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Abstract 
In this thesis we describe the results of a number of quantitative techniques that were used to 
understand the genetics of yield in pepper as an example of complex trait measured in a 
number of environments. Main objectives were; i) to propose a number of mixed models to 
detect QTLs for multiple traits and multiple environments, ii) to extend the multi-trait QTL 
models to a multi-trait genomic prediction model, iii) to study how well the complex trait 
yield can be indirectly predicted from its component traits, and iv) to understand the ‘causal’ 
relationships between the target trait yield and its component traits.  

The thesis is part of an EU-FP7 project “Smart tools for Prediction and Improvements of 
Crop Yield” (SPICY- http://www.spicyweb.eu/). This project generated phenotypic data from 
four environments using 149 individuals from the sixth generation of recombinant inbred 
lines obtained from intraspecific cross between  large – fruited inbred pepper cultivar ‘Yolo 
Wonder’ (YW) and the hot pepper cultivar ‘Criollo de Morelos 334’ (CM 334). A total of 16 
physiological traits were evaluated across the four trials and various types of genetic 
parameters were estimated. In a first analysis, the traits were univariately analyzed using 
linear mixed model. Trait heritabilities were generally large (ranging between 0.43 – 0.96 
with an average of 0.86) and mostly comparable across trials while many of the traits 
displayed heterosis and transgression. The same QTLs were detected across the four trials, 
though QTL magnitude differed for many of the traits. We also found that some QTLs 
affected more than one trait, suggesting QTL pleiotropy (a QTL region affecting more than 
one trait). We discussed our results in the light of previously reported QTLs for these and 
similar traits in pepper. 

We addressed the presence of genotype-by-environment interaction (GEI) in yield and the 
other traits through a multi-environment (ME) mixed model methodology with terms for 
QTL-by-environment interaction (QEI). We opined that yield would benefit from joint 
analysis with other traits and so deployed two other mixed model based multi-response QTL 
approaches: a multi-trait approach (MT) and a multi-trait multi-environment approach 
(MTME). For yield as well as the other traits, MTME was superior to ME and MT in the 
number of QTLs, the explained variance and accuracy of predictions. Many of the detected 
QTLs were pleiotropic and showed quantitative QEI. The results confirmed the feasibility and 
strengths of novel mixed model QTL methodology to study the architecture of complex traits.  

The QTL methods considered thus far are not well suited for prediction purposes as only a 
limited set of QTL-related markers are used. Since the main interest of this research includes 
improvement of yield prediction, we explored both single-trait and multi-trait versions of 
genomic prediction (GP) models as alternatives to the QTL-based prediction (QP) models. 
This was termed direct prediction. The methods differed in their predictive accuracies with 
GP methods outperforming QP methods in both single and multi-traits situations. We 
borrowed ideas from crop growth model (CGM) to dissect complex trait yield into a number 
of its component traits. Here, we integrated QTL/genomic prediction and CGM approaches 
and showed that the target trait yield can be predicted via its component traits together with 
environmental covariables. This was termed indirect prediction. The CGM approach seemed 
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to work well at first sight, but this is especially due to the fact that yield appeared to be 
strongly driven by just one of its components, the partitioning to fruit. 

An alternative representation of the biological knowledge of a complex target trait such as 
yield is provided by network type models. We constructed both conditional and unconditional 
networks across the four environments to understand the ‘causal’ relationships between target 
trait yield and its component traits. The final networks for each environment from both 
conditional and unconditional methods were used in a structural equation model to assess the 
causal relationships. Conditioning QTL mapping on network structure improved detection of 
refined genetic architecture by distinguishing between QTL with direct and indirect effects, 
thereby removing non-significant effects found in the unconditional network and resolving 
QTL pleiotropy. Similar to the CGM topology, yield was established to be downstream to its 
component traits, indicating that yield can be studied and predicted from its component traits. 
Thus, the genetic improvements of yield would benefit from improvements on the component 
traits. 

Finally, complex trait prediction can be enhanced by a full integration of the methods 
described in the different chapters. Recent research efforts have been channelled to 
incorporating both multivariate whole genome prediction models and crop growth models. 
Further research is required, but we hope that the present thesis presents useful steps towards 
better prediction models for complex traits exhibiting genotype by environment interaction. 
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CHAPTER 1 
2. General Introduction 

1.1. Background 
The production of genetically improved crop cultivars capable of satisfying human 
requirements such as yield, quality, tolerance to certain environmental conditions and disease 
resistance has always been the main challenge for plant breeders. The breeder must identify 
and select superior genotypes capable of conferring the desired requirement(s) on the plant. 
This is a result of often complex genetics that underlie the expression of most of the 
economically important traits. Since most of the observable phenotypic variations between 
individual plants from the same species are quantitative, the development and application of 
quantitative genetics theory in the last century has greatly improved the understanding of the 
genetic basis of complex traits. In quantitative genetics, the genetic architecture of a 
quantitative trait is described with the aid of an underlying genetic model. Variation in 
(complex) quantitative traits is caused by segregation at multiple loci with individually small 
effects (polygenic) that may be sensitive to the environment (Mackay, 2001). For such 
complex traits, the quantitative trait loci (QTL) genotypes cannot be determined from 
segregation of phenotypes in controlled crosses or pedigrees because the relationship between 
genotype and phenotype is not a simple ratio. 

Until recently, the understanding of complex traits has been developed without having direct 
access to the DNA, the place where the QTLs responsible for genetic variation ultimately 
reside. The availability of marker genotyping that provide information directly related to the 
DNA opened new possibilities for the further development of genetic models that included 
explicit representations of the hereditary material. With molecular genetics, it is expected that 
information at the DNA level will lead to faster genetic gain than that achieved based on 
phenotypic data only. The application of molecular markers has enabled the dissection of 
complex traits into the underlying QTLs. These molecular markers do exhibit Mendelian 
segregation (Uptmoor et al., 2008). The increasing knowledge on QTLs for important 
agronomic traits gives new opportunities in marker-assisted selection (MAS) (Ribaut and 
Hoisington, 1998; Uptmoor et al., 2008). The use of these molecular breeding techniques has 
considerably contributed to unravel crop traits affecting quality and yield of plant products 
and to gain insight into their genetic basis. The basic principle behind the use of MAS in the 
context of QTL mapping can be expressed as: If a QTL is linked to a marker locus, there will 
be a difference in mean values of the quantitative trait among individuals with different 
genotypes at the marker locus (Sax, 1923). Among the most popular types of molecular 
markers employed in QTL mapping are Restriction Fragment Length Polymorphisms (RFLP) 
(Beckmann and Soller, 1986; Tanksley et al., 1989), Simple Sequence Repeats (SSR) (Powell 
et al., 1996), Amplified Fragment Length Polymorphisms (AFLP) (Vos et al., 1995) and 
Single-Nucleotide Polymorphism (SNP) (Syvänen, 2005). Each molecular marker system has 
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its own advantages and disadvantages (Semagn et al., 2006), the focus of which is not within 
the scope of this work. Nowadays genomes have been sequenced and commercial SNP arrays 
are available for many field and horticultural crops which makes genome-wide genotyping 
affordable. 

1.2. Mapping Populations 
The types of populations most commonly used for QTL mapping are segregating populations 
originating from crosses between inbred lines such as F2, backcross, or recombinant inbred 
line (RIL). This is mainly due to the possibility of producing relatively large populations with 
known genetic structure, as there are only two founder genotypes (Robertson, 1967). These 
population types have been in use long before the advent of molecular markers. Decisions on 
selection of parents and mating design for development of mapping population and the type of 
markers used depend upon the objectives of experiments, availability of markers and the 
molecular map. The parents of mapping populations must have sufficient variation for the 
traits of interest at both the DNA sequence and the phenotype level. The variation at DNA 
level is essential to trace the recombination events. The more DNA sequence variation exists, 
the easier it is to find polymorphic informative markers. When the objective is to search for 
genes controlling a particular trait, genetic variation of trait between parents is important. If 
the parents are greatly different at phenotypic level for a trait, there is a reasonable chance that 
genetic variation exists between the parents, although uncontrolled environmental effects 
could create large phenotypic variation without any genetic basis for the effects. However, 
lack of phenotypic variation between parents does not mean that there is no genetic variation, 
as different sets of genes could result in same phenotype (Mackay, 2001; Ribaut and 
Hoisington, 1998). Other types of population used in plant breeding include pedigree 
population (Bink et al., 2002; Rosyara et al., 2009), association panels (Jannink and Walsh, 
2002) and Multi-parent Advanced Generation Inter-Cross (MAGIC) population (Cavanagh et 
al., 2008; Huang et al., 2012). 

1.3. Mapping Techniques 
Before the development of mapping techniques, the knowledge about the genetic architecture 
of quantitative traits was limited to estimates of trait heritability and other variance 
components derived from correlations between relatives and response to selection, estimates 
of average degree of dominance from changes of mean on inbreeding, estimates of net 
pleiotropic effects from genetic correlations, and estimates of the total mutation rate from 
phenotypic divergence between inbred lines. There was the need to go beyond these mere 
statistical descriptions in order to more effectively select domestic crop species for improved 
production traits, and understand the genetic basis of adaptation (Mackay, 2001). The need to 
identify and determine the properties of the individual genes underlying variation in complex 
traits (Jannink et al., 2001) led to increasing improvements in statistical techniques for QTL 
mapping, and experimental design. 

Within the last two decades, many QTL mapping methods have been developed either based 
on least square (LS) or maximum likelihood (ML) estimation and recently based on Bayesian 
paradigm. LS methods test for differences in means between marker class using either 
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ANOVA or regression (Soller et al., 1976), while ML uses full information from the marker-
trait distribution, and explicitly accounts for QTL data being mixtures of normal distributions.

Each of these estimation techniques come with their advantages and disadvantages. However 
there is, in general, little difference in power between the two techniques (Haley and Knott, 
1992; Lander and Botstein, 1989a) and ML interval mapping can be approximated using 
regressions (Haley and Knott, 1992; Martinez and Curnow, 1992).  

1.3.1. ANOVA model 
This is the most basic form of QTL mapping comparing the means of the marker genotypes 
for individual marker loci, under the hypothesis that the marker loci coincide with a QTL 
(Soller et al., 1976). The marker genotypes define the levels of a treatment factor, an analysis 
of variance is then performed and marker-trait associations tested using standard F-tests. This 
model can be easily extended to accommodate QTL interactions and fixed effects. A major 
drawback is that assumptions of homogeneity (perfect linkage disequilibrium) may be 
violated. QTL effect and QTL location may be confounded in terms of distance to the marker 
i.e. a closely linked QTL with a moderate allele effect and a major QTL that is loosely linked 
will produce a comparable test statistic for marker-trait association. 

1.3.2.  Interval Mapping/Mixture model 
In 1989, Lander and Botstein (Lander and Botstein, 1989a) proposed the use of genetic map 
information to overcome the limitation of the individual marker approach in a strategy called 
interval mapping (IM) using ML estimation. ML estimates for the model parameters are 
obtained with the assumption that observations are from a mixture of normal distributions 
(one distribution per QTL genotype class). Though the QTL genotypes are unknown in 
between markers, the flanking markers can be used to infer conditional probabilities for the 
QTL genotypes given the flanking marker genotypes and the recombination frequencies 
between the QTL and the markers. The conditional probabilities for the QTL genotypes are 
then used as mixing proportions in the calculation of the likelihood for the mixture model. 
Likelihood ratio (LR) test is performed to determine whether the phenotypic data support a 
mixture distribution, i.e., the presence of a QTL at the evaluation position in the genome. 
Typically, the log-likelihood ratio (LLR), or LOD score (= LLR/4.61) is plotted along the 
genome as a profile. 

1.3.3.  Multiple Linked QTLs 
The presence of multiple linked QTLs biases both single marker and interval mapping 
analysis (Knott and Haley, 1992), and segregation of unlinked QTLs inflates the within-
marker class phenotypic variance, thus reducing the power of QTL detection. This led to 
further improvements to the IM approach through composite interval mapping (CIM) (Jansen 
and Stam, 1994; Zeng, 1994) and multiple interval mapping (MIM) (Kao et al., 1999). 
Composite interval mapping (CIM) combines ML interval mapping with multiple regression, 
using marker cofactors to reduce the bias in estimates of position and effects of QTLs 
introduced by multiple linked QTLs. CIM also leads to an increase in QTL detection power 
since the within marker-class phenotypic variation is decreased. Strictly speaking, CIM  
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methods are not multiple QTLs methods, in that the model for evaluating the effects of each 
interval depends on the marker cofactors included, which varies across intervals (Mackay, 
2001). Multiple interval mapping (MIM) is a true multiple QTLs method. It converges to a 
stable model providing estimates of positions and main and interaction effects of multiple 
QTLs  (Kao et al., 1999). It should be noted that in CIM and MIM methods, estimates of QTL 
positions and effects are highly model dependent, and can vary given different numbers of 
marker cofactors and window sizes (the region to either side of the test interval within which 
no marker cofactors are fitted) (Pasyukova et al., 2000; Zeng et al., 1999; Zeng, 1994). These 
factors are under the control of the researcher, who must bear in mind that the model with the 
best fit and the the highest number of identified QTLs, is not necessarily the closest 
approximation to reality (Mackay, 2001). 

1.3.4.  (Multivariate) Multiple Regression 
With more than one QTL, the use of mixture models becomes computationally intensive and 
less versatile. The use of multiple regressions QTL mapping approach was therefore proposed 
as a more efficient and computationally less intensive alternative. The regression approach 
has been shown to produce very similar results to the mixture model strategy (Haley and 
Knott, 1992; Kao, 2000) and can be implemented within standard statistical packages. 
Regression can also be employed for a complex data structure having multi-QTL and multi-
environment, with possibility to model QTL by environment interaction (Jiang and Zeng, 
1995; Sari-Gorla et al., 1997). 

Extensions to the multi-trait case have been proposed for both mixture and regression based 
models (Hackett et al., 2001; Jiang and Zeng, 1995; Knott and Haley, 2000). CIM was 
extended to multiple traits, enabling the evaluation of the main QTL effects as well as 
pleiotropy and QTL by environment interactions (Jiang and Zeng, 1995). The multi-trait 
extension of regression based framework was also proposed and implemented (Hackett et al., 
2001; Knott and Haley, 2000). Multivariate multiple regression approaches do show greater 
flexibility than mixture models in extensions to account for additional treatment and block 
structure, they are not yet robust enough to account for commonly encountered complications 
as imbalance and complex error structures (Malosetti, 2006).  

1.3.5.  Mixed Model 
Some of the issues in QTL detection and analyses involve the underlying design of the 
phenotypic experiment which may induce unequal replication of genotypes (unbalanced) 
and/or measurements over time (repeatedness). Also, most of the experiments involve 
collections of genotypes evaluated for multiple traits across multiple environments. It is also 
possible that the relationship between measured traits and explanatory variables such as 
genotype and environment characterizations is not well captured by a linear assumption. 
Mixed models (Verbeke and Molenberghs, 2000) offer a suitable framework to jointly analyse 
such data without imposing unrealistic assumptions, such as zero genetic correlations between 
environments and traits, and constant variance across environments. Mixed model is also 
capable of accounting for possible unbalanced design setting and repeatedness. They can 
account for both intra- and inter-trial variability in the estimation of QTL effects and trait 
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values prediction and facilitate the representation of genetic relationship among related lines 
thereby offering a condition for valid inference on QTLs (Van Eeuwijk et al., 2010). The 
linear assumption can be relaxed and the relationship modelled by non-linear functions with 
inclusion of growth parameters thereby mimicking eco-physiological models. Mixed model 
can be applied to several settings commonly found in plant breeding experiments. The 
simplest of such settings is single-trait-single-environment which can be extended up to the 
most complex setting of multi-trait (possibly correlated) multi-environment setting with 
various interactions (traits, environments and/or environmental characterization). Most of 
these settings with several structures for expectations, correlations and variance-covariance 
have been analysed in literature.  

1.3.6.  Probabilistic Models Based on Bayesian Theory 
Most genetic properties of plants and animals, individuals, populations or species are a 
product of processes that are inherently stochastic and are mostly interdependent. Therefore, 
they are better studied using probabilistic models. In the Frequentist approach, probability is 
viewed from the framework of hypothetically repeating an experiment many times under 
identical circumstances. In the Bayesian approach, a probability is a direct measure of 
uncertainty, and might or might not represent a long-term frequency. Bayesian and 
Frequentist statistics aim at making inferences about a fixed, but unknown, parameter value 
but they differ in approach and in interpretation of the results. Bayesian analysis incorporates 
background (prior) information into the specification of the model. This prior information is 
combined with information from the data (likelihood) to generate the posterior distribution 
over the parameter values, according to Bayes’ rule. The choice of prior information can be 
based on previous experiments, experts input, theoretical or other considerations. Bayesian 
methods can be especially valuable in complex problems or in situations that do not conform 
naturally to a classical setting. Many genetics problems fall into one of these categories 
(Shoemaker et al., 1999). In addition, Bayesian approaches can be easier to interpret. The 
paper of Beaumont and Rannala (2004) reviewed the application of Bayesian inference in 
some areas of genetics including population genetics, genomics and human genetics with 
specific reference to analysis of complex trait, linkage mapping and QTL mapping. In QTL 
analyses, inference is typically concerned with identifying those loci on the genome that 
contribute significantly to the quantitative trait of interest. Through Bayesian approach, the 
probability that a locus positioned near a known molecular marker has a genotype directly 
associated with the trait can be calculated and the QTLs which directly influence the trait can 
be identified.  

The Bayesian approach has been successfully applied in a wide range of applications. 
Bayesian analysis based on QTL intensity has been proposed for obtaining posterior modes 
and credibility intervals for the QTLs (Sillanpää and Arjas, 1998). Various Bayesian 
techniques for handling complex plant and animal pedigreed populations have been suggested 
and implemented. Sisson and Hurn (2004) discussed existing approaches to the use of 
Bayesian model in making inference on QTLs and suggested a modification to the loss 
function for estimating both the number of QTL and their location. Bauer et al. (2009) 
developed a Bayesian multi-locus multi-environmental method of QTL analysis. Through a 
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real life data and simulation study, the strategy was compared to (a) Bayesian multi-locus 
mapping, where each environment is analyzed separately, (b) Restricted Maximum 
Likelihood (REML) single-locus method, using a mixed hierarchical model, and (c) REML 
forward selection applying a mixed hierarchical model.  

Just as in regression analysis, model selection can also be handled within the Bayesian 
framework. Here, the model selection problem is transformed to the form of parameter 
estimation. Several Bayesian model selection methods have been developed among which are 
Kuo & Mallick, Gibbs Variable Selection (GVS), Stochastic Search Variable Selection 
(SSVS), adaptive shrinkage and model space approach (reversible jump MCMC and 
composite model space) (O'Hara and Sillanpää, 2009). Yi et al., (2007) extended the Bayesian 
model selection framework they earlier proposed for mapping epistatic QTLs in experimental 
crosses to include environmental effects and gene–environment interactions. A new fast 
Markov chain Monte Carlo algorithm was proposed to explore the posterior distribution of 
unknowns. In addition, this takes advantage of any prior knowledge about genetic architecture 
to increase posterior probability on more probable models. 

1.4.  Genomic Prediction Models 
The availability of genome-wide dense marker maps at affordable cost have made the use of 
genomic selection (GS) models an interesting alternative to marker-assisted models. GS 
models predict the genetic value of selection candidates based on the genomic estimated 
breeding value (GEBV) predicted from high-density markers positioned throughout the 
genome. Unlike marker-assisted selection, the GEBV is based on all markers including both 
minor and major marker effects. Thus, the GEBV may capture more of the genetic variation 
for the particular trait under selection. The GS models have become the standard methods for 
predicting genetic values in animals (De Los Campos et al., 2009; Goddard and Hayes, 2009) 
and also recently in plants (Crossa et al., 2010; Heslot et al., 2012; Jannink et al., 2010). GS 
models can be based on either Frequentist or Bayesian paradigm. Unlike QTL-based models 
where selected markers are used, in the GS models, all markers are used in a penalized 
regression context for prediction.  

The key principle of GS is to simultaneously estimate the effects of all genome-wide markers 
in a training population consisting of genotyped and phenotyped individuals and then predict 
the genomic estimated breeding value (GEBV) of genotyped but not-phenotyped individuals 
in test/future generations (Meuwissen et al., 2001). GEBVs are calculated as the sum of 
estimated marker effects for genotyped individuals in a training population. Fitting all 
markers simultaneously ensures that marker-effect estimates are unbiased, small effects are 
captured, and there is no multiple testing issue (Jia and Jannink, 2012). Due to the usually 
large number of markers relative to number of individuals, variable selection and shrinkage 
estimation methods are employed to tackle the problem of high dimensionality in the 
predictors (De Los Campos et al., 2009; Habier et al., 2011; Hayes et al., 2009; Legarra et al., 
2011). These estimation methods try to reduce mean squared error (MSE) by reducing the 
variance of the estimator. This may however introduce bias in the estimate. The obtained 
penalized estimates are the solution to an optimization problem that balances model fit and 
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model complexity. Both parametric and semi-parametric GS methods have been proposed to 
handle the problem of high dimensionality and other peculiar issues including markers 
colinearity. Some example of GS methods include ridge regression (Hoerl and Kennard, 
1970), Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996),  Bayes 
A and Bayes B of Meuwissen et al. (2001) and the Bayesian LASSO (Park and Casella, 
2008), reproducing kernel Hilbert spaces (RKHS) regression (Gianola and van Kaam, 2008). 
Evaluations and comparisons of performances of a number of GS models in plant breeding is 
presented in Heslot et al. (2012). 

1.5. Phenotype Network Models 
Understanding the interconnectedness among plant phenotypes has become a key objective in 
QTL mapping. The vast opinions in recent literature advocate for the need to study how plant 
phenotypes are interconnected in networks of dependencies and the stability of the 
relationships across environments due to genotype-by-environment interactions (Granier and 
Vile, 2014; Li et al., 2010; Valente et al., 2013). Complex traits are often associated with 
multiple correlated traits referred to as component traits. Physiological interactions among 
target and component traits, together with shared genetic factors may be responsible for 
observed associations among these traits (Li et al., 2006). The genetic improvements of a 
complex target trait would benefit from improvements on the component traits, especially 
when the mechanism of (causal) association between the target and component traits is 
known. Although traditional multi-trait models are able to account for covariations among 
traits and establish QTLs with pleiotropic effects, they are not able to disentangle the paths for 
such effects neither are they able to provide insight into the (causal) relationships among the 
traits. Properly studying the interconnectedness will reveal causal relationship among 
phenotypes.  

Causal inference methodology was introduced as early as the 1921 (Wright, 1921). The 
methods have been further developed and applied since then in genetics and other fields 
(Spirtes et al., 2000). Incorporating QTLs in network models has been shown to facilitate 
causal inference (Li et al., 2006; Neto et al., 2008), enabling differentiation of QTL effects on 
phenotypes into direct and indirect effects. QTLs in network models also provide an intuitive 
explanation for pleiotropic QTLs and possible QTL hotspots region where a QTL influences 
many traits. Graphical models with arrows pointing in the direction of causality are often used 
to depict the inferred relationship (Neto et al., 2010). However, causality claim cannot be 
established from data alone. Some assumptions about the causal relationships among the 
variables being modelled are needed. In genomic network studies, causality claim stems from 
two facts. First is the analogy between randomized experimental design and genetic 
randomization that occurs during meiosis. Second is the intuition that phenotypic variation is 
caused by genetic factors (Li et al., 2006; Neto et al., 2010). Relying solely on correlation 
between traits to claim causality is not enough even when the traits share a common QTL. 
Understanding biological reasoning governing the relationship is crucial (Li et al., 2010). 
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1.6. QTL by Environment Interaction 
Yield as an example of complex quantitative traits of plants measured on collections of 
genotypes across multiple environments is the result of processes that depend simultaneously 
on genotype and environment in intricate ways (Boer et al., 2007). For complex traits that 
exhibit considerable genotype by environment interaction, these QTLs have to be analyzed by 
considering the combination of the QTLs under different environment using QTL x E analysis 
(Ribaut and Hoisington, 1998; Slafer, 2003). An overview of the state of the art in QTL 
analyses and crop performance under environmental conditions is provided in the review by 
Collins et al. (2008). The improvement of crop yield has been possible through the indirect 
manipulation of QTLs that control heritable variability of the traits and physiological 
mechanisms that determine biomass production and its partitioning. Also, most QTLs are not 
stable across environments. QTLs can therefore be categorized according to the stability of 
their effects across environmental conditions. A ‘constitutive’ QTL is consistently detected 
across most environments, while an ‘adaptive’ QTL is detected only in specific environmental 
conditions or increases in expression with the level of an environmental factor e.g. a QTL that 
is expressed more strongly with increasing temperature (Vargas et al., 2006). The magnitudes 
of these adaptive QTLs, therefore, vary greatly between experiments.  

Further, complex agronomic traits such as yield have low heritability, are strongly dependent 
on environmental changes and show high genotype by environment interactions (GEI) 
(Tardieu, 2003). The genetic analysis of such highly variable traits needs a strategy to cope 
with the temporal variability of phenotypes. Physiological models could help in understanding 
GEI interactions and speed up crop improvement for targeted environments (Boote et al., 
2001; MAYES et al., 2005; Slafer, 2003). One strategy involves interpreting networks of field 
trials using a statistical method that calculates QTL x E interactions (Malosetti et al., 2006). 
Another strategy known as eco-physiological model involves modelling the measured traits 
by an underlying physiological model of which several non-genetic input variables closely 
describe the characteristics of the environments (Marcelis et al., 2006; Tardieu, 2003).  

1.7. QTL mapping in Pepper 
Pepper, a member of the Solanaceae family, is a naturally self-pollinating warm season 
perennial with expected lifespan of about 20 years. It is diploid with 12 chromosome pairs. 
Most pepper species originated from South America (DeWitt and Bosland, 1996). Capsicum 
annuum, which is the most commercially important and most widely cultivated species 
worldwide, is used in this study. A number of studies have reported on genetic parameters of 
a series of pepper traits and performed QTL mapping for these traits. Among pepper traits 
already studied are those related to disease resistance (Lefebvre and Palloix, 1996; Caranta et 
al., 1997a), and sensory traits such as pungency (Blum et al., 2003; Ben Chaim et al., 2006a). 
Other studies have also looked into fruit-related traits (Lefebvre et al., 1998; Ben Chaim et 
al., 2001b; Rao et al., 2003; Barchi et al., 2009). Results from these studies revealed clusters 
of QTLs on chromosomes 2, 3 and 4 for fruit traits such as fruit weight/yield, diameter, length 
and shape. Only few studies have reported on QTLs influencing vegetative-related traits such 
as stem length and number of internodes (Ben Chaim et al., 2001b; Barchi et al., 2009; 
Mimura et al., 2010). In these studies, major QTLs influencing primary vegetative 
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components like length and number of internodes on the primary stem were found on 
chromosomes 2, 3 and 12. Only one study reported QTLs responsible for leaf related 
components such as leaf area and weight (De Swart et al., 2007). Also the majorities of these 
studies were conducted in a single environment and hence could not compare performances of 
a particular mapping population under different environmental conditions. 

1.8. Overview/Outline of this thesis 
The work in this thesis aims at increasing our knowledge and understanding of genetic control 
of complex traits by exploring various statistical methods capable of properly accounting for 
general and specific features of experimental designs being employed in predicting 
phenotypic performances of genotypes. Statistical approaches capable of evaluating multiple, 
correlated and time dependent traits simultaneously as functions of genes (QTLs) and 
environmental inputs are considered. The main objective is to evaluate and apply QTL models 
for multiple correlated physiological traits across a range of environmental conditions. Also, 
we wish to dissect complex trait yield into a number of component traits by defining 
ecophysiological relationship among yield and its component traits in combination with 
environment characterizations, and perform QTL analyses on the defined relationship. 
Finally, we wish to study causal relationships among yield related traits using QTL 
information to define such relationships.  

Chapter 2 presents the first steps in the genetic and QTL analyses of the four big trials in the 
European Union sponsored FP7 project tagged ‘Smart tools for Prediction and Improvement 
of Crop Yield’ (EU-SPICY) (see www.spicyweb.eu and Voorrips et al. (2010)). Sixteen 
physiological pepper traits are univariately analyzed for a population of 149 recombinant 
inbred lines, obtained from a cross between the large-fruited pepper cultivar ‘Yolo Wonder’ 
(YW) and the small fruited pepper ‘Criollo de Morelos 334’ (CM334). We start with 
description and phenotypic analyses of the four large phenotyping experiments and obtained 
genetic parameters for all traits using linear mixed model. For all environments, we use a 
multiple-QTL mapping (MQM) method to estimate location, heritability and direction of the 
QTLs. We investigate QTL pleiotropy and we discuss our results in the light of previously 
reported QTLs for these and similar traits in pepper. 

Chapter 3 compares the performance of three multi-response QTL approaches based on 
linear mixed models: a multi-trait approach (MT), a multi-environment approach (ME), and a 
multi-trait multi-environment approach (MTME). We model genetic correlations within 
(between traits in a given environment) and between environments, and explicitly test the 
presence of QEI and pleiotropic QTLs. The approaches are compared in terms of number of 
QTLs detected for each trait, the explained variance, and the accuracy of prediction for the 
final QTL model. In pepper, GEI and QEI approaches have not been used previously to map 
multiple quantitative traits in multiple environments. Earlier studies focused mostly on 
univariate analyses of traits in single environments. Many of the QTLs from all the 
approaches are pleiotropic and show quantitative QTL by environment interactions. MTME is 
superior to ME and MT in the number of QTLs, the explained variance and accuracy of 
predictions. A number of guidelines are proposed to obtain a stable final QTL model in the 
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MTME approach. The results confirm the feasibility and strengths of novel mixed model QTL 
methodology to study the architecture of complex traits. These results confirm that 
multivariate analyses of traits have better capabilities to unravel complex traits than single 
trait approach.  

Chapter 4 sets out to satisfy two main research objectives. The first objective relates to 
comparing performances of QTL prediction (QP) and genomic prediction (GP) methods as 
predictive models. Both single-trait and multi-trait versions of the QP and GP methods were 
explored resulting into four prediction models. The predictive performances of the models 
were characterized using five yield related pepper traits measured across the four 
environments in the EU-SPICY project. The second objective relates to prediction of the 
complex trait yield as a function of breeding values of its component traits and environmental 
variables. This approach was termed indirect prediction in contrast to predicting yield directly 
from its own breeding values. A LINTUL type (Light INTerception and Utilization) (Spitters 
and Schapendonk, 1990; Van Ittersum et al., 2003) crop growth model (CGM) was employed 
to relate yield to three component traits namely light use efficiency (LUE), partitioning into 
the fruits (PF) and growth rate of leaf area index (LAIrate). This strategy is implemented as 
within-environment and across-environment (GEI) analyses. We show that yield in an 
environment can be successfully predicted from its component traits, provided a suitable 
function relating yield to the component traits is developed. Also, the GEI CGM indicates that 
in situations where similarities exist among environments, we may use component traits and 
environmental information from one environment to predict yield in another environment. 
The results further show that trait’s prediction accuracy depends not only on prediction model 
of choice and traits genetic architecture but also on the environment. 

Chapter 5 focuses on exploring correlation networks models in the study of yield related 
traits using pepper as a case study. Both conditional and unconditional networks are 
constructed for four yield related traits across a number of environments. The unconditional 
networks are based on standard multi trait model (MTM) (Jiang and Zeng, 1995) while the 
conditional networks are based on  the QTL-driven phenotype network method (QTLnet) 
(Neto et al., 2010). The final networks for each environment from both conditional and 
unconditional methods are used in a structural equation model (SEM) to quantify and 
compare the relationships depicted. 

Chapter 6 presents some reflections on several important aspects of the EU-SPICY 
phenotyping experiments including the choice of parents, type and size of the population, type 
and size of marker data, phenotype measurement protocols etc. The chapter also summarizes 
and discusses the most important results from this thesis as regards prediction of complex trait 
yield. The results are discussed in the light of recent developments in quantitative genetics.  
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CHAPTER 2 
 

3. Genetic and QTL analyses of yield and a set of 
physiological traits in pepper 

 
 
 

2.1. Abstract 
An interesting strategy for improvement of a complex trait dissects the complex trait in a 
number of physiological component traits, with the latter having hopefully a simple genetic 
basis. The complex trait is then improved via improvement of its component traits. As first 
part of such a strategy to improve yield in pepper, we present genetic and QTL analyses for 
four pepper experiments. Sixteen traits were analyzed for a population of 149 recombinant 
inbred lines, obtained from a cross between the large-fruited pepper cultivar ‘Yolo Wonder’ 
(YW) and the small fruited pepper ‘Criollo de Morelos 334’ (CM334). The marker data 
consisted of 493 markers assembled into 17 linkage groups covering 1775 cM. The trait 
distributions were unimodal, although sometimes skewed. Many traits displayed heterosis and 
transgression. Heritabilities were high (mean 0.86, with a range between 0.43 and 0.96). A 
multiple QTL mapping approach per trait and environment yielded 24 QTLs. The average 
numbers of QTLs per trait was two, ranging between zero and six. The total explained trait 
variance by QTLs varied between 9% and 61%. QTL effects differed quantitatively between 
environments, but not qualitatively. For stem-related traits, the trait-increasing QTL alleles 
came from parent CM334, while for leaf and fruit related traits the increasing QTL alleles 
came from parent YW. The QTLs on linkage groups 1b, 2, 3a, 4, 6 and 12 showed pleiotropic 
effects with patterns that were consistent with the genetic correlations. These results 
contribute to a better understanding of the genetics of yield-related physiological traits in 
pepper and represent a first step in the improvement of the target trait yield. 

 

Keywords 

Capsicum annuum; Complex trait; Component trait; Dissection; Genetic Correlation; 
Pleiotropy 
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2.2. Introduction  
Complex traits are traits determined by a relatively large number of QTLs that are 
environment sensitive, i.e., show QTL by environment interaction, and that are prone to show 
epistatic interactions. Hence, direct improvement of a complex trait by selection on that trait 
itself may be difficult. An attractive alternative to selection on the complex trait may be 
selection on underlying physiological component traits, where the most difficult task consists 
in finding a model for the complex trait as a function of a number of component traits. The 
latter should be biologically meaningful and easily measurable, and they should have a 
relatively simple genetic basis, i.e., one or a few additive QTLs without interactions. Recent 
reviews on this improvement by dissection approach were given by Hammer et al. (2006); 
Chapman (2008); and van Eeuwijk et al. (2010). 

The FP7 European Union research project ‘Smart tools for Prediction and Improvement of 
Crop Yield’ (EU-SPICY) had as its starting point this dissection approach to complex trait 
improvement and aimed at the development of a suite of tools for molecular breeding of crop 
plants for sustainable and competitive horticulture. An introduction to the EU-SPICY project 
can be found at www.spicyweb.eu and in Voorrips et al. (2010). Within the EU-SPICY 
project, pepper (Capsicum annuum) was chosen as a model crop. In pepper, several studies 
have reported on genetic parameters of a series of traits and their QTL mapping.  

Among pepper traits already studied are those related to disease resistance (Lefebvre and 
Palloix, 1996; Caranta et al., 1997a; Caranta et al., 1997b; Ben Chaim et al., 2001a; Chaim et 
al., 2003; Lefebvre et al., 2003; Thabuis et al., 2003; Kim et al., 2004; Voorrips et al., 2004; 
Sugita et al., 2006; Minamiyama et al., 2007; Mimura et al., 2009; Kim et al., 2011), and 
sensory traits such as pungency (Blum et al., 2003; Ben Chaim et al., 2006a). Other studies 
have also looked into fruit-related traits (Lefebvre et al., 1998; Ben Chaim et al., 2001b; 
Chaim et al., 2003; Rao et al., 2003; Wang et al., 2004; Zygier et al., 2005; Ben Chaim et al., 
2006b; Lee et al., 2008; Barchi et al., 2009). Results from these studies revealed clusters of 
QTLs on chromosomes 2, 3 and 4 for fruit traits such as fruit weight/yield, diameter, length 
and shape. Only few studies have reported on QTLs influencing vegetative-related traits such 
as stem length and number of internodes (Ben Chaim et al., 2001b; Barchi et al., 2009; Alimi 
et al., 2010; Mimura et al., 2010). In these studies, major QTLs influencing primary 
vegetative components like length and number of internodes on the primary stem were found 
on chromosomes 2, 3 and 12. Only one study reported QTLs responsible for leaf related 
components such as leaf area and weight (De Swart et al., 2007). Also the majorities of these 
studies were conducted in a single environment and hence could not compare performances of 
a particular mapping population under different environmental conditions. 

In this study, as part of the EU-SPICY project, we evaluated 16 physiological traits across 
four environments using a mapping population of recombinant inbred lines (RIL) obtained 
from the cross between large – fruited ‘Yolo Wonder’ (YW) and the pungent ‘Criollo de 
Morelos 334’ (CM 334) pepper cultivars (Barchi et al., 2007). We started with description 
and phenotypic analyses of the four large phenotyping experiments (=environments) and 
obtained genetic parameters for all traits. For all environments, we used a multiple-QTL 
mapping (MQM) method (Jansen, 1993; Arends et al., 2010) to estimate location, heritability 
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and direction of the QTLs. We qualitatively investigated QTL pleiotropy and we discuss our 
results in the light of previously reported QTLs for these and similar traits in pepper. 

2.3. Materials and Methods 

2.3.1. Plant materials 
The bi-parental pepper population comprised 149 individuals from the sixth generation of the 
recombinant inbred lines (RIL) of an intraspecific cross between the large – fruited inbred 
cultivar ‘Yolo Wonder’ (YW) and the small-fruited cultivar ‘Criollo de Morelos 334’ (CM 
334) of Capsicum annuum (Barchi et al., 2007). These 149 individuals were selected from a 
total of 297 RILs as being the most informative subset for selective phenotyping (Vision et 
al., 2000). 

2.3.2. Phenotyping experiments and designs 
The phenotyping experiments of the SPICY project were carried out at two locations, i.e., 
Wageningen in the Netherlands (NL) and El-Ejido in Spain (SP), representing temperate and 
Mediterranean growing conditions respectively. At both locations, experiments were done 
during two time periods: December – May (1) and June – December (2). This generated four 
experiments denoted as NL1, NL2, SP1 and SP2. Border rows and dummy plots were used to 
minimize the effects of competition between neighbouring plants and genotypes.  

The Dutch (NL) experiments were performed in four Venlo-type greenhouse compartments 
(12m x 12m) with glass cover. A single compartment was too small to grow all genotypes, so 
the experiments were set up in an incomplete block design (Williams and John, 1999) with 
subsets of genotypes differentially replicated within and across compartments as explained 
below. Each compartment (block) consisted of two single border rows and six double rows of 
9.6 m length at a distance of 1.50 m. On each row, 46 plants were placed on rockwool slabs. 
The two plants at the outsides of the double rows were also considered to be border plants. 
The remaining 2x44=88 plants in each double row were allocated to 11 plots, say columns, of 
2x4 plants. This gave a total of 264 (6 double rows x 11 columns x 4 blocks) plots. Only the 
inner four plants of each plot were used for phenotypic measurements. The 152 genotypes 
(149 RILs + 2 parents + 1 F1) were randomly allocated to plots in the following manner. Four 
non-overlapping subsets of genotypes were defined (Appendix 2A, Table 2A1). A so-called 
common set consisted of the two parents and the F1. These three genotypes occurred once in 
each of the four blocks. Four so-called ladder sets were defined, each consisted of three RILs 
(= 4 x 3 = 12 genotypes). Each genotype in the ladder sets appeared in two out of the four 
blocks and was in addition replicated once in each block. Hence these genotypes were present 
on two plots inside a block and appeared in two blocks. The genotypes in the ladder sets were 
selected as being representative from the population of 149 RILs on the basis of an ordination 
based on a similarity matrix created from a set of markers (Johnson and Wichern, 2002). The 
genotypes in the ladder sets occupied a total of 12 genotypes x 2 blocks x 2 plots per block = 
48 plots. The ladder sets connected the blocks, i.e., block 1 and 2, 2 and 3, 3 and 4, and 4 and 
1, respectively. Out of the remaining 137 (149 - 12) RILs, 67 RILs were replicated once in 
two blocks, the so-called double set, giving 134 plots. The remaining 70 RILs were placed in 
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only one block and were thus not replicated, forming the so-called single set, yielding 70 
plots.  

In the Dutch trials, during cultivation, side shoots were pruned in order to keep a single stem 
per plant. Plant density was approximately 6.4 plants per m2 (i.e. about 6 stems per m2). Side 
shoots were pruned at the second internode, i.e. they carried three leaves and three flowers. 
Fruits were harvested when they were at least 50% red. Set points for greenhouse climate 
were 18/21 °C night/day with 16 °C from sunset to midnight. CO2 was supplied up to 
approximately 600 ppm when windows opening were less than five percent. At higher 
ventilation rates, CO2 was supplied to a level of 400 ppm. Throughout the experiment, climate 
data were registered every five minutes: greenhouse air temperature, pipe temperature, 
humidity, CO2 concentration, outside temperature, global radiation outside, screen opening 
and window opening. 

The Spanish (SP) experiments were performed in a greenhouse of 40 m x 60 m with plastic 
cover. The multi-span tunnel was oriented East-West; row orientation was North-South. The 
greenhouse was divided into two blocks. Each block consisted of 8 experimental rows and 24 
experimental columns giving a total of 192 plots per block. The 152 genotypes were randomly 
allocated to any of the 192 plots in a block, thereby leaving 40 plots. These 40 plots were 
filled with dummy genotypes (Appendix 2A, Table 2A2). From each plot of five plants, three 
plants were sampled for phenotypic measurements. During cultivation, two stems per plant 
were kept. Plant density was approximately three plants per m2 (i.e. 6 stems per m2). In the 
first experiment, side shoots were pruned at the second internode and the two topmost flowers 
were removed leaving three leaves and one flower. In the second experiment, side shoots 
were pruned at the second internode as well. However, since no flowers were removed from 
the side shoots, they bore three leaves and three flowers. Fruits were harvested when they 
were at least 50% red. In the first experiment, the heating system was used when the outside 
temperature was lower than 14 ºC, whereas in the second experiment the heating system was 
not used. No CO2 was supplied. Climate data were registered every five minutes: greenhouse 
air temperature, humidity, CO2 concentration, outside temperature and inside radiation.  

Plant measurements: During the experiment, plant development was recorded via counting  or 
measuring the number of fruits per stem (weekly), number of internodes per stem 
(fortnightly), stem length (monthly), number and fresh weights of harvested fruits (when 
fruits were 50% red) and dry weights of harvested fruits (periodically). Only fruits larger than 
1 cm were counted as fruits. For the fruits for which only fresh weight was measured, fruit dry 
weight was estimated by calculating the fraction fruit dry matter per genotype, and 
multiplying this fraction with the measured fruit fresh weight. At the end of the experiment 
three plants per plot were harvested destructively to record leaf area and dry weights of 
leaves, stems and fruits, as well as the number of fruits.  

