
 Scaling up Question-Answering to Linked Data 

Vanessa Lopez1, Andriy Nikolov1, Marta Sabou1, Victoria Uren2, Enrico Motta1, 
Mathieu d’Aquin 1 

 
1 KMI. The Open University, MK76AA, UK {v.lopez, a.nikolov, r.m.sabou, e.motta, 

m.daquin}@open.ac.uk, 2 The University of Sheffield, S14DP, UK v.uren@dcs.shef.ac.uk 

Abstract. Linked Data semantic sources, in particular DBpedia, can be used to answer 
many user queries. PowerAqua is an open multi-ontology Question Answering (QA) 
system for the Semantic Web (SW). However, the emergence of Linked Data, 
characterized by its openness, heterogeneity and scale, introduces a new dimension to 
the Semantic Web scenario, in which exploiting the relevant information to extract 
answers for Natural Language (NL) user queries is a major challenge. In this paper we 
discuss the issues and lessons learned from our experience of integrating PowerAqua as 
a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step 
beyond the state of the art on end-users interfaces for Linked Data by introducing 
mapping and fusion techniques needed to translate a user query by means of multiple 
sources. Our first informal experiments probe whether, in fact, it is feasible to obtain 
answers to user queries by composing information across semantic sources and Linked 
Data, even in its current form, where the strength of Linked Data is more a by-product 
of its size than its quality. We believe our experiences can be extrapolated to a variety 
of end-user applications that wish to scale, open up, exploit and re-use what possibly is 
the greatest wealth of data about everything in the history of Artificial Intelligence. 
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1   Introduction  

The SW has expanded rapidly, offering a wealth of semantic data that can be used for 
experimental purposes, for example to enhance keyword search technologies.  A prominent 
example is the amount of web data in the Linked Data [2] cloud. It is possibly, the largest 
Knowledge Base (KB) about everything in the history of Artificial Intelligence. Till now, 
most KBs covered specific domains and were created by relatively small groups. Yet, this 
is starting to change and we are reaching the critical mass required to realize the vision of 
large scale, distributed SW, with real-world datasets, representing real community 
agreement, and leading to astonishing research possibilities that can exploit and reuse these 
freely available data. For instance, the DBpedia project [3] extracts structured information 
from Wikipedia. The DBpedia ontology describes 170 classes in a shallow subsumption 
hierarchy, and more than 900 properties1. DBpedia has a high degree of conceptual overlap 
with other datasets, and it is increasingly becoming the central interlinking hub. The web of 
data around DBpedia covers 4.7 billion pieces of information about domains such as 
geography, people, companies, films, music, genes, amphibians, books and publications.  

Ultimately, by integrating and connecting data on the web, Linked Data, and DBpedia in 
particular, as stated in [3] “can be used to answer quite surprising queries about a wide 
range of topics”. E.g., by failing to link the content one can obtain films directed by Francis 
Ford Coppola but not what actors have played in any of his movies. However, while back 
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end technologies and semantic applications can be robust at the small or medium scale, they 
may not be suitable when applying them to a real-world scale of heterogeneous web data. 
In other words, while Linked Data datasets literally may contain the answers to millions of 
questions, locating and exploiting the relevant information to extract these answers from 
them is a major challenge. In fact, most tools analyzed in Section 2 only perform a shallow 
exploitation of these data. Thus, in this paper we analyze the practicability of this ambition 
from the end-user application side, by looking at the scalability issues when integrating our 
multi-ontology QA system, PowerAqua, which uses state of the art methods from 
computational linguistics, ontology mapping, and data fusion, with some of the large 
general purpose data offered by the Linked Data community: DBpedia, the BBC backstage 
data whose scope is TV broadcasts and music [6], umbel2 and musicBrainz. 

Kaufmann and Bernstein [5] demonstrated, via a usability experiment comparing four 
query interfaces to an ontology, that casual users preferred the interface that used full NL 
queries to those using keywords, partial sentences and a graphical interface. Furthermore, 
the intuition that it would be easier to obtain answers from structured data than open text 
had lead to much interest in open NL interfaces that build and query their own massive 
trusted comprehensive factual KBs about the world (e.g., commercial ventures such as 
Powerset, START, Wolfram Alpha or True Knowledge3). Hence, it is worth considering an 
open NL interface for the end user to locate and query the Linked Data content on the web.  

PowerAqua [9] takes a NL query from the user and retrieves answers from 
heterogeneous semantic data repositories. In particular, PowerAqua is able to integrate, on 
the fly, statements drawn from different sources to generate integrated answers to 
questions. Knowledge can be aggregated to complete information partially presented in 
single sources, fusing similar answers and filtering irrelevant ones. Furthermore, the most 
accurate answer(s), in terms of their relevance to the query and the varying levels of 
quality, popularity and trust, are elicited from different sources [8]. As such, PowerAqua 
supports users in locating, reusing and querying the open SW or organizations with large 
semantics intranets, where the information is distributed across independent departmental 
sites and external semantic sources. However, the SW has been rapidly evolving during the 
development of PowerAqua. PowerAqua was first envisioned in 2006 as a shift between the 
first generation of closed domain semantic systems, akin to smart KB applications, and the 
next generation of open SW applications to exploit the increasing amounts of semantic 
markup data, which is heterogeneous with respect to both the ontology characterization and 
provenance. Again, now, we can distinguish a new turning point in the evolution of the SW 
driven by the emergence of Linked Data. Querying Linked Data brings up a new scenario, 
the differentiating characteristics of which (detailed in Section 4) are: 
I. Scalability is not only in the number of ontologies but also on their size (number of 

ontological elements). E.g., more than 2.9 million things are described in DBpedia.   
II. From specific domain ontologies to large generic ontologies about everything, with a 

wider coverage of relationships across entities from a variety of domains.  
III. Ontologies are decentralized, containing redundant and heterogeneous terminology, and 

connected to each other creating a network or cloud of ontologies.    
In what follows, we look at the abilities of existing tools that handle the sheer amount of 
multi-domain data offered by Linked Data to provide easy access to the end user (Section 
2).  Then we briefly describe PowerAqua (Section 3), and present the major issues (Section 
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3 http://www.powerset.com/, http://start.csail.mit.edu/, http://www.wolframalpha.com/index.html and        
  http://www.trueknowledge.com/ respectively. 



