95% CI, −0.025
to 0.396; P = .08), and 0.09 4 (95% CI, −0.082 to

Table 1. Clinical Characteristics of the Participants
With Positive AF Ring and Those With Negative AF Ring

Characteristic All eyes

AF ring

Positive Negative

No. of eyes 1274 757 517

Age, mean (SD), y 53.9 (17.2) 52.8 (17.4) 55.5 (16.9)

Sex, No. (%)

Male 551 (43.2) 322 (42.5) 229 (44.3)

Female 723 (56.8) 435 (57.5) 288 (55.7)

Laterality, left,
No. (%)

634 (49.8) 377 (49.8) 257 (49.7)

MD, mean (SD), dB −17.8 (10.6) −14.5 (9.6) −22.7 (10.1)

CENT12, mean (SD), dB 21.0 (10.9) 25.2 (8.7) 14.8 (10.8)

BCVA, mean (SD),
logMAR

0.36 (0.55) 0.22 (0.45) 0.55 (0.61)

Abbreviations: AF, autofluorescent; BCVA, best-corrected visual acuity;
CENT12, mean sensitivity of central 12 test points on the Humphrey field
analyzer; MD, mean deviation on the Humphrey field analyzer.

Table 2. Correlations Between Actual Values of Visual Function and Estimated Values by Deep Learning Modela

Data set and parameter Image DL model Correlation coefficient SRC (95% CI) P value

All eyes

MD, dB UWFAF EfficientNetB0, InceptionV3 0.715 0.684 (0.567 to 0.802) <.001

CENT12, dB UWFAF InceptionV3, VGG16 0.757 0.697 (0.590 to 0.804) <.001

BCVA, logMAR UWFAF EfficientNetB0, VGG16 0.417 0.309 (0.187 to 0.430) <.001

MD, dB

AF ring positive UWFAF ResNet50, VGG16 0.680 0.568 (0.398 to 0.738) <.001

AF ring negative UWFAF DenseNet121 0.521 0.274 (0.030 to 0.518) .03

CENT12, dB

AF ring positive UWFAF ResNet50, VGG16 0.731 0.660 (0.513 to 0.807) <.001

AF ring negative UWFAF EfficientNetB0 0.168 0.186 (−0.025 to 0.396) .08

BCVA, logMAR

AF ring positive UWFAF DenseNet121, EfficientNetB0 0.311 0.279 (0.086 to 0.472) .005

AF ring negative UWFAF InceptionV3, ResNet50, VGG16 0.217 0.094 (−0.082 to 0.270) .30

Abbreviations: AF, autofluorescent; BCVA, best-corrected visual acuity; CENT12, mean sensitivity of central 12 test points on the Humphrey field analyzer;
DL, deep learning; MD, mean deviation on the Humphrey field analyzer; ResNet50, Residual Network–50; SRC, standardized regression coefficient;
UWFAF, ultra-widefield fundus autofluorescence; VGG16, Visual Geometry Group–16.
a The image–DL model combination with the smallest mean absolute error is displayed.
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0.270; P = .30), respectively. When the model used
the data set for the presence of AF rings, the estimation
accuracy for MD, CENT12, and BCVA improved compared
with that using the data set for the absence of AF rings.
The MAE and RMSE for each model are presented in eTable 3
in Supplement 1.

Bland-Altman plots are presented in Figure 2 and
eFigure 3 in Supplement 1. In the all-eyes group, there was a
fixed bias in BCVA but not in MD or in CENT12. Proportional
bias existed in all 3 parameters and was prominent in the
BCVA.

Figure 3 and eFigure 4 in Supplement 1 show typical
UWFAF images and composite images of heat maps
superimposed on the UWFAF images. The areas around
the fovea, AF ring, and margins of the degenerated retina
are shown in warm colors, indicating the areas where the 5
DL models focused when estimating the MD values.

Discussion
In this study, we found correlations between the actual
values of MD, CENT12, and BCVA and the values esti-
mated by the DL model from UWFAF images, although
correlation and consistency were slightly weak in the BCVA
estimation. These results are consistent with pre-
vious reports showing high correlation between HFA
parameters or BCVA and the radius or internal area of
the AF ring on FAF images.9,12,49 Previously, we reported
the capability of the DL model to distinguish between
RP images and normal fundus images with high sensitivity
and specific ity, using UWP C and UWFAF images.2 1

The present study represents the findings that proved
the capability of the DL model to evaluate quantita-
tively the residual visual function of patients with RP
from UWFAF images. Because UWFAF images can be
obtained easily, quickly, and noninvasively without my-

driasis, the ability to estimate the visual functions in
patients with RP from these images would be an ad-
ditional benefit in routine clinical practice. This might
indicate that obtaining UWFAF images would enable oph-
thalmologists to monitor RP progression during a follow-up
period.