2.3.3. Trait evaluation 
In this study, we analysed 9 physiological traits representing vegetative and generative 
development of pepper plants and 7 derived traits, being functions of the original traits (Table 
2.1). The vegetative traits were measured via destructive harvesting at the end of the trials. 
The vegetative traits recorded include leaf area (LA), dry weights of leaves (DWL), stem 
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(DWS) and vegetative plant parts (DWV=DWL+DWS), specific leaf area (SLA=LA/DWL), 
the primary axis length (Axl) given as length of primary axis from cotyledons to first 
branching, number of leaves on primary axis (NLE), mean internode length of primary axis 
(INL=Axl/NLE). Other vegetative traits included stem length (SL) and number of internodes 
(NI) measured 6-8 weeks after transplanting. Recorded fruit traits included total number of 
fruit (NF) and total fruit dry weight (DWF) given as the sum of dry weight of all the fruits 
harvested during the growing season and the fruits on the plant at the final destructive harvest. 
DWF was taken to represent yield. Also calculated were the total plant biomass 
(DWP=DWV+DWF) and the proportion of total biomass in the leaves (pt_leaf), stem 
(pt_stem) and fruits (pt_frt). For each environment, trait distributions, correlations and pattern 
of variation across genotypes and blocks were obtained by using statistical and visualization 
tools after removing outliers.  

Table  3.1 Traits measured in each of the four SPICY environments (experiments). 
Abbreviation Trait 

LA Leaf Area (cm2) 

DWL Dry weight of leaf (g) 

DWS Dry weight of stem (g) 

DWV Dry weight of vegetative part (g) = DWL + DWS 

SLA Specific Leaf Area = LA/DWL/10 

NF Total number of fruits 

DWF1 Total fruit dry weights from each plant (g) 

DWP Dry weight of plant at end harvest (g) = DWV + DWF 

pt_frt Proportion of the total biomass due to fruit= DWF/DWP 

pt_leaf Proportion of the total biomass due to leaf = DWL/DWP 

pt_stem Proportion of the total biomass due to stem = DWS/DWP 

Axl Primary Axis length (Stem length before first branching) (cm) 

SL Stem length measured 6-8 weeks after transplanting 

NLE Number of Leaves on the primary axis 

NI Number of Internodes at time 3-4 weeks after transplanting 

INL Internode length for the primary axis (Axl/NLE) 
1representative for yield 

2.3.4. Phenotypic analysis 
The traits in each environment were univariately analyzed using linear mixed models. We 
adopted a model specification as proposed in Piepho et al. (2006) to analyse the data on all 
the RILs including the parents and F1. The linear mixed model used was of the form: ܻ = ߤ  + + ܤ  (ܤ)ܴ  + (ܤ)ܥ  + + ܯ  (ܩ∗ܼ) +  (2.1)             ,ߝ 

where Y represented a phenotypic trait value, μ was the overall mean, B, R(B) and C(B) 
represented block, row-within-block and column-within-block effects respectively. M was a 
4-level factor used to obtain and test phenotypic mean differences among the parents (YW, 
CM 334), F1 and RILs. G stood for all the 152 genotypes. We introduced a variable (Z), coded 
0 for parents and F1; and 1 for RILs. This allowed us to handle parents and F1 as fixed and the 
149 RILs as random. Now the random RIL effect was modeled as Z*G. This induced a 
genetic variance of zero for the parents and a common genetic variance for the RILs. Z was 
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declared as quantitative in our SAS model statements. Defining Z as quantitative ensured that 
no genetic effects were induced for the parents (Piepho et al., 2006). All other non-genetic 
effects were captured in ε term. 

In the NL environments, block was assumed random for recovery of inter-block information 
since not all RILs were present in all the blocks (unbalanced). The variance components for 
the random effects were estimated using restricted maximum likelihood (REML) (Littell et 
al., 2006). Since RILs were assumed random, they were estimated using best linear unbiased 
prediction (BLUP) as against the use of best linear unbiased estimation (BLUE) where RILs 
are treated as fixed. We however investigated the use of both for our data and found that both 
BLUE and BLUP results were very similar with correlation of about one, despite the 
shrinkage factor in BLUP. These analyses were performed in SAS (Saxton, 2004; Littell et 
al., 2006). Trait heritabilities were calculated using the measure based on BLUP as proposed 
by Cullis et al. (2006).  ܪଶ = 1 − ௏ಳಽೆುଶఙ೒మ ,                  (2.2) 

where σg
2 was the genotypic variance and vBLUP was the mean BLUP variance. The genetic 

correlations (ρg) between traits in each environment were estimated from the estimates of 
variances and covariances obtained from a multivariate REML under the mixed model 
procedure in SAS (Littell et al., 2006). The use of multivariate REML was preferred over 
classical multivariate analysis of variance (MANOVA) as it can handle unbalanced data. 

The dominance coefficient (k) for all traits was calculated from the expression: ܽ(1 + ݇) = ݀, 

where ܽ was the overall additive effect in the CM334 parent ቀܽ = ஼ெଷଷସି௒ௐଶ ቁ and d was the 
mean difference between the F1 and YW (Lynch and Walsh, 1998). When -1<k<0, the YW 
contribution was dominant over that of CM334 and when 0<k<1, CM334 was dominant. If k 
< -1 or k > 1 and the phenotypic mean of the F1 exceeded that of the parent considered to 
represent the desirable parent, we talk of  heterosis. Transgressive segregation means that the 
phenotypic values of some of the RIL offspring were outside the range of parental phenotypic 
means. Transgressive segregation was declared substantial when the proportion of RILs with 
phenotypes lower than the lower parent (denoted Qmin) - or higher than the higher parent 
(denoted Qmax), was 50 percent or higher. We also compared phenotypic means of F1 and 
RILs using expression DRIL. The statistic DRIL expressed difference in the means of RIL and 
F1 (DRIL = RIL-F1) where RILs are phenotypically superior to F1 if DRIL > 0.  

2.3.5. Marker data and Linkage map 
The first genetic linkage map (Figure 2.1) used the map similar to that of Barchi et al. (2007). 
A final set of 493 markers were assembled into 17 linkage groups (LG) covering 1775 cM. 
These were assigned to the 12 pepper chromosomes based on known positions of SSR 
markers. The list of publicly-owned markers used for the map construction is available as a 
supplementary material (Supplemental A1). Five chromosomes had two linkage groups that 
could not be joined due to insufficient linkage. The percentage of missing genotype 
information across the full set of markers was low (6.8%). The quality controls conducted 
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included checks on segregation distortion, recombination fraction and number of crossover 
events.  

 
Figure  3.1 Initial Genetic linkage map used in the EU-SPICY experiments 

2.3.6. QTL estimation 
Many of the traits under investigation were assumed to be controlled by multiple QTLs which 
made a single QTL model inappropriate. We used a multiple-QTL mapping procedure 
(MQM) (Jansen, 1993; Arends et al., 2010) for each trait in each environment. ܻ = ߤ + ∑ ௤ߙ௤ݔ + ݁ொ௤ୀଵ ,               (2.3) 

where Y was the phenotypic response, μ the population mean, αq was the additive effect of 
QTL q, xq was a marker-genotype indicator variables (0-1) and e was the residual term. The 
package qtl (Broman and Sen, 2009; Arends et al., 2010) of the software R (R-Development-
Core-Team, 2011) was used to deploy the MQM approach in five steps. Firstly, the missing 
marker genotypes were imputed with their probabilities conditional on neighbouring marker 
information. Secondly, an initial single QTL scan equivalent to simple interval mapping was 
performed and a global significance threshold for QTL selection across all traits was 
determined via a permutation test of 1000 replicates. The obtained significance threshold was 
equal to a LOD score of 2.9. Thirdly, the MQM model was fitted by forward selection. 
Fourthly, a backward elimination strategy was applied to the full model with all earlier 
selected QTLs included to remove the non-significant QTLs and to arrive at the final QTL 
model. The QTL location confidence intervals were estimated from the final QTL using a 
Bayes credible interval with the assumption that there was one and only one QTL on the LG 
of interest for a given trait (Broman and Sen, 2009). This was mostly true for our data except 
for one trait (INL) on LG 1b in NL1. Lastly, the resulting final QTL model was evaluated to 
obtain size and direction of QTL effects. Also, the QTL heritability HQ

2 (proportion of 
phenotypic variance due to a QTL) was estimated directly from the difference of the log-

likelihood (LOD) scores using the relationship: ܪொଶ = 1 − 10ିమ೙௅ை஽ (Broman and Sen, 2009).  
Pleiotropic QTLs were evaluated via visual inspection of the estimated QTL positions for 
different traits: QTLs with overlapping confidence intervals were declared to be the same 
QTL, i.e., a QTL with pleiotropic effects. 
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2.4. Results 

2.4.1. Traits evaluation 
The phenotypic means for the parents, F1 and RILs for the SP2 environment (as an 
appropriate representative) are presented in Table 2.2 and the means pertaining to the other 
environments are given in Appendix 2A. The parental means were clearly different for most 
of the traits. CM334 showed longer stem and internode lengths (Axl, SL and INL), heavier 
stem and total vegetative dry weight (DWS & DWV) and higher number of internodes (NLE 
and NI). In contrast, YW had higher values for fruit and leaf related traits. This parent showed 
bigger and heavier fruits, higher partitioning into fruit (pt_frt), higher leaf area (LA) and leaf 
dry weight (DWL). These results were consistent with previously reported results for these 
pepper cultivars (Barchi et al., 2009). These contrasts between parental values were consistent 
across the environments. For many traits, the F1 had higher mean values than the averaged 
parental means especially for vegetative traits (e.g. DWL, DWS, DWV, DWP, Axl, SL and 
INL). The RILs showed substantial transgressive segregation for some traits (e.g. DWS, 
DWV, NF and DWP), where the transgression was in the direction of the parent with higher 
phenotypic values. 

Table  3.2 Phenotypic Mean comparison for environment SP2 
Traits YW CM334 F1 RIL k DRIL Qmin Qmax 

LA 8198.46 5985.77 10372.52 9980.89 -2.97+ -391.63 0.04 0.73 
DWL 36.25 32.95 46.23 52.26 -7.05+ 6.03 0.04 0.91 
DWS 29.02 87.28 88.44 95.55 1.04 7.11 0.00 0.62 
DWV 72.27 120.22 134.68 147.62 1.60+ 12.94 0.01 0.80 
SLA 22.85 18.34 22.60 19.25 -0.89 -3.35+ 0.34 0.05 
NF 10.83 23.00 40.17 37.41 3.82+ -2.76+ 0.01 0.90 

DWF 104.62 12.51 89.27 87.13 -0.67+ -2.14 0.01 0.31 
DWP 176.90 132.73 223.94 234.94 -3.13+ 11.00 0.01 0.90 
pt_frt 0.58 0.10 0.40 0.36 -0.25 -0.04 0.01 0.00 
pt_leaf 0.25 0.25 0.21 0.23 0.02 0.80 0.20 
pt_stem 0.16 0.66 0.39 0.41 -0.08 0.02 0.00 0.01 

Axl 20.83 28.83 34.00 25.28 2.29+ -8.72+ 0.17 0.22 
SL 23.83 76.33 83.33 67.38 1.27+ -15.95+ 0.00 0.27 
NLE 9.33 13.50 11.33 9.87 -0.04 -1.46+ 0.44 0.01 
NI 8.50 11.67 10.83 10.12 0.47 -0.71 0.09 0.08 
INL 2.23 2.15 3.01 2.60 -20.5+ -0.41+ 0.14 0.79 

k =  Dominance coefficient 
DRIL =  Difference in the means of RIL and F1 
Qmin = Proportion of RILs with phenotypes lower than the lower parent  
Qmax =  proportion of RILs with phenotypes higher than the higher parent 
+Significant at 0.05 level of significance 
 

In the SP2 environment (Table 2.2) the YW contribution was dominant over CM334 (-1<k<0) 
for SLA, DWF, pt_frt, pt_stem and NLE while the CM334 contribution was dominant for NI 
(0<k<1). Heterosis in the direction of YW (k < -1) was observed for LA, DWL, DWP and 
INL while heterosis in the direction of CM334 (k > 1) was observed for DWS, DWV, NF, 
Axl and SL. The result for NF in SP2 is different from other environments in that the 
dominance for NF was derived from YW in all the other environments except SP2. Many 
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traits that showed heterosis also displayed substantial transgressive segregation and often in 
the same direction (Table 2.3). In all the environments, SLA and NLE for example showed 
consistently higher value of Qmin than Qmax. Pt_leaf also showed higher Qmin than Qmax in NL2 
and SP2.While LA, DWL, DWS, DWV, DWP and NF showed higher Qmax in all 
environments. For some of the traits (e.g. NF, DWF, Axl and SL) RILs were phenotypically 
inferior to F1 as F1 displayed higher phenotypic values consistently in the four environments. 
For other traits, the sign of DRIL varied across environments. As examples, for LA a positive 
DRIL was only found in SP1 and DRIL was positive in the SP environments for DWL, DWS, 
DWV and negative in NL environments. 

Table  3.3 Traits showing heterosis and substantial transgressive segregation 
 Heterosis 

 

Transgressive segregation 

 NL1 NL2 SP1 SP2 NL1 NL2 SP1 SP2 

LA    Y-    T2 

DWL Y- Y- Y- Y-   T2 T2 

DWS Y+ Y+  Y+ T2 T2 T2 T2 

DWV Y+ Y+ Y+ Y+ T2 T2 T2 T2 

SLA Y+    T1    

NF Y- Y- Y- Y+ T2 T2 T2 T2 

DWF         

DWP Y- Y+ Y- Y- T2 T2 T2 T2 

pt_frt         

pt_leaf      T1 T2 T1 

pt_stem      T2   

Axl  Y+  Y+     

SL Y+ Y+ Y+ Y+     

NLE  Y-    T1   

NI Y+ Y+ Y+  T2    

INL Y+ Y+ Y+ Y-  T2 T2 T2 

Y- = presence of heterosis in the direction of YW; Y+ = presence of heterosis in the direction of CM334; T1 = 
presence of substantial transgression in the direction of parent with lower phenotypic mean (i.e. high Qmin) and 
T2 = presence of substantial transgression in the direction of parent with higher phenotypic mean (i.e. high 
Qmax). 

2.4.2. Heritability & genetic correlation 
The heritability estimates (HT

2) of traits were consistently high across the environments with 
average of 0.86 and varied from 0.43 – 0.96 (Table 2.4). HT

2 were mostly higher in the SP 
environments than in the NL environments. Genetic correlations as a measure of association 
between traits within each environment were calculated. The correlations were found to show 
similar patterns across the environments (Figure 2.2). Fruit-related traits (DWF, NF and 
pt_frt) were positively correlated. Vegetative-related traits (LA, DWL, DWS, and DWV) 
were also positively correlated. However, SLA showed no significant correlation to any other 
trait except LA to which it was moderately correlated.  

Generally, fruit-related traits (NF, DWF, pt_frt) showed negative correlations to stem traits 
(SL, NI, NLE, Axl, pt_stem) but weaker positive correlations with leaf traits (LA, DWL, 
SLA, pt_leaf), reflecting level of competition between development of organs. This indicates 
that fruit competes more with stem than with leaves for nutrients. Total plant biomass (DWP), 
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being an aggregate of fruit, stem and leaf components, showed positive correlations to many 
fruit, stem and leaf traits (e.g. DWF, NF, DWS, LA, DWL, DWV). 

 

Figure  3.2 Genetic correlations for traits in each of the environments 

 

 
Figure  3.3  QTL likelihood profiles for selected traits 

Colour codes: Black = NL1, Red=NL2, Green=SP1 and Blue=SP2 
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Table  3.4 Number of QTLs (#QTL), QTL explained variation (HQ2) and broad-sense heritability (HT2) in each of the 
four environments. 

 NL1 NL2 SP1 SP2 
Trait #QTL HQ

2 HT
2 #QTL HQ

2 HT
2 #QTL HQ

2 HT
2 #QTL HQ

2 HT
2 

LA 2 0.41 0.71 3 0.40 0.90 2 0.25 0.91 2 0.56 0.94 
DWL 3 0.46 0.88 3 0.36 0.86 3 0.31 0.91 2 0.45 0.90 
DWS * * 0.85 1 0.23 0.85 1 0.18 0.89 1 0.13 0.89 
DWV * * 0.71 1 0.20 0.90 1 0.12 0.87 1 0.19 0.88 
SLA 1 0.12 0.43 * * 0.66 2 0.28 0.68 2 0.31 0.90 
NF * * 0.77 1 0.11 0.89 3 0.34 0.82 1 0.16 0.88 

DWF 1 0.09 0.82 2 0.27 0.76 2 0.31 0.89 2 0.33 0.87 
DWP 1 0.13 0.57 * * 0.86 3 0.42 0.85 2 0.31 0.81 
pt_frt * * 0.89 2 0.22 0.89 1 0.15 0.95 2 0.27 0.93 

pt_leaf 2 0.26 0.79 3 0.34 0.80 2 0.17 0.93 3 0.28 0.91 
pt_stem * * 0.91 3 0.30 0.89 1 0.14 0.95 2 0.27 0.94 

Axl 2 0.37 0.96 3 0.34 0.93 * * 0.94 3 0.29 0.86 
SL 2 0.23 0.95 3 0.43 0.92 3 0.48 0.94 5 0.61 0.93 

NLE 2 0.45 0.92 2 0.51 0.93 2 0.33 0.91 2 0.46 0.79 
NI 3 0.39 0.86 3 0.52 0.94 1 0.16 0.90 4 0.48 0.88 

INL 6 0.61 0.94 2 0.18 0.93 5 0.48 0.89 * * 0.75 
*No QTL detected 

 

2.4.3. QTL results 
Result from our QTL analyses revealed a total of 24 unique regions with QTLs for the 16 
traits across the four environments. All QTLs with overlapping confidence intervals were 
clustered into unique QTL regions with pleiotropic effects. Figure 2.3 shows the likelihood 
profiles of the QTL models for the traits LA, DWF, DWP and NLE, respectively. For many of 
the traits, the number of QTLs (#QTL) and their heritabilities (HQ

2) differed across 
environments (Table 2.4). The proportions of phenotypic variance explained by each of the 
significant QTLs ranged between 0.09 and 0.45. For many of the traits, the detected QTLs 
together explained a considerable amount of the phenotypic variability ( ≥ 0.25) but always 
much less than the heritability estimates in the phenotypic analyses (HT

2) (Table 2.4). The 
proportion of variance explained by QTLs for fruit related traits were not as high as those of 
vegetative related traits. 

The list of QTLs with their magnitudes across the environments is tabulated in Table 2.5. 
QTLs with larger signals were usually identified consistently significant across the four 
environments; however, the magnitude of their LOD scores differed among environments. For 
example, for LA, two major QTLs were detected on LG 2 and 4. These QTLs were significant 
in the four environments but differed in magnitude. Similarly, for NLE, two large QTLs were 
detected on LG 3a and 12 in all environments. For some traits, one or more of their QTLs 
were only picked up in certain environments. For example, DWF had one QTL on LG 2 that 
was significantly expressed in all environments, but all other QTLs for DWF were significant 
in only one environment (e.g. on LG 1b in NL2, 4 in SP2 and 9a in SP1). For total biomass 
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(DWP), a highly significant QTL was found on LG 2 in the SP environments but not in the 
NL environments. 

The directions of most QTL effects were similar across environments (Figure 2.4 and Table 
2.5). QTL effect directions generally followed direction of parental mean differences for each 
of the traits. For example, YW showed a higher mean value for DWF and at all QTLs 
influencing DWF, the increasing alleles were inherited from YW. In SP2, where the parental 
difference for DWF was about 92g, the substitution of the YW alleles for CM334 alleles at 
the two significant QTLs on LG 2 and 4 would increase fruit yield per plant by about 63g. 
With parental differences of 48g, 17g and 142g in NL1, NL2 and SP1 respectively, the same 
allelic substitution would increase yield per plant by about 17g (1 QTL), 16g (2 QTLs) and 
98g (2 QTLs) respectively. Conversely, the three QTLs for pt_stem would increase 
partitioning to stem by 26%, 28%, 28% and 20% in NL1, NL2, SP1 and SP2 respectively if 
the two CM334 alleles were substituted for YW alleles. This was also in agreement with the 
parental mean of CM334 showing a higher mean value. Most of the alleles increasing stem 
related traits such as DWS, pt_stem, SL, NI and INL were derived from CM334 while those 
increasing leaf and fruit traits such as LA, DWL, SLA, DWF and pt_frt were derived from 
YW. For some traits such as NLE, NF, pt_leaf and Axl, alleles increasing the traits originated 
from both parents. 

The pleiotropic effect of QTLs (Figure 2.4) revealed the presence of some QTLs influencing 
many traits simultaneously. As can be expected, many of these pleiotropic QTLs were very 
consistent with the genetic correlations between traits. Two QTLs affecting many traits were 
found some distance apart on LG 2 (around 98 cM and 131 cM). One of these two QTLs was 
specific to fruit related traits (DWF, pt_frt, NF) and also pt_stem. The other QTL on LG 2 
affected mainly vegetative traits such as LA, DWL, DWS, DWV, SLA and DWP. On LG 3a 
(around 50 cM), a QTL that affected the number of internodes (NLE and NI) and stem length 
(SL and Axl) was detected. On LG 4 was a QTL affecting LA and DWL. A QTL affecting 
primarily SL, NI, DWS and DWV was located on LG 6. A QTL specific to plant development 
before primary branching (Axl and NLE) and NI was found on LG 12. Some QTLs with 
environment specific pleiotropic effect were also detected. For example, in NL1, a QTL 
influencing INL, Axl and DWL was found on LG 7a. On LG 1b, a QTL governing DWF, 
pt_frt, pt_stem and NI was picked up only in NL2 and SP2. In SP1, a QTL affecting SL, NI, 
INL, DWV and DWS was found on LG 11. 
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Table  3.5 QTL scores and effect sizes 
Trait Markers$  LOD Score$$  Effect magnitude and direction 

NL1 NL2 SP1 SP2 NL1 NL2 SP1 SP2 

LA 

PMD  -4153.8+ -4309.3+ -3886.4+ -2212.7 
1a@15.1 1.75 4.74 2.64 1.91 -277.7 -339.8* -608.9 -89.3 
2@130.9 6.46 3.39 5.54 13.35 -443.2* -504.1* -860.6* -1396.5* 
4@87.7 7.01 3.41 3.35 4.48 -528.2* -628.8* -656.6* -1075.5* 

DWL 
PMD  -14.21+ -14.07+ -16.99+ -3.3 
2@130.9 3.13 2.55 2.87 7.57 -2.12* -1.68 -2.32 -5.08* 
4@87.7 8.20 7.70 4.33 6.63 -3.45* -1.76* -5.25* -5.61* 

   

DWS 

PMD  46.43+ 33.41+ 74.65+ 58.26+ 
2@130.9 0.14 0.12 0.29 3.60 -2.28 -1.26 -4.09 -11.43* 
6@53.3 2.52 7.65 2.15 1.98 10.12 10.82* 11.27 8.35 
11@88.1 0.46 0.16 5.09 0.09 4.18 -1.40 17.74* 1.74 

DWV 

PMD  31.68+ 19.81+ 71.66+ 47.95+ 
2@130.9 0.54 0.64 0.98 5.54 -5.72 -3.85 -11.17 -20.33* 
6@53.3 2.04 6.45 1.49 1.71 11.17 12.99* 14.00 10.62 
11@88.1 0.28 0.13 3.76 0.19 4.00 -1.73 22.75* 3.52 

   

SLA 

PMD  -5.27+ -6.4+ -4.19+ -4.51+ 
2@12.7 4.23 2.23 2.64 5.22 -1.15* -0.85 -0.76 -1.44* 
2@135.9 0.57 0.34 2.35 4.91 -0.43 -0.32 -0.71 -1.39* 
6@121.6 1.26 2.97 1.74 5.24 -0.60 -0.99* -0.59 -1.43* 

   

NF 

PMD  -3.04 -2.5+ -8.5 12.17+ 
1b@60.6 0.51 3.11 0.81 1.85 -1.41 -2.40* -2.80 -4.51 
2@98.3 0.90 2.69 6.68 1.66 -1.90 -2.23 -8.40* -4.22 
3a@89.3 0.73 1.02 0.44 4.85 1.71 1.35 2.06 7.49* 
8@103.7 0.56 1.78 3.87 1.77 1.51 1.77 6.30* 4.46 

DWF 

PMD  -48.29+ -17.45+ -141.75+ -92.11+ 
1b@60.6 1.57 4.49 1.22 2.57 -6.13 -3.76* -10.43 -10.09 
2@98.3 3.15 5.29 8.14 7.33 -8.86* -4.06* -28.91* -18.43* 
4@32.6 0.93 1.03 1.24 4.06 -4.72 -1.75 -10.53 -13.18* 
9a@74.4 1.73 0.94 3.76 0.04 -6.41 -1.63 -18.84* -1.23 

DWP 

PMD  -17.61 2.36 -84.09+ -44.17 
1b@75.7 1.16 0.62 3.03 0.52 -8.40 -4.18 -20.92* -5.26 
2@130.9 1.32 0.93 7.31 6.27 -8.77 -4.97 -34.44* -19.01* 
4@8.9 0.82 2.24 0.66 3.86 -6.82 -7.95 -8.99 -14.82* 

pt_frt 
PMD  -0.47+ -0.28+ -0.61+ -0.48+ 
1b@60.6 1.03 3.72 0.73 3.08 -0.04 -0.04* -0.04 -0.05* 
2@98.3 1.67 3.59 4.48 5.54 -0.05 -0.04* -0.09* -0.06* 

pt_leaf 

PMD  -0.12+ -0.23+ 0 0 
1a@15.1 3.55 3.40 1.59 2.38 -0.02* -0.02* -0.02 -0.01 
2@75.2 0.33 0.44 1.99 3.24 0.01 0.01 0.02 0.02* 
4@58.5 3.12 3.82 0.61 2.39 -0.02* -0.02* -0.01 -0.01 
10a@34.7 4.93 4.28 1.42 3.77 0.02* 0.02* 0.02 0.02* 

pt_stem 
PMD  0.59+ 0.51+ 0.61+ 0.5+ 
1b@60.6 1.80 3.93 1.15 3.95 0.05 0.05* 0.04 0.04* 
2@98.3 2.13 3.91 4.61 5.74 0.05 0.05* 0.07* 0.05* 

Axl 

PMD  17+ 8.5+ 11.17+ 8+ 
1b@69.3 2.25 1.48 0.87 3.89 -2.69 -2.26 -1.42 -2.56* 
3a@50.0 3.40 0.57 0.37 1.45 3.33* 1.41 0.91 1.51 
7a@39.0 9.17 3.00 1.89 0.39 -5.64* -3.51* -2.12 -0.79 
9b@0.0 1.63 4.30 1.33 2.97 2.24 3.92* 1.74 2.16* 
12@23.1 2.27 3.06 1.46 2.27 -2.69 -3.36* -1.82 -1.93 

   

SL 
PMD  49.33+ 90.62+ 29.15+ 52.5+ 
3a@50.0 3.24 4.52 0.90 6.95 6.55* 12.71* 2.43 10.70 
6@53.3 3.75 5.84 5.90 5.29 7.16* 15.03* 6.83* 9.16* 
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8@114.0 0.45 0.35 3.76 1.09 2.37 3.33 5.17* 3.91 
10a@0.0 3.38 5.08 3.08 4.14 -6.70* -13.65* -4.70* -8.24* 
11@78.2 0.01 0.77 5.02 4.46 -0.38 -5.15 6.02* -8.43* 

   

NLE 
PMD  4.19+ 0.81 5+ 4.17+ 
3a@50.0 8.84 7.26 6.23 2.92 1.71* 1.04* 1.34* 0.58* 
12@23.1 6.25 11.39 5.77 13.94 -1.44* -1.35* -1.29* -1.40* 

   

NI 

PMD  0.87+ 8.25+ 2.34+ 3.17+ 
1b@69.3 1.82 3.60 0.10 4.81 0.29 0.94* 0.10 0.66* 
2@49.8 3.86 2.74 0.14 1.34 -0.41* -0.82 -0.12 -0.31 
3a@50.0 0.79 2.64 0.04 7.54 0.16 0.82 0.06 0.81* 
6@53.3 7.44 14.32 2.64 4.17 0.59 2.01* 0.54 0.60* 
11@84.1 0.48 0.08 7.27 0.03 0.14 0.12 0.92* 0.04 
12@23.1 1.26 0.00 3.92 4.36 0.22 0.04 0.65* 0.62* 

INL 

PMD  0.57+ 0.45+ 0.08 -0.08 
1b@0.0 4.22 1.75 2.14 0.29 0.21* 0.20 0.15 0.06 
1b@43.7 4.12 1.79 3.53 2.49 -0.20* -0.21 -0.20* -0.18 
2@2.8 3.62 1.97 2.05 0.75 0.19* 0.21 0.15 0.10 
3a@68.2 0.53 0.68 3.37 0.02 -0.06 -0.13 -0.18* -0.01 
4@8.9 4.02 0.07 2.86 0.12 0.20* 0.04 0.17* 0.04 
7a@39.0 12.86 1.95 0.74 0.07 -0.39* -0.21 -0.09 0.03 
10a@21.8 2.07 3.68 3.97 1.90 0.14 0.31* 0.21* 0.16 
11@88.1 0.18 0.32 5.20 0.75 0.04 0.08 0.24* -0.10 

PMD = mean difference for the parental lines (CM334 - YW) 
Marker notation e.g. 1a@15.1 represents a QTL found around position 15.1cM on LG 1a 
$The list of publicly-owned markers used for the map construction is available as a supplementary material (see: 
Supplemental A1). 
+ Significant PMD (at 0.05 level of significance) 
*Effects corresponding to significant QTL. 
$$ Percentage of explained variation for each QTL can be estimated directly from the difference of log-likelihood 
(LOD scores). The relationship is given in material and method section. 

Table  3.6 Comparison of mapped QTL for related traits among studies 
Study This study Alimi et al. 

(2010) 
Barchi et al. 
(2009) 

Mimura et al. 
(2010) 

Zygier et al. 
(2005) 

Rao et al. 
(2003) 

Ben Chaim et 
al. (2001b) 

Parents YW x 
CM334 

YW x 
CM334 

YW x CM334 CW x LS2341 Chinense x 
Frutescens 

Maor x 
Frutescens 

Maor x 
Perennial 

Type RIL F6 RIL F6 RIL F6 DH F1  BC2 RIL F3 
Size 149 149 297 94  248 180 
NF 1b, 2, 3a, 6, 8 * * * * 2, 3, 11 * 

DWF 1b, 2, 4, 9a * 3, 4, 11, 12, 
LG15, LG24, 

LG45 

* 2, 4 1, 2, 3, 4, 
8, 10, 11 

2, 3, 4, 8 

Axl 1b, 2, 3a, 7a, 
9b, 12 

1, 2, 3, 12 2, 6, 9, LG24, 
LG47 

3, 12, LG8 * * 2, 3, 4, 6, 8 

SL 3a, 4, 6, 8, 
10a, 11 

* * * * * 2, 3, 4, 6, 8 

NLE 3a, 12 3, 12, LG45 3, LG38, 
LG45, LG47 

12, LG8 * * * 

INL 1b, 2, 3a, 4, 
7a, 10a, 11 

1, 2, 3, 6, 
LG22, 
LG28 

1,2, LG28 3, LG8 * * * 

*=Traits not reported. Other traits in our study not reported in any of the earlier studies are omitted. 
LG15, LG22, LG24, LG38 and LG45 from Barchi et al. (2009) are part of LG 6, 1b, 6, 11 and 3b respectively in 
the present map, but the markers from LG28 and LG47 were not integrated. 
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Figure  3.4 QTL LOD size, allelic direction and Pleiotropy. 
Blue indicates QTL of which YW allele increases the trait value while Red indicates that CM334 allele increase 
the trait value. Colour intensity gives QTL LOD score magnitude while width of each line represents QTL 
location intervals. Trait-environment combinations are on the y-axis and linkage groups (LG) are on the x-axis. 
The arrows point to QTLs with major pleiotropic effects on LG1b@60cM, LG2@98cM, LG2@131cM, 
LG3a@50cM, LG4@88cM, LG6@55cM, LG7a@39cM, LG11@88cM and LG12@23cM 
 

2.5. Discussion 
This study is the first in a series on breeding for complex traits by dissection of these complex 
traits into simpler component traits. In this study, we investigated performances of a RIL 
population in pepper for a set of 16 traits across four environments to detect QTLs. We used 
the same mapping population derived from an intraspecific cross between Yolo Wonder 
(YW) and Criollo de Morelos 334 (CM 334) that was used by Barchi et al. (2009). We 
removed markers and individuals with more than 6% missing data and we added markers to 
improve the quality of the map earlier reported (Barchi et al., 2007). This improved the map 
by resolving several smaller and unassigned linkage groups (LG) resulting into 17 LG 
assigned to the 12 pepper chromosomes and covering 1775 cM compared to 23 LG covering 
1553cM (70% of mapped genome) in the former map. Future efforts are directed to adding 
more markers to improve the map towards the 12 chromosomes and fill some larger gaps on 
for example LG 6 and LG 11. 
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Trait heritabilities were calculated following Cullis et al. (2006). We prefer this measure 
because our study design involved unbalanced replication of genotypes in NL. This measure 
has been found to perform optimally for balanced and unbalanced data relative to the usual 
measure of heritability (Piepho and Moehring, 2007). In all four environments, traits were 
highly heritable (mean 0.86 with range from 0.43 – 0.96); hence good possibilities for 
mapping QTLs governing these traits. Our estimates of heritability are generally comparable 
with earlier results from Barchi et al. (2009) and Mimura et al. (2010) for related traits such 
as Axl, NLE and INL. We estimated higher heritabilities for NF and DWF as compared to 
result of Rao et al. (2003). Heritabilities were found to be slightly higher in SP environments 
than NL environments. 

Some of the traits consistently displayed heterosis (e.g. DWL, DWV, NF, DWP, SL and INL) 
in the four environments (k < -1 or k > 1). Only four traits (DWF, pt_frt, pt_leaf and pt_stem) 
did not show heterosis in any of the environments. These four traits however displayed 
dominance (-1<k<0 or 0<k<1) of one parent over the other. Substantial transgressive 
segregation (Qmin ≥ 0.5 and/or Qmax ≥ 0.5) was observed in 6, 8, 7 and 8 traits in NL1, NL2, 
SP1 and SP2 respectively. For any trait, suitability of the RILs for selection would imply that 
phenotypic values for many of the RILs are beyond that of the desirable/superior parent, 
where desirability is trait specific and may not necessarily imply higher phenotypic value. In 
other words, high Qmin is preferred for some traits (e.g. SL, DWS, pt_stem) while high Qmax is 
preferred for others (e.g. LA, DWL, DWF, pt_frt). Four of those traits (DWS, DWV, NF and 
DWP) consistently showed transgressive segregation in the direction of the parent with higher 
mean value in all environments studied. Among possible explanation for transgressive 
segregation is complementarity of QTL alleles (parental lines being fixed for sets of alleles 
having opposite effects). In our study, transgressive segregation in some of the traits could be 
explained by presence of complementary QTL alleles. For example, of the three detected 
QTLs conferring increase in dry weight of stem (DWS), two came from CM334, while one 
came from YW. Most of the alleles increasing stem related traits such as DWS, pt_stem, SL, 
NI and INL are derived from CM334 while those increasing leaf and fruit traits such as LA, 
DWL, SLA, DWF and pt_frt are derived from YW. For traits such as NLE, NF, pt_leaf and 
Axl, alleles increasing the traits originated from both parents. With average parental 
difference of about 4 leaves for NLE in NL1, one QTL from YW increased NLE by about 3 
leaves while another QTL from CM334 increased it by about 4 leaves. This indicates that YW 
and CM334 were fixed for alternative alleles at major gene loci, resulting in effects that 
largely neutralized each other. 

The genetic correlation patterns were very similar in the four environments. The correlations 
showed that related traits (fruit, leaf or stem) cluster together. This clustering was further 
confirmed in our QTL mapping results as QTLs with pleiotropic effects were found for the 
correlated traits. Leaf area (LA) was found to be correlated with other vegetative traits such as 
DWL, DWS, DWV, DWP and SLA; hence the major QTL governing LA on LG 2 was also 
picked up for these traits. The same scenario was observed for DWF, NF, pt_frt and pt_stem 
with a QTL influencing them also on LG 2 but at a different position from the QTL affecting 
leaves. The QTLs on LG 3a and 12 are important for early vegetative development as they 
affected both Axl and NLE. 
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A number of studies have already assessed performances of many fruit and some vegetative 
phenotypes of pepper (Ben Chaim et al., 2001b; Rao et al., 2003; Zygier et al., 2005; Ben 
Chaim et al., 2006a; Barchi et al., 2009; Mimura et al., 2010). In all of these studies, traits 
were assessed in a single environment; hence comparing the performances of their 
populations between environments was not possible. Ben Chaim et al. (2001b) and Rao et al. 
(2003) investigated a possible year effect on some fruit and yield-related traits but plants were 
grown only in summer season and at one location. We have gone further by considering two 
seasons (summer and winter) and two geographical locations (Temperate and Mediterranean). 
Generally speaking, our population behaved fairly consistent in all the environments. There 
were however some differences in the performances of the RILs between the two locations 
(SP and NL) and between seasons. For most traits, the RILs showed higher phenotypic values 
in the Mediterranean climate (SP) than in the temperate (NL) and also generally higher in 
autumn than spring (SP2 > SP1 and NL2 > NL1). Consequently, the number, level of 
expression, fraction of variance explained and effect sizes of QTLs for most of the traits 
varied among environments. Most of the differences in QTLs found across environments were 
quantitative and not qualitative, i.e. they showed the same sign in all the environments and 
only differed in magnitude. The most significant QTL for LA, found on LG 2, was picked up 
in all environments with highest level of expression in SP2 which also had the highest 
phenotypic mean for this trait. The same situation occurred for DWF with the most significant 
QTL on LG 2 showing highest level of expression in SP1 and SP2, the environments in which 
the highest fruit yields were obtained. Also, the most significant QTL for NLE found on LG 
12 showed the highest level of expression in SP2 and NL2. This is an indication that though 
many of these traits are genetically determined in any given environment, their degree of 
expression differs from one environment to the other. 

As has already been noted (Utz et al., 2000; Hackett, 2002), failure to detect all QTLs 
modulating a trait in any experiment might be caused by factors including the genetic 
structure of the trait, the genetic background of the parents, the size of the mapping 
population, magnitude of the experimental error, the environment and interactions between 
QTLs. In the same population like we used, Barchi et al. (2009) showed that the number of 
detected QTLs decreased with population size. Although we used a smaller population, our 
study also revealed many of the highly significant QTLs found in earlier studies on the same 
traits (Table 2.6). QTLs for fruit yield (DWF) found on LG 2 and 4 were picked up in most of 
the studies that evaluated fruit yield. The detected QTL for Axl on LG 3 in this study was also 
found in the study of Mimura et al. (2010), Alimi et al. (2010), Barchi et al. (2009) and Ben 
Chaim et al. (2001b). Some QTLs were only picked up in some of the studies possibly due to 
any of the factors listed above including lack of segregation in that particular population 
and/or population size.  

While the same genetic material was used in the four environments, we observed differences 
in the number of detected QTLs, the magnitudes of their effects and their heritabilities, 
reflecting possible QTL-by-Environment interactions. Combining data from the four 
environments and performing a multi-environment analysis would be more powerful (Boer et 
al., 2007; van Eeuwijk et al., 2010). Also pleiotropic effects of many of the QTLs were 
observed, which most likely result from relationships between the traits they govern. 
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Pleiotropy may also suggest redundancy between the measured traits, which could be avoided 
to decrease the cost of experiments. Such pleiotropic effects can be more accurately studied 
by explicit modelling of the correlation/covariance structure among the traits through a joint 
multi-trait analysis. Such joint analysis of the traits will improve the power and precision of 
QTL mapping (Jiang and Zheng, 1995). Our next task is therefore to perform multi-trait and 
multi-environment analyses of these data following the approach used in Malosetti et al. 
(2008). 

2.6. Conclusion 
In this study, we established that phenotypic performances of many pepper physiological 
traits are usually consistent across the four environments with some variations in level of 
expression. Many of the traits showed heterosis and transgressive segregation in all 
environments and mostly in the same direction. Also, for these traits the same QTLs were 
picked up across the four environments. Most QTLs were only quantitatively different 
between the environments, though some of them were environment-specific. The directions of 
the QTL effects generally followed the directions of parental mean differences for the traits. 
CM334 showed higher mean values for DWS, DWV, Pt_stem, Axl, SL, NLE, NI and INL. 
Most of the alleles increasing these traits were thus from CM334. Conversely, YW showed 
higher mean values for LA, DWL, SLA, NF, DWF, DWP, Pt_frt and Pt_leaf. Most of the 
alleles increasing these traits were thus from YW. QTLs showing pleiotropic effects on many 
traits were found on LG 1b, 2, 3a, 4, 6 and 12. The pleiotropic effects were consistent with 
physiological correlations among these traits. These results contribute to a better 
understanding of the genetics of yield-related physiological traits in pepper and represent a 
first step in the improvement of the target trait yield. 
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Appendix 2A: EU-SPICY Experimental set-up 
Table 2A1 Allocation of genotypes to subsets, plots and blocks in the NL experiments, including the number of 
genotypes (#gtp) and number of occupied plots (#plots). The cumulative (cum.) numbers are given, arriving at 
152 genotypes and 264 plots, and the number of replicates within compartment (Rep/B). 

Subset Block  Cum.   Cum. 
 1 2 3 4 #gtp #gtp Rep/B #plots #plots 

          
Common C0 C0 C0 C0 3 3 1 12 12 

 
Ladder T41   T41 3 6 2 12 24 

T12 T12   3 9 2 12 36 
 T23 T23  3 12 2 12 48 
  T34 T34 3 15 2 12 60 

 
Double D12 D12   11 26 1 22 82 

D13  D13  11 37 1 22 104 
D14   D14 11 48 1 22 126 

 D23 D23  11 59 1 22 148 
 D24  D24 11 70 1 22 170 
  D34 D34 12 82 1 24 194 

 
Single S1    18 100 1 18 212 

 S2   18 118 1 18 230 
  S3  17 135 1 17 247 
   S4 17 152 1 17 264 

Common refers to a RIL subset consisting of both parents and F1. 
Ladder refers to four RIL subsets, each consisting of three genotypes (= 12 genotypes). Each genotype appeared 
in two blocks with single replication. 
Double refers to RILs replicated once in two blocks (67 genotypes). 
Single refers to RILs with no replication (70 genotypes) 
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Table 2A2 Representation of a sample block in SP trials, xx represents the 152 genotypes replicated once each, 
dd are the dummy genotypes while b stands for border plants. 