4) that we faced to scale up PowerAqua to take advantage of Linked Data’s potential to 
answer queries. The feasibility of the solutions presented (in Section 5) is assessed through 
initial experiments that measure the QA performance before and after using the main 
representative Linked Data set, DBpedia (Section 6). We finish by drawing some 
conclusions (Section 7). We believe that the lessons learned obtained with our experiments 
can be extrapolated to a large proportion of semantic tools that wish to retrieve, use and 
combine these large, rich multi-domain semantic data on the fly.  

2   Motivations: Current interfaces for Linked Data and limitations 

The database and SW communities had developed back-end technologies for managing 
large amounts of web data. Various RDF stores can scale over large amounts of data 
originating from different sources, such as Virtuoso or the Talis platform4. Search engines 
such as Watson [10] and Sindice [11] come also with features for indexing data from the 
SW. Linked Data sources usually offer a SPARQL endpoint for their dataset(s)5. 
Alternatively, they also provide RDF data dumps to build and query your own store6. 
However, users can hardly know which identifiers and properties are used in the KBs and 
hence can be used for querying. Consequently, they have to be guided when building 
queries, e.g., through the suggestion of reasonable alternatives. Creating innovative ways to 
interact with Linked Data is crucial and even envisioned as a potential “killer app”.  

Nonetheless, to find a trade-off between the complexity of the querying process and the 
amount of data it can use and integrate is still an open problem for ontology-based 
approaches. Semantic search models that have proved to work well in specific domains still 
have to undertake further steps towards an effective deployment on a decentralized, 
heterogeneous and massive repository of content about a potentially unlimited number of 
domains. Here we present a state of the art of the available user interfaces that can, in 
principle, scale enough to explore the Linked Data. 
• Triple query builder interfaces: a Query Builder allows users to query the KB by means 

of multiple triple patterns. For each triple pattern variable, identifiers or filters for the 
subject, predicate and object can be defined. The user needs to follow the terminology 
and structure of the ontology to pose queries, e.g., the DBpedia Leipzig query builder 
[1]. However, for each typed identifier name a look ahead search proposes suitable 
options in a (in some cases long) drop down menu that helps the user to create complex 
queries, e.g.: <?x, rdf:type, db-ont:Person> <?x, notablePrize, Nobel_Peace_Prize>. 
Graph-based visualizations, on the contrary, in which all property values of the selected 
instances are analyzed for facet-filtering, are more resource demanding [1].  

• Relationship finder: i.e., the DBpedia relationship finder [7] explores connections 
between objects. DBpedia is treated as an undirected graph and given two objects, the 
relationship finder looks for a path between them (not necessarily the shortest). 

• Keyword lookup: e.g., the DBpedia URI Lookup Index and OpenLink Software7 find 
the most likely matches (URIs) for a given term. The service combines Lucene’s string 
similarity based ranking with a relevance ranking similar to PageRank. The OpenLink 
Software builds a text, label and URI lookup service upon a larger collection of sources, 
but it limits the number of results to only those containing an exact mapping of the input 
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5 A more complete list of SPARQL Endpoints at: http://esw.w3.org/topic/SparqlEndpoints 
6 Jena http://jena.hpl.hp.com/wiki/TDB;  Sesame  http://www.openrdf.org; 4store http://4store.org; 
7 http://lookup.dbpedia.org/ and http://lod.openlinksw.com 



keyword and the search can be refined by specifying URIs of classes, properties or 
values, but usability is limited (e.g., 1358 classes are associated to the keyword “actor”).   

• Data aggregators and mash-ups: e.g., in Sig.ma (http://sig.ma/) the user enters a 
keyword and is able to explore all the aggregated data coming from the search engine 
Sindice (including synonyms and approximate mappings). Although mash-up 
technologies provide support for large-scale indexing and aggregating heterogeneous 
information, they do not attempt to disambiguate or rank between different 
interpretations, however, in Sig.ma the user can filter out the irrelevant sources. 

• Linked Data browsers: they bring a way to browse RDF data on the web  (data should 
be in RDF/XML or embedded in web documents using microformats). Examples are 
Tabulator and Disco8. Given a dereferenceable URI (i.e. an application can look up a 
URI over the HTTP protocol), these browsers render all information that they can find 
about that URI. All aggregated data across sources is viewed in a tabular form and the 
user can navigate through interlinked sources. However, it does not aggregate 
unconnected entities with different URIs representing the same individual. 

• DBpedia Faceted search9: it allows the user to easily ask queries like “recent films about 
Buenos Aires”, by typing the keyword “Buenos Aires” and then applying an intelligent 
filtering base on the underlying ontology, in this case by the item type “Film”. The 
interface guides the user to filter objects according to facets (properties) and range of 
values. Nevertheless, the user needs to familiarize herself to some extent with the 
vocabulary and the structure of the KB, e.g., lexically related words like “Movie” are 
not understood. This applies not only to undefined terms, but also when there is not a 
straight mapping between the user query and the way the knowledge is structured in the 
ontology. For example, the query “Give me the husbands of Elizabeth Taylor” cannot 
be easily formulated if the user does not know that the relevant relation “spouse” is 
defined only for the entities representing Elizabeth Taylor’s husbands, whose 
ontological type is “Actor”, and it is neither defined for the instance “Elizabeth Taylor”, 
nor for the types “Person” or “Artist”. As the system is unable to map “husband” to the 
relation “spouse”, the only solution left is to manually explore among all the results that 
contain a match for “Elizabeth Taylor”.  