Our data showed that the estimation accuracy of the
DL model tends to be higher when the estimation was made
from UWFAF images alone, contrary to the ones made
either from UWPC images alone or from both UWPC and
UWFAF images. Deep learning models can learn complex,
individualized local features in image data and build optimal
structures to identify those features.50-52 The DL model
had higher estimation accuracy from UWFAF images
alone likely because this type of image had more in-
formation for the model. Thus, the information on the reti-
nal pigment epithelium function reflected in the FAF
images could be highly beneficial in estimating visual
functions.

In RP, the hyperfluorescent area of an AF ring on
FAF images, which is considered to indicate increased
phagocytosis of the photoreceptor outer segment, is found
at the same location as the disappearance of the ellip-
soid zone on OCT images.12,53-55 Thus, the AF ring indicates
the border of the retinal impairment. Inoue et al56 used
semiautomatic software to estimate the retinal sensitivity
from age, BCVA, and FAF images in 93 eyes with RP
and found that the estimation accuracy was higher for
images with AF rings than for images without AF rings. Con-
sistent with these results, estimating the visual function
using only images with the AF rings showed better SRC in
this study.

As described earlier, visual function is related closely
to OCT and FAF findings. Therefore, the DL model can
estimate visual function adequately from the UWFAF
images. Most recently, a study reported that a binary
classification of better or worse than a BCVA of 20/40

Figure 1. Correlations Between Actual Values of Visual Function and Estimated Values by Deep Learning Model
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could be estimated by the DL model with OCT and infra-
red images.57 However, a previous study determined
that the AF ring area on FAF images is more closely re-
lated to retinal sensitivity than the area of ellipsoid zone
loss on OCT images.58 In addition, the UWFAF images
used in this study can capture the degenerative process
of the photoreceptor and retinal pigment epithelium cells

in RP over a wider area than OCT images, which indicates
that UWFAF images are more useful.

A major concern regarding the FAF findings in
earlier studies is that the AF ring location was deter-
mined by humans; hence, it was not assessed objectively.
To evaluate FAF images objectively, analyses by AI ap-
pear to be useful. The concern regarding AI analyses

Figure 2. Bland-Altman Plots of Visual Function Between Actual Values and Estimated Values by Deep Learning
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all-eyes group. More than 95% of the
differences in MD values lie within
the limits of agreement. However,
proportional bias was prominent in
BCVA and existed in MD (correlation
coefficient, 0.45; 95% CI, 0.34-0.55;
P < .001), CENT12 (correlation
coefficient, 0.42; 95% CI, 0.31-0.53;
P < .001), and BCVA (correlation
coefficient, 0.83; 95% CI, 0.79-0.87;
P < .001). There was no fixed bias in
MD (mean difference, 0.11; 95% CI,
−0.82 to 1.05; P = .81) or CENT12
(mean difference, 0.32; 95% CI,
−0.56 to 1.21; P = .47), whereas there
was a fixed bias in BCVA (mean
difference, 0.25; 95% CI, 0.18-0.32;
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best-corrected visual acuity; CENT12,
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points on the Humphrey field
analyzer; and MD, mean deviation on
the Humphrey field analyzer.
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is that the essential lesion sites on medical images, on
which AI focuses, might not be the same as the sites where
ophthalmologists look when determining a diagnosis
or evaluating visual function. However, in this study, the
heat maps showed a warm color around the fovea, AF ring,
and margins of the degenerated retina. This indicates that
the areas where the DL model focuses are consistent with
the areas where ophthalmologists focus when judging the
severity of visual impairment from fundus images. There-
fore, these heat map data suggest that the DL model accu-
rately identifies the degenerated area of the RP and esti-
mates the visual function according to the degeneration
features.

Limitations
This study has several limitations. First, the progression
patterns of RP vary widely.59,60 Therefore, whether the DL
model can estimate the visual function in patients with RP that
deviates from the progression patterns of RP analyzed here is
unclear. Second, because this was a retrospective study,
the selection of images included here might be biased. Third,
the Early Treatment Diabetic Retinopathy Study visual acu-
ity chart was not used for the BCVA measurement. Fourth, it
is intrinsically unclear what the DL model identifies to
estimate the visual function.