    1   2  3   4   5   6   7   8   
b b  b  b b b b b b b   

1 b dd  xx  xx dd xx xx xx xx b   
2 b xx  xx  dd xx xx xx dd xx b   
3 b xx  dd  xx xx dd xx xx xx b   
4 b xx  xx  xx xx xx xx xx dd b   
5 b xx  xx  xx xx xx dd dd xx b   
6 b xx  dd  xx dd xx dd xx xx b   
7 b xx  xx  dd xx xx xx dd xx b   
8 b xx  xx  xx xx xx xx xx xx b   
9 b dd  xx  xx xx xx xx xx xx b   

10 b xx  dd  xx xx dd xx xx dd b   
11 b xx  xx  xx dd xx xx xx xx b   
12 b dd  xx  dd xx xx dd xx xx b   
13 b xx  xx  xx xx xx xx xx xx b   
14 b xx  xx  xx xx dd xx dd xx b   
15 b xx  xx  xx xx xx xx xx xx b   
16 b xx  xx  dd xx xx xx xx dd b   
17 b xx  dd  xx xx xx xx xx xx b   
18 b xx  xx  xx dd xx dd xx dd b   
19 b xx  xx  xx xx xx xx xx xx b   
20 b xx  xx  dd xx xx xx xx xx b   
21 b dd  xx  xx xx dd xx dd xx b   
21 b dd  xx  xx xx xx xx xx xx b   
23 b xx  xx  xx dd xx dd xx xx b   
24 b xx  dd  xx xx dd xx xx dd b   

b b  b  b b b b b b b   
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Appendix 2B: Phenotypic Mean comparison 
Table 2B1 Phenotypic Mean comparison for environment NL1 

Traits YW CM334 F1 RIL k DRIL Qmin Qmax 
LA 6441.82 2288.03 6002.91 4643.69 -0.79 -1359.22 0.02 0.08 
DWL 26.43 12.22 32.83 25.57 -1.90+ -7.26+ 0.03 0.41 
DWS 24.78 71.21 102.18 76.65 2.33+ -25.53+ 0.01 0.62 
DWV 51.84 83.52 134.45 102.15 4.22+ -32.30+ 0.03 0.77 
SLA 25.49 20.22 18.73 18.60 1.57+ -0.13 0.76 0.01 
NF 6.29 3.25 16.30 12.54 -7.59+ -3.76+ 0.09 0.81 
DWF 49.03 0.74 37.16 23.12 -0.51+ -14.04+ 0.03 0.08 
DWP 101.93 84.32 171.04 124.97 -8.85+ -46.07+ 0.06 0.80 
pt_frt 0.48 0.01 0.21 0.18 0.15 -0.03+ 0.03 0.01 
pt_leaf 0.27 0.15 0.19 0.21 0.33 0.02+ 0.06 0.07 
pt_stem 0.25 0.84 0.60 0.61 0.19 0.01+ 0.00 0.00 
Axl 21.75 38.75 36.25 27.12 0.71+ -9.13+ 0.22 0.05 
SL 23.94 73.27 78.94 59.83 1.23+ -19.11+ 0.00 0.11 
NLE 11.56 15.75 13.94 12.94 0.14 -1.00+ 0.26 0.10 
NI 4.69 5.56 6.50 6.13 3.16+ -0.37+ 0.03 0.76 
INL 1.89 2.46 2.60 2.12 1.49+ -0.48+ 0.32 0.19 

+Significant at 0.05 level of significance 
 
Table 2B2 Phenotypic Mean comparison for environment NL2 

Traits YW CM334 F1 RIL k DRIL Qmin Qmax 
LA 6648.09 2338.83 5931.49 4894.72 -0.67 -1036.77+ 0.02 0.07 
DWL 25.48 11.41 27.24 21.22 -1.25+ -6.02+ 0.04 0.23 
DWS 19.02 52.43 76.48 52.57 2.44+ -23.91+ 0.01 0.53 
DWV 43.96 63.77 104.83 73.75 5.15+ -31.08+ 0.06 0.74 
SLA 27.74 21.34 22.98 23.30 0.49 0.32 0.20 0.05 
NF 3.50 1.00 13.18 6.66 -8.74+ -6.52+ 0.09 0.69 
DWF 17.67 0.22 16.53 7.77 -0.87+ -8.76+ 0.01 0.10 
DWP 61.63 63.99 121.36 81.08 49.62+ -40.28+ 0.14 0.85 
pt_frt 0.28 0.00 0.13 0.10 0.07 -0.03 0.01 0.02 
pt_leaf 0.41 0.18 0.22 0.26 0.65+ 0.04+ 0.00 1.00 
pt_stem 0.31 0.82 0.64 0.64 0.29 0.00 0.86 0.00 
Axl 33.44 41.94 49.69 40.71 2.82+ -8.98+ 0.14 0.43 
SL 37.69 128.31 133.69 107.37 1.12+ -26.32+ 0.00 0.16 
NLE 12.63 13.44 11.81 11.97 -3.02+ 0.16 0.71 0.14 
NI 9.19 17.44 17.56 15.12 1.03+ -2.44+ 0.00 0.10 
INL 2.67 3.12 4.21 3.42 5.84+ -0.79+ 0.07 0.71 

+Significant at 0.05 level of significance 
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Table 2B3 Phenotypic Mean comparison for environment SP1 
Traits YW CM334 F1 RIL k DRIL Qmin Qmax 
LA 7399.86 3513.49 6549.43 6985.59 -0.56 436.16 0.01 0.38 
DWL 47.36 30.37 51.56 57.02 -1.49+ 5.46 0.03 0.71 
DWS 36.66 111.31 108.10 113.54 0.91 5.44 0.01 0.53 
DWV 70.01 141.67 159.66 167.35 1.50+ 7.69 0.01 0.73 
SLA 15.97 11.78 12.83 12.33 0.50 -0.50 0.37 0.01 
NF 13.17 4.67 45.50 28.98 -8.61+ -16.52+ 0.03 0.92 
DWF 144.89 3.14 131.94 66.89 -0.82+ -65.05+ 0.01 0.01 
DWP 228.90 144.81 291.60 237.45 -2.49+ -54.15+ 0.01 0.60 
pt_frt 0.63 0.02 0.46 0.28 -0.44 -0.18+ 0.01 0.00 
pt_leaf 0.21 0.21 0.18 0.24  0.06+ 0.27 0.73 
pt_stem 0.16 0.77 0.37 0.48 -0.31 0.11+ 0.00 0.00 
Axl 22.50 33.67 31.00 26.93 0.52 -4.07+ 0.16 0.07 
SL 23.28 52.43 58.28 41.39 1.40+ -16.89+ 0.01 0.06 
NLE 11.50 16.50 13.67 12.94 -0.13 -0.73 0.21 0.04 
NI 6.83 9.17 9.50 8.19 1.28+ -1.31+ 0.11 0.21 
INL 1.98 2.06 2.27 2.12 6.25+ -0.15 0.42 0.50 

+Significant at 0.05 level of significance 
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CHAPTER 3 
 

5. Multi-Trait and Multi-Environment QTL Analyses of Yield 
and A Set of Physiological Traits in Pepper 

 
 
 
 

3.1. Abstract 
For many agronomic crops, yield is measured simultaneously with other traits across multiple 
environments. The study of yield can benefit from joint analysis with other traits and relations 
between yield and other traits can be exploited to develop indirect selection strategies. We 
compare the performance of three multi-response QTL approaches based on mixed models: a 
multi-trait approach (MT), a multi-environment approach (ME), and a multi-trait multi-
environment approach (MTME). The data come from a multi-environment experiment in 
pepper, for which 15 traits were measured in four environments. The approaches were 
compared in terms of number of QTLs detected for each trait, the explained variance, and the 
accuracy of prediction for the final QTL model. For the four environments together, the 
superior MTME approach delivered a total of 47 regions containing putative QTLs. Many of 
these QTLs were pleiotropic and showed quantitative QTL by environment interaction. 
MTME was superior to ME and MT in the number of QTLs, the explained variance and 
accuracy of predictions. The large number of model parameters in the MTME approach was 
challenging and we propose several guidelines to help obtain a stable final QTL model. The 
results confirmed the feasibility and strengths of novel mixed model QTL methodology to 
study the architecture of complex traits.  

 

Keywords 

Pepper; Complex trait; Genetic Correlation; Pleiotropy; QTL by Environment Interaction; 
Quantitative Trait Locus 
  



Chapter 3 

40 

3.2. Introduction 
Yield and other complex traits of agronomic importance are typically measured for 
collections of genotypes across multiple environments, and genotype by environment 
interactions is common (GEI)1 (Van Eeuwijk et al., 2010): superiority of genotypes can 
change in relation to the environment. The statistical genetic analyses of complex traits 
showing GEI can effectively be addressed by mixed model methodology with terms for QTL 
by Environment Interaction (QEI) (Boer et al., 2007). QTLs can then be categorized 
according to the stability of their effects across different environments. A ‘constitutive’ QTL 
is consistently detected across most environments, while an ‘adaptive’ QTL is detected only 
in specific environmental conditions, or increases in expression with the level of an 
environmental factor (Vargas et al., 2006).  

For measurements obtained simultaneously for several traits, it is more appropriate to perform 
statistical analyses multivariately than univariately. This requirement is even stronger when 
biological processes are interdependent. Traits are genetically correlated and proper QTL 
mapping helps differentiating whether correlations are due to pleiotropic QTLs or closely 
linked QTLs. Analyzing correlated traits univariately, leads to higher sampling variances of 
estimated parameters and lower power for hypothesis tests. The joint analysis of multiple 
traits has been shown to improve the power and precision of QTL mapping. It has also helped 
in improving the selection of some primary traits with low heritabilities or that are difficult to 
measure by exploiting their genetic correlations with other traits (Jiang and Zeng, 1995). 

Recent advances in statistical genetics methodology have led to extensions of the traditional 
QTL mapping techniques and the mixed model is now the approach of choice (Van Eeuwijk 
et al., 2010; Vilhjalmsson and Nordborg, 2013). This is a result of the suitable framework 
offered by mixed models in handling many of the challenges present in QTL analysis, 
including simultaneous observations on many traits and across multiple environments, the 
possibility of unequal replication of genotypes either due to experimental design and/or 
missing observation and phenotypic measurements over time (Verbeke and Molenberghs, 
2000). Furthermore, mixed models do not rely on unrealistic assumptions, such as zero 
genetic correlations between environments and traits, and constant variance across 
environments. It can account for both intra- and inter-trial variability in the estimation of QTL 
effects and trait values prediction (Van Eeuwijk et al., 2010). Mixed models have been 
extensively applied in many QTL mapping settings (Anhalt et al., 2009; Boer et al., 2007; 
Hackett et al., 2001; Klasen et al., 2012; Korte et al., 2012; MacMillan et al., 2006; Malosetti 
et al., 2008; Malosetti et al., 2006; Malosetti et al., 2004; Panozzo et al., 2007; Piepho, 2000; 
Verbyla et al., 2003; Xu, 2013), ranging from single trait single environment analysis up to 
the most complex setting of multi-trait multi-environment (MTME) with various interactions 
(traits, environments and/or environmental characterizations).  

In pepper, GEI and QEI approaches have not been used previously to map multiple 
quantitative traits in multiple environments. Earlier studies focused mostly on univariate 
analyses of traits in single environments (Alimi et al., 2012; Alimi et al., 2013a; Barchi et al., 
2009; Ben Chaim et al., 2006; Ben Chaim et al., 2001; Kargbo and Wang, 2010; Lee et al., 

                                                 
1 The list of all abbreviations is given in Table 3A1 in Appendix 3A. 
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2008; Lefebvre et al., 2003; Mimura et al., 2010; Rao et al., 2003; Zygier et al., 2005). In 
MTME analysis, the most challenging aspect often arises from the number of trait by 
environment combinations (TE’s) in relation to computational requirements. This paper 
contains a large implementation of MTME in QTL analysis with emphasis on how to 
circumvent some of the computational issues that may arise due to the increase in the number 
of parameters being estimated. In this paper, we implemented three different multivariate 
modelling strategies to analyse data on a recombinant inbred line (RIL) pepper population 
(Alimi et al., 2013a; Voorrips et al., 2010; www.spicyweb.eu). These modelling strategies are 
multi environment (ME), multi trait (MT) and multi-trait multi-environment (MTME) 
analyses. We modelled genetic correlations within (between traits in a given environment) 
and between environments, and explicitly test the presence of QEI and pleiotropic QTLs. In 
the GEI stage, we performed multi-environment (ME) analysis for each trait to investigate 
GEI. In the multi-trait (MT) analysis, we combined the 15 traits for each trial in a joint 
analysis to investigate pleiotropic QTLs. We thereafter created factorial combinations of traits 
and environments for use in the MTME analysis. We employed unstructured covariance 
model which allowed each pair of TE combinations to have unique covariance. We then 
searched for main effect QTLs and QEI effects, by including genome-wide marker data. We 
investigated accuracy of predictions by the fitted QTL models from each of the three methods 
and discuss the relative improvements of the final QTL results. We further reduced the TE 
combinations through principal component analysis. QTL analysis was then performed on the 
selected components to investigate if QTLs similar to those from ME, MT and MTME 
analyses would be detected. 

3.3. Materials and Methods 

3.3.1. Plant materials, marker data and phenotypic evaluation 
We summarize the main features of the data here. A detailed description can be found in 
Alimi et al. (2013). The mapping population consists of sixth generation (F6) and still 
segregating recombinant inbred lines (RILs) of an intraspecific pepper cross between the large 
– fruited inbred cultivar ‘Yolo Wonder’ (YW) and the pungent small-fruited cultivar ‘Criollo 
de Morelos 334’ (CM 334). DNA was extracted from 149 RILs to produce information for 
455 markers assembled into 12 pepper chromosomes, covering 1705cM (Figure 3.1). The 
map used here is an improved version of the map used in Alimi et al. (2013) which had five 
chromosomes with two linkage groups each. All chromosomes now have only one linkage 
group each. The majority of markers used in the current map are SNP and SSR markers. 
Almost all the AFLP markers in the former map were discarded (Nicolaï et al., 2012). The 
percentage of missing genotype information across the full set of markers was 13.7%. None 
of the markers showed segregation distortion. 

Phenotypic evaluations of the RILs were carried out via designed greenhouse experiments 
across two locations; Spain (SP) and the Netherlands (NL). The trials were conducted under 
both spring (1) and autumn (2) weather conditions in 2009. This gave a total of four trials (i.e. 
environments); Netherlands trial in spring (NL1), Netherlands trial in autumn (NL2), Spain 
trial in spring (SP1) and Spain trial in autumn (SP2). A total of 15 traits (Table 3.1) were 
analyzed, 13 of which were already detailed in Alimi et al. (2013). Two additional traits, 
increase rate of leaf area index (LAI) and light use efficiency (LUE), were added. LAI 
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expresses mean increase in leaf area index per unit time, where time is expressed in degree-
days. LUE is the dry matter production (g) per megajoule (MJ) of intercepted global radiation. 
LUE was estimated as the slope of a graph in which the increase in total plant biomass was 
plotted against the cumulative amount of intercepted light. 

 
Figure  5.1 The final genetic map showing the 12 pepper chromosomes and positions of markers used in the study 

Table  5.1 Traits measured in each of the four SPICY environments (experiments). 
Abbreviation Trait 

DWF1 Total fruit dry weights from each plant (g) 

NF Total number of fruits 

pt_frt Proportion of the total biomass due to fruit 

DWL Dry weight of leaf (g) 

DWS Dry weight of stem (g) 

DWV Dry weight of vegetative part (g) 

LUE Dry matter production (g) per megajoule (MJ) of intercepted global radiation (g/MJ) 

LAI Mean increase in leaf area index per unit time (m2 m-2 °Cd-1) 

pt_leaf Proportion of the total biomass due to leaf  

Axl Primary Axis length (Stem length before first branching) (cm) 

SL Stem length measured 6-8 weeks after transplanting (cm) 

NLE Number of Leaves on the primary axis 

NI Number of Internodes at time 3-4 weeks after transplanting 

INL Internode length for the primary axis (cm) 

SLA Specific Leaf Area (m2/g) 
1representative for yield 

 

3.3.2. Multi-environment phenotypic and QTL analysis 
Each trait was evaluated over the four trials with the aim of investigating genotype-by-
environment interaction (GEI) and QTL-by-environment interaction (QEI). As data for this 
analysis, for each RIL, we used best linear unbiased estimates (BLUE) per environment from 
an earlier analysis reported in Alimi et al. (2013). To enhance numerical stability, for each 
trait scale effects were removed and the BLUE values were standardized such that they form a 
distribution with mean equal to zero and standard deviation equal to one.  
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Following Boer et al. (2007), the multi-environment phenotypic analysis and QTL estimation 
were combined. For QTL detection so-called genetic predictors (functions of conditional QTL 
genotype probabilities) need to be calculated. The genetic predictors were calculated at all 
455 marker positions and 184 intermediate positions for those marker intervals that were 
larger than 5cM, genomic positions will be indexed by q, with q = 1, 2,…, 639. The genetic 
predictor for individual i at genomic evaluation point q is denoted by xiq. The genetic 
predictors for the additive QTL effect had the value xiq = -1 if both alleles at a fully 
informative marker arose from parent 1 (YW), or xiq = 1 if they arose from parent 2 (CM334). 
At intermediate positions and marker positions with missing marker genotypes, these integer 
values were replaced by linear combinations of conditional QTL genotype probabilities given 
marker information. Starting with fitting single QTL models using simple interval mapping 
(SIM) (Lander and Botstein, 1989b),  ݕ௜௝ = ௝ܧ + ௝௤ߙ௜௤ݔ + ݃௜௝ +  ௜௝.    (3.1)ߝ

Where ݕ௜௝ denotes the standardized phenotype of the ith genotype (i = 1,...,149) in 
environment j ( j = 1,...,4), Ej is the environmental mean, ݃௜௝ represented the genetic effect of 
genotype i at environment j, and ߝ௜௝ represented the non-genetic component. We assumed that 
the vectors ࢏ࢍ = (݃௜ଵ, … , ݃௜௃) follow a multivariate normal distribution with zero mean and an 
unstructured VCOV matrix G i.e. ݃௜~ܰ(0,  ௝௤ was the environment-specific QTL mainߙ .(ࡳ
effect at evaluation point q. Testing for the significance of ߙ௝௤ was done through Wald tests 
(Verbeke and Molenberghs, 2000) with ܪ଴: ߙଵ௤ = ଶ௤ߙ = ଷ௤ߙ = ସ௤ߙ = 0, where α1,…,α4 
refers to the QTL effect at each of the four environments. From the fit of model (1), the map 
positions showing significant deviations from H0 were selected and the corresponding genetic 
predictors were set as cofactors in subsequent composite interval mapping (CIM) (Zeng, 
௜௝ݕ  .(1994 = ௝ܧ + ∑ ௝௖௖∈஼ߙ௜௖ݔ + ௝௤ߙ௜௤ݔ + ݃௜௝ +  ௜௝,   (3.2)ߝ
where C was the set of cofactors. The cofactor selection thresholds were determined using an 
approach described by  Li and Ji (Li and Ji, 2005), with genome-wide significance level set at 
0.05. CIM was run at least twice consecutively to confirm stability of the test statistic profiles. 
The full set of significant positions from CIM was subjected to a backward selection 
procedure to arrive at the final QTL model (Boer et al., 2007). The minimum distance 
between significant QTLs was assumed to be 20cM for the final QTL model. In the final QTL 
model significant QEI effects were determined by testing significance of environment-
specific deviations from the main environmental effect through a Wald test. In this case, an 
effect was called significant when its P-value was below the significance level of 0.05, no 
correction for multiple testing was applied at this stage. 

3.3.3. Multi-trait QTL estimation 
The specification of multi-trait (MT) model is very similar to the ME model. In the case of 
MT model, instead of having environment (E) in QTL model (2), we have trait (T). Per 
environment, there were 15 traits, resulting in four MT analyses. With the inclusion of 
multiple QTLs as cofactors, the QTL model for CIM is: ݕ௜௣ = ௣ܶ + ∑ ௣௖௖∈஼ߙ௜௖ݔ + ௣௤ߙ௜௤ݔ + ݃௜௣ +  ௜௣,   (3.3)ߝ
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where Tp (p = 1, 2,..., 15) is the trait mean, αpq is the trait-specific QTL main effect at 
evaluation point q, ݃௜௣ represents the genetic effect of genotype i for trait p, and εip is the 
residual effect. This model allowed us to explicitly model genetic correlations between traits 
by specifying an unstructured VCOV matrix among each pair of traits giving a total of 120 
parameters. It further allowed us to identify QTLs with pleiotropic effects. Synergistic 
pleiotropy refers to positive covariance between the effects of a gene or gene substitution on 
two or more traits, based upon correspondence in expression (sign of effects) with regards to 
the traits. This implies that the increasing alleles for all the traits being influenced by the 
pleiotropic QTL are from just one of the parents. In antagonistic pleiotropy, pleiotropic effects 
of a QTL are opposite in sign, positive in one context of expression and negative in another 
(West-Eberhard, 2003). 

3.3.4. Multi-Traits Multi-Environments QTL estimation 
Extension to multi-trait multi-environment (MTME) setting was achieved by combining traits 
across the four environments in a single mixed model analysis. ME and MT models are 
extended by allowing the response trait (y) to be a vector of the traits (T) and environments 
(E) combinations. The mean for the trait by environment combination, TE, is taken as fixed in 
the QTL analysis. We restricted ourselves to SIM method for the MTME as CIM could not be 
implemented successfully as a result of increase in the number of parameters after adding 
cofactors. The model for SIM is: ݕ௜௭ = ௭ܧܶ + ௭௤ߙ௜௤ݔ + ݃௜௭ +  ௜௭,    (3.4)ߝ

where TEz (z = 1, 2,..., 60) is the TE mean (z is the product of four environments and 15 traits 
= 60), αzq is the environment-specific and trait-specific QTL main effect at evaluation point q, ݃௜௭ represents the genetic effect of genotype i for TE z, and εiz is the residual effect. We 
specified an unstructured VCOV matrix for all pairs of the TE combinations, giving a total of 
1830 parameters. With the MTME model, GEI and genetic correlations between traits were 
simultaneously modelled. 

3.3.5. MTME final QTL selection and window size 
We performed the SIM scan and carried out a backward selection on the significant positions. 
An initial step was taken to determine an optimal QTL peak window size for the final QTL 
model, that is, what should be the minimum distance between consecutive QTLs at a 
chromosome. We investigated QTL window sizes ranging from 5cM to 40cM. When QTL 
window sizes above 20cM were used, some putative QTLs were missed. Using window sizes 
below 20cM led to selecting some QTLs at very close distance that affected the same set of 
traits and thus looked as representing a single QTL. A window size of 20cM was found to be 
optimum for our data and was used in the final QTL modelling step. The final QTLs were 
selected using a peak window size of 20 cM and taking into account changes in the signs of 
neighbouring QTLs. If for two QTLs next to each other, the signs for QTL effects remained 
unchanged over all TEs, the QTLs were interpreted to represent the same QTL and only the 
position showing the strongest effects was retained in the final QTL model. 

The phenotypic and QTL analyses were performed using the QTL facilities in GenStat 15 
(VSNi, 2012). 
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3.3.6. Comparisons of ME, MT and MTME approaches 
For the three QTL mapping methods, the number of significant QTLs and their explained 
variance for each of the TE combinations, e.g. Axl in NL1 (Axl.NL1) were compared. We 
also investigated whether the same QTL positions were detected for a given TE by the 
different methods. This enabled us to confirm if QTLs as detected by simpler methods were 
not lost in the more complex methods. Predictive accuracies of the models were also explored 
and compared. Predictive accuracy was defined conveniently, although slightly simplistically, 
as the correlation between BLUE and predicted phenotypic values from the final QTL models 
in the three approaches. (More in depth treatment of predictive accuracy of various QTL and 
genomic prediction methods will be submitted in a follow up paper.) 

3.4. Results 

3.4.1. Genetic correlations between traits (within and between trials) 
The genetic correlations of traits among environments are given in Table A2 in Appendix 3A, 
while the genetic correlations between traits within each trial are presented with the aid of 
biplots from the first two principal components of the traits (Appendix 3B, Figure 3B1). The 
correlations between the four environments for individual traits were mostly comparable 
(uniform correlations) and were generally moderate to high, ranging from 0.30 for NI between 
NL2 and SP1 to 0.86 for NLE between NL1 and NL2. Overall mean of the genetic correlation 
was 0.62, with the majority of the correlations above 0.5. Trait variances differed over 
environments (Appendix 3A, Table 3A3). Within trial correlations were consistent in sign 
within the trials (Appendix 3B, Figure B1). Many of the correlations were according to 
physiological expectation, considering the relationships between traits, where one trait was 
computed from others (e.g. DWV from DWS and DWL), or traits related jointly to a part of 
the plant, e.g. fruit related traits such as DWF, NF and pt_frt. There were some very high (e.g. 
between LAI and DWL) and very low (DWF and NLE) correlations, but most correlations 
between traits within environments were moderate. Some negative correlations were 
considered remarkable; they depicted resource allocation competitions between plant organs. 
For example pt_leaf was negatively correlated to fruit related traits such as NF, DWF and 
pt_frt. These negative correlations were more pronounced in SP trials than in NL trials.  

3.4.2. Multi-Environment analyses 
The plot of the CIM genome scan for DWF (yield) for the ME approach is given in Figure 
3.2. The plots of the CIM genome scans for the other traits are presented in Appendix 3C, 
Figure 3C1. Table C1 in Appendix 3C presents the QTL positions and effects for all 15 traits. 
For DWF, three significant QTLs were detected on chromosomes 2, 4 and 7, respectively. 
Two of these QTLs (C4-35cM and C7-79cM) were constitutive i.e. these showed consistent 
significant effects across the four environments. The QTL on chromosome 2 showed QEI 
effects in magnitude, but not in direction (= non-crossovers). Such QEI are regarded as 
quantitative; i.e., the effects had the same sign in all environments. Generally for most traits, 
QEI effects were quantitative. However, one QTL on chromosome 11 (~70cM) showed 
significant crossover interactions (i.e. qualitative QEI) for the traits LUE, Axl, SL and INL in 
SP1 and SP2 environments. This particular QTL may be categorized as location specific and 
adaptive as it was significant only in Spanish trials (Appendix 3C). 
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Figure 3.2 CIM Profile plot of the Multi-Environment analyses for yield (DWF)  
The top section shows the P-values of tests for QTL main effects. The bottom section shows heat maps along the 
genome for each environment, where blue means that the YW allele had a significant positive effect and red 
means that the CM334 allele had a significant positive effect in that environment (the darker the colour, the 
higher the significance level of the QTL). Three QTLs were detected on chromosomes 2, 4 and 7. The QTLs 
showed no crossovers across environments. 

3.4.3. Multi-trait analyses  
The plots of CIM genome scans for the MT analysis in the four environments (Figure 3.3) 
showed many significant QTLs across the genome, influencing different traits to different 
magnitude and direction. After applying backward selection on the CIM scan, a total of 13, 
17, 16 and 15 QTL regions exceeded the significance threshold in NL1, NL2, SP1 and SP2 
respectively. All QTLs showed pleiotropic effects, i.e., multiple traits were affected by the 
same QTL. A few of these pleiotropic QTLs displayed synergistic pleiotropic effects while 
many of them showed antagonistic pleiotropic effects. Clear examples of synergistic 
pleiotropic QTLs were found on chromosomes 4@70cM in NL1, 4@11cM in NL2, 7@35cM 
in NL2 and 3@40cM) in NL1. An example of an antagonistic QTL was present on 
chromosome 3 (~150cM) in SP2. This QTL showed increasing effects from YW on fruit 
related traits (DWF and pt_frt) and increasing effects from CM334 on other traits such as SL, 
NLE, NI, Axl and LUE. Many of these pleiotropic QTLs are consistent with genetic 
correlations among the traits. As an example, the QTLs on chromosomes 2 and 4, influencing 
pt_leaf and fruit traits such as DWF showed antagonistic pleiotropy especially in SP trials, 
which is consistent with the negative correlations that exist between pt_leaf and the fruit 
traits. For many traits, MT analyses revealed more QTLs than the ME analyses (Table 3.2). 
These QTLs also explained more genetic variations than those from ME analyses. In SP2, 
about 10 QTLs were detected for DWF including the three QTLs detected in ME analyses. 
These QTLs explained about 45% of genetic variation against 29% explained by the three 
QTLs from ME analyses. The MT QTL positions and effects for each of the environments are 
presented in Appendix 3D.  
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Figure  5.3 CIM Profile plots of the Multi-Trait analyses for the four environments 
The top section shows the P-values of tests for QTL main effects. The bottom section shows heat maps along the 
genome for each trait, where blue means that the YW allele had a significant positive effect and red means that 
the CM334 allele had a significant positive effect on the given trait (the darker the colour, the higher the 
significance level of the QTL). Most of the QTLs showed pleiotropies which were most times antagonistic. 
 

Table  5.2 Comparison of Number of QTLs (#QTL) and Explained Variance (H2(qtl)) from SE, ME, MT and MTME 
models 

  Number of QTLs (#QTL)  QTL Variance Explained (H2
(qtl))    

Trait Method NL1 NL2 SP1 SP2  NL1 NL2 SP1 SP2  Avg. #QTL Avg. H2
(qtl) 

DWF SE 1 2 3 3  18 18 25 37  2.3 25 
 ME 2 3 3 3  21.8 24.9 39.6 28.7  2.8 28.8 
 MT 4 8 9 10  23.6 46 42.8 44.6  7.8 39.3 
 MTME 7 10 10 13  32.1 53.1 44.3 56  10.0 46.4 

NF SE 0 1 4 3  0 10 31 34  2.7 25 
 ME 4 2 2 3  20.4 14 15.2 33.5  2.8 20.8 
 MT 2 7 3 6  7.7 33.1 17.5 39.5  4.5 24.5 
 MTME 6 9 7 4  27.4 40.6 35.3 28.9  6.5 33.1 

pt_frt SE 0 0 4 3  0 0 32 26  3.5 29 
 ME 4 3 6 3  42.1 34.1 66.6 36.4  4.0 44.8 
 MT 5 7 5 5  25.2 35.3 34.1 27.9  5.5 30.6 
 MTME 7 11 10 10  33.2 54 46.3 44.3  9.5 44.5 

DWL SE 2 3 2 3  25 28 18 39  2.5 27.5 
 ME 5 5 6 5  43.4 46.1 53.8 44.3  5.3 46.9 
 MT 4 4 6 4  33.3 33 32.4 48.5  4.5 36.8 
 MTME 7 6 13 7  41.7 34 60.4 52  8.3 47.0 

DWS SE 1 2 3 1  11 18 28 11  1.8 17 
 ME 1 1 2 3  10.6 12.4 29.6 26.6  1.8 19.8 
 MT 4 2 4 3  25.7 23.5 34.6 21.3  3.3 26.3 
 MTME 7 4 7 4  33.6 21.6 48.9 23.2  5.5 31.8 

DWV SE 0 1 1 2  0 16 9 23  1.3 16 
 ME 1 2 2 2  6.7 10.9 18.1 23  1.8 14.7 
 MT 3 3 6 4  23.3 21.7 32.8 32.6  4.0 27.6 
 MTME 6 3 8 6  34.4 18.4 52.9 39.7  5.8 36.4 

 

Test profile and additive effects: MT_NL1
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LUE SE 2 1 1 4  26 14 17 31  2 22 
 ME 3 2 2 3  25.8 19.5 11.6 22.5  2.5 19.9 
 MT 6 2 5 4  32.3 15.5 24.3 33.7  4.3 26.5 
 MTME 8 8 10 12  44.6 36 49.3 52.4  9.5 45.6 

LAI SE 2 3 2 2  33 48 22 42  2.3 36 
 ME 4 4 6 5  37.4 49.7 57.8 42.7  4.8 46.9 
 MT 4 4 5 4  30 39.9 31.6 50.9  4.3 38.1 
 MTME 5 7 10 7  35.9 44.4 47.8 46.8  7.3 43.7 

pt_leaf SE 3 4 2 2  26 34 19 12  2.8 23 
 ME 1 1 3 5  8 12.2 25.3 48.3  2.5 23.5 
 MT 3 4 6 5  23.7 28.8 30 28.5  4.5 27.8 
 MTME 6 7 10 7  33.4 31.3 45.5 33.6  7.5 36.0 

Axl SE 3 5 0 3  38 31 0 24  3.7 31 
 ME 3 3 5 2  40.3 26.2 30.6 14.5  3.3 27.9 
 MT 5 5 5 6  39.5 26.5 27.1 33.4  5.3 31.6 
 MTME 10 5 10 6  46.5 26.2 42.4 30.1  7.8 36.3 

SL SE 3 4 1 5  22 35 14 30  3.3 25 
 ME 3 2 4 3  24.4 22.4 44.6 28.3  3.0 29.9 
 MT 5 5 5 6  39.7 34.3 35.3 42.4  5.3 37.9 
 MTME 6 6 11 9  35.9 38 61.6 45.7  8.0 45.3 

NLE SE 2 2 3 1  36 42 29 36  2 36 
 ME 2 2 2 2  38.8 23.1 31.6 42.1  2.0 33.9 
 MT 3 4 4 3  31.3 22.8 35.7 42  3.5 33.0 
 MTME 9 4 8 8  61.6 26.8 58.2 63.4  7.3 52.5 

NI SE 3 3 2 4  34 40 26 37  3 34 
 ME 1 1 3 3  18.7 29 36.1 38.1  2.0 30.5 
 MT 5 2 5 5  26 25.8 45.3 37.8  4.3 33.7 
 MTME 7 5 6 10  37.7 26.8 52.6 48.1  7.0 41.3 

INL SE 4 3 3 0  42 24 29 0  3.3 32 
 ME 4 3 5 2  42.8 23.7 50.4 17.3  3.5 33.6 
 MT 4 7 6 3  34.1 32.6 37.5 13.6  5.0 29.5 
 MTME 11 10 11 13  50.1 45.3 59 61.4  11.3 54.0 

SLA SE 1 1 3 5  13 14 36 49  2.5 28 
 ME 2 4 5 5  7.1 33.5 39.4 39.9  4.0 30.0 
 MT 3 2 4 5  8.4 12.2 38.5 33.7  3.5 23.2 
 MTME 4 5 7 8  27.1 31.2 36.8 48.4  6.0 35.9 

Means Across Traits SE 1.8 2.3 2.3 2.7  21.6 24.8 22.3 28.7  2.6 27.1 
ME 2.7 2.5 3.7 3.3  25.9 25.4 36.7 32.4  3.1 30.1 
MT 4.0 4.4 5.2 4.9  26.9 28.7 33.3 35.4  4.6 31.1 

MTME 7.1 6.7 9.2 8.3  38.3 35.2 49.4 44.9  7.8 42.0 
 

3.4.4. Multi-trait multi-environment analysis 
The plot of the SIM genome scan for the MTME analysis using an unstructured VCOV is 
given in Figure 3.4. A total of 47 regions were identified as harbouring putative QTLs. 
Chromosomes 4 and 10 had the smallest number of QTLs (=2) while chromosomes 1 and 3 
had the highest number of QTLs (=6). Similar to the results from MT analyses, pleiotropic 
QTLs were observed for genetically correlated traits. The majority of the 47 QTLs showed 
antagonistic pleiotropic effects, i.e., the increasing alleles originated from both parents for 
different traits. Five QTL with synergistic pleiotropic effects for the YW parent (contributing 
the increasing allele) were found on chromosomes 2 (31cM), 4 (53cM), 7 (0cM), 11 (20cM), 
and 12 (75cM). Also for parent CM334, five of these QTL were found on chromosomes 2 
(128 cM), 3 (135 cM), 5 (38 cM), 6 (0 cM), and 8 (19 cM). The majority of the pleiotropic 
QTLs were not constitutive as they were not consistently affecting particular traits across all 
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environments. This means that many of the QTLs displayed QEI. The QEI were mostly 
quantitative, but there were some qualitative QEI especially on chromosome 11 for LUE, Axl, 
SL and INL, similar to the results from ME analyses. Table 3.3 contains the list of QTL 
positions from chromosomes 1 and 2 as detected from MTME analysis after backward 
selection. Results for the remaining chromosomes are in appendix 3E, Tables 3E1 to 3E4. 

 
Figure  5.4 SIM Profile Plot for Multi-Trait Multi-Environment Analysis 
The top section shows the P-values of tests for QTL main effects across all trait-environment combinations with the bars on 
the x-axis indicating the 47 QTL positions after backward selection. The bars in red indicate QTL positions similar to 
significant positions from ME and MT analyses while those in black are unique to MTME. The bottom section shows heat 
maps along the genome for each trait, where blue means that the YW allele had a significant positive effect and red means 
that the CM334 allele had a significant positive effect on the given trait-environment (the darker the colour, the higher the 
significance level of the QTL).  
 

3.4.5. Comparison of MT, ME, and MTME results 
In environment SP2, a total of 13 QTLs were detected for DWF in the MTME analysis, 3 and 
10 more than those from MT and ME analyses respectively. The percentages explained 
variances by these QTL jointly were 56%, 45% and 29% in the MTME, MT and ME analyses 
respectively (Table 3.2). QTL effects for DWF on chromosomes 3 and 4 were significant in 
the four environments. DWF QTLs were in many cases pleiotropic to other yield related traits 
such as pt_frt and NF. Such pleiotropic QTLs were observed on chromosomes 2, 3, 4, 6 and 
12 (Figure 3.5). Pleiotropy with other traits was also observed such as with Axl, NI and INL 
on chromosome 1; with DWL, DWS, DWV, LAI, LUE and INL on chromosome 2. Others 
were with LUE, SLA, SL and NI on chromosome 6 and NLE, NI and INL on chromosome 
12.  
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Figure  5.5 Comparing QTL positions from SE, ME, MT and MTME analyses for yield related traits (DWF, NF & 
pt_frt) across the four environments. 
Blue indicates QTLs with significant effect from YW allele while red indicates QTLs with significant effect from CM334 
allele. QTLs detected in SE, ME and MT analyses were present in QTLs from MTME with additional QTLs only picked up 
in MTME 
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Figure 3.6 shows the joint distribution of total percent of variation attributable to QTLs from 
the MTME model, which ranges  from three QTLs explaining about 19% to 13 QTLs 
explaining 60%. This revealed varying contributions of different QTLs to the total amount of 
variation explained. In general, the proportions of variation explained were positively 
correlated to the number of detected QTLs. However, for some traits fewer QTLs explained 
similar percentages of variation as other traits with more QTLs. For example, eight QTLs for 
NLE.SP2 explained more variation (63.4%) than 13 QTLs for INL.SP2 (61.4) and DWL.SP1 
(60.4%). This was consistent with the presence of a few QTLs with large effects for some 
traits and many QTLs of smaller effects for other traits. On average over the four 
environments, INL and NLE had the highest proportion of explained genetic variance (54% 
and 53%, respectively), this proportion was 46% for DWF while DWS and NF had the lowest 
proportions of 32% and 33%, respectively (Table 3.2). 

Table 3.2 gives the number of QTLs together with their explained variance for each of the 15 
traits in the four environments using ME, MT and MTME methods and also results from 
single trait single environment (SE) QTL analysis for comparison. As we used a different map 
in this study, the results for the SE analysis here was slightly different from those reported in 
Alimi et al. (2013). In principle, the QTL approach for SE is similar to other methods 
explained except that each trait in each environment was handled univariately. CIM was also 
used to account for multiple QTL. For each trait in each environment, there was a clear 
increase in the number of QTLs and explained variance going from ME to MT to MTME. 
There was also a clear gain in going from univariate analysis to multivariate analyses and in 
modelling correlations among environments and among traits within an environment. As an 
example, 1, two, four and seven QTLs were identified for DWF in the NL1 trial using SE, 
ME, MT and MTME methods respectively explaining about 18%, 22%, 24% and 32% of 
genetic variations respectively. Ten QTLs explaining 44% of the variance were detected for 
pt_frt in SP2 trials as against five (28%), three (36%) and three (26%) QTLs for MT, ME and 
SE respectively. The percentages explained variation by individual QTLs from ME, MT and 
MTME ranged from 3% to 35% (Figure 3.7). The MTME method yielded many QTLs of 
small effects (between 3% - 8%) that were not detected in both ME and MT methods. Also, 
MT and ME had more QTLs that explained 10% - 20% variation than MTME. This might be 
related to the “Beavis effect” (Beavis, 1994, 1997) as simpler models failed to detect some 
QTLs with small effects and also resulted in overestimation of some effect sizes. 

Almost all QTLs detected in simpler methods were also detected in more complex methods. 
Using fruit-related traits for illustration (Figure 3.5), the three QTLs picked up for DWF in 
SP2 by SE method were also picked up by ME, MT and MTME methods. The positions of 
the three QTLs shifted slightly for MT and MTME as a result of their effects on other traits. 
The directions of their effects were also consistent. The QTL on chromosome 7 was 
significant in all environments under the ME method, but it disappeared for NL1, NL2 and 
SP1 trials using any of the other three methods. Many of the extra QTLs detected in MT were 
also detected in MTME. Similar patterns were observed for NF and pt_frt (Figure 3.5).  

The prediction accuracies of the final QTL models for each trait under ME model were 
largely similar across environments, though prediction accuracies from SP trials were slightly 
higher in most cases (Table 3.4). Highest prediction accuracy for DWF under the ME model 
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(0.54) was obtained in SP environments. This agreed well with our earlier findings that the 
three QTLs found for DWF under the ME model explained far more variation in SP 
environments than in NL environments. This also indicated the presence of QEI for this trait. 
There was an improvement of trait predictions going from ME to MT and MTME models. 
The fitted QTL model from MTME predicted trait phenotypes better than MT and ME 
models. Prediction accuracies for DWF improved from about 0.54 under the ME model to 
about 0.7 under MT and 0.83 under MTME. Furthermore, the genetic correlations between 
predicted traits in each environment were similar to genetic correlations between BLUEs 
(appendix 3B). 

Table  5.4 Predictive accuracy of final QTL models from ME, MT and MTME analyses. 
Predictive accuracy is defined here in terms of correlation between BLUE and fitted phenotypic values. These 
values should be viewed as the upper limit of the predictive accuracies as they are not based on cross validation. 

 NL1 NL2 SP1 SP2 Mean 
Trait ME MT MTME ME MT MTME ME MT MTME ME MT MTME ME MT MTME 
DWF 0.39 0.51 0.71 0.35 0.60 0.75 0.54 0.70 0.83 0.53 0.64 0.81 0.45 0.61 0.78 
NF 0.38 0.36 0.63 0.35 0.54 0.72 0.48 0.57 0.76 0.51 0.63 0.78 0.43 0.53 0.72 

pt_frt 0.51 0.50 0.67 0.42 0.60 0.72 0.73 0.71 0.80 0.52 0.56 0.76 0.55 0.59 0.74 
DWL 0.65 0.63 0.80 0.64 0.71 0.73 0.63 0.65 0.79 0.71 0.71 0.79 0.66 0.68 0.78 
DWS 0.35 0.54 0.65 0.45 0.55 0.62 0.49 0.64 0.74 0.40 0.51 0.67 0.42 0.56 0.67 
DWV 0.32 0.53 0.66 0.43 0.58 0.62 0.37 0.60 0.72 0.41 0.57 0.70 0.38 0.57 0.68 
LUE 0.47 0.54 0.75 0.45 0.51 0.63 0.40 0.53 0.77 0.51 0.65 0.77 0.46 0.56 0.73 
LAI 0.59 0.62 0.75 0.69 0.73 0.78 0.65 0.64 0.76 0.70 0.75 0.81 0.66 0.69 0.78 

pt_leaf 0.40 0.55 0.72 0.35 0.63 0.73 0.43 0.62 0.77 0.59 0.59 0.76 0.44 0.60 0.75 
Axl 0.58 0.67 0.83 0.46 0.61 0.72 0.50 0.55 0.80 0.48 0.63 0.74 0.51 0.62 0.77 
SL 0.50 0.64 0.75 0.51 0.65 0.72 0.54 0.60 0.80 0.59 0.68 0.81 0.54 0.64 0.77 

NLE 0.61 0.66 0.81 0.47 0.64 0.68 0.55 0.68 0.77 0.65 0.69 0.77 0.57 0.67 0.76 
NI 0.46 0.6 0.72 0.55 0.66 0.67 0.58 0.67 0.77 0.60 0.71 0.82 0.55 0.66 0.75 
INL 0.61 0.66 0.83 0.45 0.64 0.76 0.67 0.71 0.88 0.39 0.51 0.72 0.53 0.63 0.80 
SLA 0.34 0.32 0.55 0.43 0.45 0.65 0.64 0.65 0.80 0.66 0.67 0.85 0.52 0.52 0.71 

Mean 0.48 0.56 0.72 0.47 0.61 0.70 0.55 0.63 0.78 0.55 0.63 0.77 0.51 0.61 0.75 

 
 
 

 
Figure  5.7 Histogram of Explained Variance by individual QTLs as detected by ME, MT and MTME analyses. 
MTME produced far more QTLs than ME and MT but many of the extra QTLs from MTME are of small effects 
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3.5. Discussion 
Several studies have shown that multi-trait and/or multi-environment QTL analyses based on 
linear mixed models are more powerful and effective to map pleiotropic QTL and QTL by 
environment interactions than performing single trait and single environment analyses (Boer 
et al., 2007; Korte et al., 2012; Malosetti et al., 2008; Sukhwinder et al., 2012). We also 
showed that in situations such as the EU-SPICY project (Barócsi, 2012; Nicolaï et al., 2012; 
Van der Heijden et al., 2012; Voorrips et al., 2010; www.spicyweb.eu), where phenotypic 
data on a large number of traits have been collected in multiple environments, using QTL 
methods that properly model underlying VCOV structures among the traits and between 
environments led to improved power to detect more QTLs than performing individual 
trait/environment analyses. The joint analysis was especially suitable for complex traits (such 
as yield) whose genetic variations are usually due to a large number of QTLs of smaller 
effects which might go undetected with single trait/environment analysis.  