Research on user interfaces for Linked Data is a open-ended area, each of the above 
paradigms have different abilities to handle the sheer amount of multi-domain data and the 
following limitations according to the criteria presented in Table 1: 
1) Usability: if the input of the system is a URI or is some of the components of a triple, 

usability is limited to knowledgeable users, familiar with semantic source contents. 
2) Expressivity: if the system builds upon keywords, then it provides limited capabilities to 

grasp and exploit the conceptualizations involved in user needs, with limitations such as 
the inability to account for relations between terms, or to cope with complex queries. 

3) Scalability: if the system is restricted to one or a set of domains to maintain 
performance then it cannot scale to a truly open environment.  

4) Mapping: the vocabulary that the system can understand is limited to that used in the 
ontology, the input is controlled and if a term has more than one sense, disambiguation 
is done manually by the user. Although these guided interfaces solve the old habitability 
problem (a mismatch between the user expectations and the abilities of the system), the 
burden or responsibility to formulate the queries is shifted from the system to the user. 
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5) Fusion: if the system has limited abilities to merge heterogeneous facts or multiple 
different answers (representing the same individual) across different semantic sources. 

6) Ranking: the lack of ranking algorithms to cope with large-scale information sources. 

Table 1.  Limitations of the existent paradigms according to 6 criteria. 

Criteria Query Builder Rel. Finder Term Lookup Mash-ups Browsers Facets  
Usability  √ √ √ √ -- √ 
Expressivity √ -- Χ Χ Χ √ 
Scalabilty √ √ √ √ √ √ 
Mapping  Χ Χ -- -- Χ Χ 
Fusion Χ Χ Χ -- -- Χ 
Ranking Χ  Χ -- Χ Χ Χ 

The existing querying approaches for Linked Data are restricted, among all of them, only 
facets and query builder interfaces provide an efficient way to pose complex and expressive 
queries to a large repository, with varying levels of usability depending on the query 
complexity and the number of filtered options presented on the drop menus, as end-users 
can get lost in large-scale information spaces. In fact, a common drawback of all these 
systems is that the user, not the application, is the one who has the responsibility and 
burden to reformulate the query in a way that can be understood. Another open issue 
concerns the usability of menu views and facets over multiple heterogeneous sources. Only 
keyword-based mash-ups (and lookup services to some extent) can aggregate information 
across sources, but they do not attempt to fuse similar results, nor do they have enough 
context to interpret and elicit the best answers. What is achievable on small/medium scale 
data by querying interfaces (in particular sophisticated NL ones) has until now not been 
achieved on large Linked Data. In this paper, we aim to go one step beyond the state of the 
art, by adapting the mapping and fusion techniques required by a particular NL interface, 
PowerAqua, to the Linked Data scenario. 

3   PowerAqua: an open NL interface over structured data 

Contrary to existing ontology-based NLI systems (see [5] for an example) whose scope is 
limited to one or a set of a-priori selected medium size ontologies at a time, PowerAqua 
dynamically selects and combines information drawn from multiple and heterogeneous 
ontologies in order to interpret and answer a query, making it worth investigating whether it 
can be successfully used to exploit the metadata offered by Linked Data. We briefly explain 
PowerAqua through the illustrative example “Find me university cities in Japan”, a 
linguistically simple query that nevertheless, to be answered requires knowledge fusion 
across different sources. PowerAqua follows a pipeline architecture, the query is first 
transformed by the linguistic component10 into a triple based intermediate format called 
Query-Triples (QTs): <university cities, ?, Japan>. At the next step, the QTs are passed on 
to the PowerMap mapping component, which identifies potentially suitable semantic 
entities in various ontologies that are likely to describe QT terms and answer a query, 
producing initial element level mappings. For example, PowerMap selects 81 mappings 
over 23 ontologies for the query term “Japan”. PowerMap maximizes recall by searching 
for approximate mappings  (e.g., “CountryJapan” in the TAP ontology) as well as exact 
mappings. These are jointly referred to as equivalent mappings. PowerMap also uses both 
WordNet and the SW itself (owl:sameAs) to find synonyms, hypernyms, derived words, 
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meronyms and hyponyms (e.g., “Japanese islands”, “Nippon”, etc). In the third step, the 
Triple Similarity Service (TSS), exploring the relations of these entities, matches the QTs to 
ontological expressions or ontology based triple patterns specific to each of the considered 
semantic sources, producing a set of Onto-Triples (OTs), from which answers are derived 
as a list of entities matching the given triple patterns in each semantic source.  

The algorithm iteratively refines candidates only as needed, analyzing most likely 
solutions first, and using more expensive but broader techniques last, if the previous steps 
fail to obtain a solution. First, the TSS chooses, whenever possible, the ontologies that 
better cover the user query and domain (i.e., it first searches for OTs in the ontologies that 
have potential mappings for at least two of the terms in a given QT). In our example, as 
PowerMap does not find any covering ontology with mappings for both arguments in the 
QT: “university cities” and “Japan”, the TSS algorithm reiterates again by splitting the 
compound term “university cities”, and consequently modifying the QT into: <cities / 
universities, ?, Japan> and creating a new QT for the compound <university, ?, cities>. For 
the QTs obtained in this second iteration, the TSS extracts, by analyzing the ontology 
relations, a small set of ontologies containing the valid OTs that jointly cover the user query 
and produce an answer. The resultant OTs are partially presented in Table 2.  

Table 2.  Triple Mapping Tables returned by PowerAqua for the example query. 