Conclusions
The results of this study reveal correlations between the
actual values of the visual function and the estimated values
by the DL model using UWFAF images. The estimation of
visual function using DL for patients with RP might help cli-
nicians assess the progression of RP objectively.
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Invited Commentary

Eyeing a Role for Artificial Intelligence in Clinical Trials
Mandeep S. Singh, MD, PhD

In this issue of JAMA Ophthalmology, Nagasato et al1 describe
an artificial intelligence (AI)–based approach to estimate vi-
sual function in patients with retinitis pigmentosa (RP) using
ultra-widefield (UWF) fundus imaging input data as an objec-

tive surrogate. The authors
posited that this approach
could enhance routine clini-

cal care; UWF imaging, being quicker and easier to obtain than
perimetry, might aid conversations between physicians and
patients regarding residual functional status and disease
progression. This article prompts a contemplation of innova-
tions that provide ingenious solutions to problems of the day
but are sufficiently far ahead of their time that their full im-
pact remains unfelt until adjacent parts of the world catch up.

Consider the case of the selfie stick. In the Louvre in Paris,
circa 1983, Hiroshi Ueda, wanting a picture of himself and his
wife enjoying their holiday, handed his camera to a helpful-
looking passerby, was swiftly disburdened of it, and never saw
it again.2 Turning ire to ingenuity, he designed and co-
patented a “telescopic extender for supporting compact
camera.”3 The marketed device never caught on with Japa-
nese consumers, partly because, at that time, cameras lacked
a system for photographers to verify that they were in frame
(also because to desire one’s own image in a photograph of one’s
own making was viewed as being openly narcissistic). Ueda’s
invention was later described as chindōgu, the Japanese con-
cept of innovations that were just almost useful, their impact
blunted by a world that was not yet ready for them. The pat-
ent ran out in 2003, 4 years before Apple Inc launched the

iPhone and 7 years before iPhones had front cameras, spur-
ring a future in which the selfie stick appeared in Time maga-
zine’s list of 25 top inventions in 2014.

Given that many ophthalmic practices probably lack
UWF imaging capabilities and that RP in many (if not most)
patients worldwide remains phenotypically and genetically
undiagnosed, an AI-based approach to RP evaluation cannot
yet be effectively deployed at scale. Therefore, the idea seems
almost useful today, helping only patients who have had a
formal diagnosis of RP and also undergone UWF imaging.

To imagine a future in which AI could be very useful, let
us frame RP within the broader context of the hereditary reti-
nopathies. The ideal future is one in which every person af-
fected, or at risk of being affected, by a hereditary retinopa-
thy obtains a timely phenotypic-genotypic diagnosis and
can choose to receive variant-specific and/or variant-
agnostic treatment, which would be targeted at the tissue, cell,
or molecular level to prevent or reverse vision loss and thus
maintain or improve their quality of life.

The main barriers between the present and that future stem
from the rarity of hereditary retinopathies; diagnostic delay
and inexactitude (unfortunately typical of rare diseases in
general),4 although affecting clinical care, ultimately impede
enrollment in clinical trials. Additional impediments to that
future include inequities in health care access across conti-
nents and communities, lack of electrodiagnostic and ge-
netic testing facilities (and, notably, UWF imaging facilities)
in many ophthalmologists’ offices, incomplete knowledge
regarding genetic causality, and questions surrounding out-

Related article page 305

Estimation of Visual Function Using Deep Learning in Retinitis Pigmentosa Original Investigation Research

jamaophthalmology.com (Reprinted) JAMA Ophthalmology April 2023 Volume 141, Number 4 313

© 2023 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by guest on 04/18/2024

https://dx.doi.org/10.3354/cr030079
https://dx.doi.org/10.3354/cr030079
https://dx.doi.org/10.1093/biomet/61.2.383
https://www.statsmodels.org/
https://www.statsmodels.org/
https://github.com/scipy/scipy
https://github.com/scipy/scipy
https://github.com/keisen/tf-keras-vis
https://github.com/keisen/tf-keras-vis
https://dx.doi.org/10.1007/s00417-005-1186-x
https://dx.doi.org/10.1007/s00417-005-1186-x
https://dx.doi.org/10.1167/tvst.8.1.20
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1016/j.ajo.2011.08.043
https://dx.doi.org/10.1016/j.ajo.2011.08.043
https://dx.doi.org/10.1136/bjo.2005.082487
https://dx.doi.org/10.1136/bjo.2005.082487
https://dx.doi.org/10.1038/eye.2008.280
https://dx.doi.org/10.1167/iovs.61.10.51
https://dx.doi.org/10.1136/bjo-2021-320897
https://dx.doi.org/10.1136/bjo-2021-320897
https://dx.doi.org/10.1016/j.oret.2018.03.007
https://dx.doi.org/10.1016/j.ajo.2015.06.032
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2013.4160?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2022.6393
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2022.6393?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2022.6542
http://www.jamaophthalmology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2022.6542