We performed and compared three mixed modelling approaches that modelled correlations 
between environments and/or among traits within an environment. In multi-environment 
studies, independent analyses without explicit modelling of the correlation structure between 
environments would not allow to identify GEI and QEI. In multi-traits datasets, univariate 
analysis that do not account for possible correlations among the traits would not allow us to 
properly identify QTLs with pleiotropic effects. The probability of finding QEI and/or 
pleiotropic QTLs is influenced by the magnitude of genetic correlations between 
environments and between traits within each environment respectively. It was expected that 
QTLs with identical effect directions will be detected for highly correlated traits while no 
common QTLs may be detected for non-correlated traits. Equally, high between-trial 
correlations would reduce the incidence of QEI. Pleiotropic QTLs that showed effects with 
trait increasing alleles from both parents are more likely to be detected for traits with negative 
correlations. The pepper traits considered showed positive and mostly uniform correlations 
between environments. This was also supported by the QEI results as most of the QEI 
observed were only due to differences in magnitude, and not different in direction. In our 
multi-trait analysis, synergistic pleiotropic QTLs were picked up for positively correlated 
traits. The pleiotropy was usually consistent across the four environments. Also, antagonistic 
pleiotropic QTLs were found for negatively correlated traits. These negative correlations 
depicted resource allocation competitions that exist between plant organs e.g. leaf and fruit 
related traits. 

Factorial combinations of traits and environments and their joint analysis through the MTME 
method significantly increased the power of QTL detection with increased precision. This 
model fully utilizes covariance structures between environments and among traits within 
environments, and hence is better capable of mimicking biological process for complex traits 
than fitting ME and MT models separately. Considering yield, the results from SE and ME 
analyses showed that all the alleles increasing yield originated from the large fruited YW 
parental line. However, MT and MTME permitted to detect also favourable alleles from the 
small fruited parent CM334 on chromosomes 3, 5, 7, 11 and 12 (Figure 3.5). All those QTLs 
displayed pleiotropic effects with number of fruits (NF) and/or proportion of partitioning to 
fruit (pt_frt). The detection of these QTLs with MTME will permit to take it into account 
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when selecting recombinant individuals for high yield. This is more generally true since QTLs 
for vegetative traits were mainly restricted to chromosomes 1, 2 and 9, and to chromosomes 2, 
3, 4 and 10 for fruit traits in the previous SE analyses (Alimi et al., 2012; Alimi et al., 2013a; 
Barchi et al., 2009; Ben Chaim et al., 2006; Rao et al., 2003). Since MTME model and also 
ME and MT models are based on mixed modelling technique, they are capable of handling 
unbalanced data in situation where not all traits are measured in all environments. 

However, it is not in all situations that an MTME model can be successfully fitted. In 
situations where linear dependencies exist among some traits in the combination, some of 
these traits might need to be removed or transformed before an MTME fit can be successful. 
As an example, the total plant biomass (DWP) was partitioned to fruit (pt_frt), leaf (pt_leaf) 
and stem (pt_stem) components. We had to remove DWP and one of the partitioned 
components (pt_stem) before we could successfully fit the MTME model. However, we 
decided to leave some of the dependent traits such as DWV, DWS and DWL in our model as 
their presence did not affect the success of the MTME model. Also, this problem is more of 
combinatorial issue than correlation. As an example, DWF and pt_frt in our model are very 
correlated (about 0.9). When traits are very correlated, the method can still be successful 
unless the number of combinations to be handled are big with some linear dependencies 
among the traits.  

MTME models might also prove difficult to fit due to the increase in the number of 
parameters to be estimated in the REML step as a result of large number of TE combinations. 
This becomes more laborious if markers (genetic predictors) are specified in the model as 
cofactors. If the problem occurs after adding cofactors, the result from the simple interval 
mapping could be subjected to backward selection before applying the final QTL model using 
appropriate QTL window size to separate the QTL positions. With a large QTL window size, 
some putative QTLs are lost while a small QTL window size could lead to declaration of 
duplicate QTLs. Duplicate QTLs could be detected via careful visual inspections of the QTL 
effect signs. If the signs of two neighbouring QTLs remain unchanged over all the traits, the 
QTLs can be regarded as one. For example, consider four traits T1, T2, T3 and T4 being 
influenced by three QTLs Q1, Q2 and Q3 that are very close to each other on a chromosome. 
If the effects of the three QTLs on the four traits follow these sequences: Q1 = {+,+,-,+}, Q2 
= {+,+,-,+} and Q3 = {+,+,-,-}. Then Q1 and Q2 could be regarded as one QTL since the 
patterns are identical while Q3 is a different QTL from Q1 and Q2 because of the change in 
effect sign on T4. Furthermore, the appropriate QTL window size can be analytically checked 
using the Weller and Soller (2004) approach. In our case, the appropriateness of a 20cM peak 
window size was confirmed by analytically calculating the required confidence intervals for 
QTL location for a RIL population of our size given the magnitude of QTL effects (Weller 
and Soller, 2004). For the standardized traits, this was found to be around 15cM assuming 
(standardized) effect size of 0.25 with sample size of 149 and heritability of 0.25. It should be 
noted that this calculation was for univariate analysis with no multivariate correction. The 
actual interval in the multivariate case would even be smaller. So taking the smallest interval 
across all traits and environments can be seen as the upper bound of the interval in the 
multivariate sense. In our case the effects from many of the detected QTLs were more than 
0.25 with the highest being around 0.6.This means that 15cM is like the upper bound for the 
interval. 
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In this study, we successfully applied the MTME approach to a dataset of 60 TE 
combinations. A simple approximating approach would have been to first apply data 
reduction techniques such as principal component analysis to reduce the number of variables 
and then perform a QTL analysis on the new set of variables, the principal component scores, 
just to identify the major genomic regions where DNA variation affects trait variation. We 
explored this approach – taking the scores of the first 10 principal components as trait values, 
and found that it produced most of the important QTLs underlying the original variables. That 
is, 16 QTLs were detected with high correspondence to significant QTLs from SE, ME, MT 
and MTME analyses (Figure 3.8). A major drawback of the use of principal components is the 
biological interpretation of the results, but as method to identify the most interesting genomic 
regions, it performs well.  

 
Figure  5.8 CIM Profile plot of the Multi-Trait analyses for scores from 10 PCs. 
The top section shows the P-values of tests for QTL main effects. The bottom section shows heat maps along the genome for 
each PC, where blue means that the YW allele had a significant positive effect and red means that the CM334 allele had a 
significant positive effect on the given PC. 
 

The QTL identified in this study will be aligned with eQTL results from a gene expression 
study in the same EU-SPICY project, (M. Vuylsteke, personal communication). The eQTL 
results will provide a set of candidate genes co-located with the QTL for yield and, hence, 
being likely involved in growth of pepper. Identifying these candidate genes would increase 
insight into the functioning of the pepper plant, and also increase efficiency of breeding, since 
this allows multiple alleles to be found within the gene, accounting for different phenotypes. 
Successful candidate genes, whose sequence position is related to QTL position, will be used 
to assess the marker-phenotype association in a core collection of pepper accessions (Nicolaï 
et al., 2012). Such an association genetics approach will be helpful in further selection of 
candidate genes, and will provide us with potential allelic values for phenotype prediction. 

In conclusion, multivariate QTL mapping methods such as the MTME approach are 
instrumental to boost the power and accuracy of QTL detection for complex traits by 
successful identification of QTLs with relatively small effects. It would also lead to better 
detection of alleles in repulsion phase, differential allele expression according to 
environments and an increased explained variance for most complex traits. This would lead to 
improvement in the prediction of phenotype by the genotype and thus the genetic gain in 
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genome assisted breeding. This will ultimately increase our understanding of complex traits 
and our ability to use QTL in genome-assisted breeding. 
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Appendix 3A: Traits Description 
Table 3A1 Description of abbreviations used in the manuscript 

Abbreviation Description 
VCOV Variance-Covariance 
REML REstricted Maximum Likelihood 
QTL(s) Quantitative Trait Locus (Loci) 
BIC Bayesian Information Criterion 
SE/STSE Single Trait Single Environment 
ME Multi - Environment 
MT Multi - Trait 
MTME Multi - Trait Multi - Environment 
SIM Simple Interval Mapping 
CIM Composite Interval Mapping 
QEI QTL by Environment Interaction 
GEI Genotype by Environment Interaction 
BLUE Best Linear Unbiased Estimation 
RIL(s) Recombinant Inbred Line(s) 
TE Trait-Environment 
eQTL Expression QTL 
YW Yolo Wonder parental line 
CM334 Criollo de Morelos 334 parental line 
GEI Genotype by Environment 
NL1 Netherlands phenotypic experiment in Spring 
NL2 Netherlands phenotypic experiment in Autumn 
SP1 Spain phenotypic experiment in Spring 
SP2 Spain phenotypic experiment in Autumn 

Table 3A2 Trait genetic correlations between environments.  
 NL1.NL2 NL1.SP1 NL1.SP2 NL2.SP1 NL2.SP2 SP1.SP2 

DWF 0.72 0.60 0.61 0.53 0.62 0.58 
NF 0.70 0.55 0.54 0.49 0.65 0.41 

pt_frt 0.69 0.65 0.67 0.54 0.72 0.57 
DWL 0.74 0.75 0.67 0.61 0.69 0.69 
DWS 0.67 0.67 0.56 0.51 0.57 0.53 
DWV 0.68 0.64 0.54 0.46 0.55 0.50 
LUE 0.64 0.45 0.60 0.34 0.64 0.36 
LAI 0.73 0.76 0.70 0.67 0.75 0.79 

pt_leaf 0.68 0.61 0.55 0.49 0.54 0.66 
Axl 0.74 0.69 0.54 0.74 0.66 0.61 
SL 0.78 0.67 0.66 0.60 0.84 0.48 

NLE 0.86 0.82 0.69 0.81 0.78 0.67 
NI 0.76 0.51 0.65 0.30 0.69 0.40 

INL 0.68 0.64 0.33 0.71 0.52 0.48 
SLA 0.64 0.52 0.55 0.53 0.62 0.53 

Table 3A3 Trait Variances in each environment 
Trait NL1 NL2 SP1 SP2 
DWF 281.13 40.96 1345.35 1073.79 
NF 49.67 21.52 121.84 130.76 
pt_frt 1.4 0.6 1.9 1.3 
DWL 60.06 38.74 260.63 145.95 
DWS 420.87 196.97 802.33 482.03 
DWV 659.18 323.96 1794.20 953.33 
LUE 0.06 0.04 0.02 0.02 
LAI 0.49 1.01 0.24 0.19 
pt_leaf 0.2 0.3 0.2 0.1 
Axl 42.82 56.53 23.40 20.98 
SL 142.35 552.94 64.88 149.99 
NLE 4.24 2.99 3.51 2.01 
NI 0.64 5.32 1.46 1.45 
INL 0.19 0.36 0.16 0.18 
SLA 6.10 9.83 2.99 5.90 
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Appendix 3B: Biplots for BLUEs and fitted trait values 
Figure 3B1 Biplots for BLUEs and fitted trait values in each environment.  
NL1, NL2, SP1 and SP2 are the biplots of BLUE for the traits in each environment while NL1p, NL2p, SP1p 
and SP2p are the biplots for fitted values of each trait in each environment from the MTME QTL model. The 
cosine of the angle between the lines approximates the correlation between the traits they represent. The closer 
the angles are, the higher the correlations. Angles close to 90 or 270 degrees reflect weaker correlations. In each 
environment, angles between traits are similar for biplots from BLUEs and fitted values. E.g. the biplot for NL1 
and NL1p, show a strong relationship between DWF and NF, and a weak relationship between DWF and NLE. 
The lines enclosing the sample points in the biplots are known as convex hulls, representing the smallest convex 
set of the sample data. 

NL1     NL1p 

  
 NL2     NL2p 

  
SP1     SP1p 

  
SP2     SP2p 

  

Appendix 3C: QTL by Environment Results from the ME analyses 
Figure 3C1 CIM Profile plot for all the traits in the Multi-Environment analyses.  
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The top section shows the P-values of tests for QTL main effects. The bottom section shows heat maps along the 
genome for each environment, where blue means that the YW allele had a significant positive effect and red 
means that the CM334 allele had a significant positive effect in that environment. Many of the QTLs are 
constitutive i.e. consistent across environments with no crossover interaction except the QTL on chromosome 11 
for LUE, Axl, SL and INL 
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Table 3C1 Environment-specific QTL-effects for all traits in ME analysis 
Negative QTL effects mean that the YW allele gives higher trait values than the CM334 allele, and positive QTL effects 
mean that the CM334 allele gives higher trait values. The underlined values are significant QTL effects from CIM. QEI refers 
to presence or absence of QTL by environment interaction. Many of the QEI are only in magnitude i.e. quantitative QEI.  

Trait Marker Pos NL1 NL2 SP1 SP2 QEI 

DWF C2P93 2@93.4 -0.06 -0.15 -0.42 -0.25 YES 
DWF C4P35 4@34.6 -0.40 -0.40 -0.40 -0.40 NO 
DWF 22315 7@78.6 -0.25 -0.25 -0.25 -0.25 NO 

        
NF SP45 2@75.6 -0.28 -0.28 -0.28 -0.28 NO 
NF HpmsE008 3@119.9 0.29 0.25 0.05 0.36 YES 
NF SP451 3@195.8 -0.23 -0.06 -0.28 0.00 YES 
NF SP745 6@69.4 0.19 0.12 0.09 0.36 YES 

        
pt_frt C2P97 2@97.1 0.00 -0.08 -0.32 -0.05 YES 
pt_frt 9745 4@20 -0.34 -0.34 -0.34 -0.34 NO 
pt_frt C6P35 6@35.5 -0.45 -0.45 -0.45 -0.45 NO 
pt_frt 22315 7@78.6 -0.29 -0.29 -0.29 -0.29 NO 
pt_frt SP677 9@65.4 -0.15 0.00 -0.22 0.05 YES 
pt_frt CDKE 11@65 -0.18 -0.06 -0.31 -0.16 YES 

        
DWL C1P26 1@26 -0.29 -0.29 -0.29 -0.29 NO 
DWL SP474 2@108.4 -0.30 -0.30 -0.30 -0.30 NO 
DWL C4P66 4@65.9 -0.46 -0.46 -0.46 -0.46 NO 
DWL SP890 9@11.6 0.20 0.20 0.20 0.20 NO 
DWL C9P121 9@121.1 -0.03 -0.09 -0.28 -0.17 YES 
DWL SP170 11@76.8 -0.10 -0.09 0.15 0.09 YES 
DWL SP518 12@42.5 -0.27 -0.22 -0.21 -0.06 YES 

        
DWS SP863 6@51.7 0.35 0.35 0.35 0.35 NO 
DWS C11P35 11@35.3 0.04 -0.11 -0.06 -0.33 YES 
DWS CDKE 11@65 0.08 -0.06 0.42 0.19 YES 

        
DWV SP595 2@105.8 -0.10 -0.17 -0.09 -0.39 YES 
DWV SP863 6@51.7 0.28 0.28 0.28 0.28 NO 
DWV CDKE 11@65 0.07 -0.07 0.32 0.14 YES 
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Test profile and additive effects: INL
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Test profile and additive effects: SLA
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LUE SP119 3@0 0.44 0.09 0.06 0.15 YES 
LUE SP863 6@51.7 0.36 0.32 0.03 0.24 YES 
LUE C6P103 6@102.5 0.30 0.30 0.30 0.30 NO 
LUE SP935 11@79.3 0.05 -0.16 0.18 -0.25 YES 

        
LAI 16310 1@15 -0.22 -0.40 -0.28 -0.18 YES 
LAI C1P93 1@92.7 -0.36 -0.17 -0.20 0.03 YES 
LAI C2P103 2@103.3 -0.43 -0.43 -0.43 -0.43 NO 
LAI C4P66 4@65.9 -0.36 -0.36 -0.36 -0.36 NO 
LAI 22315 7@78.6 0.15 0.02 0.30 0.19 YES 
LAI 19369 9@118 0.00 -0.15 -0.26 -0.21 YES 

        
pt_leaf C2P86 2@86.4 0.03 -0.02 0.30 0.39 YES 
pt_leaf 23714 2@116 -0.16 -0.11 -0.10 -0.39 YES 
pt_leaf C4P73 4@73 -0.36 -0.36 -0.36 -0.36 NO 
pt_leaf 22315 7@78.6 -0.06 -0.08 0.27 0.25 YES 
pt_leaf 10035 11@81.4 -0.01 0.05 0.10 0.28 YES 

        
Axl SP580 1@112.1 -0.26 -0.26 -0.26 -0.26 NO 
Axl SP474 2@108.4 0.09 0.01 -0.24 -0.05 YES 
Axl C7P20 7@19.8 -0.55 -0.34 -0.27 -0.04 YES 
Axl Epms_410 11@66.4 -0.05 -0.05 0.17 -0.16 YES 
Axl SP729 12@21.9 -0.28 -0.28 -0.28 -0.28 NO 

        
SL C1P100 1@100.2 -0.24 -0.01 -0.18 0.05 YES 
SL 16929 3@160.8 0.28 0.28 0.28 0.28 NO 
SL E1-1 4@2.7 0.08 -0.08 0.07 -0.24 YES 
SL SP863 6@51.7 0.39 0.39 0.39 0.39 NO 
SL 4123-2 11@74 0.05 -0.03 0.44 -0.14 YES 

        
NLE C3P156 3@156.2 0.54 0.30 0.40 0.27 YES 
NLE SP729 12@21.9 -0.45 -0.38 -0.40 -0.59 YES 

        
NI Epms_386 3@159.1 0.16 0.14 0.01 0.39 YES 
NI SP863 6@51.7 0.51 0.54 0.25 0.35 YES 
NI SP935 11@79.3 0.11 0.01 0.45 0.06 YES 
NI SP729 12@21.9 0.15 0.10 0.32 0.33 YES 

        
INL C1P96 1@96.5 -0.33 -0.33 -0.33 -0.33 NO 
INL SP474 2@108.4 0.02 -0.11 -0.30 -0.11 YES 
INL 5589 4@5.2 0.27 0.04 0.29 0.10 YES 
INL C7P24 7@24.2 -0.50 -0.25 -0.10 0.11 YES 
INL SP118 10@13.1 0.26 0.26 0.26 0.26 NO 
INL Gpms_101 11@67 0.05 0.05 0.39 -0.09 YES 

        
SLA Gpms_37 2@1.7 -0.29 -0.29 -0.29 -0.29 NO 
SLA C2P93 2@93.4 -0.32 -0.32 -0.32 -0.32 NO 
SLA 15343 3@53.8 -0.17 -0.17 -0.17 -0.17 NO 
SLA SP991 6@97.6 -0.35 -0.35 -0.35 -0.35 NO 
SLA SP147 7@93.8 -0.25 0.08 0.16 0.25 YES 
SLA 5682 11@85.5 -0.01 -0.16 -0.24 0.09 YES 
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CHAPTER 4 

 

8. Predicting complex traits in multiple environments by 
a combination of genomic prediction and crop growth 

modelling: an example in pepper 
 
 
 
 

4.1. Abstract 
The prediction of yield as a complex trait with variations across environments may be 
done using direct and indirect approaches, where the latter are based on dissection of the 
complex trait into component traits. The direct approach can be based on either QTL 
prediction (QP) or genomic prediction (GP) models for the trait itself, while the indirect 
approach can be based on a crop growth model (CGM) that prescribes a dissection of the 
complex trait into a number of component traits. We first compared the direct prediction 
performance of single-trait (ST) and multi-trait (MT) versions of both QP and GP models 
for a recombinant inbred lines population of 149 individuals in pepper. The predictive 
performances of the models were assessed using five yield related traits measured across 
four environments. The four methods differed in their predictive accuracies, ranging from 
0.11 to 0.89. MT models generally had higher predictive accuracy than ST models with 
MT-GP being the most superior for all traits across the four environments. GP methods 
outperformed QP methods in both single and multi-traits situations. In the indirect 
prediction strategy, the CGM was applied on the breeding values of yield component traits 
from both QP and GP methods. The indirect strategy was implemented for within-
environment and across-environment analyses. The predictive accuracies from CGM were 
comparable to that of the direct prediction strategy. The indirect approach seemed to work 
well at first sight, but this is especially due to the fact that yield appeared to be strongly 
driven by just one component, the partitioning to fruit. The across environment CGM 
indicated that we may use component traits and environmental information from one 
environment to predict yield in another environment. 
 

Keywords 

Complex Trait Dissection; Component Trait; Genomic Prediction; Multi-Trait model. 
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4.2. Introduction 
In plant breeding, complex traits such as yield are difficult to improve and predict, because 
complex traits can be influenced by many quantitative trait loci (QTLs) of small effects, 
many of which will show variations across environments, QTL by environment interaction 
(QEI). To predict the complex trait, we may use procedures based on QTLs or breeding 
values of the complex trait itself, i.e., direct prediction procedures. Recently, we studied 
yield in pepper as an example of a complex trait (Alimi et al., 2013b). In that study, yield 
was measured across several environments and appeared to be influenced by a number of 
QTLs of small effects, with some of these QTLs displaying QEI. In this paper, we will 
explore various prediction strategies for yield in pepper, where yield and a number of its 
component traits are used. Besides the direct prediction procedure via QTLs on the basis 
of multi-QTL models and breeding values from genomic prediction models, we will 
investigate an indirect prediction strategy for yield using a crop growth model (CGM) with 
as inputs on the one hand yield components or their genomic predictions and on the other 
hand environmental variables.  

The use of CGMs with implicit dissections of complex traits via physiological component 
traits is an exciting alternative to direct prediction of complex traits by QTLs or breeding 
values. CGMs are based on prior biological and environmental knowledge (Tardieu, 2003; 
Van Ittersum et al., 2003) and are useful for understanding complex traits in terms of 
underlying component traits (Bustos-Korts et al., 2016; Van Eeuwijk et al., 2010; 
Chapman, 2008; Hammer et al., 2006). Uptmoor et al. (2008) and Yin et al. (2005) 
presented appealing cases of integrated QTL and CGM approaches and showed that 
flowering time can be effectively predicted by substituting QTL predictions for component 
traits in CGMs. The component traits should be biologically meaningful, easily 
measurable, and they should have a relatively simple genetic basis preferentially without 
genotype-by-environment interactions (GEI) and/or QEI (Reymond et al., 2003). Also, a 
known relationship should exist between the complex trait and the component traits. Since 
CGMs contain explicit representations of development over time and integrate 
developmental and environmental information, they have the added advantage of being 
able to describe genotype-by-environment interactions (GEI) (Malosetti et al., 2016; 
Technow et al., 2015; Chenu et al., 2009; Cooper et al., 2009). Therefore, component traits 
from one environment can be used to predict yield in another environment, provided the 
structure of the CGM is correct and GEI is small or absent for the component traits.  

In this paper, we will calculate breeding values for component traits from different 
prediction models subject to cross-validation: multi-QTL based prediction (QP) and 
genomic prediction (GP). QTL based prediction of the phenotype was proposed in the 
early 1990s (Paterson et al., 1991; Lande and Thompson, 1990) to accelerate genetic 
improvement. Nowadays, genome-wide dense marker maps at affordable cost have made 
GP an interesting alternative to QP, where the difference between GP and QP resides 
mainly in the use of all markers in a penalized regression context for GP versus the use of 
a limited set of QTL related markers in QP. The key principle of GP is to simultaneously 
estimate the effects of all genome-wide markers in a training population consisting of 
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genotyped and phenotyped individuals and then predict the genomic estimated breeding 
value (GEBV) of genotyped but not-phenotyped individuals in test/future generations 
(Meuwissen et al., 2001). The large majority of QTLs are assumed to be in linkage 
disequilibrium with one or more molecular markers. GEBVs are calculated as the sum of 
estimated marker effects for genotyped individuals in a training population. Fitting all 
markers simultaneously ensures that marker-effect estimates are unbiased, small effects 
are captured, and that there is no multiple testing issue (Jia and Jannink, 2012). 

Single-trait and multi-trait versions of both QP and GP will be employed. So far, no study 
has compared prediction performance from both multi-trait QP and multi-trait GP 
methods. Multi-trait analysis helps in improving the prediction of some traits with low 
heritabilities or of traits that are difficult to measure by exploiting their genetic 
correlations with other traits of higher heritability. Many studies on QTL and association 
mappings have shown that the joint analysis of multiple traits helps to improve the power 
and precision of QTL (Alimi et al., 2013b; Jiang and Zeng, 1995) and association 
mappings (Galesloot et al., 2014; Stephens, 2013). Also, several studies have shown that 
multi-trait genomic prediction (MT-GP) methods performed better than single trait 
genomic prediction (ST-GP) methods (Burgueño et al., 2012; Jia and Jannink, 2012; 
Sørensen et al., 2012; Calus and Veerkamp, 2011).  

 In this paper, we first present and compare prediction accuracies from single–trait (ST) 
and multi-trait (MT) versions of both QP and GP models. We consider Bayesian LASSO 
Regression (BLR) (Legarra et al., 2011; Park and Casella, 2008) as the ST-GP model and 
Bayesian Latent Variable (BLV) model (Janss, 2014; Sørensen et al., 2012) as the MT-GP 
model. The prediction accuracy (correlation of GEBV with trait) and bias (slope of GEBV 
on trait) from the four models are evaluated using five yield related traits measured across 
four environments. The traits and environments are from the EU-SPICY project, see Alimi 
et al. (2013a) and Voorrips et al. (2010). In the second part of the paper, we investigate an 
indirect prediction strategy for yield by first predicting a set of physiological component 
traits of yield (Van Eeuwijk et al., 2010; Chapman, 2008; Hammer et al., 2006) and utilize 
a crop growth model (CGM) to model yield as a function of the predicted component 
traits. We apply the CGM on the breeding values from the four prediction models 
enumerated above. The accuracies of predicting yield through the CGM will be explored 
both within and across environments. The latter across environments prediction is a form 
of genotype-by-environment interaction (GEI) prediction, and will be compared to direct 
yield prediction in an environment.  
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4.3. Materials and Methods 

4.3.1. Genotypic and Phenotypic data 
The pepper population used in this study consisted of 149 individuals obtained from the 
sixth generation (F6) of the segregating recombinant inbred lines (RILs) of an intraspecific 
cross between the large – fruited cultivar ‘Yolo Wonder’ (YW) and the pungent small-
fruited cultivar ‘Criollo de Morelos 334’ (CM 334) of Capsicum annuum. All individuals 
were genotyped for 455 markers on 12 chromosomes covering 1705cM. Phenotyping 
experiments were carried out at two locations, i.e., Wageningen in the Netherlands (NL) 
and El Ejido in Spain (SP), representing temperate and Mediterranean growing conditions 
respectively. At both locations, experiments were done during two time periods: 
December – May (1) and June – December (2). This generated four experiments denoted 
as NL1, NL2, SP1 and SP2. All the experiments lasted for about five months except NL2 
that lasted for only two months. In the NL trials, only one stem per plant was kept. Plant 
density was approximately 6.4 plants per m2 (i.e. about six stems per m2). In the SP trials, 
two stems per plant were kept. Plant density was approximately three plants per m2 (i.e. 
six stems per m2). In the four trials, greenhouse air temperature, humidity, CO2 
concentration and inside global radiation were registered every five minutes. A large 
number of traits relating to vegetative and fruit development of pepper crop was measured 
in the four trials (Alimi et al., 2013a). 

Five traits related to yield (total weight of fruits) were selected across the four trials for the 
purpose of this study. These traits were increase rate of leaf area index (LAIrate) which 
expresses mean increase in leaf area index per unit time, where time is expressed in 
degree-days, radiation use efficiency (RUE), which is the dry matter production (g) per 
megajoule (MJ) of intercepted global radiation, and partitioning into fruit (PF), which 
expresses the proportion of total plant biomass due to fruits. Other traits were total number 
of fruits (NF) and total dry weight of fruit (DWF). Both NF and DWF included the fruits 
harvested during the growing season and the fruits on the plant at the final destructive 
harvest. DWF was taken to represent measured yield. Best linear unbiased estimates 
(BLUEs) (Alimi et al., 2013a) which are the genotypic means for each of the five traits 
were used as observed phenotypes for the traits. Summary statistics for the selected traits 
were obtained. Correlations between the experiments were calculated for each trait, and 
also correlations between the traits within each experiment. These correlations were 
calculated from the genotypic means for the traits. We will refer to these correlations as 
genetic correlations. 

4.3.2. Univariate and Multivariate QTL Prediction Models 
The single-trait QTL prediction (ST-QP) model follows from a single trait multi-QTL 
analysis for each trait. This model is of the form:  

௜ݕ    = ߤ + ∑ ௝ߚ௜௝ݔ + ݁௜௝∈ொ ,          (4.1) 
where yi was the phenotypic response of genotype i (i = 1...N), μ the population mean, βj 
was the additive effect of QTL j (݆ ∈ ܳ), with Q the set of selected QTLs constructed from 
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the set of QTLs that were identified by interval mapping (Zeng, 1994) followed by a 
backward elimination procedure. Genetic predictors (Lynch and Walsh, 1998) were 
calculated at all marker positions and intermediate positions for those marker intervals that 
were larger than 5cM, giving a total of 639 evaluation points. The genetic predictor for 
genotype i at genomic evaluation point j is denoted by xij, and ei was the residual term, 
which contains both genetic (polygenic, non-detected QTLs) and non-genetic (plot error) 
contributions.  

The multi-trait QTL prediction (MT-QP) model is a joint analysis combining the five traits 
within each environment in a mixed model QTL analysis (Alimi et al., 2013b; Malosetti et 
al., 2008). Traits were standardized to have mean zero and standard deviation one. The 
responses, ݕ௜௞ (i=1...nG, with nG being the number of genotypes, and k = 1... nT, with nT 
being the number of traits), are modelled by first an overall mean for each trait, ߤ௞, then a 
QTL term containing products of genetic predictors, xij, for genotype i at genomic 
evaluation point j, and trait-specific QTL effects, ߚ௞௝, and finally a genetic/residual 
component, ݁௜௞ :  

௜௞ݕ     = ௞ߤ + ∑ ௞௝௝∈ொߚ௜௝ݔ + ݁௜௞,     (4.2) 

We assumed that the vector ࢋ௜ = (݁௜ଵ, … , ݁௜௡೅) follows a multivariate normal distribution 
with zero mean and a first order factor analytic variance-covariance matrix Σ i.e. ݁௜~ܰ(0,  This model accounts for genetic correlations between traits. The QTL models .(ߑ
were implemented in the GenStat QTL library (Payne et al., 2011), following the strategy 
described by Malosetti et al. (2013) and Boer et al. (2007). 

4.3.3. Bayesian Genomic Prediction Models 
For large numbers of markers (M) and relatively few genotypes/individuals (N), ordinary 
least square procedures break down. Therefore, for estimation in relation to GP models, 
variable selection and shrinkage estimation methods are used to tackle the problem of high 
dimensionality in the predictors (Habier et al., 2011; Legarra et al., 2011; De Los Campos 
et al., 2009; Hayes et al., 2009). These estimation methods try to reduce mean squared 
error (MSE) by reducing the variance of the estimator. This may however introduce bias in 
the estimate. The obtained penalized estimates are the solution to an optimization problem 
that balances model fit and model complexity. The optimization problem is generally of 
the form: ߚመ = ܽrgminఉ ,ݕ)ܮ} (ߚ +  (4.3)    .{(ߚ)ܬߣ

Where L(y,β) is a loss function that measures lack of fit of the model to the data, J(β) is a 
measure of model complexity and λ ≥ 0 is a regularization parameter controlling the trade-
offs between fitness and model complexity. In a Bayesian setting, shrinkage estimation is 
controlled by the choice of the prior density assigned to marker effects (De Los Campos et 
al., 2009). 
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4.3.4. Univariate Genomic Prediction Model: Bayesian LASSO 
Regression 

The linear mixed model employed for the single-trait genomic prediction (ST-GP) within 
each environment is of the form: ݕ௜ = ߤ + ∑ ܺ௜௝ߚ௝ெ௝ୀଵ + ݁௜,     (4.4) 

where yi was an element of a vector (N x 1) of phenotypes on N individuals, μ was the 
overall population mean, X was a design matrix (N x M) allocating the M marker 
genotypes to N individuals, βj was the allele substitution effect for marker j and assumed 
normally distributed ߚ௝~ܰ(0, ఉೕଶߪ ), ei was an element of the vector (N x 1) of identically 

and independently distributed residuals with ݁~ܰ(0,  .(௘ଶߪ

In LASSO (Least Absolute Shrinkage and Selection Operator), (ߚ)ܬ = ∑ ฮߚ௝ฮெ௝ୀଵ , i.e. the 
model complexity is the sum of the absolute values of the regression coefficient 
(Tibshirani, 1996). This penalty combines both subset selection and shrinkage estimation 
since it induces a solution that may involve zeroing-out some regression coefficients and 
shrinkage estimates of the remaining effects. The optimization problem in (3) now 
becomes:  ߚመ஻௅ோ = ܽrgminఉ ൛(ݕ − ݕ)ᇱ(ߚܺ − (ߚܺ + ߣ ∑ หߚ௝ห௝ ൟ.  (4.5) 

In the Bayesian paradigm, the solution to (4.5) is the posterior mode of the combination of 
a Gaussian likelihood and a double exponential (DE) prior density for the marker effects 
(de los Campos et al., 2009). ݌൫ݕ, ,ఌଶߪหߚ ,ఉଶߪ ൯ߣ = ∏ ܰ൫ݕ௜| ∑ ௝,௝ߚ௜௝ݔ ఌଶ൯௜ߪ × ∏ ߣ) 2⁄ )exp൫−ߣหߚ௝ห൯௝ ,  (4.6) 

The parameter λ in BLR controls the prior on regression coefficients βj. The higher the 
values of λ, the higher the penalty on βj. This ensures stronger shrinkage of coefficients 
that are close to zero and less shrinkage of those with large absolute values. 

4.3.5. Multivariate Genomic Prediction Model: Bayesian Latent 
Variable 

A Bayesian latent variable (BLV) model was employed as a multi-trait genomic prediction 
(MT-GP) model. Here, we modelled all traits within an environment following the method 
described in Janss (2014) and Sørensen et al. (2012). Our MT-GP model is comparable in 
structure to the MT-QP model (4.2) described above. However, now not only the residuals 
are modeled by a multiplicative, factor analytic structure, but also the SNP effects. In the 
MT-QP model the QTL/SNP effects were taken fixed and the residuals followed a factor 
analytic rank one model with an additional independent error term with trait specific 
variance. In our MT-GP model the QTL/SNP effects are taken random with a multivariate 
Normal distribution and a restriction on the variance-covariance matrix to follow a 
multiplicative model making the SNP effects becoming correlated between traits. Both 
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marker effects and their variances were jointly estimated in a single hierarchical model as 
the variances were also treated as unknown.  

The BLV model specification was: ݕ௜௞ = ௞ߤ + ∑ ܺ௜௝ߚ௝௞ெ௝ + ݁௜௞,   (4.7) 

Where yik denoted the phenotype of the i-th individual for k-th trait, ߤ௞ (k = 1,…,nT) was 
the overall mean of each trait, βjk was the random regression coefficient of trait k on 
marker j and eik is the residual term. For a full model description and an account of the 
distributional assumptions involved see Sørensen et al. (2012). 

Inferences for the GP methods were based on Gibbs sampling of 110000 samples. The 
first 10000 samples were discarded as burn-in, while 500 of the remaining samples were 
stored, i.e., using a skip factor of 200. Visual inspections of trace plots confirmed 
convergence of the Markov chains. The GP models were implemented in Bayz software 
(Janss, 2011). 

4.3.6. Yield Indirect Prediction through Crop Growth Model 
The ecophysiological crop growth model (CGM) (Figure 4.1) employed here was a 
LINTUL-type (Light INTerception and Utilization) crop growth model that simulated the 
formation of pepper yield under potential growing conditions (Van Ittersum et al., 2003; 
Spitters and Schapendonk, 1990). The main environmental factors considered in the CGM 
we adopted were radiation and temperature.  

For genotype i in environment h, the CGM can be mathematically written as: 

  ܻ݈݅݁݀௜௛ = ௜௛ܨܲ ∗ ௜௛ܧܷܴ ∗ ∑ ቀܫ௛ௗ ∗ (1 − ݁ି௞∗௅஺ூ೔೓೏)ቁ஽ଵ .   (4.8) 

Yield is accumulated over the growing days d=1… D. The leaf area index (LAI) is 
dynamic and for genotype i in environment h on a specific day d (d ≤ D) calculated as ܫܣܮ௜௛ௗ = ௥௔௧௘೔೓ܫܣܮ ∗ ∑ ( ௛ܶௗ − ௕ܶ)ௗଵ . The term ∑ ( ௛ܶௗ − ௕ܶ)ௗଵ  is the accumulated thermal 
time till day d, expressed in degree-days, and ܫܣܮ௥௔௧௘೔೓ is a genotype specific increase rate 
of leaf area index. Thd is the daily average temperature in environment h on day d, and Tb 
is the base temperature below which no development takes place, taken as 10°C in all 
environments (Marcelis et al., 2006). The increase rate of leaf area index (LAIrate) was 
calculated as the ratio between the increase of leaf area index (LAI) and thermal time 
between initial and final harvest. The fraction intercepted radiation is 1 − ݁ି௞∗௅஺ூ೔೓೏, 
where a value of 0.7 for the extinction coefficient k is assumed for all genotypes (Marcelis 
et al., 1998). Daily intercepted radiation is then calculated from this fraction and Ihd, the 
daily global radiation intensity (MJ m-2 d-1). The daily intercepted radiation is 
consequently multiplied by the radiation use efficiency (RUEih) resulting in daily dry 
matter production. RUE represents the biomass produced per unit of intercepted radiation. 
It is the ratio between biomass increase and the total intercepted radiation, which was the 
daily intercepted global radiation summed over the total growth period. Finally, yield is 
calculated from the total accumulated dry matter by multiplying it by the fraction biomass 



Chapter 4 

 80 

partitioned into the fruits (PFih), i.e. fruit biomass/total plant biomass. Total plant biomass 
was calculated as the sum of plant dry weight at final destructive harvest and the dry 
weight of the already harvested fruits. 

 

Figure 4.1 Schematic diagram of the LINTUL-type crop growth model (CGM). The figure describes how 
the target complex trait yield is dissected into component traits. The three yield component parameters for 
yield predictions are in italics (adapted from (Higashide and Heuvelink, 2009)). 
 

4.3.7. Model Validation and Accuracy 
Our models were validated via a cross-validation (CV) scheme (Efron and Gong, 1983; 
Kohavi, 1995). We generated training and testing sets using a five-fold CV (subsets), and 
repeated this CV scheme 10 times. This means that the 149 individuals were randomly 
divided into five non-overlapping subsets. Four subsets were taken as the training set and 
were used to fit the model. The fitted model was then used to obtain predictions for the 
fifth subset. This was repeated until all the subsets were used as the testing set. This CV 
scheme is similar to situation where predictions are obtained for individuals that have not 
been phenotyped. In our CV scheme, each testing set had 30 individuals except fold 
number five which had 29 individuals. 

Prediction accuracies and bias of the estimates were used to evaluate performance of the 
different models. Prediction accuracy refers to the correlation between the genomic 
estimated breeding values (GEBV) from the models and the phenotypic best linear 
unbiased estimates (BLUE) of each individual. Bias was assessed as the coefficient of 
regression of GEBV on BLUE (Resende et al., 2012). Unbiased models are expected to 
have a slope coefficient of one, whereas values greater than 1 indicate a biased 
overestimation in the GEBV and values smaller than one indicate a biased underestimation 
in the GEBV. 
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4.3.8. Yield Prediction Strategies
Both direct and indirect prediction strategies were employed for yield prediction (Figure 
4.2). By direct prediction, we mean the use of yield phenotypes in each environment to 
generate yield GEBVs for that environment through each of the four prediction models 
(ST-QP, MT-QP, ST-GP and MT-GP). For each environment, accuracy of yield prediction 
was calculated as the correlation between the yield GEBVs and yield BLUEs (phenotypes) 
in that environment. 

In the indirect prediction strategy, yield was first predicted from the GEBVs for its three 
component traits (RUE, LAIrate and PF) via the crop growth model. We then calculated the 
accuracies of predictions as the correlation between the predicted yield values and yield 
phenotypes. GEBVs from all four prediction models were used. Note that the GEBVs for 
both MT-QP and MT-GP were estimated on an analysis that included only the component 
traits, i.e., excluding DWF and NF. 

The prediction accuracies for an indirect prediction strategy were estimated within and 
across environments. The within-environment indirect prediction strategy involved using 
GEBVs of component traits in one environment (e.g. SP1) to predict yield in the same 
environment. The across-environment CGM analysis is a form of genotype-by-
environment (GEI) analysis where the GEBVs of component traits in one environment 
(e.g. SP1) were used to predict yield in another environment (e.g. NL1). The across-
environment analysis envisages a situation where we wish to predict how a certain 
population will perform in a new environment. In such a situation, we can use phenotypic 
information or GEBVs from a related environment. 

 
Figure 4.2 Diagram of  the four yield prediction strategies with QTL prediction (QP) or genomic prediction 
(GP) models used to calculate genomic estimated breeding values (GEBV) for single trait or multiple traits 
jointly and a crop growth model (CGM) used in the indirect calculation of GEBV for Yield. 
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4.4. Results 

4.4.1. Trait Descriptions 
The phenotypic means and standard deviations for the five traits from each of the four 
environments are presented in Table 4.1. Yields per plant in NL trials were lower than in 
SP trials and yield per plant in NL2 was particularly very low. This was primarily due to 
the lower rate of fruit set in NL trials, especially in NL2. This difference is however 
reduced if yield per m2 is considered since different plant pruning strategies were 
employed in the two locations. One stem was kept per plant in the Netherlands compared 
to two stems per plant in Spain. Hence, DWF and NF in NL trials were multiplied by two 
to correct for the different pruning systems and make the comparison on plant density per 
m2 instead of per plant. The particularly low yield in NL2 was due to the high 
development rate of length growth in this trial. The trial lasted for only two months against 
3-5 months for the other trials since the plants reached their maximal height rapidly. The 
ranges for traits means were in general highest in SP2. 