QT1: <cities / universities,  ?, Japan> 
Agrovoc OT1 <city, generic-location, Japan> 27 answers: Ibaraki, Kyoto, kushiro-shi, etc. 
SWETO OT1 <city, attribute-country, Japan> 30 answers: Chuo-ku Tokyo, Chuo-ku Osaka, etc. 
KIM OT1 <city, locatedIn, Country_T.JA (Japan)> 290 answers: Mishima, Kodaira, Soka, etc. 
TAP OT1 <city, locatedIn, CountryJapan> 30 answers: CityChitose, CityKyoto, etc. 
DBpedia OT1 <RadioStation, city, Japan> 2 answers: FM802, J-Wave. 

QT2: <university,  ?, cities> 
DBpedia OT3 <PopulatedPlace, city, University> 7177 answers: Madrid 

(Polytechnic_University_of_Madrid), Kyoto (Kyoto_University), etc.  

Finally, because each resultant OT only leads to partial answers, they need to be combined 
into a complete answer. The fourth component merges and ranks the various interpretations 
produced in different ontologies. In our example, 19 final answers are selected (e.g.: Kyoto 
(Kyoto_University), Fukushima (Fukushima_University)), by intersecting the answers from 
both QTs to obtain as a final set of answers those shared between the 7177 answers of cities 
with a university from DBpedia, and the more than 500 answers about cities in Japan 
derived from 8 ontologies (agrovoc, KIM, TAP, ATO, DBpedia, nepomuk, mid-level, and 
SWETO). Among other things, merging requires the system to identify similar entities 
across ontologies, e.g., “Kyoto” in DBpedia and “CityKyoto” in TAP. Furthermore, ranking 
(based on the quality and popularity of the mappings and answers) can be applied to sort 
the answers. E.g., a ranking measure is capable of providing a lower confidence to the noisy 
answers derived from the DBpedia OT: <RadioStation, city, Japan>. Although, in this case 
all answers derived after fusion are correct (as irrelevant answers only appear in one triple). 
As we show in [8], merging and ranking algorithms enhance the quality of the results.  

To scale our model to a truly open web environment implies exploiting all the 
increasingly available semantic metadata in order to provide a good coverage of topics. To 
address this, PowerAqua is coupled with: a) the Watson SW gateway [10], which collects 
and provides fast access to the increasing amount of online available semantic data, and b) 
its own internal mechanism to index and query selected online ontological stores11, as an 
alternative way to manage large repositories, like those offered by the Linked Data 
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community, often not available in Watson due to their size and format (RDF dumps 
available for download as compressed files). One of the main issues for PowerAqua is to 
keep real time performance in a scenario of perpetual change and growth. The time needed 
to answer a query depends on: (1) the number of calls required to the Watson API or to 
query the repositories and the indexes, and (2) the response times to these calls. The total 
number of calls depends directly on the number of semantic sources and mappings that take 
part in the answering process. The response times to these calls depend on the complexity 
of the (SPARQL-alike) query and the size of the ontology. PowerAqua algorithms are 
optimized to reduce the number of expensive calls in the following way:  
• The algorithm operates in a sequential fashion, by first collecting all candidate 

ontological entities for the terms in a query, and then identifying relevant relationships 
between them. However, the algorithm can re-iterate through the two different phases in 
order to look only for the mappings needed in the first instance. As such, the algorithm 
looks for mappings for terms forming a compound, e.g., “university cities”, only if the 
first iteration, without splitting the compound, fails to produce results.  

• The time consuming process of analyzing indirect relationships between two entities 
(i.e., relationships which require two triples to be joined, as the length of the path is 
limited to one mediating concept) is only carried out when no satisfactory is-a or ad-hoc 
direct relationships between any of the candidate entities within the ontology are found.  

• The number of mappings returned by Watson is reduced through a functionality used to 
restrict the mappings for a given term to the ontologies that also contain mappings for 
another given term. E.g., in our query PowerMap retrieves hits for “university”, “cities”, 
or any of its lexical variations, from ontologies that also contain mappings for “Japan”.  

4.   Before and After Linked Data: a new dimension in QA 

We have identified three crucial factors that give a new perspective and draw a new line in 
the scope of SW applications before and after Linked Data, therefore, challenging Linked 
Data’s potential in the QA context.  

4.1 Scaling to highly populated and dense ontologies 

A well-known limitation of the SW is its sparseness, as stated in [13], without a well 
populated SW, developing semantic search systems is only an intellectual exercise. Only a 
reduced number of topics were covered entirely or partially by an existing ontology 
(domain sparseness), and added to this, sparseness at the level of instances and relation 
(model complexity) was also found [4, 10]. However, Linked Data initiatives are producing 
a critical mass of semantic data, and it is likely that soon we will have so much data that the 
core issues would not be so much related to sparseness as to scalability and robustness.  

Furthermore, as reported in an analysis of 25,500 ontologies and semantic documents 
collected by Watson [10] in 2007: “the SW is characterized by a large number of small, 
lightweight ontologies and a small number of large-scale, heavyweight ontologies”, the 
biggest one at that time containing more than 28,000 entities. By contrast, an obvious 
characteristic of Linked Data is that it is very large, DBpedia alone consists of more than 
103 million RDF triples, and describes more than 2.9 million entities. Also, as analyzed in 
[7] the DBpedia dataset is densely connected. As ever, the links between entities are more 
important than the entities themselves because that’s where the context lives. Exploring 



these connections between entities, e.g., through SPARQL queries, is the major bottleneck. 
Scale matters since the response time of the calls to query the ontologies depends directly 
on the size of the ontology, in particular when a query involves one or more classes with 
lots of instantiated data. Therefore, to query Linked Data mapping algorithms need to be 
able to explore the relevant connections while trying to avoid expensive computations.  