Trait correlations across environments were moderate to high, ranging from 0.34 for RUE 
between NL2 and SP1 to 0.79 for LAIrate between SP1 and SP2. The majority of these 
correlations were above 0.6 (Table 4.2) with overall mean of 0.61. This is an indication 
that measurements for a particular trait in one environment (e.g. LAIrate in SP1) may be 
substituted with those for the same trait in another environment (e.g. LAIrate in SP2). All 
the correlations below 0.5 involved RUE and NF in SP1. 

The within trial correlations were mostly consistent in sign across the trials (Table 4.3). 
Very high correlations were observed among DWF, NF and PF. This was expected since 
PF was computed from total fruit weight and total plant biomass and also there is usually a 
direct relationship between number of harvested fruits and total fruit weight. RUE showed 
low but positive correlations to DWF and NF, while LAIrate displayed very low and 
sometimes negative correlations to other traits. 

4.4.2. Predictive Ability and Bias of the Four Prediction Models 
Four different genome-wide prediction methods were compared on five traits measured 
across four environments. Overall, the predictive abilities of the models ranged from 0.01 
from ST-QP for NF in NL2 to 0.93 from MT-GP for LAIrate in SP2 (Figure 4.3). NF in 
both NL trials was very poorly predicted by all the methods except MT-GP. LAIrate was 
well predicted in all environments by the four methods (0.37 – 0.93). 
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Table 4.1 Mean and standard deviation for each of the traits in the four environments calculated from 
genotypic means. NL1, NL2, SP1 and SP2 represent phenotypic trials in the Netherlands (NL) and Spain 
(SP) during spring (1) and autumn (2) in 2009. DWF, NF and PF stand for total dry weight of fruit, total 
number of fruits and the proportion of total plant biomass due to fruits respectively. RUE is the radiation use 
efficiency, which is the dry matter production (g) per megajoule (MJ) of intercepted global radiation while 
LAIrate expresses mean increase in leaf area index per unit time, where time is expressed in degree-days. 

 Mean 

 

Standard Deviation 
Trait NL1 NL2 SP1 SP2 NL1 NL2 SP1 SP2 

DWFa 46.24 15.54 66.89 87.13 33.54 12.78 36.68 32.77 
NFa 24.96 12.60 28.98 37.41 14.02 9.26 11.04 11.44 
PF 0.18 0.10 0.28 0.36 0.12 0.07 0.14 0.11 

RUE 1.12 1.00 0.96 1.19 0.25 0.18 0.13 0.14 
LAIrate 2.22 3.01 1.56 1.69 0.70 0.98 0.49 0.44 

a DWF and NF in NL trials were multiplied by two to correct for different pruning systems used in NL and 
SP trials in order to make the comparison on plant density per m2 instead of per plant. One stem was kept per 
plant in the NL trials compared to two stems per plant in SP trials.  

Table 4.2 Trait genetic correlations between environments e.g. NL1.NL2 refers to correlation of specific 
trait measurements (e.g. DWF) between environment NL1 and NL2. Environments and traits abbreviations 
are as explained in Table 4.1. 

 NL1.NL2 NL1.SP1 NL1.SP2 NL2.SP1 NL2.SP2 SP1.SP2 Mean 
DWF 0.72 0.60 0.61 0.53 0.62 0.58 0.61 
NF 0.70 0.55 0.54 0.49 0.65 0.41 0.56 
PF 0.69 0.65 0.67 0.54 0.72 0.57 0.64 

RUE 0.64 0.45 0.60 0.34 0.64 0.36 0.51 
LAIrate 0.73 0.76 0.70 0.67 0.75 0.79 0.73 
Mean 0.70 0.60 0.62 0.51 0.68 0.54 0.61 

 

Table 4.3 Genetic correlation of traits within each environment. Environments and traits abbreviations are as 
explained in Table 1. 

 DWF NF PF RUE 

 

Trait DWF NF PF RUE 
NL1 SP1 

NF 0.85    NF 0.80    
PF 0.90 0.76   PF 0.93 0.74   

RUE 0.13 0.23 -0.11  RUE 0.40 0.37 0.34  
LAIrate 0.07 0.01 -0.18 0.11 LAIrate 0.09 0.12 -0.18 -0.34 

NL2 SP2 
NF 0.86    NF 0.60    
PF 0.91 0.76   PF 0.89 0.51   

RUE 0.26 0.36 -0.03  RUE 0.22 0.36 0.03  
LAIrate 0.19 0.09 -0.07 0.32 LAIrate -0.04 -0.01 -0.37 0.01 

 

For most of the traits across the four environments, the single-trait Bayesian genomic 
prediction method (ST-GP) outperformed the single-trait QTL method (ST-QP) except in 
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NL2 where ST-QP performed better than ST-GP. Also, MT-GP clearly outperformed MT-
QP for all the traits across all the environments. Averaging over all the traits in SP1 for 
example,  ST-QP, MT-QP, ST-GP and MT-GP gave prediction accuracies of 0.37, 0.46, 
0.59 and 0.89, respectively. These results confirm that GP methods have better predictive 
power than QTL methods. This might be expected as parameters from the GP methods are 
fitted using all available markers whereas parameters of QTL methods are fitted using 
selected QTL markers. Also, multi-trait models are expected to have better predictive 
power than single-trait models. This is mostly true for SP trials, but not for NL trials, 
especially NL2 where ST-QP had better prediction accuracies than MT-QP. The MT-GP 
clearly stood out as the best method in terms of its predictive ability for all the traits. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Prediction accuracies from the direct prediction strategy for each of the five traits in the four 
environments using the four prediction models. 
 

Prediction accuracies differed across environments for each of the five traits irrespective 
of the prediction method employed. Traits were generally better predicted in SP trials than 
in NL trials. For example, DWF had prediction accuracies (from the four methods) 
ranging from 0.16 – 0.84 in NL1, 0.11 – 0.75 in NL2, 0.47 – 0.90 in SP1 and 0.42 – 0.89 
in SP2. Overall, the average prediction accuracies across traits range from 0.23 – 0.78 
(mean = 0.39) in NL trials and 0.37 – 0.89 (mean = 0.57) in SP trials. The difference in the 
accuracies of trait prediction across environments is an indication that these traits exhibit 
QEI (Alimi et al., 2013b). 

The coefficient of regression of the GEBV on the phenotypes was calculated to measure 
the bias of each of the prediction models (Table 4.4). Unbiased models are expected to 
have a slope coefficient of one. Traits that were poorly predicted in an environment had 
regression coefficients very different from one (biased) while traits that were better 
predicted had regression coefficients very close to one (unbiased). An example is NF in 
NL2 with regression coefficients of 0.05, -0.18, 3.60 and 0.95 for ST-QP, MT-QP, ST-GP 
and MT-GP respectively. This indicates that only MT-GP gave unbiased prediction for NF 
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in NL2. All the models gave very good regression coefficients for LAIrate in the four 
environments (0.86 – 1.15). Regression coefficients from MT-GP were the closest to one 
for all the traits across the four environments, indicating that the MT-GP model is most 
correctly estimating the genomic breeding values. 

Table 4.4 Bias from the direct prediction strategy for each of the five traits in the four environments using 
the four prediction models. Environments and traits abbreviations are as explained in Table 4.1. ST-QP and 
MT-QP respectively stand for single-trait and multi-trait versions of QTL prediction model while ST-GP and 
MT-GP respectively stand for single-trait and multi-trait versions of genomic prediction model. 

Env Trait ST-QP MT-QP  ST-GP MT-GP 

NL1 

DWF 0.64 0.49 2.03 1.12 
NF 0.13 0.27 8.23 1.08 
PF 0.29 0.47 2.45 0.96 
RUE 1.01 0.95 1.53 0.86 
LAIrate 0.91 0.87 1.12 0.97 

 

NL2 

DWF 0.87 0.36  3.64 0.97 
NF 0.05 -0.18 3.60 0.95 
PF 0.77 0.49 9.66 0.95 
RUE 0.87 0.74 1.04 0.78 
LAIrate 0.98 1.01 1.03 0.96 

 

SP1 

DWF 0.89 0.90  1.06 0.99 
NF 0.94 0.86 1.20 1.01 
PF 0.93 0.90 1.05 0.95 
RUE 0.78 0.80 1.26 0.96 
LAIrate 0.94 0.86 1.15 0.94 

 

SP2 

DWF 0.87 0.93  1.08 1.07 
NF 0.88 0.81 1.39 1.02 
PF 0.86 0.89 1.17 1.05 
RUE 0.76 0.82 1.15 0.92 
LAIrate 0.97 0.96 1.09 0.94 

 

4.4.3. Accuracies of Yield Prediction from Crop Growth Model 
For both within-environment and across-environment yield predictions using the 
component traits in the crop growth model (CGM), prediction accuracies vary depending 
on environment and prediction method employed (Table 4.5). In the within-environment 
CGM where component traits in a given environment were used to predict yield in the 
same environment, yields are better predicted in SP trials than in NL trials, irrespective of 
prediction method employed. For example, using ST-GP, yield in SP trials had prediction 
accuracies ≥ 0.5 against an accuracy of  ≤ 0.2 in NL trials. The pattern observed for 
performances of the four predictive models under CGM is similar to the pattern seen in 
direct yield prediction from DWF GEBV (Figure 4.2). Here, MT-GP also gave very high 
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prediction accuracies across the four environments, while prediction accuracies from ST-
QP, MT-QP and ST-GP were generally low, especially in NL environments (≤ 0.35). SP1 
had the highest prediction accuracy of 0.92, similar to the result from direct prediction 
(0.90 for DWF in SP1).  

The across-environment (GEI) CGM results (Table 4.5) revealed that it is possible to use 
component traits from one environment to predict yield in another environment. Using ST-
QP result as an example, prediction accuracy for yield in NL1 environment improved from 
0.19 to 0.31, 0.28 and 0.23, if component traits from NL2, SP1 and SP2 respectively were 
used. The prediction accuracies from MT-QP and ST-GP in NL trials increased if 
component traits from SP trials were employed. Prediction accuracy for yield in NL2 
using MT-QP improved from 0.11 to 0.38 if component traits from SP1 were used instead 
of component traits in NL2 itself. However, prediction accuracies for yield in SP 
environments did not improve when component traits from NL environments were used. 
This may be due to the inherent measurement errors in the NL trials couple with the low 
yield in these environments. 

MT-GP gave very high prediction accuracies (≥0.5) across all trial combinations. The 
prediction accuracies from MT-GP in the GEI CGM analyses were mostly higher than 
prediction accuracies from ST-QP, MT-QP and ST-GP in the within-environment CGM 
and direct prediction methods. All prediction accuracies in the GEI CGM were however 
lower than the prediction accuracies from MT-GP method in the within-environment 
analysis. This showed that yield in each environment was best predicted using MT-GP 
with component traits from the same environment, but still reasonable prediction is 
possible using component traits from similar environments. 
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Table 4.5 Accuracies of yield predictions using direct and CGM prediction strategies. Accuracy here is 
defined as the correlation coefficient between the estimated breeding values from the models and the 
genotypic means. 

Trials ST-QP MT-QP ST-GP MT-GP 
 Direct Predictiona 

NL1 0.21 0.16 0.29 0.84 
NL2 0.28 0.11 0.24 0.75 
SP1 0.47 0.52 0.68 0.90 
SP2 0.42 0.53 0.51 0.89 

 
 Within Environment Indirect Prediction using Crop Growth Modelb 

NL1 0.19 0.11 0.18 0.83 
NL2 0.35 0.11 0.19 0.81 
SP1 0.42 0.55 0.69 0.92 
SP2 0.34 0.49 0.49 0.86 

 
 Across Environment Indirect Prediction using Crop Growth Modelc 

NL1:NL2 0.31 0.11 0.23 0.63 
NL1:SP1 0.28 0.34 0.49 0.60 
NL1:SP2 0.23 0.35 0.35 0.57 

  
NL2:NL1 0.12 0.11 0.28 0.59 
NL2:SP1 0.31 0.38 0.48 0.49 
NL2:SP2 0.21 0.36 0.40 0.56 

  
SP1:NL1 0.37 0.21 0.30 0.58 
SP1:NL2 0.49 0.31 0.47 0.52 
SP1:SP2 0.46 0.54 0.56 0.58 

  
SP2:NL1 0.18 0.17 0.04 0.49 
SP2:NL2 0.42 0.23 0.19 0.51 
SP2:SP1 0.29 0.47 0.47 0.58 

a Yield in each environment was predicted directly from yield breeding values in that environment. 
a In the direct prediction strategy, no way to estimate prediction accuracies for MT-QP and MT-GP analyses 
if they are based on only the component traits since DWF was not included in the analyses. The values from 
joint analyses based on all the five traits are thus reported for MT-QP and MT-GP in the direct strategy. 
b Yield in each environment was predicted via crop growth model using component traits from the same 
environment. 
c Yield in an environment was predicted via crop growth model using component traits from another 
environment e.g. NL1:NL2 implies that yield in NL1 was predicted using component traits from NL2. 
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4.5. Discussion 

In this paper, we studied two important objectives with respect to the prediction of 
complex traits. The first objective was to compare the predictive performances of QTL 
prediction (QP) and genomic prediction (GP) methods. In recent years, several studies 
have reported on the performance of GP and QP methods as predictive models in plant 
breeding. For a recent review, see Heslot et al. (2015), Desta & Ortiz (2014), Daetwyler et 
al. (2013) and Würschum (2012). We took a step further by using the same experimental 
data to compare prediction accuracies from both QP and GP methods. Both single-trait 
and multi-trait versions of the QP and GP methods were explored resulting into four 
prediction models. The predictive performances of the models were characterized using 
five of the pepper traits measured across four environments in the EU-SPICY project 
(Alimi et al., 2013a; Voorrips et al., 2010). These traits were subjected to a five-fold cross 
validation scheme with 10 repetitions. 

The four methods differed substantially in their predictive abilities. Our results showed 
that GP methods outperformed QP methods in both single and multi-traits situations. This 
is not really surprising since parameters from GP methods are fitted on all available 
markers while parameters of QP methods are fitted only on selected QTL markers. Unlike 
QP methods, the GP methods fully take advantage of the correlations between all the 
markers and assigned prior distribution to marker effects so as to control shrinkage 
estimation. Two other single-trait GP methods, Bayesian Ridge Regression (BRR) 
(Gianola, 2013) and Bayesian Variable Selection (BVS) (Calus et al., 2008), were 
explored. They were not reported as they gave very similar results to BLR in all cases, 
even though these methods differ in their prior assumptions about marker effects. This 
result is similar to the pattern observed in literature for these GP methods, hence none of 
them could be said to be superior to others except in specific situations for example due to 
genetic architecture of a trait and experimental sample sizes (Daetwyler et al., 2013; De 
los Campos et al., 2013; Wimmer et al., 2013; Resende et al., 2012). 

Furthermore, multi-trait models generally had better predictive power than single-trait 
models with MT-GP being superior. This showed that in situations where phenotypic data 
on a large number of traits have been collected (in multiple environments), using 
multivariate methods that properly model underlying variance-covariance (VCOV) 
structures among the traits and between environments would lead to improved power to 
detect more QTLs than performing individual trait/environment analyses (Alimi et al., 
2013b; Xu, 2013; Jia and Jannink, 2012). The joint analysis was especially suitable for 
complex traits such as yield, whose variations are usually due to a large number of QTLs 
of small effects which might remain undetected in a univariate analysis. This is because 
sharing information among correlated traits helped to increase prediction accuracies for 
traits with hitherto low accuracies; see Stephens (2013). The results we obtained in NL 
trials, especially NL2, are however counter-intuitive as ST-QP gave higher prediction 
accuracies than MT-QP for many of the traits. This was due to the loss of some putative 
QTLs in the MT-QP model in NL trials. A number of QTL peaks were found to be just 
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below the threshold. Adjusting the default settings for those analyses may improve the 
performance of the MT-QP model in NL trials, but predictions will remain bad anyhow.  

The second objective relates to prediction of the complex trait yield as a function of 
GEBVs of its component traits together with environmental variables using 
ecophysiological modelling. These types of crop growth modelling techniques have been 
widely employed to combine physiological traits with environmental inputs and study 
plant development over time (Uptmoor et al., 2008; Yin et al., 2005; Reymond et al., 
2003). This approach was termed indirect prediction in contrast to predicting yield directly 
from its own QTL effects or breeding values. A simple LINTUL type crop growth 
function (Van Ittersum et al., 2003; Spitters and Schapendonk, 1990) was employed to 
relate yield to three component traits namely radiation use efficiency (RUE), partitioning 
into the fruits (PF) and growth rate of leaf area index (LAIrate). The suitability of the crop 
growth function to correctly predict yield was evaluated by using the BLUEs for the 
component traits in the CGM. This gave predictive accuracies of almost one for yield in 
the four environments, suggesting that there is a relationship between yield and the three 
component traits and that the adopted crop growth function is capable of representing this 
relationship. This strategy was implemented in both within-environment and across-
environment (GEI) analyses.  

The most superior prediction model for generating the breeding values for the component 
traits remains the MT-GP. It is interesting to note that the CGM performed as well as the 
direct prediction strategy. We showed that yield in an environment can be successfully 
predicted from its component traits, provided a suitable function relating yield to the 
component traits is available. Also, the GEI CGM indicates that in situations where 
similarities exist among environments, we may use component traits and environmental 
information from one environment to predict yield in another environment. However, 
population type and the different pruning systems used in the two locations are primarily 
responsible for the marked differences in yield in NL and SP. The population is more 
suited for outdoor growing system than for the system in a greenhouse. The climate 
conditions (light, temperature) in Spain were more suited for this population than the NL 
conditions. Therefore, apart from the prediction model of choice, a suitable population and 
comparable management and environmental settings should be used.  

To investigate the importance of the structure of the CGM for predicting the target trait 
yield from its components or GEBVs for components, we tried a simple linear regression 
model to relate the target trait to its component traits, without specifically including the 
environmental variables temperature and radiation. The prediction accuracies from this 
regression (results not reported) were quite similar to those of the CGM. This result 
indicated that specifically including environmental variables such as global radiation and 
temperature in the CGM did not confer added accuracy. A stepwise regression identified 
PF as the most important among the three component traits for yield predictions. This 
follows directly from the genetic correlations between yield and these three component 
traits. The fact that a linear regression performed very similarly to the CGM, should not be 
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seen as a drawback of the CGM we employed but rather due to the way some of the 
component traits were generated from yield, e.g. partitioning to fruits was calculated using 
yield and total biomass production. It would have been desirable to estimate the 
component traits as much as possible independent from the resulting target trait. For 
example, partitioning could be based on sink strengths (represented by the potential 
growth rate (Marcelis, 1996)), which can be measured independent of yield but have the 
disadvantage that they are difficult to measure. Also, the desire to make the crop model as 
simple as possible has likely reduced the model to being too empirical. In pepper, yield 
largely depends on fruit set, which is determined by many factors (Wubs et al., 2009). 
Simulating yield while taking into account fruit set would increase the number of 
component traits and not all of them are easy to determine. The balance should be between 
absolute empirical and mechanistic modelling (Yin and Struik, 2010). 

Recently, efforts are being made to directly incorporate CGMs into the estimation of 
whole genome marker effects in GP using an Approximate Bayesian Computation (ABC) 
method (Technow et al., 2015). Technow et al., (2015) demonstrated the use of ABC as a 
mechanism for incorporating substantial biological knowledge embodied in the CGMs 
into a GP approach and showed that their proposed approach can be considerably more 
accurate than a benchmark GP method in predicting performance in environments 
represented in the estimation set as well as in previously unobserved environments for 
traits determined by non-additive gene effects. A key difference in our approach to that of 
Technow et al., (2015) is the way in which component traits are introduced. We assume 
that all the components are observable / measurable for all the genotypes. This is usually 
not true in practice especially with more sophisticated CGMs such as for example APSIM  
(Holzworth et al., 2014; Keating et al., 2003) that includes particularly difficult to measure 
root traits. The use of ABC allows handling difficult to measure component traits as 
hidden variables and thus facilitate incorporating them into GP models. 

The use of the combined approach of QTL/genomic prediction and CGM still holds 
challenges including the relative weakness of current crop models in predicting differences 
in complex traits between genotypes that are members of segregating populations (Yin et 
al., 2005) and accumulation and propagation of  errors (Uptmoor et al., 2008). However, 
despite the shortcomings, the combined approach can still show a high accuracy as the 
sources of error need not be statistically independent (Tardieu, 2003). To make a strong 
case for CGMs, the targeted complex traits should be defined as functions of as much as 
possible independent component traits, where these components traits themselves can still 
be measured with a certain ease or where these component traits may be approximated by 
other traits that can be recorded quickly and cheaply by automated phenotyping devices 
(Horgan et al., 2014; Van der Heijden et al., 2012).  

In conclusion, we found that performing multi-trait analysis instead of single-trait analyses 
helps in improving the prediction of yield related traits. Also, genomic prediction 
methodologies performed better than QTL methodologies as prediction models. 
Combining multi-trait analysis with genomic prediction was shown to significantly 
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improve the prediction of all the traits considered in this study. The within environment 
direct and indirect prediction of yield through crop growth model using GEBVs from 
multi-trait genomic prediction method were found comparable although the indirect 
approach was heavily influenced by the high correlation between yield and PF. Prediction 
accuracies in the across-environment indirect prediction scenarios were lower than those 
from within-environment indirect prediction, but again multi-trait genomic prediction 
methods for GEBVs of component traits did better than single trait prediction methods. 
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CHAPTER 5 
 

6. A network analysis of yield and yield components 
across environments: an example in pepper 

 
 

5.1. Abstract 
For efficient multi-trait QTL mapping it is important to take into account the 
interconnectedness among traits. The relations between traits can change between 
environments and then represent a special form genotype-by-environment interaction. For 
a suitable data set collected on pepper, we explore various network models for 
understanding the directed, say causal, relationships between the target trait yield and 
three component traits. We looked at the mutual dependencies between the traits and the 
dependencies of the traits on QTLs. Conditional and unconditional networks were 
constructed for the set of four traits across four different environments. For unconditional 
networks, we map QTLs given a particular fixed dependency structure between the traits 
by a standard multi-trait model (MTM). For conditional networks, the dependency 
structure between the traits and the QTLs affecting the traits are identified simultaneously 
by a QTL-driven phenotype network method (QTLnet). Inference for the final 
reconstructed networks was done by refitting the identified models as structural equation 
models. Conditioning QTL mapping on network structure via QTLnet clarified trait 
dependence on QTLs. QTLs with direct and indirect effects were distinguished, and QTL 
hotspots were resolved. The most probable conditional networks, with posterior 
probabilities ranging between 0.28 and 0.77 showed, as expected, yield as most 
downstream trait in all four environments. A complex target trait as yield can be studied 
and predicted via its component traits. The genetic improvements of yield would benefit 
from improvements on the component traits. 

 

Keywords 

Correlation network; Complex and Component traits; Conditional and Unconditional 
networks; Structural Equation Model; Quantitative Trait Loci.  
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5.2. Introduction 
Important target traits in plant and animal genetic studies, such as fruit and milk yield, are 
complex as they result from intricate interactions of multiple genetic and environmental 
factors. Complex traits are often interpreted as integrations over time of underlying 
mutually interacting component traits and environmental inputs (Bustos Korts et al., 2016; 
van Eeuwijk, 2015; Chapman, 2008; Hammer et al., 2006). The totality of physiological 
interactions among target and component traits, together with shared genetic factors are 
responsible for observed associations among these traits (Li et al., 2006). Hence the 
genetic improvements of a complex target trait as yield could benefit from improvements 
on the component traits, especially when the mechanism of (causal) association between 
the target and component traits is known. To gain insight into the relationships among 
traits and between traits and QTLs, combined phenotypic and genetic network models 
have been proposed for use in a variety of contexts, see the review article by Valente et al. 
(2013). Network models can be regarded as an alternative to traditional multi-trait models 
(MTMs). Adding QTL information to the phenotypic network allows causal inference (Li 
et al., 2006; Schadt et al., 2005). Network models enable the differentiation of QTL effects 
into direct effects and indirect effects, i.e., QTL affect a trait either directly or via another 
trait. This will provide an intuitive explanation for potential QTL hotspots, where a QTL 
influences many traits as identified by multi trait QTL analyses (Alimi et al., 2013b). 

In our earlier studies on yield in pepper, the relationships between yield and its component 
traits, such as radiation use efficiency (RUE), leaf area index (LAI) and partitioning to 
fruits (PF), were studied in the form of genotypic correlations (Alimi et al., 2013b) and by 
ecophysiological models (Alimi et al., 2016). Pleiotropic QTLs affecting yield and its 
component traits were identified. It is however anticipated that these traits exert causal 
effects on each other according to a particular pattern. Increasing yield in pepper may 
result from higher RUE and PF, while higher LAI may lead to an increase in RUE. Thus 
RUE and PF can have direct causal effects on yield, while LAI can have an indirect causal 
effect on yield through its effect on RUE. Traditional MTMs (Jiang and Zeng, 1995) do 
not model causal relationships among the traits and no mechanism behind pleiotropic 
effects of QTLs is to be revealed. For example, a pleiotropic QTL can act directly on a 
component trait that affects yield, making the same QTL affecting yield indirectly. The 
QTL can also act on both traits directly with or without the traits being correlated 
(Hageman et al., 2011; Li et al., 2006; Neto et al., 2010; Rosa et al., 2011). 

Yield, a complex trait, exhibits strong genotype by environment interaction (GEI) and 
QTL by environment interaction (QEI) (Alimi et al., 2013b). Equally so, some of its 
component traits exhibit GEI (Alimi et al., 2013a). This means that any breeding strategy 
for improving yield or its components needs to be conditioned on the environmental 
conditions. The QTLs underlying yield (directly or through any of its component traits) 
might vary across environments qualitatively (changes in sign of QTL effects between 
environments) and/or quantitatively (changes in magnitude of QTLs) (Fournier-Level et 
al., 2013). The main issue would then be to assess the stability of QTLs for yield and its 
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component traits across environments so as to understand how selection can act on 
molecular variation in different environments. 

In this study, two types of network models, called unconditional and conditional, were 
fitted across a number of environments. In the unconditional network, we revisit the multi-
trait QTL (MT-QTL) analysis based on four yield related traits needed for the crop growth 
model (CGM) earlier reported in Alimi et al. (2016). This is done for the detection of the 
QTLs that will be included in the unconditional network. In the unconditional network, 
QTL information will not be updated in response to the inferred structure of the phenotype 
network. The unconditional network is simply a way to display MTMs graphically without 
updating the genetic architecture of the traits. In the conditional network (Hageman et al., 
2011; Neto et al., 2010), the genetic architecture for each trait is inferred conditional on 
the phenotype network. Because the final phenotype network structure is itself unknown, 
the procedure iterates between updating the phenotypic network structure and the genetic 
architecture using a Markov chain Monte Carlo (MCMC) approach. The posterior samples 
from network models are summarized by Bayesian model averaging (Neto et al., 2010). 
The posterior probabilities for the set of probable networks are estimated and the network 
with the highest posterior probability is selected. The effect sizes and signs for the 
variables (traits and QTLs) in the final reconstructed networks corresponding to the four 
environmental conditions were compared by refitting the final networks in the form of 
structural equation models (SEMs). In the discussion of this paper, we first focus on the 
added values of using conditional network models over unconditional models. Secondly, 
we look at the interpretation of QTL hotspots found in MTMs. Then, the distinction 
between direct and indirect QTL effects is discussed, followed by a comparison of the 
final conditional networks for individual environments with each other and with the CGM 
topology for yield and its components. 

5.3. Materials and Methods 

5.3.1. Genotypic and Phenotypic data 
A sixth generation segregating recombinant inbred lines (RIL) population of 149 
individuals generated from a cross between Yolo Wonder (YW) and Criollo de Morelos 
334 (CM 334) pepper cultivars were genotyped for 455 markers assembled onto 12 
chromosomes covering 1705cM. The population was phenotyped in four experiments 
carried out at two locations (Netherlands, NL, and Spain, SP) during two time periods. 
This generated four environmental conditions denoted by NL1, NL2, SP1 and SP2. 
Additional information on genotyping and phenotyping of this population can be found in 
Nicolaï et al. (2012) and Alimi et al. (2013a). To study QEI for the two SP trials, an 
additional average condition was defined by the average of phenotypic measurements in 
SP1 and SP2: SPavg. 

Four traits were studied that are central to a LINTUL-type (Light INTerception and 
Utilization) crop growth model (CGM) (Higashide and Heuvelink, 2009). Earlier analyses 
on those traits were  reported in Alimi et al. (2016). These traits were yield, represented by 
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total dry weight of fruit (DWF), the sum of dry weight of all the fruits harvested during the 
growing season and the fruits on the plant at the final destructive harvest; the increase rate 
of leaf area index (LAI) which expresses mean increase in leaf area per unit time, where 
time is expressed in degree-days; radiation use efficiency (RUE) which is the dry matter 
production (g) per megajoule (MJ) of intercepted global radiation; and partitioning into 
fruit (PF) which expresses the proportion of total plant biomass due to fruit. The traits 
were preliminarily analysed to correct for non-genetic sources of variation and obtain best 
linear unbiased estimates (BLUEs) as genotypic means (Alimi et al., 2013a). The BLUEs 
were used in the network analyses. 

5.3.2. Traits Relationships from Crop Growth Model 
The LINTUL CGM employed in the SPICY project relates yield (DWF) to three 
component traits (Alimi et al., 2016). The model assumes yield can be predicted from 
these component traits via a mathematical representation that also includes environment 
specific variables such as temperature and radiation. This means yield is assumed to be 
(causally) related to LAI, RUE and PF. 

For genotype i in environment j, the CGM was mathematically written as: 

௜௝ܨܹܦ    = ௜௝ܨܲ ∗ ௜௝ܧܷܴ ∗ ∑ ቀܫ௝ௗ ∗ ൫1 − ݁ି௞∗௅஺ூ೔ೕ೏൯ቁ஽ଵ ,      (5.1) 

with DWF accumulated over the growing days d = 1… D, k is the extinction coefficient 
for the intercepted light and I is the daily global light intensity (Higashide and Heuvelink, 
2009). 

5.3.3. Unconditional Network (MTM) 
The unconditional phenotype network was reconstructed by first performing QTL 
mapping to identify QTLs making up the genetic architectures of the traits. The 
unconditional phenotype network is simply a representation of a model for multi-trait 
QTL-mapping, where QTLs have directed effects at traits, whereas effects between traits 
are absent. The residuals of the traits can be correlated. This type of network is herein 
referred to as MTM network. For building an MTM network, multi-trait QTL (MT-QTL) 
analyses were carried out for each of the original four experimental environments and the 
constructed environment SPavg, for detection of QTL to be included in the network.  

The MT-QTL model is a joint analysis of the four traits within each environment, ݕ௜௞ with 
i for genotype (i = 1... nG, with nG being number of genotypes, 149) and  k for trait (k = 
1... nT, with nT being number of traits, 4) in a mixed model QTL analysis  cf. Alimi et al. 
(2013b). To facilitate convergence, traits were standardized to have mean 0 and standard 
deviation 1. The MT-QTL model reads: ݕ௜௞ = ௞ߤ + ∑ ௞௤௤∈ொߚ௜௤ݔ + ݃௜௞ +  ௜௞,    (5.2)ߝ

where μk is the overall mean for trait k, xiq is the genetic predictor for genotype i at 
genomic evaluation point q, ߚ௞௤ is the trait-specific QTL effect for trait k corresponding to 
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the additive genetic predictor at locus q, ݃௜௞ represents the genetic effect of genotype i for 
trait k, and ߝ௜௞ represents a non-genetic/residual component that cannot be distinguished 
from ݃௜௞. We will refer to the residual by ݃௜௞. The set Q represents the full set of identified 
QTLs from an interval mapping followed by backward elimination. We assumed that the 
vectors ࢍ௜ = (݃௜ଵ, … , ݃௜௡೅) follow a multivariate normal distribution with zero mean and 
unstructured variance, G, i.e. ࢍ௜~ܰ(0,  with dimensions nT x nT. Recall, that we (ࡳ
standardized the traits, so that the diagonal of ࡳ will contain the proportion of the variance 
that was not explained by the QTLs.    Model (5.2) accounts for genetic correlations 
between traits and allows us to detect pleiotropic QTLs. The MT-QTL analyses were 
performed using the QTL facilities in GenStat 15 (VSNi, 2012). 

5.3.4. Conditional Network (QTLnet) 
The second network building method considered is the QTL-driven phenotype network 
approach proposed by Neto et al. (2010). This type of network was termed QTLnet. 
QTLnet jointly models genetic architecture and phenotype network structure using so 
called homogeneous conditional Gaussian regression (HCGR) models (Lauritzen, 1996). 
This method is termed conditional network as the genetic architecture for each phenotype 
is inferred conditional on the phenotype network. The correlation structure among 
phenotypes is explicitly modelled according to the directed graph representation of the 
phenotype network. The genetic model is derived from a system of linear regression 
equations which corresponds to HCGR (Neto et al., 2010). In the HCGR model, the 
phenotypes (y) are distributed according to a multivariate normal distribution conditional 
on the QTL genotypes (q) which are subsets of the marker genotypes (m), while the QTL 
q are modelled through the mean. Using Bayesian notation, the joint probability of y and q 
can thus be partitioned into genetic and recombination components, respectively relating 
phenotypes to QTL and QTL to observed markers across the genome: 

,࢟)݌  (࢓|ࢗ = ,ࢗ|࢟)݌ (࢓|ࢗ)݌(࢓ =  (5.3)            .(࢓|ࢗ)݌(ࢗ|࢟)݌

The latter part of the equation follows from conditional independence since the marker 
genotypes provide no additional information about the phenotypes, given the QTL 
genotypes are already known. 

For genotype i and trait k, the phenotype model can be represented as: ݕ௜௞ = ௞ߤ + ∑ ௞௤௤∈ொߚ௜௤ݔ + ∑ ௜௩ݕ௞௩ߠ + ݃௜௞ + ௜௞,௬ೡ∈௣௔(௬ೖ)ߝ ,௜௞~ܰ(0ߝ     ௞ଶ).      (5.4)ߪ

Model (5.4) is an extended version of Model (5.2), where an extra term is added to 
represent the relations between the traits.  The set of traits affecting trait k is denoted by its 
parent set pa(yk),,while θkv gives the partial regression coefficients of the traits in the 
parent set. For the residual term,  ݃௜௞, we again assume an unstructured model. 

A Metropolis–Hastings (M-H) algorithm (Metropolis et al., 1953) as described in 
Husmeier (2003) was used to estimate the posterior probability in (5.3) starting from a 
non-informative prior for the skeleton of the network. As the algorithm makes single 
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changes (add or drop an edge, or change causal direction) to the phenotypes, such 
phenotypes in which the parent nodes have been altered are thus remapped. The 
accept/reject calculation involves estimation of the marginal likelihood conditional on the 
parent nodes and newly mapped QTL (Neto et al., 2010). Because the phenotype network 
structure is itself unknown, the algorithm iterates between updating the network structure 
and genetic architecture using a Markov chain Monte Carlo (MCMC) approach. The 
posterior sample of network structures is summarized by Bayesian model averaging 
(Hoeting et al., 1999). The averaged network is constructed by putting together all causal 
relationships with maximum posterior probability or with posterior probability above a 
predetermined threshold. When causal signal is high, the true model has the highest 
posterior probability. The conditional networks were estimated using QTLnet package in 
R (Neto et al., 2010; R-Core-Team, 2012).  

5.3.5. Structural Equation Models 
In order to gain further insight into the relationships among the traits, a structural equation 
model (SEM) (Wright, 1921) was employed to quantify effect sizes and directions for the 
variables (traits and QTL) in each of the final networks for each of the environments. The 
final network configurations from both MTM and QTLnet were translated into a SEM. In 
SEM, phenotypes can be treated as both predictor (exogenous) and response (endogenous) 
in a system of simultaneous equations, hence functional (causal) links between phenotypes 
can be established. QTLs can only be exogenous as it is already established that the 
association of a QTL and a phenotype is causal since QTL mapping is considered a 
randomized experiment and genotype precedes phenotypes (Li et al., 2006). The 
endogenous variables in a SEM are assumed to follow a multivariate normal distribution, 
while exogenous variables can be either continuous or categorical as with the QTL in our 
case. 

The quantities of importance in the SEM analysis were the goodness of fit as judged by 
the Akaike Information Criterion (AIC), and the path coefficient estimates. Standard errors 
were computed for each estimated path coefficient, and equality to zero is tested using a z-
statistic. After the individual relationships within the model were assessed, path 
coefficients between the unconditional and conditional networks were compared. The final 
SEM models for MTM and QTLnet in each environment were compared on AIC. For 
individual traits in the SEM the R2 statistic was calculated. SEM analyses were performed 
using the CALIS procedure in SAS 9.3 (SAS-Institute, 2011).  

Finally, based on SEM path coefficients, the net effects for each of the traits were 
estimated and compared across environments and between network methods. The net 
effect of the QTL on a trait is the sum of the effects along all the direct and indirect paths 
connecting the two variables. For standardized variables, the effect of an indirect path is 
the product of all the path coefficients (including + and - signs) along this path. (Li et al., 
2006).  
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5.4. Results 

5.4.1. Genotypic and Phenotypic data 
The broad-sense heritability (H2), phenotypic mean and standard deviation for the four 
yield related traits of interest across the four environments are presented in Table 5.1. 
Mean trait values varied across environments with DWF showing highest variation. Mean 
DWF in the Dutch environments were lower than in the Spanish environments. Yield in 
NL2 were particularly low due to very short growing period and blossom end rot 
infestation (Alimi et al., 2013a). The trait H2 varied from 0.49 – 0.95 with an average of 
0.82 and were slightly higher in the SP environments than the NL environments. Among 
the four traits, H2s for radiation use efficiency were lowest across all environments. For 
each trait, the consistent and high values for the estimates of H2 across environments 
reflect low micro-environmental disturbances in the traits and good possibilities for 
mapping QTLs governing these traits. 

Table 5.1: Traits Summary Statistics 
Heritability (H2)  Mean 

 
Standard Deviation 

Trait NL1 NL2 SP1 SP2 NL1 NL2 SP1 SP2 NL1 NL2 SP1 SP2 
DWF 0.82 0.76 0.89 0.87 23.12 7.77 66.89 87.13 16.77 6.40 36.68 32.77 
LAI 0.67 0.88 0.90 0.94  2.22 3.01 1.56 1.69  0.70 1.00 0.49 0.44 
RUE 0.49 0.73 0.73 0.75  1.12 1.00 0.96 1.19  0.24 0.20 0.14 0.14 
PF 0.89 0.89 0.95 0.93  0.18 0.10 0.28 0.36  0.12 0.07 0.14 0.11 

Table 5.2: Genetic correlations of traits within each environment 
 DWF LAI RUE 

 

Trait DWF LAI RUE 
NL1 SP1 

LAI 0.07   LAI 0.09   
RUE 0.13 0.11  RUE 0.40 -0.34  
PF 0.90 -0.18 -0.11 PF 0.93 -0.18 0.34 

NL2 SP2 

LAI 0.19   LAI -0.04   
RUE 0.26 0.32  RUE 0.22 0.01  
PF 0.91 -0.07 -0.03 PF 0.89 -0.37 0.03 

The within environment correlations between traits were mostly consistent in sign and 
magnitude across the environments (Table 5.2). The correlations between DWF and the 
other three traits are of primary importance in this study. Very high correlations were 
observed between DWF and PF (0.89 – 0.93). This was not surprising since PF was 
computed from total fruit weight and total plant biomass. RUE showed low but positive 
correlations to DWF (0.13 – 0.40), while LAI displayed very low and sometimes negative 
correlations to DWF (-0.04 – 0.19). This suggests that LAI possibly shares little or no 
genetic components with DWF while PF should share almost all genetic architecture with 
DWF. 

5.4.2. Unconditional Network (MTM) 
The QTLs for the unconditional phenotype networks were obtained by MT-QTL analyses 
that combined the four traits in each environment (Table 5.3). Figure 5.1 shows the 
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detected QTLs for all traits and environments. Many of the detected QTLs for each of the 
traits are part of the QTLs earlier reported for these traits in Alimi et al. (2013b). The 
addition of an extra QTL or loss of some QTL earlier reported is due to the different 
number of trait used in the two studies. A total of one, zero, four, five and six QTL were 
detected for DWF in NL1, NL2, SP1, SP2 and SPavg respectively. The NL trials gave the 
smallest number of QTLs for this trait, as expected (since these had the lowest H2 and 
mean phenotypic values for DWF). Many of the significant QTLs are pleiotropic with 
some pleiotropic effects being antagonistic. Examples of QTLs with antagonistic effects 
are the QTLs on chromosomes 6 and 7. These QTLs showed increasing effects from 
parent YW on some traits (e.g. DWF and PF) and increasing effects from parent CM334 
on other traits (e.g. LAI and RUE). The QTLs also showed mainly quantitative QTL-by-
environment interactions. All the QTLs picked up simultaneously in both SP1 and SP2 are 
also picked up for SPavg. Some QTLs detected in either SP1 or SP2 were also picked up 
in SPavg. None of the QTLs in SPavg showed qualitative QEI with either SP1 or SP2.  

 
Figure 5.1 Detected QTL from MT-QTL analyses in the five environments. Blue indicates QTL with significant effect 
from YW allele while red indicates QTL with significant effect from CM334 allele. The 12 pepper chromosomes are on 
the X-axis while trait-environment combinations (e.g. PF_SP2 represents trait PF in environment SP2) are given on the 
Y-axis 
 

Table 5.3 Trait-specific QTL effects estimates (Est) with their standard errors (SE) for MT-QTL analysis. QTL are 
denoted by their chromosome number and position e.g. Q2p105 represents a QTL on chromosome 2 at around 105cM 
position. Negative QTL effects mean that the YW allele gives higher trait values than the CM334 allele, and positive 
QTL effects mean that the CM334 allele gives higher trait values. The underlined values are significant QTL effects. 