4.2. Mapping query terms to large generic ontologies about everything 

The really challenging aspects of these Link Datasets appeared to be not only their scale but 
also their heterogeneity: new challenges are introduced by simultaneously querying not 
only a large number of domain specific ontologies but also a few very large populated 
ontologies about everything.  

The first version of PowerAqua was developed to work on an initial, sparsely populated 
SW. Therefore, PowerAqua algorithms were designed to maximize recall in order to bridge 
the gap between user terminology and terms used in the ontologies. Nevertheless, to keep 
up with the continuous and rapidly growth of the SW and to avoid analyzing an unfeasibly 
large space of solutions, the algorithms are iterative, and try to find an answer by 
augmenting the search space in each re-iteration until either an answer is found or all 
possibilities have been analyzed. The algorithm is based on the assumption that the 
ontologies that better cover a query (i.e. contain matches for most of the elements on a QT) 
are likely to represent better the domain(s) of the query and contain an answer. The 
algorithm uses this coverage criterion to restrict the mappings to be analyzed to those in the 
covering ontologies, extending the search space only if no answers are found.  

However, the main distinctive feature of DBpedia, apart from its size, is that it is a 
repository about everything. Therefore, even in the cases where the answer to the user 
query is not contained in DBpedia, this dataset is frequently selected as relevant, and often 
contains a huge number of potential ontological hits, from a large number of domains, for 
one or more of the terms in the user query. Consequently, this coverage criterion to filter 
ontologies, ergo candidate mappings, becomes insufficient when most of the lexical 
matches for a user query belong to just one large open domain KB and often have different 
meanings than the one intended by the user. For instance, DBpedia alone contains more 
than 1000 mappings for an apparently unambiguous keyword like “Russian”: e.g., the exact 
mappings Russia (instance) & russia (property); the synonyms Soviet_Union (instance) & 
USSR (instance); the hypernym country (class); the approximate instances: 
Russian_empire, president_of_russia, MTV_Russia, Rocket_to_Russia, Russia_Today, 
Anastasia_of_Rusia, etc. Analyzing the ontological context of all potentially relevant hits, 
to select the ones containing an answer, would result in unacceptably slow response time 
for a run time algorithm. Therefore, new filtering heuristics are needed.  

4.3 Fusion across the heterogeneous and decentralized cloud of ontologies 

When searching multiple collections together, knowledge needs to be shared and reused 
through fusion techniques. Redundant information or partial results from different sources 
need to be either combined and merged together or ranked in terms of their relevance to the 
query and the confidence in the answers derived from different sources.  

Fusion requires matching at the schema level as well as entity reconciliation at the data 
level; it assigns the individuals returned as answers from different ontologies into subsets of 
answers that represent identical entities. A decision about the equivalence of two answers is 
made based on string similarity metrics applied to their labels, local names, and, in case of 



uncertainty, other datatype attributes. Pairwise comparison of entities would make the 
complexity of the procedure N2 with respect to the input set size. In order to avoid this, 
candidate matches are selected using a search over the indexes and the comparison focuses 
only on the entities that appear among the search results. This makes the complexity linear 
with respect to the answer set size, but in cases where the answer set is formed by 
thousands of partial answers, further heuristics to improve efficiency are needed. 

5   Solutions to challenges and lessons learned 

Next, we report on the solutions adopted by PowerAqua to solve the challenges outlined 
above. Our experiments also give us an insight on the quality of the datasets and a better 
understanding of the concrete issues encountered when handling large-scale data.  

5.1 Large scale data: Shifting focus onto precision for mapping and fusion 

DBpedia contains a large number of instances across domains, and as said before, it can 
produce a large number of diverse mappings for a single query term. Strategies to select the 
most likely mappings to answer a query and filter the least promising ones are crucial to 
keep run time performance especially when querying a huge amount of semantic data.  

These strategies start with a quick filtering mechanism based on scores (not processing), 
returned by Lucene string similarities, to ensure that the mappings for a given term, within 
one single repository, have a minimum quality and their number does not go over a given 
threshold. This favors precision and can negatively affect recall, however, it is a necessary 
measure to ensure that all questions can be answered in real time. Secondly, the number of 
mappings is reduced according to heuristics to filter out the least promising individual 
mappings. These heuristics are not based on a PageRank-like algorithm (i.e., the popularity 
of the entity within the ontology)12 but rather on the context of the query. The reason behind 
this is that we do not want to penalize searches in which the user is interested in the unique 
meaning (not the popular meaning) of the word. For instance, the meaning of Turkey is 
clear when asking for “Give me books written in Turkey” or “which wine is good for a 
meal based on Turkey?”. Based on the coverage criterion ontologies about geography or 
food would be selected respectively. However, a dataset like DBpedia contains both 
meanings of Turkey (Turkey_(bird) and Turkey) plus several mappings for “books” and 
“wine”.  Before the time consuming process of analyzing the relationships between the 
mappings to obtain the interpretation that better translates the query in a given ontology, 
further heuristics to reduce the number of mappings within an ontology are applied. These 
heuristics are based on the syntactic relevance of the mappings: (1) the quality: exact vs. 
approximate; (2) the semantic relation: equivalent, synonyms, hyper(hypo)rnyms, or 
meronyms.  Next, more expensive semantic mechanisms based on the ontology taxonomy 
are applied, i.e. to discard redundant mappings by selecting those that are higher in the 
same ontology hierarchy (e.g., the class “wine” selected over its subclasses “rose-wine”, 
“white-wine”, “sugary-wine”, etc). Also, unconnected mappings with no ontological 
context, in the form of ad-hoc or is-a relations, are discarded.   