Environments Predictors 
DWF LAI RUE PF 

Est SE Est SE Est SE Est SE 

NL1 

Q2p105 -0.089 0.082 -0.339 0.074 -0.090 0.070 -0.010 0.082 
Q3p0 0.186 0.083 -0.013 0.074 0.321 0.071 0.146 0.083 
Q3p135 -0.143 0.084 0.153 0.075 0.277 0.071 -0.206 0.084 
Q4p53 -0.139 0.085 -0.344 0.076 -0.041 0.073 0.007 0.085 
Q6p51 -0.103 0.084 0.112 0.075 0.245 0.072 -0.187 0.084 
Q10p7 -0.030 0.084 0.108 0.075 -0.215 0.072 -0.039 0.084 
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NL2 

Q1p15 0.005 0.085 -0.371 0.064 -0.036 0.080 0.082 0.084 
Q2p105 -0.140 0.083 -0.361 0.062 -0.041 0.078 -0.046 0.082 
Q4p53 -0.102 0.085 -0.351 0.064 -0.018 0.080 -0.027 0.085 
Q6p51 -0.128 0.084 0.137 0.063 0.338 0.079 -0.222 0.083 
Q6p107 -0.095 0.084 -0.077 0.063 0.181 0.079 -0.123 0.083 

SP1 

Q2p75 -0.137 0.072 -0.078 0.075 -0.186 0.079 -0.055 0.072 
Q2p105 -0.289 0.074 -0.304 0.077 -0.026 0.082 -0.222 0.073 
Q4p19 -0.290 0.072 0.042 0.075 -0.087 0.079 -0.309 0.071 
Q4p53 -0.170 0.074 -0.244 0.078 0.065 0.082 -0.105 0.074 
Q6p107 -0.050 0.070 -0.157 0.073 0.326 0.078 -0.079 0.070 
Q7p78 -0.237 0.071 0.266 0.075 -0.157 0.079 -0.318 0.071 
Q11p79 -0.112 0.068 0.074 0.072 0.164 0.076 -0.233 0.068 

SP2 

Q2p75 -0.181 0.073 -0.001 0.067 -0.126 0.080 -0.206 0.075 
Q2p105 -0.135 0.074 -0.459 0.068 -0.071 0.081 0.049 0.077 
Q4p53 -0.269 0.074 -0.252 0.069 -0.028 0.082 -0.140 0.077 
Q6p51 -0.203 0.072 0.177 0.066 0.283 0.079 -0.277 0.074 
Q6p107 -0.194 0.071 -0.168 0.066 0.234 0.078 -0.172 0.074 
Q7p78 -0.297 0.073 0.180 0.068 0.029 0.081 -0.319 0.076 

Spavg 

Q2p75 -0.279 0.065 -0.072 0.073 -0.188 0.079 -0.243 0.069 
Q2p105 -0.220 0.067 -0.343 0.074 -0.086 0.080 -0.090 0.070 
Q4p19 -0.300 0.068 0.126 0.075 -0.216 0.081 -0.327 0.071 
Q4p53 -0.193 0.069 -0.279 0.076 0.096 0.083 -0.086 0.072 
Q6p51 -0.257 0.062 0.171 0.070 0.160 0.075 -0.324 0.065 
Q6p107 -0.064 0.063 -0.186 0.070 0.363 0.075 -0.079 0.065 
Q7p78 -0.266 0.063 0.253 0.070 -0.061 0.076 -0.339 0.066 
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5.4.3. Conditional Network 
In Table 5.4, the three most probable conditional networks in each environment are given 
together with their posterior probabilities. The first conditional networks for Spanish 
environments are by far superior to their alternative networks with posterior probability > 
0.6, In NL trials the posterior probabilities were relatively low. In NL2, the two most 
probable networks had almost equal posterior probabilities (0.36 and 0.34). The major 
difference in these two networks is that PF became the most downstream trait in the 
second network while DWF was the most downstream trait in the first network. 

The most probable conditional network and the unconditional network in the SP2 
environment are displayed in Figure 5.2 for comparison. The conditional networks for the 
remaining environments are given in Appendix 5.1. The conditional network with the 
highest posterior probability is reported in each case. In all environments, the phenotype 
networks from QTLnet have yield as most downstream trait, similar to what happens in 
the CGM for yield. It is noteworthy that in the QTLnet specification, when QTL detection 
threshold changes, the network configuration also changes slightly with PF becoming the 
most downstream trait instead of DWF especially in NL2. This can be explained by the 
very high correlation and shared genetic components between these two traits. 

QTLnet improved elucidates the relationships between phenotypic traits and distinguishes 
between QTL with direct and indirect effects, and thereby helping to resolve the causal 
structure behind QTL hotspots. For instance, in SP2, MTM reported six QTL with five of 
them having pleiotropic and direct effects. QTLnet revealed only one QTL with 
pleiotropic effect and six QTL with direct and indirect effects. As an example, MTM 
revealed that Q7p78 had a pleiotropic effect on DWF, LAI and PF (hotspot) but QTLnet 
showed that Q7p78 had a direct effect only on PF through which it affected LAI and DWF 
indirectly. In SP2, the only QTL with a pleiotropic effect as detected by QTLnet was 
Q6p51 that was found to have a direct effect on both RUE and PF. No QTL directly 
influenced DWF in SP2. All the effects on DWF were found to be indirect through its 
upstream component traits. Using QTLnet, two additional QTL (Q4p19 and Q11p79) were 
detected for RUE while one QTL from MTM (Q6p107) disappeared. These two additional 
QTL are however not new as they were earlier reported for this trait in Alimi et al. 
(2013b). 
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Table 5.4: Final model assessment based on comparison of three most probable conditional networks in each 
environment. 

Trial Network# Posterior Probability 

NL1 
(1|2,3,4)(2)(3|2)(4) 0.284 
(1|2,3,4)(2|3)(3)(4) 0.085 

(1|2,3,4)(2|4)(3|2)(4) 0.059 
   

NL2 
(1|2,3,4)(2|3)(3)(4) 0.364 

(1)(2|3)(3|1)(4|1,2,3) 0.341 
(1|2,3,4)(2|3)(3|4)(4) 0.091 

   

SP1 
(1|2,3,4)(2|3,4)(3|4)(4) 0.745 
(1|2,3,4)(2|3)(3|4)(4) 0.254 
(1|2,3,4)(2|4)(3|4)(4) 0.001 

   

SP2 
(1|2,3,4) (2|4) (3) (4|3) 0.768 
(1|2,3,4)(2|3,4)(3)(4|3) 0.140 

(1|2,3,4) (2|4) (3) (4) 0.073 
   

SPavg (1|2,3,4)(2|3,4)(3|4)(4) 0.623 
 (1|2,3,4)(2|4)(3|2)(4) 0.134 
 (1|2,4)(2|4)(3|1,2,4)(4) 0.133 

#1 = DWF; 2 = LAI; 3 = RUE; and 4 = PF. 
 

 
Figure 5.2 Unconditional (SP2_MTM) and Conditional (SP2 QTLnet) networks in SP2: Graphical representation of the 
relationships among traits and the QTLs influencing the traits in the SP2 environment. QTL are denoted by their 
chromosome number and position e.g. 2p105 represents a QTL on chromosome 2 at around 105cM position. Conditional 
networks for the remaining environments are in appendix 1 
 

5.4.4. Structural Equation Models 
The standardized path coefficients for both conditional and unconditional networks in SP2 
obtained via SEM are presented in Table 5.5. The path coefficients for the remaining 
environments are given in Appendix 2. In all environments, QTL effect directions in both 
conditional and unconditional networks were defined to go from QTL to traits. All QTL 
paths in conditional networks as constructed by QTLnet showed significant path 

2p105 4p53 7p78 2p75 6p51 6p107 

DWF LAI PF RUE 

SP2 MT

2p105 4p53 7p78 2p75 6p51 4p19 11p79 

LAI PF RUE 

DWF SP2 QTLnet 



Chapter 5 

 106 

coefficients. In contrast, some paths in MTM contained non-significant coefficients when 
retested in SEM, e.g. Q3p0 and Q4p53 for DWF in NL1 and SP1 respectively. This 
difference between SEM and MTM can be caused by the difference in likelihood between 
MTM (QTLs fixed, polygenic effects random, REML) and SEM (everything random, 
ML).  

From the AIC values, QTLnet models fitted better in NL1 and NL2, while the MTM 
models fitted better in SP1 and Spavg. In SP2 there was little difference. In SP2, based on 
squared correlations, R2, between fitted and observed values for the BLUEs, the SEM 
fitted the data fairly well. The R2 estimates from the SEM for individual traits in each 
environment were mostly higher for QTLnet than for the MTM. As an example, the SEM 
for DWF in SP2 had R2 of 0.31 and 0.93 for MTM and QTLnet networks, respectively. 
However, this was a direct consequence of upstream traits being included in the models 
for downstream traits in QTLnet networks. 

Across environments, the QTL path coefficients mainly showed quantitative QEI i.e. 
difference in effect magnitude but not in direction of effect. An example is the direct 
influence of Q2p105 on LAI across the four environments. The coefficients ranged from 
strongly negative in SP2 (-0.45) to mildly negative in NL1 (-0.28). The only QTL with 
crossover QEI is Q11p79. This QTL negatively influenced RUE in SP2 (-0.177) but 
showed positive influence on RUE in SP1 (0.377). This QTL however disappeared in 
SPavg. Four QTLs showed slightly modified quantitative QEI in SP environments. These 
include Q4p19 that was found to influence PF in SP1 and SPavg, but it influenced RUE in 
SP2, and Q7p78 that was found to influence PF in SP2 and SPavg, but LAI in SP1. Others 
include Q6p51 and Q6p107. 

The SEM results for the conditional network also showed that DWF was significantly 
influenced by PF, LAI and RUE in all environments. This is in agreement with the CGM 
specification. This confirms that DWF is truly downstream to these component traits and 
can be predicted from these traits given that a true relationship is established.  

SEM allows us to resolve effects’ sign and magnitude for any trait along its direct and 
indirect paths. The net effects reported for MTM are made up of only direct paths while 
the reported net effects for QTLnet take into account both direct and indirect paths (Table 
5.6). The net effects for some of the traits changed markedly when a conditional network 
is used as against an unconditional network (e.g. net effect on PF in SP2 changed by a 
value of 0.448) while others only changed slightly (e.g. net effect on DWF in NL1 
changed by a value of 0.007). Generally speaking, trait net effects increased when a 
conditional network is used. Across most environments, net effects for DWF increased 
when direct and indirect paths leading to it are properly resolved. Changes of the net 
effects in their dependence on environmental conditions provide us with a measure for 
environmental stability of traits. Net effect for fruit size was substantial more in the 
Mediterranean climate (SP trials) than in the more temperate climate (NL trials). On the 
contrary, in the NL trials, we observed slightly higher net effect for leaf formation (LAI) 
than in the SP trials, hence reduction in fruit sizes. 
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Table 5.5 Standardized SEM path coefficients for MTM and QTLnet networks for SP2. QTL are denoted by their 
chromosome number and position e.g. Q2p75 represents a QTL on chromosome 2 at around 75cM position. Negative 
path coefficients indicate that the YW allele is associated with higher trait values and positive path coefficients mean that 
the CM334 allele gives higher trait values. 

SP2 

Methods Predictors DWF LAI RUE PF 
Est SE Est SE Est SE Est SE 

MTM 

Q2p75 -0.286 0.060 -0.313 0.057 
Q2p105 -0.210 0.046 
Q4p53 -0.175 0.033 -0.335 0.059 
Q6p51 -0.182 0.068 0.160 0.070 0.297 0.073 -0.243 0.067 

Q6p107 -0.203 0.067 -0.148 0.069 0.229 0.074 -0.183 0.068 
Q7p78 -0.299 0.062 0.176 0.069 -0.311 0.066 

R2 0.313 0.287 0.151 0.312 
AIC = 155.09 
 

QTLnet 

LAI 0.397 0.044 
RUE 0.148 0.054 0.973 0.340 
PF 1.079 0.045 -0.407 0.101 

Q2p75 -0.217 0.067 
Q2p105 -0.453 0.055 
Q4p19 -0.197 0.063 
Q4p53 -0.321 0.056 
Q6p51 0.287 0.072 -0.586 0.148 
Q7p78 -0.297 0.065 

Q11p79 -0.177 0.061 
R2 0.925 0.512 0.182 0.415 

AIC = 155.17 
 
Table 5.6: The net effects (direct + indirect) for each trait from SEM models. The effect of a direct path is the 
standardized path coefficient and that of an indirect path is the product of the path coefficients (including the sign) along 
that path. Negative net effect means that the YW allele gives higher trait values than the CM334 allele, and positive net 
effect means that the CM334 allele gives higher trait values. 

Traits 
NL1 NL2 SP1 SP2 SPavg 

MTM QTLnet MTM QTLnet MTM QTLnet MTM QTLnet MTM QTLnet 

DWF -0.068 -0.075 0 -0.137 -0.937 -0.730 -1.145 -1.407 -1.289 -1.238 

LAI -0.370 -0.503 -0.743 -0.894 -0.349 -0.382 -0.377 -0.292 -0.545 -0.530 

RUE 0.557 0.283 0.538 0.390 0.414 0.160 0.526 -0.087 0.305 0.521 

PF -0.129 0 -0.120 0 -1.000 -0.717 -0.737 -1.185 -1.077 -1.014 

 
 

5.5. Discussion 
The objective of this study was to explore network models for yield and yield components 
for a unique pepper data set that allowed us to compare reconstructed networks across 
various environmental conditions. Both conditional and unconditional networks were 
constructed for four traits. The unconditional networks were based on a standard multi 
trait model (MTM) (Jiang and Zeng, 1995), while the conditional networks were based on  
the QTL-driven phenotype network method (QTLnet) developed by Neto et al. (2010). 
The final networks for each environment from both conditional and unconditional methods 
were used in a SEM to quantify and compare the relationships among yield and its 
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components. QTLnet improved detection of refined genetic architecture by distinguishing 
between QTLs with direct and indirect effects, thereby resolving QTL hotspots. 

A number of recent papers stress the need to study networks of plant phenotypes, and the 
stability of phenotype relationships across environments due to genotype-by-environment 
interactions (Granier and Vile, 2014; Li et al., 2010; Valente et al., 2013). This need is 
even more pronounced with the advent of automated high-throughput phenotyping 
technologies capable of simultaneously recording many traits (Barócsi, 2012; Van der 
Heijden et al., 2012) that may exhibit moderate to strong correlations between them. Also, 
characterising genotypes by a single phenotype is inefficient since many QTLs influence 
multiple traits; hence there exists a strong need to properly account for covariations among 
the traits and resolving the type/direction of relationships among the traits. Our results 
showed that although MTMs are able to account for covariation among traits and establish 
QTL with pleiotropic effects, they miss out on the possibility to disentangle the paths for 
such effects and neither are they able to provide insight into the (causal) relationships 
among the traits. When the correlation between two phenotypes arises exclusively because 
of a pleiotropic QTL, conditioning on the QTL genotypes makes the phenotypes 
independent. Properly conditioning QTL analysis on network structure increased detection 
of refined genetic architecture as shown for DWF in SP2 for example. No QTL directly 
influences DWF in SP2. All the effects on DWF were found to be indirect through its 
upstream component traits. Conditioning QTL mapping on network structure disentangles 
QTL effects into direct and indirect effects. We further showed that the QTL hotspots 
from the MTMs resulted from ignoring network structure for the correlated traits. 

The most probable conditional networks from the four environments contained DWF as 
the most downstream trait, as expected from the structure for the ecophysiological 
LINTUL-type (Light INTerception and Utilization) genotype-to-phenotype model (CGM) 
(Spitters and Schapendonk, 1990; Van Ittersum et al., 2003). The CGM simulates the 
formation of pepper yield under potential growing conditions and relates yield to its 
component traits. The main environmental factors considered in the CGM were radiation 
and temperature. These types of genotype-to-phenotype modelling techniques have been 
widely employed to study traits relationships in combination with environmental inputs 
and also to study plant development over time (Reymond et al., 2003; Uptmoor et al., 
2008; Yin et al., 2005). Similar to the CGM topology, yield was established to be 
downstream to its three component traits, indicating that yield can be predicted from the 
component traits (Alimi et al., 2016). However, the relationship among the component 
traits as reconstructed by our statistical analysis differs from the relationships as defined 
by the CGM. The network model did not incorporate any environmental information. 
Including environmental characterizations via CGM into the network model may improve 
our ability to improve on yield prediction through its component traits. 

When the aim of a QTL analysis that is part of breeding program is restricted to selection 
based on breeding values and estimation of the response to selection, using an MTM is 
sufficient as the interest is on the total additive genetic effects. Even if traits are indeed 
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causally related, no information is lost. However, where changes due to genetic and/or 
environmental interventions are of interest, using an MTM provides only limited 
information for such predictions. Examples of such interventions may be changes in 
temperature or other environmental/agronomic inputs or even modification of gene 
expression levels. The use of a network-based model will allow prediction of outcomes to 
interventions applied to such a network (Scutari et al., 2014; Bouwman et al., 2014; 
Valente et al., 2013). This is possible since the relationships depicted by conditional 
networks are direct, thus any change due to external interventions can be quantified. As an 
example, using a conditional network model, we can predict changes in our target complex 
trait yield across the different environments by adding environmental information to the 
network relating the component and target traits. This is however only feasible if the 
component traits have simple genetic architecture with little or no GEI (Bustos-Korts et 
al., 2016). Such predictions are made by representing the intervention on the causal 
structure among phenotypes and by knowing the genetic effect directly on each trait, as 
well as the dispersion parameters that describe their joint distribution. All these are 
possible by fitting a SEM.  

Causality claims in genomic network studies stem from two facts. First, there is the 
analogy between randomized experimental design and genetic randomization that occurs 
during meiosis and secondly, the intuition that phenotypic variation is caused by genetic 
factors (Li et al., 2006; Neto et al., 2010). Correlation between traits is insufficient for 
claims for causality, even when the traits share a common QTL. Understanding of the 
biology governing the relationships is crucial. It is possible that two traits sharing a 
common QTL are actually independent (Li et al., 2010). Although our results indicate that 
yield in pepper can be studied and predicted via its component traits, an in-depth 
biological understanding of the relationship is needed before categorical claim of causality 
between yield and the three component traits can be made. Notwithstanding this 
shortcoming, our results demonstrated that properly conditioning the genetic architecture 
of a complex trait on the causal structure of the component traits will enhance our ability 
to correctly predict the complex trait. Thus, the genetic improvements of the complex trait 
would benefit from improvements on the component traits.  
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Key Message 
Both conditional and unconditional correlation networks were constructed to study 
relationships among yield and yield related traits across multiple environments. A 
conditional network considerably improved detection of refined genetic architecture by 
distinguishing between QTL with direct and indirect effects thereby resolving pleiotropic 
QTLs. 



Chapter 5 

 110 

Appendix 5A 
Figure 5A1. Graphical representation of the conditional relationships among traits and the QTLs influencing the traits. 
All the paths presented are significant with P-val<0.05. 
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Appendix 5B 
Table 5B1: Standardized path coefficients for MTM and QTLnet networks. QTL are denoted by Q followed by the 
chromosome number and p followed by cM positions. Negative effects in the QTL indicate that the YW allele is 
associated with higher trait values. 

NL1 
  DWF LAI RUE PF 
Methods Predictors Est SE Est SE Est SE Est SE 

MTM 

Q2p105   -0.251 0.067     
Q3p0 0.038 0.030   0.300 0.059   
Q3p135   0.130 0.077 0.273 0.063 -0.059 0.032 
Q4p53 -0.106 0.030 -0.249 0.069     
Q6p51     0.230 0.060 -0.070 0.030 
Q10p7     -0.246 0.058   

AIC = 103.76 

QTLnet 

LAI 0.219 0.102       
RUE 0.124 0.053       
PF 0.903 0.017       
Q2p105   -0.280 0.067     
Q3p0     0.336 0.061   
Q4p53   -0.223 0.068     
Q6p51     0.213 0.064   
Q10p7     -0.266 0.064   

AIC = 84.37 
 

 
NL2 

Methods Predictors DWF LAI RUE PF 

MTM 

 Est SE Est SE Est SE Est SE 
Q1p15   -0.335 0.056     

Q2p105   -0.305 0.056     
Q4p53   -0.241 0.058     
Q6p51   0.138 0.066 0.393 0.064 -0.120 0.033 

Q6p107     0.145 0.058   
AIC = 115.09 

QTLnet 

LAI 0.213 0.038       
RUE 0.137 0.061 0.247 0.149     
PF 0.909 0.022       

Q1p15   -0.354 0.055     
Q2p105   -0.368 0.055     
Q4p53   -0.268 0.057     
Q6p51     0.390 0.069   

AIC = 73.2378 
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SP1 

Methods Predictors DWF LAI RUE PF 

MTM 

Predictors Est SE Est SE Est SE Est SE 
Q2p75 -0.101 0.056 

Q2p105 -0.394 0.061 -0.296 0.066 -0.314 0.064 
Q4p19 -0.286 0.061 -0.304 0.063 
Q4p53 -0.055 0.029 -0.159 0.067 

Q6p107 -0.161 0.051 0.302 0.066 
Q7p78 -0.202 0.068 0.267 0.070 -0.148 0.074 -0.281 0.068 

Q11p79 0.260 0.062 -0.101 0.022 
AIC = 136.74 

QTLnet 

LAI 0.323 0.046       
RUE 0.274 0.044 -0.111 0.170     
PF 0.907 0.045 0.038 0.169 0.675 0.170   

Q2p75       -0.319 0.066 
Q2p105   -0.344 0.066     
Q4p19       -0.209 0.066 
Q4p53   -0.169 0.069     

Q6p107     0.267 0.064   
Q7p78   0.176 0.066     

Q11p79     0.377 0.080 -0.189 0.071 
AIC = 145.91 

 
 

SPavg 
  DWF LAI RUE PF 

Methods Predictors Est SE Est SE Est SE Est SE 

MTM 

Q2p75 -0.226 0.063   -0.140 0.072 -0.258 0.058 
Q2p105 -0.170 0.031 -0.422 0.053     
Q4p19 -0.242 0.064   -0.114 0.073 -0.219 0.059 
Q4p53 -0.136 0.030 -0.251 0.055     
Q6p51 -0.229 0.066 0.162 0.064 0.268 0.071 -0.292 0.067 

Q6p107   -0.202 0.046 0.291 0.061   
Q7p78 -0.286 0.060 0.168 0.063   -0.308 0.065 

AIC = 127.39 

QTLnet 

LAI 0.406 0.046       
RUE 0.180 0.086 -0.738 0.260     
PF 1.101 0.052 -0.572 0.154 -0.229 0.146   

Q2p75       -0.158 0.063 
Q2p105   -0.426 0.052     
Q4p19       -0.189 0.063 
Q4p53   -0.300 0.053     
Q6p51       -0.362 0.062 

Q6p107     0.289 0.074   
Q7p78       -0.305 0.062 

 AIC = 157.19 
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CHAPTER 6 
7. GENERAL DISCUSSION 

 
Complex Trait Predictions 

 

6.1. Introduction 
The central theme of the research presented in this thesis revolves around the development 
of prediction models for complex target traits, where yield grown in different 
environments serves as an example case. For complex traits, a desired situation would be 
for the breeder to test promising candidate varieties in several conditions with the aim of 
selecting the best genotypes, either for a wide or otherwise narrower range of 
environments or conditions. This would however be expensive, laborious and time-
consuming (Montes et al., 2007). The breeder therefore needs a set of tools that supports 
her/his ability to predict phenotypic responses of genotypes for (complex) traits under a 
range of environmental conditions. An important set of tools is given by prediction models 
capable of taking into account the heterogeneity of genetic variances and correlations that 
underlies genotype by environment interaction and properly accounting for both generic 
and specific features of experimental designs being employed. Various strategies were 
tried: multi-trait multi-environment (MTME) analysis as the most general form of linear 
mixed model (LMM), crop growth model (CGM) and causal network models. Yield being 
a complex trait, is based on multiple QTLs/genes with small effects that interact between 
themselves and with the environment. So, we expect that yield itself will be difficult to 
predict. As an alternative, we may try predicting yield using component traits. These 
component traits can enter a multi-trait analysis together with yield (chapters 2 and 3), or 
the components enter the CGM to predict yield together with environmental information 
(chapter 4), or they enter a causal network where their relationship with yield is 
determined (chapter 5). An approach that predicts yield via a dissection in component 
traits may work when the components are less sensitive to genotype-by-environment 
interaction (GxE) than yield itself and when they have a simpler genetic basis, i.e., only a 
few QTLs with large effects. 

In the EU-SPICY project (which this thesis is a part of), new tools allowing automated and 
fast high-throughput phenotyping (HTP) were also developed, leading to reduction in the 
amount of manual labour expended on phenotyping experiments and contributing to cost 
reduction in the long run. Although the target trait yield could not be measured directly by 
the HTP, some of the HTP traits can be used as correlated traits for especially yield 
components. Since this work is part of the EU-SPICY project, some reflections on salient 
aspects of the project that directly influence the central theme of this thesis are presented. 
These include the choice of parents, type and size of the mapping population, type and size 
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of marker data and phenotype measurement protocols. Before discussing statistical issues 
related to different types of prediction models, we will touch on these other aspects that 
affected the performance of the prediction models. 

6.2. Mapping Population 
Among other factors, the choice of promising segregating populations for QTL mapping 
can be based on selecting phenotypically diverse parents (Hung et al., 2012). The planting 
material used in the EU-SPICY project was the progeny obtained from a biparental cross 
between two phenotypically distant pepper inbred cultivars of Capsicum annuum; Yolo 
Wonder (YW) as the female parent and CM334 as the male parent (Figure 6.1). These 
cultivars differed in their plant and fruit phenotypes. Yolo Wonder is a domesticated large-
fruited sweet cultivar while CM334 is a wild small-fruited pungent cultivar. A total of 297 
recombinant inbred lines (RIL) were obtained after 6 to 7 cycles of successive self-
pollinations using the single seed descent method. The lines represent a random and large 
sample of all the possible descendants issued from the initial cross as there was no 
chromosome segment with segregation distortion. The relevance of this choice of parents 
in the prediction of the target trait yield can be shown by the type, magnitude and 
precision of the QTLs detected for yield and its component traits and the performance of 
the genomic prediction models. On average, the detected QTLs for yield explained about 
47% genetic variance in each of the four environments (NL1, NL2, SP1 and SP2), similar 
to the average explained genetic variance for each of the three component traits (LAI, PF 
and RUE).  

The sample size that we used is comparable to sample sizes used in literature for mapping 
QTLs for pepper and similar vegetables. For instance, Chaim et al., (2001) and Rao et al., 
(2003) used a population of 180 and 248 individuals respectively to map yield-related 
QTL in pepper. Nunome et al., (2001) used a mapping population size of 168 individuals 
to map fruit shape and colour development traits in eggplant. Similar sample sizes have 
been used in tomato (Causse et al., 2002; deVicente M. C. & Tanksley). So, we can 
conclude that this population allowed us to map QTLs for yield and its component traits. 

However, the QTLs identified in offspring from crosses of extreme parents as used here 
may be of limited interest to breeders. For example, QTLs segregating in the offspring 
from a cross between a domesticated and an exotic parent may have most yield increasing 
QTL alleles coming from the domesticated parent, while most yield decreasing QTL 
alleles come from the exotic parent. In that situation, little progress is possible beyond the 
level of the domesticated parent, so no or little transgression will be observed in the 
offspring population. This lack of transgression was investigated at the level of estimated 
genotypic means (BLUEs) from the initial linear mixed model, at the level of predicted 
values based on multi-QTL models (both single and multi-trait) and, finally, at the level of 
genomic prediction models (both single and multi-trait).  

We defined two statistics Qmin and Qmax (Alimi et al., 2013a) to estimate the proportion of 
transgressed offspring lines for each of the three approaches. Qmin represents the 
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proportion of RILs with estimated/predicted values lower than the value for the lower 
parent while Qmax stands for the proportion of RILs with estimated/predicted values higher 
than the value for the higher parent. When selecting for yield, a breeder will prefer crosses 
that will give rise to offspring with substantial Qmax.  

Using univariate transgression obtained from the BLUEs for yield, Qmin were 0.03, 0.01, 
0.01 and 0.01 while Qmax were 0.08, 0.10, 0.01 and 0.31 in the NL1, NL2, SP1 and SP2 
trials respectively. For yield, values of both Qmin and Qmax were generally small across the 
four environments except in SP2 where Qmax was as high as 0.31. Taking SP2 as an 
example, the values of Qmax for yield from the BLUE, QP and GP models univariately 
were 0.31, 0.26 and 0.15 respectively. As expected, the values of Qmin were negligible 
with the highest being 0.01. From our QTL models, almost all the major QTLs for yield 
showed increasing alleles from YW (Alimi et al., 2013a; 2013b). However in the MTME 
model, four QTLs in SP2 trial showed increasing allele effects for yield from CM334 and 
are believed to be the bases for the transgression observed in this trial (0.26). Hence with 
regards to yield, the RILs did show some transgression especially in SP2 trial but the 
transgression was not replicated in other trials and thus may not be enough for them to be 
appealing to breeders for selection in their own breeding programme. An alternative may 
be to generate the progeny from a cross between parents having comparable yield but 
contrasting for yield components, thereby optimizing the power for detecting QTLs 
underlying the trait variation in yield components (Van Eeuwijk, 2015). Offspring from 
such parents should show interesting transgression for yield as a consequence of the 
presence of crossover QTLs. Example of such a cross may be between Poblano and Yolo 
Wonder (YW). Similar to YW, Poblano is also a large fruited pepper, hence high yielding. 
Unlike YW, Poblano is mildly hot and also different in its plant phenotypes such as leaf 
area (Brand et al., 2012). Other varieties that may be used include California Wonder 
(CW) and Cowhorn which are also both large fruited varieties (Saini and Sharma, 1978). 

Furthermore, the issue with our choice of biparental population as regards its suitability 
for proper breeding and dissection of yield can be circumvented with the use of multi-
parental populations and/or association panels. A multi-parent advanced generation 
intercross (MAGIC) population, (Cavanagh et al., 2008) as an example of a multi-parental 
population will be able to provide a broad genetic and phenotypic base for dissecting and 
identifying the genetic control of the complex multigenic trait yield. A MAGIC population 
can be analyzed by linkage analysis when there is no segregation distortion or structure 
and by association mapping methodology when segregation distortion occurs due to 
selection or drift (Cavanagh et al., 2008; Ehrenreich et al., 2009). In MAGIC, a number of 
parent lines are intercrossed for a number of generations to combine the genomes of all  
parents in the progeny lines (Huang et al., 2012; 2015; Verbyla et al., 2014). Since 
multiple parents are utilized, the population segregates for multiple QTL for multiple 
traits. This allows identification of gene-trait association for complex traits. With a 
complex target trait such as yield in mind, a MAGIC population will be a preferred 
resource for creating high-density maps using germplasm relevant to breeders (Cavanagh 
et al., 2008). MAGIC populations however take longer time to establish in comparison to 
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association mapping populations and require higher genotyping efforts than biparental 
populations (Keurentjes et al., 2011; Rakshit et al., 2012). 

 
Figure 6.1: Plant material used in the EU-SPICY project. Differences in the fruit shape and size between the 
inbred lines issued from the initial cross between the two Capsicum annuum cv Yolo Wonder and CM334.  

6.3. QTL mapping resolution 
The size of mapping populations, N,  affects the precision of QTL locations as well as the 
precision with which genetic linkage maps can be constructed (Weller and Soller, 2004; 
Semagn et al., 2006). The precision of the QTL location is positively correlated with the 
number of individuals since there is an inverse relationship between confidence interval 
(CI) for QTL location and population size for any type of biparental mapping population 
i.e. ܫܥ ∝  is a standardized QTL allele substitution effect, with ߙ ଶܰ, whereߙ/ܥ
standardization in respect to the genetic variance, σ2 , for a trait. The value of constant C 
depends on the type of mapping population ranging from 3073, 1537 and 480 for 
backcross, F2, and RIL1 (first generation RIL) respectively (Weller and Soller, 2004). To 
map QTLs with CI of 10cM assuming effect size of 0.25σ (similar to average effect sizes 
in the SPICY data, see Tables C1, D1 and E in Alimi et al., 2013b), population sizes of 
about 5000, 2500 and 770 individuals are required for backcross, F2 and RIL1 population 
respectively. For a 6th generation RIL (RIL6) population, population sizes of 384, 480 and 
768 individuals are required for a CI of 10cM, 8cM and 5cM respectively. In our project, 
although the whole set of 297 individuals were used for DNA extractions and genetic 
mapping of molecular markers, only 149 individuals were used for QTL estimation, hence 
producing a CI of about 13cM precision for a 0.25σ QTL effect size. Theoretically only 
large effects QTLs with poor precision can be detected with such a population. For a 
complex target trait such as yield whose genetic architecture is by assumption influenced 
by many small effect QTLs, it is desirable to have the population size increased to 500 
individuals or more, so as to increase the ability to pick up some QTLs of small effects 
and also enhance the precision of detected QTLs.  

However, with advanced QTL modelling techniques such as the multi-trait multi-
environment (MTME) model which we developed further here, it is possible to harness the 
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correlations between environments and among various traits to increase the power of QTL 
detection for such complex traits, especially for QTLs with small effects. How this is 
achieved will be shown later. The MTME will leverage on the traits-environments 
combination to improve the QTL detection. In our case the MTME method significantly 
improved detection of QTLs having small effects (with explained genetic variance 
between 3% - 8%) that were not detected by simpler QTL methods. The MTME detected a 
total of 7, 10, 10 and 13 QTLs for yield as against 1, 2, 3 and 3 QTLs picked up by the 
single trait analysis in NL1, NL2, SP1 and SP2 environments respectively. These QTLs 
from MTME also explained higher total genetic variance than those from the single trait 
analysis. This confirms that although it is advisable to have adequate number of 
individuals for effective QTL mapping, advanced QTL methodology that takes various 
sources of correlations into account are useful in QTL mapping when sample size is small, 
aside from being able to capture small effects QTLs. 

Another important factor that can influence the precision of genetic linkage maps and thus 
QTL resolution is the degree of marker saturation of the genome. For a RIL population 
with marker saturation levels of 5cM, 10cM and 20cM, the minimum numbers of 
individuals to be genotyped were found to be 100, 154 and 500 respectively (Silva et al., 
2007). The mean between-marker distance in our case was about 4cM, indicating that the 
number of genotyped individuals is sufficient for QTL detection. However, a number of 
adjacent marker spacings were more than 5cM (108, 25% cases), with some spacings 
greater than 10cM (35, 8%) and even as high as 20cM (10, 2%). The three largest 
distances were 29.7cM, 37.4cM and 45.7cM found on chromosomes 6, 10 and 7 
respectively. Therefore, the marker size of 455 used in the EU-SPICY project can be 
considered adequate for QTL mapping in pepper but the spread of the markers is deficient. 
Consequently, adding more markers to the chromosome segments with large spacing 
might improve our ability to map more QTLs for some of the traits. 

6.4. Manual and Automated Phenotyping  
Yield being a difficult to measure trait can benefit tremendously from the use of novel 
high-throughput phenotyping (HTP) techniques. This is made feasible since new traits that 
are correlated with yield and/or yield components can be measured using HTP, hence 
contributing to better possibilities to map QTLs for yield and its component traits and also 
enhancing yield prediction. In the EU-SPICY project, phenotyping was done by both 
manual and automated scorings. The manual scoring recorded physical characteristics 
related to vegetative and fruit developments. The automated scoring comprised a newly 
developed fluorescence device (Barócsi, 2012) and a mobile digital imaging tool (Van der 
Heijden et al., 2012; Song et al., 2014; and Horgan et al., 2014). Both tools permitted high 
throughput recording of dynamic trait expressions with some of the expressions (such as 
leaf area and rate of photosynthesis) related to yield component traits. 

Yield is regarded as a performance-related trait determined by structural and physiological 
traits, hence difficult to measure directly. The structural traits are the traits expressing the 
development and growth of plants (e.g. cell size and leaf area index) while physiological 
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traits describe plant functioning (e.g. rate of photosynthesis and water content). HTP 
measurements are rare for structural and physiological traits since they are usually 
measured at organ and cellular levels unlike morphological traits that are measured at 
whole-plant level (e.g. stem length and number of fruits) (Li et al., 2015; Dhondt et al., 
2013; Fiorani and Schurr, 2013; Furbank and Tester, 2011). It is rather difficult to obtain 
near accurate measurement for yield (represented as fruit dry weight) through manual 
measurement unlike its fresh weight counterpart. It is more feasible to automate 
measurements of fresh weights of fruits, leaves and stems than their dry weights 
counterpart. However, if accurate expressions relating fresh and dry weights are developed 
and water contents in the organs are accurately determined, weight-related traits such as 
yield can be approximated from the automated measurements of their fresh weights. 
Measurements of water contents in the organs can be automated using 2D imaging tools 
such as near-infrared cameras, multispectral line scanning cameras and active 
thermography. Estimates of biomass composition can then be obtained by chemometric 
methods although extensive calibration will be required (Fiorani and Schurr, 2013; 
Kümmerlen et al., 1999; Munns et al., 2010; Araus, J. L., & Cairns, 2014; Seelig et al., 
2008). 

Among yield component traits considered in our crop growth model, partitioning to fruits 
appears to be the most difficult to obtain via automated devices. However, if biomass 
accumulation and weights of fruits, stems and leaves are captured over time, then a more 
reliable and dynamic measurement for this partitioning, spanning the duration of plant 
development can be obtained. For such dynamic traits, estimates of the slopes of the linear 
relations between the traits and time may be obtained and its genetic basis in the form of 
QTLs investigated (See Horgan et al., 2015 for an example).  

6.5. Complex Traits Analyses 
Efficient use of the wealth of phenomics and genomics data for improved QTL mapping 
and genomic prediction of complex traits such as yield require appropriately designed 
conceptual and statistical frameworks. The ‘traditional’ QTL approach to link genetic 
markers to a trait is generally conducted univariately for phenotypes observed in a single 
environment, but this is often not sufficient for complex traits that exhibit considerable 
GxE. Also, in plant breeding experiments and with the advent of HTP, phenotypic 
measurements on a large range of traits are collected simultaneously. These traits are often 
genetically correlated and the genome-wide availability of genetic markers allows us to 
study whether these genetic correlations are caused by pleiotropic and/or closely linked 
QTLs (Mackay, 2001). Similarly important is the understanding of correlation of 
genotypic performances between multiple environments as these will impact 
transferability and predictability (Boer et al., 2007). These issues demand improved and 
novel statistical methods and strategies to adequately describe and analyse such datasets 
and to arrive at sound QTL results. In this thesis, a number of quantitative genetics models 
were considered to predict yield either directly from itself or indirectly from its 
components traits and also study the genetic basis of variation of yield and its component 
traits in different growing environments and in the presence of other (related) traits. 
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6.5.1. QTL methods based on linear mixed model 
One of the methods we considered extensively was the linear mixed model (LMM) since it 
offers suitable frameworks for handling complex correlation structures describing several 
scenarios found in plant breeding such as 1) instances of the same trait in multiple 
environments; 2) multiple traits in single environments; 3) pairs of traits across 
environments  (Boer et al. 2007; Malosetti et al. 2008; van Eeuwijk et al. 2010). These 
models also offer flexible tools for handling the diversity of experimental designs, 
imbalance due to the set of genotypes changing between trials, non-linear relationship, 
repeated measures during plant cycle, evaluation of genotypes within complex pedigrees, 
etc. 

In this thesis, the LMM QTL approach was implemented in several situations commonly 
found in plant breeding experiments. We started with the univariate analysis of a number 
of pepper physiological traits which we termed single trait single environment (STSE) 
analysis (Alimi et al., 2013a). We first obtained unbiased estimates and genetic parameters 
for yield and 15 other traits univariately in each of the four environments using a model 
specification of Piepho et al. (2006). The phenotypic trait value for each individual was 
estimated taking the design of the experiments in each location into account. For the QTL 
estimation, we used a multiple-QTL mapping procedure (MQM) (Jansen, 1993; Arends et 
al., 2010) for each trait in each environment: 

௜ܻ = ߤ + ∑ ௤ߙ௜௤ݔ + ݁௜ொ௤ୀଵ ,    (6.1) 

where Yi was the phenotypic response of genotype i, μ the population mean, αq was the 
additive effect of QTL q, xiq was a marker-genotype indicator variable (0-1) and ei was the 
residual term, which contains both genetic (polygenic, non-detected QTLs) and non-
genetic (plot error) contributions. A total of four QTLs were detected for yield with only 
one of them (C4@35cM) found in all environments. Two main conclusions were drawn 
from the STSE analysis. A first conclusion concerns the presence of QTL-by-Environment 
interaction (QEI) as indicated by the differences in the number, level of expression, 
fraction of variance explained and effect sizes of QTLs for most of the traits across the 
four trials. The QEI were mostly quantitative and not qualitative, i.e. the QTL showed the 
same sign in all the environments and mostly differed in magnitude. For example the yield 
QTL on chromosome 2 showed QEI effects in magnitude, but not in direction (= non-
crossovers). This QTL had non-significant effect 0.06 in NL1 and significant effects 0.15, 
0.42 and 0.25 in NL2, SP1 and SP2 with superior alleles from parent YW. This is an 
indication that though many of these traits are genetically determined in any given 
environment, their degree of expression differs from one environment to the other. Second 
is the presence of QTL with pleiotropic effects. QTLs with overlapping confidence 
intervals were loosely declared to be the same QTL, i.e., a QTL with pleiotropic effects. 
The pleiotropic effects were consistent with the genetic correlations among the traits 
(Alimi et al., 2013a). None of these conclusions could be properly handled via the 
univariate analyses. Hence the need to use advanced LMM techniques capable of 
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combining the data from the four trials while explicitly modelling the complex variance-
covariance structures among the environments, traits or trait-environment combinations. 

This led us to use multi-environment (ME) model where each trait was evaluated over the 
four trials. Our main objective was to investigate possible GxE exhibited by yield and 
yield components, hoping that yield components would show less GxE than yield itself 
(Alimi et al., 2013b). This would then make it easier to predict yield from its component 
traits. The final multi-locus ME model was of the form: 

௜ܻ௝ = ௝ߤ + ∑ ௝௤ொ௤ୀଵߙ௜௤ݔ + ݃௜௝ + ݁௜௝.              (6.2) 

Where ௜ܻ௝ denoted the standardized phenotype of the ith genotype (i = 1,...,149) in 
environment j ( j = 1,...,4), ߤ௝ was the environmental mean, ݃௜௝ represented the genetic 
effect of genotype i at environment j, ߙ௝௤ was the environment-specific QTL effect for 
QTL q and ݁௜௝ represented the non-genetic component. We assumed that the vectors ࢏ࢍ = (݃௜ଵ, … , ݃௜௃) follow a multivariate normal distribution with zero mean and an 
unstructured variance-covariance matrix G i.e. ࢍ௜~ܰ(0,  .(ࡳ
The possibility to model heterogeneity of variance and genetic correlation across 
environments led to more reliable tests for QTL effects and detection of QTLs with 
differential expressions across environments for many of the traits. For example, three 
QTLs were detected for yield, similar to the result of STSE. However, the effects of these 
QTLs were significant in more than one environment, unlike what was obtained from 
STSE. Detected QTLs were categorized as either constitutive or adaptive, according to the 
stability of their effects across different environments (Alimi et al., 2013b). The 
constitutive QTLs are responsible for consistent phenotypic differences between 
genotypes, with the favourable allele contributing to wide adaptation, at least within the 
range of environments in which the evaluation was made. This type of QTLs are always 
desirable to be introduced in elite germplasm of any breeding program as selecting the 
superior allele will produce a consistent improvement. The adaptive QTLs on the other 
hand, carry alleles with significantly varying effects across environments and thus 
constitute the genetic basis of (qualitative/crossover) GxE. All the QTLs for yield were 
constitutive with majority of the superior alleles from parent YW. This is not surprising as 
phenotypic differences for yield between the two parents are very pronounced in all of the 
environments (Alimi et al., 2013a). However across the four environments, more QTLs 
were picked up for the component traits than yield itself and these QTLs mostly show 
quantitative GxE. In NL1 for example PF, LUE and LAI had four, three and five QTLs 
that explained 42%, 26% and 37% variation respectively as against two QTLs for yield 
which explained 22% variation. Only LUE was affected by QTLs with crossover GxE on 
chromosome 11 (~70cM). These results show how difficult it is to dissect yield into 
sensible and useful component traits as the components displayed higher GxE than yield 
itself. 
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In the multi-trait (MT) analyses, a number of the resulting phenotypes could be correlated 
either due to pleiotropy, linkage between close-by QTLs and/or shared environment. 
Taking these correlations into account was important in our case, not only because of the 
need to understand pleiotropy, but also because it led to detection of more QTLs as a 
consequence of increased power due to increase in sample size relative to marginal 
analyses (Alimi et al., 2013b; Zhou and Stephens, 2014; Furlotte and Eskin, 2015). The 
specification of MT model is very similar to the ME model. In the case of MT model, 
instead of having environment (E) in the QTL model (5), we have trait (T). Per 
environment, there were 15 traits, resulting in four MT analyses. For yield, 4, 8, 9 and 10 
QTLs were detected in NL1, NL2, SP1 and SP2 trials respectively including the QTLs 
already detected in the ME analyses. These QTLs explained higher proportions of genetic 
variations than STSE and ME analyses. For example, the QTLs from the MT model in 
SP2 together explained 44.6% genetic variance as against 37% and 28.7% explained by 
QTLs from STSE and ME models. MT model also provides insights into the genetic 
architecture of the multiple traits as it enables estimation of their genetic correlation, 
which is a measure of the portion of the total correlation between traits that is due to 
(additive) genetic effects (Furlotte and Eskin, 2015). Positive genetic correlations occurred 
between traits that share a common biological process (e.g. photosynthesis such as leaf 
area and partition to leaf with average correlation of 0.5 in the four trials) or are 
components of the same structure (e.g. fruit related traits such as yield and partition to fruit 
with average correlation of 0.9 in the four trials), and negative genetic correlations were 
found between components of fitness or traits in competition for resource allocation (e.g. 
stem and fruit such as partition to stem and yield with average correlation of -0.6 in the 
four trials) (Alimi et al., 2013b). Thus, understanding the underlying pleiotropic 
connections between quantitative traits is important for predicting correlated responses to 
artificial selection and understanding genetic constraints on the evolution of natural 
populations (Mackay et al., 2009). 