These strategies applied by PowerMap mapping algorithms to increase precision, and 
consequently performance, require making certain assumptions about the quality of the 
semantic sources, without making any unreasonable or a-priori assumption. As explained in 

                                                             
12 Popularity measures are used only to rank the final answers obtained across ontologies [8]. 



Section 5.2, if the heuristics are too strict recall is affected and valid answers are missed, in 
particular for the heterogeneous and general datasets such as DBpedia. The mapping 
finishes with, the TSS iterative algorithms [9] that exploit the ontological relationships 
between the candidate entities to translate the user query (starting with the most 
straightforward solutions and executing expensive steps last, if no solution is found). 

In order to improve the efficiency of the fusion procedure, our approach is to balance the 
quality of the resulting set of the answers and the expected time cost. When the number of 
answers, which have to be processed by the fusion module is large, our procedure tries to 
minimize the number of index search calls. The input of the fusion procedure is a set of 
answers retrieved from one or more ontologies 

! 

oi,i =1...n . Let 

! 

Ai  denote a set of answers 

! 

{ai1...aim}  coming from the ontology 

! 

oi. By default, for each 

! 

aij  we searched the index 
using as keywords the label and local name of 

! 

aij  together with their synonyms extracted 
from WordNet. Instances 

! 

akx  which were retrieved by the search, and at the same time 
belonged to the original set of query answers, were considered as candidates for fusion. In 
the new version of the algorithm, we introduced two thresholds for 

! 

| Ai |. The first regulates 
the use of WordNet synonyms in search: if 

! 

| Ai |> " , then WordNet synonyms are not used 
when searching for instances similar to 

! 

aij " Ai . The second one excludes the whole set 

! 

Ai  
from search: if 

! 

| Ai |> µ , then the module does not try to search for instances similar to 
any

! 

aij " Ai . Thus, if there is an instance 

! 

akx  belonging to an ontology 

! 

ok  such that 

! 

akx " aij , they can only be merged if a search for 

! 

akx  returns 

! 

aij , which potentially leads 
to lower recall of the fusion procedure. However, this potential loss of recall is justified 
when we are dealing with very large answer sets. 

5.2 Heterogeneity and duplicated terms: filtering based on quality and semantics 

In DBpedia, the most valuable contents extracted from Wikipedia are the infoboxes. 
However, different infobox templates use different names for the same attribute (e.g., 
birthplace and placeofbirth). The DBpedia project deals with this situation by using two 
different extraction approaches in parallel: a generic one that aims at a high coverage, and a 
mapping-based one that aims at high data quality by mapping Wikipedia terms to a 
manually created ontology [3]. However, the latest covers only 350 Wikipedia templates.  

One of the filtering heuristics to favor precision is to consider the quality and semantic 
relation of the mappings. However, the presence of duplicated entities within the same 
semantic source limit the effectiveness of this criterion. Consider the example: “Give me 
the husbands of Elizabeth Taylor”, the keyword “husbands” produce several mappings in 
DBpedia, the approximate equivalent instances: Clifford_Husbands, Commuter_Husbands, 
Dead_Husbands, Husbands_and_Wives, Young_Husbands, etc; the exact equivalent 
properties: husbands, husband, etc; and the exact hypernyms: spouse, spouses, partner, etc. 
The equivalent properties representing “husband(s)” do not produce any valid OTs with the 
entity “Elizabeth Taylor”. The answer is encoded in the hypernym property “spouse”. 
Therefore, hypernyms can be as relevant as equivalent mappings. With this kind of dataset, 
in which different terms have the same semantics, heuristics need to be flexible. First, exact 
mappings, if any, independent of their semantic relation, are selected over approximate 
mappings. Furthermore, exact mappings are a requirement in cases where the type of the 
mapping is not the expected one. E.g., in “who won a Nobel prize” the linguistic relation 
“won” is mapped to the instance “Won_James_Won”, this approximate mapping is 
discarded before analyzing how it relates to the subject and object of the triple.  

The TSS ultimately establishes the semantic validity of the candidate mappings by 
analyzing the ontological context, which is translated in many SPARQL-like queries to find 



the OTs. However, for queries that are particularly expensive, heuristics based on the 
semantic relation (synonym, hyper(hypo)nym) together with the quality of the mapping 
(exact, approximate) are also applied to minimize the number of those expensive queries. In 
large ontologies like DBpedia, searching for both ad-hoc relationships (1:1) between two 
highly populated classes and indirect relationships with one mediating concept (1:2) are 
expensive computations. In these two cases, to favor precision when looking for 
relationships among the mappings, only pairs in which at least one candidate mapping is 
exact and equivalent are analyzed (singulars and plurals are considered exact mappings). In 
this way for the query “which languages are spoken in a country?” the TSS avoids 
searching for relations between DBpedia matches such as “text”, an hypernym of 
“language”, and “land”, a synonym of “country”.  

Finally, heterogeneity is not only present in the vocabulary but also in the granularity of 
the data (i.e., entities modeled with different degrees of richness). For instance, the 
deepness that characterizes the YAGO hierarchy [12] and its conjunctive schema classes 
(used in DBpedia classification), which encode too much information in one class, e.g., 
“MultinationalCompaniesHeardquarteredInTheNetherlands”, make the processing of the 
labels too difficult for automatic QA understanding. 

5.3 Lack of semantics or formal ontology: light-weight reasoning  

PowerAqua is able to scale thanks to the various strategies and filtering heuristics that keep 
the number of mappings and queries to the semantic sources more or less constant, even 
when adding large semantic sources or a large number of them. However, as said in Section 
3, performance also depends on the size of the ontologies, which influences the response 
time of the calls (SPARQL or Serql) to query them. The effectiveness of these queries, 
which use the ontology semantics to perform basic light-weight inferences based on the 
taxonomy and relationships, also relates to the quality of the sources they are querying.  