Specifically for application in the EU-SPICY project, we adapted a multi-trait multi-
environment (MTME) QTL model as the most general form of the LMM for identifying 
QTL in the presence of several sources of correlations (Alimi et al., 2013b; Malosetti et 
al., 2008). This model helped to identify the genome regions responsible for genetic 
correlations between trait-by-environment combinations and showed how genetic 
correlations depend on the environmental conditions. Extension to the MTME setting was 
achieved by combining traits across the four environments in a single LMM analysis 
where we specified the response trait (Y) to be a vector of the traits (T) and environments 
(E) combinations. The mean for the trait by environment combination, TE, is taken as 
fixed in the QTL analysis: 

௜ܻ௣ = ௣ߤ + ∑ ௣௤ொ௤ୀଵߙ௜௤ݔ + ݃௜௣ + ݁௜௣,              (6.3) 

where ߤ௣ (p = 1, 2,..., 60) is the trait by environment mean (p runs over the product of 
environment and traits), αpq is the trait by environment-specific QTL effect for QTL q, ݃௜௣ 
represents the genetic effect of genotype i for trait by environment combination p, and eip 
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is the residual effect. We specified an unstructured VCOV matrix for all pairs of the trait 
by environment combinations, giving a total of 1830 parameters. With the MTME model, 
GxE and genetic correlations between traits were simultaneously modelled. The MTME 
method yielded many QTLs of small effects (between 3% - 8%) that were not detected in 
both ME and MT methods. MT and ME however had more QTLs that explained above 
10% genetic variations than MTME. This might be related to the so called “Beavis effect” 
(Beavis, 1994, 1997; Xu, 2003). Beavis effect is used to qualify situations where simpler 
models fail to detect some QTLs with small effects and also result in overestimation of 
some effect sizes. On the one hand, the Beavis effect will cause the estimated number of 
QTL to be biased down ward, because the undetected QTLs are not reported. On the other 
hand, the average effect of the detected QTLs will be biased upward. 

The average power to detect QTLs by each of the models was compared using a standard 
t-test power function for the univariate model and Hotelling’s T2 power function for the 
multivariate models. For a p-variates situation, the Hotelling’s T2 can be viewed as a 
combination of univariate t-tests. Although there may not exist any unique best test for 
power in multivariate settings, the Hotelling’s T2 is probably the best known test for this 
problem since it is the likelihood ratio test and is uniformly most powerful (UMP) among 
all tests that are invariant under the group of non-singular linear transformations (Wu et 
al., 2006; Agresti & Klingenberg, 2005; Kaplan and George, 1995; Kariya, 1981). While 
the obvious test for power in LMM is the Wald test statistics, nevertheless Hotelling’s T2 
is almost equal to the Wald test statistics and they are asymptotically equivalent when the 
sample size is large (n→∞). The sample size of 149 individuals studied here is considered 
large enough for the use of Hotelling’s T2 in lieu of Wald test statistics. Also, the exact F-
distribution of the Hotelling’s T2 converges to the Wald test χ2-distribution when n is large 
(Wu et al., 2006). The p-variate Hotelling’s T2 is written as: 

௣ܶଶ = ഥࢅ)ܰ − ഥࢅ)ଵିࡿ૙)ᇱࣆ −  ૙),           (6.4)ࣆ

where ࢅഥ is the vector of sample means for the variates to be tested (e.g. the effects for 
yield in each of the four trials as estimated from MTME) and S is their 
covariance/correlation matrix. We assume that all N observations available on p variables 
have the same multivariate normal distribution with mean vector μ and variance-
covariance matrix Σ. The aim is to test the hypotheses ܪ଴: ࣆ = :௔ܪ ݏݑݏݎ݁ݒ ૙ࣆ ࣆ =  ࢇࣆ
where at least one component of ࢇࣆ is different from the corresponding component of ࣆ૙. 
Usually, ࣆ૙ is a vector of zeros. The power function of the critical region α for the 
rejection of the null hypothesis above can be represented as ߚఈ(ߤଵ, … , ,௣ߤ  with power ,(ࢳ
equal to 1 – β. Using non-centrality parameters, the power of the Hotelling’s T2 may be 
calculated for any value of the means and standard deviations. Since there is a simple 
relationship between the non-central T2 and the non-central F, calculations are actually 
based on the non-central F using the formula (Muller et al., 1992): ߚ = Pr (ܨ <  .ఈ,ௗ௙ଵ,ௗ௙ଶ), where df1 = p and df2 = N - p′ܨ
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For many of the constitutive QTLs detected by the various models, the power was better 
with multivariate models than the univariate model. For example, the standardized 
estimated effects of the yield QTL on chromosome 4 at 35cM by the MTME model were 
0.31, 0.30, 0.26 and 0.24 for NL1, NL2, SP1 and SP2 trials respectively. Using these 
effects together with the correlations between yield trait across the four trials (see Table 
A2 in Alimi et al., 2013b) and a 0.05 test level, the estimated multivariate power from 
Hotelling’s T2 was 0.92. Following the same pattern, the power from the ME and MT 
models were 0.98 and 0.95 respectively. The estimated effects from the STSE for the same 
QTL were 0.25, 0.20, 0.19 and 0.24 for NL1, NL2, SP1 and SP2 trials respectively giving 
estimated power of 0.88, 0.70, 0.65 and 0.85 for NL1, NL2, SP1 and SP2 trials 
respectively using univariate t-test statistic. This particular QTL was picked up in the four 
environments by all the models with very big effect sizes (≥0.24) and hence very high 
power. For an adaptive QTL such as the QTL on chromosome 7 at 78cM with effect sizes 
0.10, 0.08, 0.05 and 0.28 in NL1, NL2, SP1 and SP2 trials respectively, the multivariate 
power by MTME was 0.89. Using STSE, this QTL was significant in only SP2 with effect 
size of 0.21 and power 0.74. An example of QTL with small effects for yield detected by 
MTME and only significant in SP1 is the QTL on chromosome 2 at 2cM with effect sizes 
0.13, 0.04, 0.26 and 0.06 in NL1, NL2, SP1 and SP2 trials respectively yielding 
multivariate power of 0.83. In summary, there is a very high power of detecting 
constitutive QTLs across the four environments irrespective of the models while 
multivariate models especially the MTME increase the power of detecting adaptive QTLs 
and QTLs with small effects. Power calculations were done using G*Power software (Faul 
et al., 2009). 

Yield prediction also improved significantly under the MTME since its genetic 
correlations with other traits were better exploited. Prediction accuracies for yield in SP2 
for example improved from about 0.53 under the ME model to 0.64 under the MT and 
0.81 under the MTME (Alimi et al., 2013b). The MTME was especially suitable for the 
complex trait yield as it led to better detection of pleiotropic QTLs with either synergistic 
or antagonistic effects, some complementary QTLs (qualitative GxE), differential allele 
expression according to environments (quantitative GxE) and an increased explained 
variance for the complex target trait. For instance, the QTLs from MTME in SP2 
explained 56% genetic variance as against 37%, 28.7% and 44.6% explained by QTLs 
from STSE, ME and MT models respectively. The QTL on chromosome 3 around 140cM 
as detected by both MT and MTME models, is an example of an antagonistic pleiotropic 
QTL as it had opposite effects on different traits: YW had the increasing allele for yield 
related traits while CM334 had the increasing allele for stem related traits. As expected 
due to the population type, the majority of the yield increasing alleles are from YW. 
However, one particular QTL on chromosome 12 showed an increasing allele effect for 
yield from CM334 in NL2 and SP2 trials and can be regarded as a complementary QTL 
for yield and a basis for transgression. 

Conversely, there are some constraints limiting the application of multivariate LMM for 
QTL mapping. First is the computational difficulty in fitting multivariate models for large 
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number of traits simultaneously. In such situations, it is desirable to implement a 
multivariate approach on the most relevant traits instead of performing the analysis on all 
available traits. A variable selection approach has been proposed to choose a subset of 
informative traits for multitrait QTL mapping while still maintaining optimal statistical 
power for QTL identification (Cheng et al., 2013). This has the obvious advantage of 
better biological interpretation over standard data reduction techniques such as principal 
components without requiring any back transformation since selections of the original 
traits are used (Aschard et al., 2014; Gao et al., 2014). Second is the realization that it is 
not in all situations that multivariate analysis is more powerful than univariate analysis as 
the statistical power of multitrait analysis depends on both the QTL effects and the 
structure of the residual covariance of the traits (Zhou and Stephens, 2014; Korol et al., 
1995 and Jiang and Zeng, 1995). This was experienced with some traits in the EU-SPICY 
data such as LAI in NL1 and NL2 trials where some QTLs were significant only in the 
univariate analysis. Thus, multivariate and univariate tests should be viewed as 
complementary rather than competing (Zhou and Stephens, 2014). 

Another constraint has to do with the use of a limited set of QTL-related markers instead 
of estimation of effects for all markers. This limits the usefulness of QTL models for 
prediction purposes. Further constraint is the lack of proper understanding of the 
pleiotropic paths (either having direct/indirect effects) revealed by multivariate model. A 
number of novel statistical methodologies have been proposed to address some of these 
limitations, allowing multivariate analyses to be more useful. The performances of three of 
such methodologies namely genomic prediction models, crop growth models and causal 
network models, for modelling complex traits, were also examined for the EU-SPICY 
data. 

6.5.2. Genomic Prediction and Integrated Crop Growth Models 
Genomic prediction (GP) models offer interesting alternatives to QTL based prediction 
(QP) models especially for complex trait predictions. The main difference between the two 
classes of models is in the use of all markers in a penalized regression context for GP, 
where all QTLs are assumed to be in linkage disequilibrium with one or more molecular 
markers instead of the use of a limited set of QTL-related markers in QP. Several studies 
have shown that multi-trait versions of GP perform better than single-trait versions 
(Burgueño et al., 2012; Jia and Jannink, 2012; Sørensen et al., 2012; Calus and Veerkamp, 
2011). Many studies on QTL and association mappings have also shown that the joint 
analysis of multiple traits helps to improve the power and precision of QTL (Alimi et al., 
2013b; Jiang and Zeng, 1995) and association mappings (Galesloot et al., 2014; Stephens, 
2013; Xu et al., 2015). We extended this frontier by comparing multi-trait versions of GP 
and QP models. The predictive performances of both single-trait (ST) and multi-trait (MT) 
versions of GP were investigated and compared with performances of ST and MT versions 
of QP using yield and its component traits.  

The four methods (STQP, STGP, MTQP, MTGP) differed substantially in their predictive 
potentials for yield. GP models showed higher predictive accuracies than QP models with 
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MT outperforming ST situations. Yield in SP2 for example had prediction accuracies of 
0.42, 0.53, 0.51 and 0.89 using ST-QP, MT-QP, ST-GP and MT-GP models respectively. 
These results confirm that GP methods are better predictive models than QTL methods. 
This is not really surprising since parameters from GP methods are fitted on all available 
markers while parameters of QP methods are fitted only on selected QTL markers. 
Similarly, the linkage disequilibrium (LD) between markers and QTL is exploited better 
by GP than by QP, leading to higher prediction accuracies (Habier et al., 2010; Hayes et 
al., 2009). Also, MT models exploited the genetic correlations among the traits leading to 
improved predictive accuracies. Unlike QP methods, the GP methods fully take advantage 
of the correlations between all the markers and control shrinkage estimation by assigning a 
prior distribution to marker effects. Prediction accuracies differed across environments for 
each of the five traits irrespective of the prediction method employed. Traits were 
generally better predicted in SP trials than in NL trials. This is probably due to the type of 
population used as this population is more suited for outdoor growing system than for the 
system in a greenhouse. The climate conditions (light, temperature) in Spain were more 
suitable for this population than the NL conditions. Yield for example, had prediction 
accuracies ranging from 0.16 – 0.84 over methods in NL1, 0.11 – 0.75 in NL2, 0.47 – 0.90 
in SP1 and 0.42 – 0.89 in SP2 while radiation use efficiency (RUE) had accuracies ranging 
from 0.44 – 0.65, 0.11 – 0.71, 0.27 – 0.89 and 0.28 – 0.85 in NL1, NL2, SP1 and SP2 
respectively. These differences in prediction accuracies further confirm that GxE is an 
important component of the genetic variability for these traits (Alimi et al., 2013b). 

The extents to which both QP and GP models predict yield from the component traits for 
new genotypes and/or environments were explored by linking the prediction methods with 
crop growth model (CGM). A CGM can suggest writing a complex target trait as a 
function of a set of simpler component traits and a set of environmental input covariables 
(Bustos et al., 2015; Chenu et al., 2008; Hammer et al. 2010). CGMs with 
known/predicted genotypic parameters are a potentially useful tool to understand which 
traits can be advantageous in a given environment, and also to identify management 
practices that contribute to improved crop productivity (Yin et al. 2004; Hammer et al. 
2006). Here we integrated QTL/genomic prediction and CGM approaches and showed that 
the target trait yield can be predicted via its component traits namely radiation use 
efficiency (RUE), partitioning into the fruits (PF) and growth rate of leaf area index 
(LAIrate) together with environmental covariables such as temperature, thermal time and 
daily global radiation intensity (I). For genotype i in environment j, the CGM was 
mathematically written as: 

  ܻ݈݅݁݀௜௝ = ௜௝ܨܲ ∗ ௜௝ܧܷܴ ∗ ∑ ቀܫ௝ௗ ∗ ൫1 − ݁ି௞∗௅஺ூ೔ೕ೏൯ቁ஽ଵ ,         (6.5) 

with yield accumulated over the growing days d = 1… D. The leaf area index (LAI) is 
dynamic and for genotype i in environment j on a specific day d (d ≤ D) calculated as ܫܣܮ௜௝ௗ = ௥௔௧௘೔ೕܫܣܮ ∗ ∑ ൫ ௝ܶௗ − ௕ܶ൯ௗଵ . The term ∑ ൫ ௝ܶௗ − ௕ܶ൯ௗଵ  is the accumulated thermal 
time till day d, expressed in degree-days, and LAIrate is a genotype specific increase rate of 
leaf area index. Tjd is the daily average temperature in environment j on day d, and Tb is 
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the base temperature below which no development takes place, taken as 10°C in all 
environments (van Ittersum et al., 2003; Marcelis et al., 2006). The increase rate of leaf 
area index (LAIrate) was calculated as the ratio between the increase of leaf area index 
(LAI) and thermal time between initial and final harvest. The fraction intercepted radiation 
is 1 − ݁ି௞∗௅஺ூ೔ೕ೏ , where a value of 0.7 for the extinction coefficient k is assumed for all 
genotypes (Marcelis et al., 1998). Daily intercepted radiation is then calculated from this 
fraction and Ijd, the daily global radiation intensity (MJ m-2 d-1). The daily intercepted 
radiation is consequently multiplied by the radiation use efficiency (RUEij) resulting in 
daily dry matter production. RUE represents the biomass produced per unit of intercepted 
radiation. It is the ratio between biomass increase and the total intercepted radiation, which 
was the daily intercepted global radiation summed over the total growth period. Finally, 
yield is calculated from the total accumulated dry matter by multiplying it by the fraction 
biomass partitioned into the fruits (PFij), i.e. fruit biomass/total plant biomass. Total plant 
biomass was calculated as the sum of plant dry weight at final destructive harvest and the 
dry weight of the already harvested fruits. 

The prediction accuracy of the target trait depends on the accuracy of the prediction of 
each of the components, and on the ability of the ecophysiological functions to correctly 
describe the processes leading to the target trait. Since CGM produces GxE as an 
emerging property of the interaction between the physiological parameters and the 
environmental information, the CGM we adopted has the added advantage of being able to 
describe GxE as it contained explicit representations of development over time and 
integrated developmental and environmental information (Tardieu, 2003; Chapman et al., 
2008; Chenu et al., 2009; Cooper et al., 2009). Therefore, using component traits and 
environmental covariables from one environment to predict yield in another environment 
was a possibility. The across-environment analysis envisages a situation where we wish to 
predict how a certain population will perform in a new environment.  

We noted that the integrated CGM approach performed creditably well in predicting the 
complex target trait yield. The accuracies obtained using integrated CGM are close to the 
direct prediction strategy of GP and QP models. The accuracy of prediction using 
integrated CGM approach also achieved the highest values with MT-GP method. The MT-
GP in the integrated CGM had prediction accuracies of 0.83, 0.81, 0.92 and 0.86 in NL1, 
NL2, SP1 and SP2 respectively, similar to 0.84, 0.75, 0.90 and 0.89 from the direct 
prediction approach. For the across-environment integrated CGM analyses using breeding 
values from ST-GP, prediction accuracy for yield in NL1 environment improved from 
0.18 to 0.23, 0.49 and 0.35, if component traits from NL2, SP1 and SP2 were used 
respectively. MT-GP on the other hand gave accuracies of 0.63, 0.60 and 0.57 when yield 
in NL1 was predicted using component traits from NL2, SP1 and SP2 respectively. 
Overall, the prediction accuracies for yield in NL trials increased if component traits from 
SP trials were employed while prediction accuracies for yield in SP environments did not 
improve when component traits from NL environments were used. This showed that 
difficult to measure complex traits such as yield can be successfully predicted from its 
component traits. The success of such predictions depends on (i) a well-defined CGM 
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relating the complex and component traits, (ii) a well-defined set of environmental 
covariables with corresponding CGM parameters, and (iii) a well understood genetic basis 
of the CGM parameters (Bustos et al., 2015; Slafer and Rawson, 1994; Snape et al., 2001). 

However apart from the prediction model of choice, a suitable population and comparable 
management and environmental settings should be used across the environments for 
proper GxE analyses with the CGM. To make a strong case for the integrated CGM 
approach, the target complex traits should be defined as functions of as much as possible 
independent component traits having well understood genetic basis, where these 
components traits themselves can still be measured with a certain ease or where these 
component traits may be approximated by other traits that can be recorded quickly and 
cheaply by automated phenotyping devices. The environmental covariables should be well 
defined. Also, the CGM should attain balance between being too empirical and too 
mechanistic. Model parameters may have little biological meaning when the CGM is too 
empirical while it is difficult to model all plant processes with a consistent mechanistic 
detail because our level of understanding of the biological processes become limited with 
a lowering of the level of analysis (Yin and Struik, 2010). It is therefore unlikely that one 
could arrive at any reasonable and purely mechanistic model satisfactory to understand, 
explain, learn and predict (biological) outcomes. Furthermore, despite huge efforts aimed 
at extending the use of CGM to enable genetic prediction, the focus has been mainly 
restricted to linking CGM and QP, while the use of CGM in combination with GP models 
has been largely ignored, with exception of Technow et al. (2015) and Onogi et al. (2016). 
Explicit incorporation of biological knowledge through CGM into GP models for complex 
traits have the potential to open up novel avenues towards accounting for epistatic effects 
since the relationship between the underlying component traits may be non-additive 
(Holland, 2001) . 

6.5.3. Causal network model 
Network type models provide alternative representation of the biological knowledge of a 
complex target trait such as yield, by showing intricate interactions of multiple genetic 
(and possibly environmental factors) influencing the target trait. The use of network 
models show how plant traits are interconnected in networks of dependencies as a result of 
gene-to-gene interactions and also the stability of such networks across environments due 
to GxE (Granier and Vile, 2014; Li et al., 2010; Valente et al., 2013). A number of 
network algorithms have been developed to build and understand gene-to-gene interaction 
architecture underlying relationships among traits (Tasaki et al., 2015; Schadt et al. 2005; 
Neto et al. 2008, 2013; Hageman et al., 2011). We defined both conditional and 
unconditional correlation networks to study putative (causal) relationships among yield 
and its three component traits across the four environments. The unconditional networks 
were based on standard multi trait QTL model (MTM) (Jiang and Zeng, 1995; Alimi et al., 
2013b) while the conditional networks were based on  the QTL-driven phenotype network 
method (QTLnet) developed by Neto et al. (2010). QTLnet jointly models genetic 
architecture and phenotype network structure using homogeneous conditional Gaussian 
regression (HCGR) models (Lauritzen, 1996). This method is termed conditional network 



Chapter 6                                            

 130 

as the genetic architecture for each phenotype is inferred conditional on the phenotype 
network. The correlation structure among phenotypes is explicitly modelled according to 
the directed graph representation of the phenotype network. The genetic model is derived 
from a system of linear regression equations which corresponds to the HCGR (Neto et al., 
2010). In the HCGR model, the phenotypes (y) are distributed according to a multivariate 
normal distribution conditional on the QTL genotypes (q) which are subsets of the marker 
genotypes (m), while the QTL q are modelled through the mean. The joint probability of y 
and q can thus be partitioned into genetic and recombination components, respectively 
relating phenotypes to QTL and QTL to observed markers across the genome. For 
genotype i and trait p, the phenotype model was represented as: 

௜ܻ௣ = ௣ߤ + ∑ ௣௤ொ௤ୀଵߙ௜௤ݔ + ∑ ௩௜ݕ௣௩ߠ + ݁௜௣,௬ೡ∈௣௔(௬೛)                  ݁௜௣~ܰ൫0,  ௣ଶ൯,      (6.6)ߪ

where ߤ௣ was the overall mean for trait p, αpq was the genetic effects for trait p, and xiq 
represented the genetic effect predictors derived from the conditional QTL genotype 
probabilities. The notation pa(yp) represented the set of parent phenotype nodes that 
directly affect yp, that is, θpv are the partial regression coefficients relating phenotypes 
having covariance structure that depends exclusively in the relationships among 
phenotypes and eip represented the normally-distributed residual component.  

With MTM we could establish QTLs with pleiotropic effects for correlated traits (see also 
Alimi et al., 2013b). The QTLnet can disentangle the paths for pleiotropic QTL by 
conditioning on QTL genotypes. For instance, in SP2, MTM reported six QTL with five of 
them having pleiotropic and direct effects while QTLnet revealed only one QTL with 
pleiotropic effect and six QTL with direct and indirect effects. As an example, MTM 
revealed that Q7@78 has a pleiotropic effect on yield, LAI and PF (an example of hotspot) 
but QTLnet showed that Q7@78 has direct effect only on PF through which it affects LAI 
and yield indirectly. No QTL directly influences yield in SP2. All the effects on yield were 
found to be indirect through its upstream component traits. Hence, the QTL hotspots from 
the MTM resulted from ignoring network structure for the correlated traits. QTLnet 
improved detection of refined genetic architecture by distinguishing between QTL with 
direct and indirect effects and resolving QTL hotspots. 

The final conditional networks across the four environments are similar in skeleton to the 
CGM representation. Similar to the CGM topology, yield was established to be 
downstream to its three component traits, indicating that yield can be predicted from the 
component traits. The extent of the accuracy of such prediction was roughly estimated 
using the R2 values for yield obtained from fitting SEM to the final configuration from the 
two models. The R2 values for yield in each environment were higher for QTLnet than for 
the MTM. As an example, the SEM for yield in SP2 had R2 of 0.31 and 0.93 for MTM and 
QTLnet models respectively, indicating that properly resolving direct and indirect paths 
leading to yield would improve its prediction. Additionally, the network model captured 
putative relationships among the component traits, which were largely ignored in the 
CGM representation. However, the network model did not incorporate any environmental 
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information. Hence, including environmental characterizations via the CGM into the 
network model may increase our ability to improve on yield prediction through its 
component traits especially for new environments. Furthermore, since the use of network 
models is of particular importance in quantifying changes due to intervention, effects of 
environmental characterisation on the target complex trait can thus be quantified as an 
example of such intervention. This is possible since the relationships depicted by 
conditional networks are direct, thus any change due to such interventions can be easily 
quantified (Bouwman et al., 2014; Valente et al., 2013). We can predict changes in the 
target complex trait across the different environments by adding environmental 
information to the network relating the component and target traits. This is however only 
feasible if the component traits have simple genetic architecture without GEI. Such 
predictions are made by representing the intervention on the causal structure among 
phenotypes and by knowing the genetic effect directly on each trait, as well as the 
dispersion parameters that describe their joint distribution. All these are possible by fitting 
a SEM (Bouwman et al., 2014). 

The suites of (statistical) methodologies presented in this thesis are not exhaustive for 
predicting the phenotypic response of genotypes for complex traits under a range of 
environmental conditions. In recent years, several other statistical (mainly non-parametric) 
models have been introduced for genome-enabled prediction. These models include, 
among others, kernel regressions (Bennewitz et al. 2009), random forest (González-Recio 
and Forni, 2011), support vector regression (Moser et al. 2009), reproducing kernel Hilbert 
spaces (RKHS) mixed model (Gianola et al. 2006, 2008) and artificial neural networks 
(ANN) (Okut et al. 2011; Gianola et al. 2011). They have been widely used for pattern 
recognition, classification and prediction problems in other fields of application such as 
image processing and reconstruction (Takeda et al. 2007; Hastie et al. 2009). Applications 
of these techniques in plant breeding are in their infancy as majority of plant breeders still 
rely on the use of more common and readily available parametric methods. The 
attractiveness of these non-parametric methods lies in the fact that they are able to handle 
the multiplicity of potential interactions (collinearity) arising as a result of e.g. hundreds of 
thousands of markers, and that most of the assumptions of parametric methods (e.g., 
linearity, multivariate normality, proportion of segregating loci, spatial within-
chromosome effects) required for an orthogonal decomposition of variance are violated in 
artificial and natural populations (Gianola et al., 2006). 

6.6. Concluding Remarks 
The results of the analyses presented in this thesis have contributed to a better 
understanding of the genetics of yield-related physiological traits in pepper and represent 
an important step in the improvement of the target trait yield. Yield profited from joint 
analysis with other traits through exploitation of its genetic correlation with the other 
traits. Such joint analysis led to better detection of QTLs with small effects which usually 
remain undetected in a univariate analysis, hence higher power and better prediction 
accuracy for the complex trait. It was shown that the accuracy of predicting yield 
improved tremendously (from < 0.4 to > 0.8) when effects of all markers are estimated 
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simultaneously via multivariate whole genome prediction methods instead of using a 
limited set of QTL-related markers. Incorporating ecophysiological representation of yield 
where yield was written as a function of a set of simpler component traits and a set of 
environmental input variables, into the purely statistical whole genome prediction model 
showed that difficult to measure complex traits can be successfully predicted from their 
component traits. This integrated approach was able to describe and model GxE since it 
contained explicit representations of development over time and integrated developmental 
and environmental information, hence increases prospect of inter-environment prediction. 
The approach also has added advantage of opening up possibilities for modelling epistatic 
effects since the relationship between the underlying component traits may be non-
additive. Using conditional network-type correlation models to represent the biological 
relationship of multiple traits, genetic and environmental factors influencing target trait 
yield, we were able to confirm relationships between yield and its component traits as 
depicted by the ecophysiological model. The conditional network model refined the 
genetic architecture of yield and its component traits by distinguishing between QTLs with 
direct and indirect effects. Incorporating this refined genetic architecture into complex trait 
dissection as proposed by CGM can be utilized to construct multi-trait whole genome 
prediction models for complex traits. This would lead to improvement in the prediction of 
the target complex trait and thus genetic gain in genome assisted selection for the complex 
trait. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



  References 

  133 

References 
Agresti, A., & Klingenberg, B. (2005). Multivariate tests comparing binomial probabilities, with 

application to safety studies for drugs. Journal of the Royal Statistical Society: Series C 
(Applied Statistics), 54(4), 691-706. 

Alimi, N. A., Bink, M. C. A. M., Dieleman, J. A., Magán, J. J., Wubs, A. M., Palloix, A., and 
Eeuwijk, F. A. (2013b). Multi-trait and multi-environment QTL analyses of yield and a set of 
physiological traits in pepper. Theoretical and Applied Genetics 126, 2597-2625. 

Alimi, N. A., Bink, M. C. A. M., Dieleman, J. A., Nicolaï, M., Wubs, M., Heuvelink, E., Magan, 
J., Voorrips, R. E., Jansen, J., Rodrigues, P. C., Heijden, G. W. A. M., Vercauteren, A., 
Vuylsteke, M., Song, Y., Glasbey, C., Barocsi, A., Lefebvre, V., Palloix, A., and Eeuwijk, F. A. 
(2013a). Genetic and QTL analyses of yield and a set of physiological traits in pepper. 
Euphytica 190, 181-201. 

Alimi, N. A., Bink, M. C. A. M., Janss, L. L. G., Wubs, A. M., Dieleman, J. A., Magán, J. J., 
Heuvelink, E., Palloix, A., and Eeuwijk, F. A. (2016). Predicting complex traits in multiple 
environments by a combination of genomic prediction and crop growth modelling: an example 
in pepper. To be submitted. 

Alimi, N.A., Bink, M.C.A.M., Dieleman, J.A., Sage-Palloix, A.M., Voorrips, R.E., Lefebvre, V., 
Palloix, A., Eeuwijk, F.A.v., 2010. Exploratory QTL analyses of some pepper physiological 
traits in two environments. Advances in Genetics and Breeding of Capsicum and Eggplant: 
Proceedings of the XIVth EUCARPIA Meeting on genetics and breeding of Capsicum and 
Eggplant. Editorial Universidad Politécnica de Valencia, Valencia, Spain, Valencia, Spain, pp. 
295-300. 

Andersen, J. R., and Lübberstedt, T. (2003). Functional markers in plants. Trends in Plant Science 
8, 554-560. 

Anhalt, U. C. M., Heslop-Harrison, J. S., Piepho, H. P., Byrne, S., and Barth, S. (2009). 
Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 
population.  170, 99-107. 

Ansell, P., Furbank, R., Gunasekera, K., Guo, J., Benn, D., Williams, G., & Sirault, X. (2013). 
Flexible scientific data management for plant phenomics research. Semantics for Biodiversity 
(S4BioDiv 2013), 63. 

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding 
frontier. Trends in Plant Science, 19(1), 52-61. 

Arends, D., Prins, P., Jansen, R. C., Broman, K. W. (2010). R/qtl: high-throughput multiple QTL 
mapping. Bioinformatics 26, 2990-2992. 

Barchi, L., Bonnet, J., Boudet, C., Signoret, P., Nagy, I., Lanteri, S., Palloix, A., and Lefebvre, V. 
(2007). A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and 
selection of reduced recombinant inbred line subsets for fast mapping. Genome 50, 51-60. 

Barchi, L., Lefebvre, V., Sage-Palloix, A.-M., Lanteri, S., and Palloix, A. (2009). QTL analysis of 
plant development and fruit traits in pepper and performance of selective phenotyping. TAG 
Theoretical and Applied Genetics 118, 1157-1171. 

Barócsi, A. (2012). Intelligent, net or wireless enabled fluorosensors for high throughput 
monitoring of assorted crops. Measurement Science and Technology 24, 025701. 

Bauer, A. M., Hoti, F., von Korff, M., Pillen, K., Léon, J., and Sillanpää, M. (2009). Advanced 
backcross-QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML 
versus a Bayesian model in multi-environmental field trials. Theoretical and Applied genetics 
119, 105-123. 

Beaumont, M. A., and Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews 
Genetics 5, 251-261. 

Beavis, W. D. (1994). The power and deceit of QTL experiments: Lessons from comparative QTL 
studies. . In Proceedings of the Forty-ninth Annual Corn and Sorghum Research Conference 
(Washington, DC, American Seed Trade Association), 250–266. 

Beavis, W. D. (1997). QTL analyses: Power, precision, and accuracy In Molecular Dissection of 
Complex Traits ed. A. H. Paterson (Boca Raton, FL, CRC Press, 1997), 145–162. 



References 

 134 

Beckmann, J., and Soller, M. (1986). Restriction fragment length polymorphisms and genetic 
improvement of agricultural species. Euphytica 35, 111-124. 

Ben Chaim, A., Borovsky, Y., Falise, M., Mazourek, M., Kang, B.C., Paran, I., Jahn, M., (2006a). 
QTL analysis for capsaicinoid content in Capsicum. Theoretical and Applied Genetics 113, 
1481-1490. 

Ben Chaim, A., Borovsky, Y., Rao, G., Gur, A., Zamir, D., Paran, I., (2006b). Comparative QTL 
mapping of fruit size and shape in tomato and pepper. Israel Journal of Plant Sciences 54, 191-
203. 

Ben Chaim, A., Grube, R.C., Lapidot, M., Jahn, M., Paran, I., (2001a). Identification of 
quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum 
annuum. Theoretical and Applied Genetics 102, 1213-1220. 

Ben Chaim, A., Paran, I., Grube, R.C., Jahn, M., van Wijk, R., Peleman, J., (2001b). QTL mapping 
of fruit-related traits in pepper (Capsicum annuum). Theoretical and Applied Genetics 102, 
1016-1028. 

Bennewitz J, Solberg T, Meuwissen THE (2009). Genomic breeding value estimation using 
nonparametric additive regression models. Genet Select Evol;41:20. 

Bink, M., Uimari, P., Sillanpää, M., Janss, L., and Jansen, R. (2002). Multiple QTL mapping in 
related plant populations via a pedigree-analysis approach. Theoretical and Applied Genetics 
104, 751-762. 

Bishop CM (2006). Pattern Recognition and Machine Learning. Springer, Singapore. 
Blum, E., Mazourek, M., O'Connell, M., Curry, J., Thorup, T., Liu, K.D., Jahn, M., Paran, I., 

(2003). Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci 
analysis for capsaicinoid content in Capsicum. Theoretical and Applied Genetics 108, 79-86. 

Boer, M. P., Wright, D., Feng, L. Z., Podlich, D. W., Luo, L., Cooper, M., and van Eeuwijk, F. A. 
(2007). A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial 
data using environmental covariables for QTL-by-environment interactions, with an example in 
maize. Genetics 177, 1801-1813. 

Boote, K., Kropff, M., and Bindraban, P. (2001). Physiology and modelling of traits in crop plants: 
implications for genetic improvement. Agricultural Systems 70, 395-420. 

Borevitz, J. O., and Nordborg, M. (2003). The impact of genomics on the study of natural variation 
in Arabidopsis. Plant physiology 132, 718-725. 

Bouwman, A. C., Valente, B. D., Janss, L. L., Bovenhuis, H., and Rosa, G. J. (2014). Exploring 
causal networks of bovine milk fatty acids in a multivariate mixed model context. Genetics 
Selection Evolution 46, 2. 

Brand, A., Borovsky, Y., Meir, S., Rogachev, I., Aharoni, A., & Paran, I. (2012). pc8. 1, a major 
QTL for pigment content in pepper fruit, is associated with variation in plastid compartment 
size. Planta, 235(3), 579-588. 

Broman, K. W., and Sen, S. (2009). A guide to QTL mapping with R/qtl. Springer, New York; 
London. 

Brown, T. B., Cheng, R., Sirault, X. R., Rungrat, T., Murray, K. D., Trtilek, M., ... & Borevitz, J. 
O. (2014). TraitCapture: genomic and environment modelling of plant phenomic data. Current 
opinion in plant biology, 18, 73-79. 

Burgueño, J., de los Campos, G., Weigel, K., and Crossa, J. (2012). Genomic prediction of 
breeding values when modeling genotype× environment interaction using pedigree and dense 
molecular markers. Crop Science 52, 707-719. 

Bustos-Korts, D., Malosetti, M., Chapman, S., & van Eeuwijk, F. (2016). Modelling of Genotype 
by Environment Interaction and Prediction of Complex Traits across Multiple Environments as 
a Synthesis of Crop Growth Modelling, Genetics and Statistics. In Crop Systems Biology (pp. 
55-82). Springer International Publishing. 

Calus, M. P., and Veerkamp, R. F. (2011). Accuracy of multi-trait genomic selection using 
different methods. Genetics Selection Evolution 43, 1-14. 

Caranta, C., Lefebvre, V., Palloix, A., (1997a). Polygenic resistance of pepper to potyviruses 
consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. 
Molecular Plant-Microbe Interactions 10, 872-878. 



  References 

  135 

Caranta, C., Palloix, A., Lefebvre, V., Daubeze, A.M., (1997b). QTL for a component of partial 
resistance to cucumber mosaic virus in pepper: Restriction of virus installation in host-cells. 
Theoretical and Applied Genetics 94, 431-438. 

Causse, M., Saliba-Colombani, V., Lecomte, L., Duffe, P., Rousselle, P., & Buret, M. (2002). QTL 
analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation 
of sensory and instrumental traits. Journal of experimental botany, 53(377), 2089-2098. 

Cavanagh, C., Morell, M., Mackay, I., and Powell, W. (2008). From mutations to MAGIC: 
resources for gene discovery, validation and delivery in crop plants. Current opinion in plant 
biology 11, 215-221. 

Chaim, A.B., Borovsky, Y., De Jong, W., Paran, I., 2003. Linkage of the A locus for the presence 
of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theoretical and Applied 
Genetics 106, 889-894. 

Chapman, S. (2008). Use of crop models to understand genotype by environment interactions for 
drought in real-world and simulated plant breeding trials. Euphytica 161, 195-208. 

Cheng R, Borevitz J, Doerge RW (2013). Selecting informative traits for multivariate quantitative 
trait locus mapping helps to gain optimal power. Genetics 195,683-691. 

Chenu, K., Chapman, S. C., Tardieu, F., McLean, G., Welcker, C., and Hammer, G. L. (2009). 
Simulating the yield impacts of organ-level quantitative trait loci associated with drought 
response in maize: a “gene-to-phenotype” modeling approach. Genetics 183, 1507-1523. 

Collins, N. C., Tardieu, F., and Tuberosa, R. (2008). Quantitative trait loci and crop performance 
under abiotic stress: where do we stand? Plant Physiology 147, 469-486. 

Cooper, M., van Eeuwijk, F. A., Hammer, G. L., Podlich, D. W., and Messina, C. (2009). 
Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in 
Plant Biology 12, 231. 

Crossa, J., de Los Campos, G., Pérez, P., Gianola, D., Burgueño, J., Araus, J. L., Makumbi, D., 
Singh, R. P., Dreisigacker, S., and Yan, J. (2010). Prediction of genetic values of quantitative 
traits in plant breeding using pedigree and molecular markers. Genetics 186, 713-724. 

Cullis, B.R., Smith, A.B., Coombes, N.E., (2006). On the design of early generation variety trials 
with correlated data. Journal of Agricultural Biological and Environmental Statistics 11, 381-
393. 

Daetwyler, H. D., Calus, M. P., Pong-Wong, R., de Los Campos, G., and Hickey, J. M. (2013). 
Genomic prediction in animals and plants: simulation of data, validation, reporting, and 
benchmarking. Genetics 193, 347-65. 

Darvasi, A., and Soller, M. (1994). Optimum spacing of genetic markers for determining linkage 
between marker loci and quantitative trait loci. Theoretical and Applied Genetics 89, 351-357. 

Darvasi, A., and Soller, M. (1995). Advanced intercross lines, an experimental population for fine 
genetic mapping. Genetics 141, 1199-1207. 

De los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., and Calus, M. P. L. (2013). 
Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. 
Genetics 193, 327-345. 

De Los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K., and 
Cotes, J. M. (2009). Predicting quantitative traits with regression models for dense molecular 
markers and pedigree. Genetics 182, 375-385. 

De Swart, E.A.M., Groenwold, R., Stam, P. Voorrips, R.E., 2007. QTLs for growth and growth 
related traits in Capsicum annuum L. In: E.A.M. de Swart: Potential for breeding sweet pepper 
adapted to cooler growing conditions. PhD Thesis, Wageningen University, p. 75-92. 

deVicente M. C. & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an 
interspecific tomato cross. Genetics, 134(2), 585-596. 

DeWitt, D., and Bosland, P. W. (1996). "Peppers of the world. An identification guide," Ten Speed 
Press. 

Dhondt, S., Wuyts, N., and Inzé, D. (2013). Cell to whole-plant phenotyping: the best is yet to 
come. Trends in plant science 18, 428-439. 

Efron, B., and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-
validation. The American Statistician 37, 36-48. 



References 

 136 

Ehrenreich, I. M., Hanzawa, Y., Chou, L., Roe, J. L., Kover, P. X., & Purugganan, M. D. (2009). 
Candidate gene association mapping of Arabidopsis flowering time. Genetics, 183(1), 325-335. 

Ersoz, E. S., Yu, J., and Buckler, E. S. (2007). Applications of linkage disequilibrium and 
association mapping in crop plants. In "Genomics-assisted crop improvement", pp. 97-119. 
Springer. 

Fabre, J., Dauzat, M., Nègre, V., Wuyts, N., Tireau, A., Gennari, E., Neveu, P., Tisné, S., 
Massonnet, C., and Hummel, I. (2011). PHENOPSIS DB: an information system for 
Arabidopsis thaliana phenotypic data in an environmental context. BMC plant biology 11, 77. 

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* 
Power 3.1: Tests for correlation and regression analyses.Behavior research methods, 41(4), 
1149-1160. 

Ferreira, A., Silva, M. F. d., and Cruz, C. D. (2006). Estimating the effects of population size and 
type on the accuracy of genetic maps. Genetics and Molecular Biology 29, 187-192. 

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annual review of plant 
biology 64, 267-291. 

Fitzpatrick, M. J., Ben-Shahar, Y., Smid, H. M., Vet, L. E., Robinson, G. E., & Sokolowski, M. B. 
(2005). Candidate genes for behavioural ecology. Trends in Ecology & Evolution, 20(2), 96-
104. 

Fournier-Level, A., Wilczek, A. M., Cooper, M. D., Roe, J. L., Anderson, J., Eaton, D., Moyers, B. 
T., Petipas, R. H., Schaeffer, R. N., and Pieper, B. (2013). Paths to selection on life history loci 
in different natural environments across the native range of Arabidopsis thaliana. Molecular 
ecology 22, 3552-3566. 

Freimer, N., and Sabatti, C. (2004). The use of pedigree, sib-pair and association studies of 
common diseases for genetic mapping and epidemiology. Nature genetics 36, 1045-1051. 