In DBpedia the properties defined in the namespace http://dbpedia.org/ontology belong 
to the data generated by the mapping-based approach. In this approach, fine-grained rules 
are applied to define the target datatype and ignore additional text that may be present in 
the attribute value. However, although the percentage of properties pointing to other 
DBpedia entities is much higher in the mapping-based dataset (53%) than in the generic 
dataset (25.6%) [3], the coverage is lower (843,000 compared to 1,462,00 entities). In the 
generic approach, http://dbpedia.org/property/, coverage of all infoboxes is complete but 
synonymous attribute names are not resolved, and there is a high error rate to determine the 
datatype of a value. The effectiveness of finding answers in the generic approach is limited 
with respect to the mapping approach and it has an important impact on query performance.  
a) Domain and range: In the mapping approach OTs can be extracted with reasonable 
performance by querying the schema (domain and range). However the answer can be 
encoded in a property defined within the generic approach, where properties do not map to 
a schema. The lack of domain and range information, results in either sending expensive 
SPARQL / SeRQL queries or missing connections between the analyzed entities. To 
balance performance and recall, domain and range information is crucial in cases where we 
are looking for indirect relationships, or ad-hoc relations between two classes or a class and 
a literal. For example in “give me languages used in Islamic countries?” the query is 
translated into OTs representing “languages spoken in a country” and “countries that are 
Islamic”, domain and range are used to get all possible relations among the two classes 
“language” and “country”, because it is not feasible to check all the instances of languages 
to find ad-hoc relations with any instance of country in real time, particular for highly 



populated classes. Therefore, the answers encoded in the OTs formed with the KB relation  
“http://dbpedia.org/property/states” are not found, but it finds answers for the schema 
relation: <language, http://dbpedia.org/ontology/states, country>. Furthermore, domain and 
range information is also needed in order to complete a triple when the relation is mapped 
but not the subject of the triple. E.g., the query “in which region is Cantonese spoken?” is 
mapped to the OT: <PopulatedPlace (domain of region), region, Cantonese> with 12 
answers (Hong Kong, Macau, etc). Because an instance can instantiate a relation with 
thousands of other instances, schema information is needed to model the OT.  
b) Inference of relationships: When looking for relationships between two entities, the 
ontology is treated as an indirect graph, and all direct and inverse relations are retrieved. 
Inheritance of relations is considered: if the ontological platform does not offer schema 
inferencing (as it is the case for Postgres repositories in Sesame 2), then complex SeRQL 
queries need to be generated to consider the relationships defined for the superclasses of the 
classes involved. In our previous example, domain and range information is used to find 
instantiated relations between the classes “language” and “country”, or any of their 
superclasses. If looking for indirect relations inherency is also considered, but the search is 
restricted to candidate mediated concepts with relations defined in the schema, looking for 
indirect inverse relations is avoided as it is computationally expensive to search for 
relations to and from highly populated mediated concepts. Also, inferences cannot be done 
with instances whose type is defined in another ontology. 
c) Literals and good enough labels: a literal has no structure and the meaning is given just 
by its label. E.g, the unprocessed value for the property “states” in the instance “Tamil 
language” ("India, Sri Lanka and Singapore, where it has an official status; with significant 
minorities in Canada, {..}") is too complex to automatically infer answers.  

6   Initial Experiments and Discussion 

Despite using community driven large scale knowledge obtained from sources that are 
heterogeneous, redundant and not always complete or well formed, the SW technology is 
mature enough to interpret and answer NL user queries. In this section, we present some 
example queries13 to justify our claim that we can obtain answers to queries directly from 
the DBpedia semantically rich information – even in its current form. The solutions in 
Section 5 had allowed us to improve PowerAqua mapping and fusion algorithms to exhibit 
better performance, measured in terms of speed or seconds to answer a query, by shifting 
the focus on precision while minimizing the loss in recall. We have made an initial 
comparative study between PowerAqua efficiency before and after adding DBpedia dataset 
and the heuristics to favor precision, by using the semantic data and a subset of queries 
from previous evaluations [9, 8, 4]. This semantic data consists of 700 semantic documents 
distributed in 130 repositories, 3GBs data in which the biggest source (SWETO and 
SWETO-DBLP) is not more than 1GB (over 3 million triples). A sample of 16 queries can 
be seen in Table 3, where the last 6 queries can only be answered if DBpedia is included in 
the query dataset. As shown, the average time for the mapping algorithms to translate a 
query increases from 32 to 48 secs when using the same queries and datasets but adding 
DBpedia, even with the use of filtering heuristics. However, the resulting number of valid 
answers obtained after applying the fusion algorithm (which has a precision of 94%[15]) 
rises from 64 to 370 on average. The average mapping time with DBpedia increases to 52 
secs when adding complex queries like Q11 and Q12 that require fusing partial translations 

                                                             
13 More demo queries at: http://kmi.open.ac.uk/technologies/poweraqua 



from DBpedia and other datasets to obtain a complete one. While this is acceptable for a 
research demo, work still has to be done to improve the speed. In any case, it shows that 
semantic data can be handled in modest projects, our demo runs in one reasonable sized 
server (a 3GHz Intel Pentium dual core with 8GB RAM).  

The reasons behind the decrease in speed are not so much because of the increase of the 
number of resultant hits obtained when querying more and larger repositories. Heuristics 
that balance precision and recall reduce SeRQL calls by more than 40% (352/587) and even 
keep them lower (540) when mapping complex queries into multiple facts. However, speed 
falls because of a suboptimal performance at the back end, where the response times to 
calls to the repositories increases for single large datasets, in particular for expensive 
queries to find: (1) relationships between instances of highly populated classes (domain-
range information is limited and inherency is take into account); (2) indirect relationships; 
(3) relationships involving literal values. The first fact explains that Q1 is executed faster 
than Q12, even if it implies twice as many (SeRQL) calls, because there are 47,821 actors 
starring in films in DBpedia while there are just 3,224 languages related to a country. The 
second and third facts explain why Q9 is the slowest query, because answers are obtained in 
DBpedia through 21 indirect OTs, with mediating concepts such as airlines, company, 
person, military conflict, that relate to both DBpedia entities “island” and “spain”, plus the 
SWETO ontology contains multiple literal values for “spain” (corresponding to instances of 
Spanish cities) that need to be analyzed. Nevertheless, we are optimistic that PowerAqua 
(and other query-intensive interfaces) can scale to a huge amount of semantic information, 
as long as the semantic software it is based on can efficiently respond to the growth of the 
semantic sources. Furthermore, if the quality of ontologies improves and more semantic 
data becomes available, it should be easier to find more precise mappings with answers.  