Furbank, R. T., and Tester, M. (2011). Phenomics–technologies to relieve the phenotyping 
bottleneck. Trends in plant science 16, 635-644. 

Galesloot, T. E., van Steen, K., Kiemeney, L. A., Janss, L. L., and Vermeulen, S. H. (2014). A 
Comparison of Multivariate Genome-Wide Association Methods. PloS one 9, e95923. 

Gianola, D., and van Kaam, J. B. (2008). Reproducing kernel Hilbert spaces regression methods 
for genomic assisted prediction of quantitative traits. Genetics 178, 2289-2303. 

Gianola, D., Okut, H., Weigel, K. A., & Rosa, G. J. (2011). Predicting complex quantitative traits 
with Bayesian neural networks: a case study with Jersey cows and wheat. BMC genetics, 12(1), 
87. 

Gianola, D., R. L. Fernando, and A. Stella, (2006). Genomic-assisted prediction of genetic value 
with semiparametric procedures. Genetics 173: 1761–1776. 

Goddard, M. E., and Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals 
and their use in breeding programmes. Nature Reviews Genetics 10, 381-391. 

González-Recio, O., and S. Forni, 2011 Genome-wide prediction of discrete traits using Bayesian 
regressions and machine learning. Genet. Sel. Evol. 43: 1–12. 

Granier, C., and Vile, D. (2014). Phenotyping and beyond: modelling the relationships between 
traits. Current opinion in plant biology 18, 96-102. 

Grigoryev, D. N., Ma, S. F., Irizarry, R. A., Ye, S. Q., Quackenbush, J., & Garcia, J. G. (2004). 
Orthologous gene-expression profiling in multi-species models: search for candidate 
genes. Genome Biol, 5(5), R34. 

Gupta, P. K., & Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the 
genome in higher plants. Functional & integrative genomics, 4(3), 139-162. 

Habier D, Tetens J, Seefried FR, Lichtner P, Thaller G (2010). The impact of genetic relationship 
information on genomic breeding values in German Holstein cattle. Genet Sel Evol, 42:5. 

Habier, D., Fernando, R. L., Kizilkaya, K., and Garrick, D. J. (2011). Extension of the Bayesian 
alphabet for genomic selection. BMC bioinformatics 12, 186. 

Hackett, C. A., Meyer, R. C., and Thomas, W. T. B. (2001). Multi-trait QTL mapping in barley 
using multivariate regression. Genetics Research 77, 95-106. 

Hackett, C.A., (2002). Statistical methods for QTL mapping in cereals. Plant Molecular Biology 
48, 585-599. 



  References 

  137 

Hageman, R. S., Leduc, M. S., Korstanje, R., Paigen, B., and Churchill, G. A. (2011). A Bayesian 
framework for inference of the genotype–phenotype map for segregating populations. Genetics 
187, 1163-1170. 

Haley, C. S., and Knott, S. A. (1992). A simple regression method for mapping quantitative trait 
loci in line crosses using flanking markers. Heredity 69, 315-324. 

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., van Eeuwijk, F., Chapman, S., and 
Podlich, D. (2006). Models for navigating biological complexity in breeding improved crop 
plants. Trends in Plant Science 11, 587-593. 

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and Schreiber, F. (2011). HTPheno: an 
image analysis pipeline for high-throughput plant phenotyping. BMC bioinformatics 12, 148. 

Hastie T, Tibshirani R, Friedman J, Franklin J (2009). The elements of statistical learning: data 
mining, inference and prediction. Math Intelligencer; 27(2):83–5 

Hayes B, Bowman P, Chamberlain A, Verbyla K, Goddard M (2009).  Accuracy of genomic 
breeding values in multi-breed dairy cattle populations. Genet Sel Evol, 41:51. 

Hayes, B., Bowman, P., Chamberlain, A., and Goddard, M. (2009). Invited review: Genomic 
selection in dairy cattle: Progress and challenges. Journal of Dairy Science 92, 433. 

Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic selection in plant 
breeding: a comparison of models. Crop Science 52, 146-160. 

Higashide, T., and Heuvelink, E. (2009). Physiological and Morphological Changes Over the Past 
50 Years in Yield Components in Tomato. Journal of the American Society for Horticultural 
Science 134, 460-465. 

Hill, W., and Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and 
Applied Genetics 38, 226-231. 

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal 
problems. Technometrics 12, 55-67. 

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model 
averaging: a tutorial (with discussion and rejoinder by authors). Statistical science 14, 382-417. 

Holland, J. B. (2001). Epistasis and plant breeding. In: Janick J, editor, Plant Breeding Reviews, 
Volume 21, pp. 27 - 92. Hoboken, NJ: John Wiley & Sons, Inc. 

Holland, J. B. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant 
Biology 10, 156-161. 

Horgan, G. W., Song, Y., Glasbey, C. A., van der Heijden, G. W., Polder, G., Dieleman, J. A., ... 
& van Eeuwijk, F. A. (2015). Automated estimation of leaf area development in sweet pepper 
plants from image analysis. Functional Plant Biology, 42(5), 486-492. 

Houle, D., Govindaraju, D. R., and Omholt, S. (2010). Phenomics: the next challenge. Nature 
Reviews Genetics 11, 855-866. 

Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K., and 
Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic 
analysis in wheat. Plant biotechnology journal 10, 826-839. 

Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., ... & 
Cavanagh, C. R. (2015). MAGIC populations in crops: current status and future 
prospects. Theoretical and Applied Genetics, 128(6), 999-1017. 

Huang, X., Paulo, M. J., Boer, M., Effgen, S., Keizer, P., Koornneef, M., & van Eeuwijk, F. A. 
(2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant 
inbred line population. Proceedings of the National Academy of Sciences, 108(11), 4488-4493. 

Hung, H. Y., Browne, C., Guill, K., Coles, N., Eller, M., Garcia, A., ... & Holland, J. B. (2012). 
The relationship between parental genetic or phenotypic divergence and progeny variation in 
the maize nested association mapping population. Heredity, 108(5), 490-499. 

Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from 
microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271-2282. 

Jannink, J.-L., and Walsh, B. (2002). Association mapping in plant populations. Quantitative 
genetics, genomics and plant breeding, 59-68. 

Jannink, J.L., Bink, M.C., & Jansen, R. C. (2001). Using complex plant pedigrees to map valuable 
genes. Trends in plant science 6, 337-342. 



References 

 138 

Jannink, J.L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant breeding: from 
theory to practice. Briefings in Functional Genomics 9, 166-177. 

Jansen, R. C. (1993). INTERVAL MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI. 
Genetics 135, 205-211. 

Jansen, R. C., & Nap, J. P. (2001). Genetical genomics: the added value from 
segregation. TRENDS in Genetics, 17(7), 388-391. 

Jansen, R. C., and Stam, P. (1994). High resolution of quantitative traits into multiple loci via 
interval mapping. Genetics 136, 1447-1455. 

Janss, L. (2011). bayz manual. Leiden, the Netherlands: Bayesian Solutions. 
Jia, Y., and Jannink, J.-L. (2012). Multiple-trait genomic selection methods increase genetic value 

prediction accuracy. Genetics 192, 1513-1522. 
Jiang, C. J., and Z. B. Zeng, (1995). Multiple-Trait Analysis of Genetic-Mapping for Quantitative 

Trait Loci. Genetics 140: 1111-1127. 
Johnson, R.A., Wichern, D.W., (2002). Applied multivariate statistical analysis. Prentice Hall. 
Kao, C.-H. (2000). On the differences between maximum likelihood and regression interval 

mapping in the analysis of quantitative trait loci. Genetics 156, 855-865. 
Kao, C.-H., Zeng, Z.-B., and Teasdale, R. D. (1999). Multiple interval mapping for quantitative 

trait loci. Genetics 152, 1203-1216. 
Kaplan, D., & George, R. (1995). A study of the power associated with testing factor mean 

differences under violations of factorial invariance. Structural Equation Modeling: A 
Multidisciplinary Journal, 2(2), 101-118. 

Kargbo, A., and Wang, C. Y. (2010). Complex traits mapping using introgression lines in pepper 
(Capsicum annuum). African Journal of Agricultural Research 5, 725-731. 

Kariya, T. (1981). A robustness property of Hotelling's T2-test. Ann. Statist. 9, 211-214. 
Keurentjes, J. J., Willems, G., van Eeuwijk, F., Nordborg, M., & Koornneef, M. (2011). A 

comparison of population types used for QTL mapping in Arabidopsis thaliana. Plant Genetic 
Resources, 9(02), 185-188. 

Kim, H.J., Han, J.H., Kim, S., Lee, H.R., Shin, J.S., Kim, J.H., Cho, J., Kim, Y.H., Lee, H.J., Kim, 
B.D., Choi, D., (2011). Trichome density of main stem is tightly linked to PepMoV resistance 
in chili pepper (Capsicum annuum L.). Theoretical and Applied Genetics 122, 1051-1058. 

Kim, K.T., Choi, H.S., Chae, Y., Oh, D.G., Kim, B.D., (2004). Mapping QTL associated with 
Phytophthora root rot resistance in chilli (Capsicum annuum). In: McCreight, J.D., Ryder, E.J. 
(Eds.), Advances in Vegetable Breeding, pp. 251-255. 

Klasen, J. R., Piepho, H. P., and Stich, B. (2012). QTL detection power of multi-parental RIL 
populations in Arabidopsis thaliana. Heredity 108, 626-632. 

Klukas, C., Chen, D., & Pape, J. M. (2014). Integrated analysis platform: an open-source 
information system for high-throughput plant phenotyping. Plant physiology, 165(2), 506-518. 

Knott, S. A., and Haley, C. S. (2000). Multitrait least squares for quantitative trait loci detection. 
Genetics 156, 899-911. 

Knott, S., and Haley, C. (1992). Aspects of maximum likelihood methods for the mapping of 
quantitative trait loci in line crosses. Genetical Research 60, 139-151. 

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 
selection. In "IJCAI", Vol. 14, pp. 1137-1145. 

Korol AB, Ronin YI, Kirzhner VM (1995). Interval mapping of quantitative trait loci employing 
correlated trait complexes. Genetics 140, 1137-1147. 

Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a 
review. Plant methods 9, 29. 

Korte, A., Vilhjalmsson, B. J., Segura, V., Platt, A., Long, Q., and Nordborg, M. (2012). A mixed-
model approach for genome-wide association studies of correlated traits in structured 
populations.  Nature genetics 44, 1066-1071. 

Kümmerlen, B., Dauwe, S., Schmundt, D., and Schurr, U. (1999). Thermography to measure water 
relations of plant leaves. Handbook of computer vision and applications 3, 763-781. 

Lampinen J, Vehtari A (2001): Bayesian approach for neural networks review and case studies. 
Neural Networks, 14:257-274. 



  References 

  139 

Lande, R., and Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement 
of quantitative traits. Genetics 124, 743-756. 

Lander, E. S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits 
using RFLP linkage maps. Genetics 121, 185-99. 

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science Series. The 
Clarendon Press Oxford University Press, New York. 

Lee, H.R., Cho, M.C., Kim, H.J., Park, S.W., Kim, B.D., 2008. Marker Development for Erect 
versus Pendant-Orientated Fruit in Capsicum annuum L. Molecules and Cells 26, 548-553. 

Lefebvre V (2005) Molecular markers for genetics and breeding: development and use in pepper 
(Capsicum spp.). In: Lörz H and Wenzel G (eds) Molecular marker systems in plant breeding 
and crop improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, 
pp 189–214 

Lefebvre, V., Daubeze, A.M., van der Voort, J.R., Peleman, J., Bardin, M., Palloix, A., (2003). 
QTL for resistance to powdery mildew in pepper under natural and artificial infections. 
Theoretical and Applied Genetics 107, 661-666. 

Lefebvre, V., Kuntz, M., Camara, B., Palloix, A., (1998). The capsanthin-capsorubin synthase 
gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant 
Molecular Biology 36, 785-789. 

Lefebvre, V., Palloix, A., (1996). Both epistatic and additive effects of QTL are involved in 
polygenic induced resistance to disease: A case study, the interaction pepper - Phytophthora 
capsici Leonian. Theoretical and Applied Genetics 93, 503-511. 

Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F., and Fritz, S. (2011). Improved Lasso 
for genomic selection. Genetics Research 93, 77. 

Li, C. (1991). Method of path coefficients: a trademark of Sewall Wright. Human biology, 1-17. 
Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a 

correlation matrix.  Heredity 95, 221-227. 
Li, L., Long, Y., Zhang, L., Dalton-Morgan, J., Batley, J., Yu, L., ... & Li, M. (2015). Genome 

wide analysis of flowering time trait in multiple environments via high-throughput genotyping 
technique in Brassica napus L. PloS one, 10(3), e0119425. 

Li, R., Tsaih, S.-W., Shockley, K., Stylianou, I. M., Wergedal, J., Paigen, B., and Churchill, G. A. 
(2006). Structural model analysis of multiple quantitative traits. PLoS genetics 2, e114. 

Li, Y., Tesson, B. M., Churchill, G. A., and Jansen, R. C. (2010). Critical reasoning on causal 
inference in genome-wide linkage and association studies. Trends in genetics 26, 493-498. 

Li, Y.-F., Kennedy, G., Ngoran, F., Wu, P., and Hunter, J. (2013). An ontology-centric architecture 
for extensible scientific data management systems. Future Generation Computer Systems 29, 
641-653. 

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., Schabenberger, O., 2006. SAS for 
mixed models. SAS Institute, Cary, NC. 

Lynch, M., and Walsh, B. (1998). "Genetics and analysis of quantitative traits," Sinauer. 
Mackay, T. F. C. (2001). The genetic architecture of quantitative traits. Annual Review of Genetics 

35, 303-339. 
Mackay, T. F., Stone, E. A., & Ayroles, J. F. (2009). The genetics of quantitative traits: challenges 

and prospects. Nature Reviews Genetics, 10(8), 565-577.  
MacMillan, K., Emrich, K., Piepho, H. P., Mullins, C. E., and Price, A. H. (2006). Assessing the 

importance of genotype x environment interaction for root traits in rice using a mapping 
population II: conventional QTL analysis. TAG 113, 953-964. 

Malosetti, M. (2006). "Mixed model methodology for the identification of genetical factors 
underlying trait variations in plants," PhD thesis, Wageningen Universiteit. 

Malosetti, M., Ribaut, J. M., Vargas, M., Crossa, J., and van Eeuwijk, F. A. (2008). A multi-trait 
multi-environment QTL mixed model with an application to drought and nitrogen stress trials 
in maize (Zea mays L.). Euphytica 161, 241-257. 

Malosetti, M., Ribaut, J.-M., and van Eeuwijk, F. A. (2013). The statistical analysis of multi-
environment data: modeling genotype-by-environment interaction and its genetic basis. 
Frontiers in physiology 4. 



References 

 140 

Malosetti, M., Visser, R. G. F., Celis-Gamboa, C., and Eeuwijk, F. A. (2006). QTL methodology 
for response curves on the basis of non-linear mixed models, with an illustration to senescence 
in potato.  Theoretical and Applied Genetics 113, 288-300. 

Malosetti, M., Voltas, J., Romagosa, I., Ullrich, S. E., and van Eeuwijk, F. A. (2004). Mixed 
models including environmental covariables for studying QTL by environment interaction. 
Euphytica 137, 139-145. 

Malosetti, M., Bustos-Korts, D., Boer, M. P., & van Eeuwijk, F. A. (2016). Predicting Responses 
in Multiple Environments: Issues in Relation to Genotype × Environment Interactions. Crop 
Science. 

Marcelis, L. (1996). Sink strength as a determinant of dry matter partitioning in the whole plant. 
Journal of Experimental Botany 47, 1281. 

Marcelis, L. F. M., Elings, A., Dieleman, J. A., De Visser, P. H. B., Brajeul, E., Bakker, M. J., and 
Heuvelink, E. (2006). Modelling dry matter production and partitioning in sweet pepper. In 
"Acta Horticulturae", Vol. 718, pp. 121-128. 

Marcelis, L. F. M., Heuvelink, E., and Goudriaan, J. (1998). Modelling biomass production and 
yield of horticultural crops: A review. Scientia Horticulturae 74, 83-111. 

Martinez, O., and Curnow, R. (1992). Estimating the locations and the sizes of the effects of 
quantitative trait loci using flanking markers. Theoretical and Applied Genetics 85, 480-488. 

MAYES, S., PARSLEY, K., SYLVESTER-BRADLEY, R., MAY, S., and FOULKES, J. (2005). 
Integrating genetic information into plant breeding programmes: how will we produce varieties 
from molecular variation, using bioinformatics? Annals of applied biology 146, 223-237. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). 
Equation of state calculations by fast computing machines. The journal of chemical physics 21, 
1087-1092. 

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic value 
using genome-wide dense marker maps. Genetics 157, 1819-1829. 

Mimura, Y., Kageyama, T., Minamiyama, Y., Hirai, M., (2009). QTL Analysis for Resistance to 
Ralstonia solanacearum in Capsicum Accession 'LS2341'. Journal of the Japanese Society for 
Horticultural Science 78, 307-313. 

Mimura, Y., Minamiyama, Y., Sano, H., and Hirai, M. (2010). Mapping for Axillary Shooting, 
Flowering Date, Primary Axis Length, and Number of Leaves in Pepper (Capsicum annuum). 
Journal of the Japanese Society for Horticultural Science 79, 56-63. 

Minamiyama, Y., Tsuro, M., Kubo, T., Hirai, M., (2007). QTL analysis for resistance to 
Phytophthora capsici in pepper using a high density SSR-based map. Breeding Science 57, 129-
134. 

Montes, J. M., Melchinger, A. E., and Reif, J. C. (2007). Novel throughput phenotyping platforms 
in plant genetic studies. Trends in plant science 12, 433-436. 

Moser, G., B. Tier, R. E. Crump, M. S. Khatkar, H. W. Raadsma et al., (2009) A comparison of 
five methods to predict genomic breeding values of dairy bulls from genome-wide SNP 
markers. Genet. Sel. Evol. 41: 56. 

Muller, K. E., LaVange, L. M., Ramey, S. L., & Ramey, C. T. (1992). Power Calculations for 
General Linear Multivariate Models Including Repeated Measures Applications. Journal of the 
American Statistical Association, 87(420), 1209–1226. 
http://doi.org/10.1080/01621459.1992.10476281 

Munns, R., James, R. A., Sirault, X. R., Furbank, R. T., and Jones, H. G. (2010). New phenotyping 
methods for screening wheat and barley for beneficial responses to water deficit. Journal of 
Experimental Botany, erq199. 

Nadeau, J. H., Burrage, L. C., Restivo, J., Pao, Y.-H., Churchill, G., and Hoit, B. D. (2003). 
Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in 
genetically randomized populations. Genome research 13, 2082-2091. 

Neto, E. C., Ferrara, C. T., Attie, A. D., and Yandell, B. S. (2008). Inferring causal phenotype 
networks from segregating populations. Genetics 179, 1089-1100. 

Neto, E. C., Keller, M. P., Attie, A. D., and Yandell, B. S. (2010). Causal graphical models in 
systems genetics: a unified framework for joint inference of causal network and genetic 
architecture for correlated phenotypes. The annals of applied statistics 4, 320. 



  References 

  141 

Neto, E.C., A. T. Broman, M. P. Keller, A. D. Attie, B. Zhang et al., (2013). Modeling causality 
for pairs of phenotypes in system genetics. Genetics 193: 1003–1013. 

Nicolaï, M., Cantet, M., Lefebvre, V., Sage-Palloix, A.-M., and Palloix, A. (2013). Genotyping a 
large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild 
origin of cultivated C. annuum and the structuring of genetic diversity by human selection of 
cultivar types. Genetic resources and crop evolution, 60(8), 2375-2390. 

Nicolaï, M., Pisani, C., Bouchet, J., Vuylsteke, M., and Palloix, A. (2012). Discovery of a large set 
of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum 
annuum). Genetics and Molecular Research 11, 2295-2300. 

Nunome, T., Ishiguro, K., Yoshida, T., & Hirai, M. (2001), development traits in eggplant 
(Solanum melongena L.) based on RAPD and AFLP markers. Breeding science, 51(1), 19-26 

O'Hara, R. B., and Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: what, 
how and which. Bayesian analysis 4, 85-117. 

Okut, H., D. Gianola, G. J. M. Rosa, and K. A. Weigel, 2011 Prediction of body mass index in 
mice using dense molecular markers and a regularized neural network. Genet. Res. 93: 189–
201. 

Onogi, A., Watanabe, M., Mochizuki, T., Hayashi, T., Nakagawa, H., Hasegawa, T., & Iwata, H. 
(2016). Toward integration of genomic selection with crop modelling: the development of an 
integrated approach to predicting rice heading dates. Theoretical and Applied Genetics, 1-13. 

Panozzo, J. F., Eckermann, P. J., Mather, D. E., Moody, D. B., Black, C. K., Collins, H. M., Barr, 
A. R., Lim, P., and Cullis, B. R. (2007). QTL analysis of malting quality traits in two barley 
populations. Australian Journal of Agricultural Research 58, 858-866. 

Park, T., and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical 
Association 103, 681-686. 

Pasyukova, E. G., Vieira, C., and Mackay, T. F. (2000). Deficiency mapping of quantitative trait 
loci affecting longevity in Drosophila melanogaster. Genetics 156, 1129-1146. 

Paterson, A. H., Tanksley, S. D., and Sorrells, M. E. (1991). DNA markers in plant improvement. 
Advances in Agronomy 46, 39-90. 

Payne, R., Murray, D., Harding, S., Baird, D., and Soutar, D. (2011). An introduction to GenStat 
for Windows. VSN International: Hemel Hempstead, UK. 

Piepho, H.-P. (2000). A Mixed-Model Approach to Mapping Quantitative Trait Loci in Barley on 
the Basis of Multiple Environment Data. Genetics 156, 2043-2050. 

Piepho, H.P., E.R. Williams and M. Fleck, (2006). A note on the analysis of designed experiments 
with complex treatment structure. HortScience 41: 446-452. 

Piepho, H.P., Moehring, J., (2007). Computing heritability and selection response from unbalanced 
plant breeding trials. Genetics 177, 1881-1888. 

Pillai, K. C. S. (1985). Hotelling's T2. In Encyclopedia of Statistical Sciences 6 (Edition by S. 
Kotz, N. L. Johnson and C. B. Read), 669-673. Wiley, New York. 

Platt, A., Vilhjálmsson, B. J., and Nordborg, M. (2010). Conditions under which genome-wide 
association studies will be positively misleading. Genetics 186, 1045-1052. 

Powell, W., Machray, G. C., and Provan, J. (1996). Polymorphism revealed by simple sequence 
repeats. Trends in plant science 1, 215-222. 

Rakshit, S., Rakshit, A., & Patil, J. V. (2012). Multiparent intercross populations in analysis of 
quantitative traits. Journal of genetics, 91(1), 111-117. 

Rao, G. U., Ben Chaim, A., Borovsky, Y., and Paran, I. (2003). Mapping of yield-related QTLs in 
pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theoretical and 
Applied Genetics 106, 1457-1466. 

R-Development-Core-Team, 2011. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Resende, M. F. R., Muñoz, P., Resende, M. D. V., Garrick, D. J., Fernando, R. L., Davis, J. M., 
Jokela, E. J., Martin, T. A., Peter, G. F., and Kirst, M. (2012). Accuracy of Genomic Selection 
Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genetics 190, 1503-1510. 

Reymond, M., Muller, B., Leonardi, A., Charcosset, A., and Tardieu, F. (2003). Combining 
quantitative trait Loci analysis and an ecophysiological model to analyze the genetic variability 



References 

 142 

of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131, 
664-75. 

Ribaut, J. M., and Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. 
Trends in Plant Science 3, 236-239. 

Robertson, A. (1967). The nature of quantitative genetic variation. Heritage from Mendel, 265-
280. 

Rosa, G. J., Valente, B. D., de Los Campos, G., Wu, X.-L., Gianola, D., and Silva, M. A. (2011). 
Inferring causal phenotype networks using structural equation models. Genet Sel Evol 43(6). 

Rosyara, U. R., Gonzalez-Hernandez, J. L., Glover, K. D., Gedye, K. R., and Stein, J. M. (2009). 
Family-based mapping of quantitative trait loci in plant breeding populations with resistance to 
Fusarium head blight in wheat as an illustration.  TAG 118, 1617-1631. 

Saini, S. S., & Sharma, P. P. (1978). Inheritance of resistance to fruit rot (Phytophthora capsici 
Leon.) and induction of resistance in bell pepper (Capsicum annuum L.). Euphytica, 27(3), 
721-723. 

Sari-Gorla, M., Calinski, T., Kaczmarek, Z., and Krajewski, P. (1997). Detection of QTL× 
environment interaction in maize by a least squares interval mapping method. Heredity 78. 

SAS-Institute (2011). "Sas/graph 9. 3: Reference," SAS Institute. 
Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in 

Phaseolus vulgaris. Genetics 8, 552. 
Saxton, A., 2004. Genetic Analysis of Complex Traits Using SAS. SAS Publ., Cary. 
Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., Sieberts, S. K., Monks, 

S., Reitman, M., and Zhang, C. (2005). An integrative genomics approach to infer causal 
associations between gene expression and disease. Nature genetics 37, 710-717. 

Seelig, H. D., Hoehn, A., Stodieck, L., Klaus, D., Adams Iii, W., and Emery, W. (2008). The 
assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-
wave-infrared. International Journal of Remote Sensing 29, 3701-3713. 

Semagn, K., Bjørnstad, Å., and Ndjiondjop, M. (2006). An overview of molecular marker methods 
for plants. African Journal of Biotechnology 5. 

Shoemaker, J. S., Painter, I. S., and Weir, B. S. (1999). Bayesian statistics in genetics: a guide for 
the uninitiated. Trends in Genetics 15, 354-358. 

Sillanpää, M. J., and Arjas, E. (1998). Bayesian mapping of multiple quantitative trait loci from 
incomplete inbred line cross data. Genetics 148, 1373-1388. 

Silva, L. d. C. e., Cruz, C. D., Moreira, M. A., and Barros, E. G. d. (2007). Simulation of 
population size and genome saturation level for genetic mapping of recombinant inbred lines 
(RILs). Genetics and Molecular Biology 30, 1101-1108. 

Sisson, S., and Hurn, M. (2004). Bayesian point estimation of quantitative trait loci. Biometrics 60, 
60-68. 

Slafer, G. (2003). Genetic basis of yield as viewed from a crop physiologist's perspective. Annals 
of Applied Biology 142, 117-128. 

Slafer, G. A., & Kernich, G. C. (1996). Have changes in yield (1900-1992) been accompanied by a 
decreased yield stability in Australian cereal production?. Crop and Pasture Science, 47(3), 
323-334 

Snape, J. W., Butterworth, K., Whitechurch, E., & Worland, A. J. (2001). Waiting for fine times: 
genetics of flowering time in wheat. Euphytica, 119(1-2), 185-190. 

Soller, M., Brody, T., and Genizi, A. (1976). On the power of experimental designs for the 
detection of linkage between marker loci and quantitative loci in crosses between inbred lines. 
Theoretical and Applied Genetics 47, 35-39. 

Solti, Á., Lenk, S., Mihailova, G., Mayer, P., Barócsi, A., and Georgieva, K. (2014). Effects of 
habitat light conditions on the excitation quenching pathways in desiccating Haberlea 
rhodopensis leaves: An Intelligent FluoroSensor study. Journal of Photochemistry and 
Photobiology B: Biology 130, 217-225. 

Song, Y., Glasbey, C., Horgan, G., Polder, G., Dieleman, J., and van der Heijden, G. (2014). 
Automatic fruit recognition and counting from multiple images. Biosystems Engineering 118, 
203-215. 



  References 

  143 

Sørensen, L. P., Janss, L., Madsen, P., Mark, T., and Lund, M. S. (2012). Estimation of (co) 
variances for genomic regions of flexible sizes: application to complex infectious udder 
diseases in dairy cattle. Genetics Selection Evolution 44, 18. 

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). "Causation, prediction, and search," MIT 
press. 

Spitters, C., and Schapendonk, A. (1990). Evaluation of breeding strategies for drought tolerance 
in potato by means of crop growth simulation. Plant and Soil 123, 193-203. 

Stephens, M. (2013). A unified framework for association analysis with multiple related 
phenotypes. PloS one 8, e65245. 

Sugita, T., Yamaguchi, K., Kinoshita, T., Yuji, K., Sugimura, Y., Nagata, R., Kawasaki, S., 
Todoroki, A., (2006). QTL analysis for resistance to phytophthora blight (Phytophthora capsici 
Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. Breeding 
Science 56, 137-145. 

Sukhwinder, S., Hernandez, M. V., Crossa, J., Singh, P. K., Bains, N. S., Singh, K., and Sharma, I. 
(2012). Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases. 
PLoS ONE 7, e38008. 

Sun, G., & Schliekelman, P. (2011). A genetical genomics approach to genome scans increases 
power for QTL mapping. Genetics, 187(3), 939-953. 

Syvänen, A.-C. (2005). Toward genome-wide SNP genotyping. Nature genetics 37, S5-S10. 
Takeda, H., Farsiu, S., & Milanfar, P. (2007). Kernel regression for image processing and 

reconstruction. Image Processing, IEEE Transactions on,16(2), 349-366. 
Tanksley, S., Young, N., Paterson, A., and Bonierbale, M. (1989). RFLP mapping in plant 

breeding: new tools for an old science. Nature Biotechnology 7, 257-264. 
Tardieu, F. (2003). Virtual plants: modelling as a tool for the genomics of tolerance to water 

deficit. Trends in Plant Science 8, 9-14. 
Tasaki, S., Sauerwine, B., Hoff, B., Toyoshiba, H., Gaiteri, C., & Neto, E. C. (2015). Bayesian 

Network Reconstruction Using Systems Genetics Data: Comparison of MCMC 
Methods. Genetics, 199(4), 973-989. 

Technow, F., Messina, C. D., Totir, L. R., & Cooper, M. (2015). Integrating crop growth models 
with whole genome prediction through approximate Bayesian computation. PloS one, 10(6), 
e0130855. 

Thabuis, A., Palloix, A., Pflieger, S., Daubeze, A.M., Caranta, C., Lefebvre, V., 2003. 
Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for 
conserved resistance loci across Solanaceae and for a large genetic diversity. Theoretical and 
Applied Genetics 106, 1473-1485. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society. Series B (Methodological), 267-288. 

Uptmoor, R., Schrag, T., Stützel, H., and Esch, E. (2008). Crop model based QTL analysis across 
environments and QTL based estimation of time to floral induction and flowering in Brassica 
oleracea. Molecular Breeding 21, 205-216. 

Valente, B. D., Rosa, G. J. M., Gianola, D., Wu, X.-L., and Weigel, K. (2013). Is Structural 
Equation Modeling Advantageous for the Genetic Improvement of Multiple Traits? Genetics 
194, 561-572. 

Van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman, A., Bink, M., Palloix, A., van 
Eeuwijk, F., and Glasbey, C. (2012). SPICY: towards automated phenotyping of large pepper 
plants in the greenhouse. Functional Plant Biology 39, 870-877. 

Van Eeuwijk, F. (2015). How to dissect complex traits and how to choose suitable mapping 
resources for system genetics?: Comment on" Mapping complex traits as a dynamic system" by 
L. Sun and R. Wu. Physics of life reviews. 

Van Eeuwijk, F. A., Bink, M., Chenu, K., and Chapman, S. C. (2010). Detection and use of QTL 
for complex traits in multiple environments. Current Opinion in Plant Biology 13, 193-205. 

Van Ittersum, M., Leffelaar, P., Van Keulen, H., Kropff, M., Bastiaans, L., and Goudriaan, J. 
(2003). On approaches and applications of the Wageningen crop models. European Journal of 
Agronomy 18, 201-234. 



References 

 144 

Vargas, M., van Eeuwijk, F., Crossa, J., and Ribaut, J.-M. (2006). Mapping QTLs and 
QTL × environment interaction for CIMMYT maize drought stress program using factorial 
regression and partial least squares methods. Theoretical and Applied Genetics 112, 1009-1023. 

Varshney, R. K., Chabane, K., Hendre, P. S., Aggarwal, R. K., and Graner, A. (2007). 
Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic 
diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant 
Science 173, 638-649. 

Verbeke, G., and Molenberghs, G. (2000). "Linear Mixed Models for Longitudinal Data" Springer. 
Verbyla, A. P., Eckermann, P. J., Thompson, R., and Cullis, B. R. (2003). The analysis of 

quantitative trait loci in multi-environment trials using a multiplicative mixed model. 
Australian Journal of Agricultural Research 54, 1395-1408. 

Verbyla, A. P., George, A. W., Cavanagh, C. R., & Verbyla, K. L. (2014). Whole-genome QTL 
analysis for MAGIC. Theoretical and Applied Genetics,127(8), 1753-1770. 

Vilhjálmsson, B. J., and Nordborg, M. (2012). The nature of confounding in genome-wide 
association studies. Nature Reviews Genetics 14, 1-2. 

Visscher, P. M., & Goddard, M. E. (2004). Prediction of the confidence interval of quantitative 
trait loci location. Behavior genetics, 34(4), 477-482. 

Voorrips, R. E., Palloix, A., Dieleman, J. A., Bink, M. C. A. M., Heuvelink, E., Heijden, G. W. A. 
M. v. d., Vuylsteke, M., Glasbey, C., Barócsi, A., Magán, J., and Eeuwijk, F. A. v. (2010). 
Crop growth models for the -omics era: the EU-SPICY project. In "Advances in Genetics and 
Breeding of Capsicum and Eggplant : Proceedings of the XIVth EUCARPIA Meeting on 
genetics and breeding of Capsicum and Eggplant", pp. 315-321. Editorial Universidad 
Politécnica de Valencia, Valencia, Spain, Valencia, Spain. 

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van De Lee, T., Hornes, M., Friters, A., Pot, J., 
Paleman, J., and Kuiper, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic 
acids research 23, 4407-4414. 

VSNi (2012). GenStat for Windows 15th Edition. VSN International, Hemel Hempstead, UK. 
Wang, L.H., Zhang, B.X., Lefebvre, V., Huang, S.W., Daubeze, A.M., Palloix, A., (2004). QTL 

analysis of fertility restoration in cytoplasmic male sterile pepper. Theoretical and Applied 
Genetics 109, 1058-1063. 

Weller, J., and Soller, M. (2004). An analytical formula to estimate confidence interval of QTL 
location with a saturated genetic map as a function of experimental design.  Theoretical and 
Applied Genetics 109, 1224-1229. 

West-Eberhard, M. J. (2003). "Developmental plasticity and evolution," Oxford University Press, 
New York [etc.]. 

Williams, E.R., John, J.A., (1999). Construction of resolvable designs with nested treatment 
structure. Biometrical Journal 41, 341-349. 

Wimmer, V., Lehermeier, C., Albrecht, T., Auinger, H. J., Wang, Y., & Schön, C. C. (2013). 
Genome-wide prediction of traits with different genetic architecture through efficient variable 
selection. Genetics, 195(2), 573-587. 

Wright, S. (1921). Correlation and causation. Journal of agricultural research 20, 557-585. 
Wu, S., Li, H., Casella G. (2006). Tests with optimal average power in multivariate analysis. 

Statistica Sinica 16, 255-266. 
Wubs, A. M., Heuvelink, E., and Marcelis, L. F. M. (2009). Abortion of reproductive organs in 

sweet pepper (Capsicum annuum L.): a review. Journal of Horticultural Science and 
Biotechnology 84, 467-475. 

Würschum, T. (2012). Mapping QTL for agronomic traits in breeding populations. Theoretical and 
Applied Genetics 125, 201-210. 

www.spicyweb.eu Smart tools for Prediction and Improvements of Crop Yield – KBBE 211347.  
(F. A. van Eeuwijk, ed.). 

Xu, S. (2013). Mapping QTL for Multiple Traits. In "Principles of Statistical Genomics", pp. 209-
222. Springer New York. 

Xu, Y., Hu, W., Yang, Z., & Xu, C. (2015). A multivariate partial least squares approach to joint 
association analysis for multiple correlated traits. The Crop Journal. 



  References 

  145 

Yi, N., Shriner, D., Banerjee, S., Mehta, T., Pomp, D., and Yandell, B. S. (2007). An efficient 
Bayesian model selection approach for interacting quantitative trait loci models with many 
effects. Genetics 176, 1865-1877. 

Yin, X., and Struik, P. C. (2010). Modelling the crop: from system dynamics to systems biology. 
Journal of Experimental Botany 61, 2171-2183. 

Yin, X., Struik, P. C., Eeuwijk, v. F. A., Stam, P., and Tang, J. (2005). QTL analysis and QTL-
based prediction of flowering phenology in recombinant inbred lines of barley. Journal of 
Experimental Botany 56, 967-976. 

Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 1457-68. 
Zeng, Z.-B., Kao, C.-H., and Basten, C. J. (1999). Estimating the genetic architecture of 

quantitative traits. Genetical research 74, 279-289. 
Zhou, X., & Stephens, M. (2014). Efficient algorithms for multivariate linear mixed models in 

genome-wide association studies. Nature methods, 11(4), 407. 
Zygier, S., Chaim, A. B., Efrati, A., Kaluzky, G., Borovsky, Y., and Paran, I. (2005). QTLs 

mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the 
pepper QTL map with that of tomato. Theoretical and Applied Genetics 111, 437-445. 

 



                                                                                                                           Summary 

 146 

Summary 
Breeders aim at selecting genotypes that show a superior performance for target (often 
complex) traits in a target population of environments. Target traits are commonly a 
function of the genotype, determined by a large number of loci, and of the environmental 
conditions. For most traits, differences between genotypic responses are not constant 
across environmental conditions, leading to genotype-by-environment interaction (GEI). 
GEI can also be modelled as an explicit function of quantitative trait loci (QTL: the 
genomic regions with genetic differences that influence one or more traits) across 
environments. Here, GEI can be interpreted as differential QTL effect sizes across 
environments (QTL-by-environment interaction, QEI). QEI can be modelled with a mixed 
model methodology that explicitly accounts for the change in QTL effect size across 
environments. QTLs can thus be classified as ‘constitutive’ if they are consistently 
detected across most environments. QTLs are said to be ‘adaptive’ when they are detected 
only in specific environmental conditions, or when there is a change in the QTL effect 
with a change in the level of an environmental factor. 

A complementary strategy to characterize the genetic basis of the complex target trait (e.g. 
yield) is to dissect it into a number of physiological component traits using crop growth 
models (CGMs). The idea is that component traits have a simpler genetic basis and less 
GEI than the target trait and manipulation of the target trait can proceed via its component 
traits. For that reason, understanding the interconnectedness among plant phenotypes has 
become a key objective in QTL mapping. Network type models provide alternative 
representations of the biological knowledge of a complex target trait such as yield, by 
showing intricate interactions of multiple genetic (and possibly environmental factors) 
influencing the target trait. The use of network models allows investigating how plant 
traits are interconnected in networks of dependencies as a result of gene-to-trait, trait-to-
trait and gene-to-gene interactions. Furthermore, we can study the stability of such 
networks across environments due to GEI.  

In this thesis, we present the results of a number of statistical techniques that were used to 
understand the genetics of yield in pepper as an example of complex trait measured in a 
number of environments. Main objectives were; i) to propose a number of mixed models 
to detect QTLs for multiple traits and multiple environments, ii) to extend the multi-trait 
QTL models to a multi-trait genomic prediction model, iii) to study how well the complex 
trait yield can be indirectly predicted from its component traits, and iv) to understand the 
‘causal’ relationships between the target trait yield and its component traits.  

For this research as part of the EU-SPICY project (http://www.spicyweb.eu/), we have 
used a bi-parental pepper (Capsicum annuum) population comprising 149 individuals from 
the sixth generation of recombinant inbred lines (RIL) of an intraspecific cross between 
the large – fruited inbred cultivar ‘Yolo Wonder’ (YW) and the small-fruited cultivar 
‘Criollo de Morelos 334’ (CM 334). The 149 RILs were characterized genotypically with 
455 markers assembled into 12 pepper chromosomes, covering 1705cM. A total of 16 
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physiological traits were evaluated across four different trials and various types of genetic 
parameters were estimated. Trait heritabilities were generally large (ranging between 0.43 
– 0.96 with an average of 0.86) while many of the traits displayed heterosis and 
transgression.  

In chapters 2 and 3, different multiple-QTL mapping methods were employed to estimate 
location, heritability and direction of the QTLs. We qualitatively investigated QTL 
pleiotropy (a QTL region affecting more than one trait) and we discussed our results in the 
light of previously reported QTLs for these and similar traits in pepper. All the QTLs for 
yield were constitutive with the majority of the superior alleles coming from parent YW. 
We assumed that yield would benefit from joint analysis with other traits and so deployed 
two other mixed model based multi-response QTL approaches: a multi-trait approach 
(MT) and a multi-trait multi-environment approach (MTME). The approaches were 
compared in terms of number of QTLs detected for each trait, the explained variance, and 
the accuracy of prediction for the final QTL model. For yield as well as the other traits, 
MTME was superior to ME and MT in the number of QTLs, the explained variance and 
accuracy of predictions. Many of the detected QTLs were pleiotropic and showed 
quantitative QEI. The results confirmed the feasibility and strengths of novel mixed model 
QTL methodology to study the architecture of complex traits.  

Since the main interest of this research included improvement of complex trait prediction, 
in chapter 4, we explored both single-trait and multi-trait versions of genomic prediction 
(GP) models as alternatives to the QTL-based prediction (QP) models. We extended the 
frontier in this research area by comparing the predictive performances of multi-trait 
versions of QP and GP models. The methods differed in their predictive accuracies with 
GP methods outperforming QP methods in both single and multi-traits situations. We 
further integrated QTL/genomic prediction with CGM approaches and showed that the 
target trait yield can be predicted via its component traits namely radiation use efficiency 
(RUE), partitioning into fruits (PF) and growth rate of leaf area index (LAIrate) together 
with environmental covariables such as temperature, thermal time and daily global 
radiation intensity (I). The CGM approach was implemented for within-environment and 
across-environment analyses. The predictive accuracies from the CGM were comparable 
to the direct prediction strategy. The CGM approach seemed to work well at first sight, but 
this is especially due to the fact that yield appeared to be strongly driven by just one 
component, the partitioning to fruits. The across environment CGM indicated that we may 
use component traits and environmental information from one environment to predict 
yield in another environment. 

In chapter 5, we constructed both conditional and unconditional networks across the four 
environments. The unconditional networks were based on standard multi-trait model 
(MTM) while the conditional networks were based on the QTL-driven phenotype network 
method (QTLnet). The final networks for each environment from both conditional and 
unconditional methods were used in a structural equation model to assess the causal 
relationships. Conditioning QTL mapping on network structure via QTLnet improved 
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detection of refined genetic architecture by distinguishing between QTL with direct and 
indirect effects, thereby removing non-significant effects found in MTM and resolving 
QTL hotspots (pleiotropy). The most probable conditional networks from the four 
environments are similar in skeleton to the relationships defined by the CGM. Similar to 
the CGM topology, yield was established to be downstream to its three component traits, 
indicating that yield can be studied and predicted from its component traits. Thus, the 
genetic improvements of yield would benefit from improvements on the component traits. 

Finally, complex trait prediction can be enhanced by a full integration of the methods 
described in the different chapters. Recent research efforts have been channelled to 
incorporating both multivariate whole genome prediction models and crop growth models. 
Further research is required, but we hope that the present thesis presents useful steps 
towards better prediction models for complex traits exhibiting genotype by environment 
interaction. 
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