Table 3.: Examples of queries after and before using the DBpedia dataset + heuristics (precision) 

(Qi) NL Query: After DBpedia / Before Dbpedia N°Ont Answ. Secs  Calls  
 Q1: How many languages are used in Islamic countries?  2/ 2 170/ 0 95.2/ 34.5 1078/ 419 
 Q2: Which Russian rivers end in the Black Sea  3/ 1 4/ 1   41.3/ 27.3 639/ 428 
 Q3: Who lives in the white house 4/ 3 12/12 17.9/ 13.7 310/ 144 
 Q4: Give me airports in Canada 2/ 1  156/155 23/ 14.22 157/ 40 
 Q5: List me Asian countries 6/ 6 64/ 72 15.3/ 67.4 298/ 1308 
 Q6: Give me the main companies in India 2/ 2  710/ 386 17.4/ 43.9 298/ 588 
 Q7: Give me movies starring Jennifer Aniston 3/ 2 28/ 23 10.7/ 4.5 94/ 22 
 Q8: Which animals are reptiles? 9/ 8  2518/ 23 42.8/ 7.1 165/ 49 
 Q9: Which islands belong to Spain 3/ 3 13/ 7 206/ 104   387/ 2617 
 Q10: Find all the lakes in California 2/ 2 37/ 2 13.6/ 12.9 103/ 258 
 Average (10 queries) – after / before DBpedia  3.6/3 371/68 48.3/32 352/587 
 Q11: Find me university cities in Japan 7/- 19/- 68/- 1087/- 
 Q12: Tell me actors starring in films directed by Francis Ford Coppola  3/- 135/- 120/173 574/- 
 Q13: Show me Spanish films with Carmen Maura  1/- 2/- 30.5./- 477/- 
 Q14: Give me English actors that play in Titanic  1/- 4/- 144/- 3340/- 
 Q15: Give me tennis players in France 1/- 29/- 14.7/- 113/- 
 Q16: Television shows created by Walt Disney 1/ - 8/ - 9.4/ - 137/ - 
 Average (16 queries) – after DBpedia 3.1 244.3 54.3 578.5 

Table 4.: Fusion with DBpedia – after precision heuristics / before precision heuristics 
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Avg 
Secs 16.5/516 6.7/25 1.8/2 0.3/77 50.9/30 55.7/219 0.1/6.5 74.43/255 3.6/2.3 1.6/3 126/940 30.7/188 
 Calls 11/771 16/177 14/16 1/311 131/138 370/1148 44/53 19/2803 14/26 38/40 579/3792 112/843 

We do not always have enough ontological context to focus on precision when, because of 
heterogeneity, there are many alternative translations. Take the query Q14, which requires 
an unusual number of calls (3340) to find the OTs that translate to the QTs <actors/ 
English, play, Titanic> and <English, ?, actors>. There are 31 OTs in DBpedia for the first 



QT linking the class “Actor” to 7 instances of “Titanic” (Cinematic_Titanic, 
Titanic_1943_film, Titanic_1953_film, Titanic_1997_film, Titanic_TV_miniseries, etc), 
through several ad-hoc relations (starring, director, producer, academyawards, etc.), 
because the matches for the linguistic relation “play” (the properties: play, plays and show) 
turn out not to be relevant for the query. Similarly, the second QT is mapped to 18 DBpedia 
OTs formed with various ad_hoc relations (residence, ethnicity, location, hometown, 
deathPlace, etc, and the duplicated properties: birthplace, birthPlace and born) between the 
class “Actor” and the instance “England”. Moreover, the keyword “English” alone 
produces several mappings that had to be analyzed to determine or not their relevance (e.g., 
English language, English people, English channel, English actor, English football, etc).  

Yet, the needed filtering heuristics impose a toll in recall, e.g., new DBpedia answers are 
obtained for Q5 but the answers from one ontology (KIM) are missed, producing a loss in 
total answers (64/72). Moreover, in Q13, relevant films are missed because the mapping 
“spanish_language” was not selected and only OTs formed with the mapping “Spain” were 
retrieved. Notwithstanding, generally, we cannot see any negative effect on recall if we 
compare the total number of final answers with the previous version of PowerAqua but 
quite the contrary (371/68), in fact, many of the missed mappings were imprecise (and in 
any case filtered after fusion), like the city “Mammoth Lake” as an answer for Q10, or their 
answers were already obtained from other ontologies.  

Table 4 compares the average fusion times before and after applying the fusion 
heuristics to reduce the number of calls to the indexes, and therefore improve efficiency. 
The average fusion times have been reduced from 188 secs to 30.7 secs. We could not see 
any loss in recall due to the new fusion heuristics in this query sample. 

Nevertheless, there are many open grounds for exploration of techniques to: (1) lead to 
better mappings, e.g., “British actors in Titanic” translates into multiple OTs but with no 
answers after fusion, because British is not mapped to England, and the resultant answers 
like “Kate Winslet” are related to England but not to Britain; (2) improve the selection of 
mappings by trust mechanisms and user feedback; (3) we have not yet fully exploited the 
explicit linkage for bridging data in the Linked Data world, e.g., if no ontology offers a 
complete translation of a single QT, instead of obtaining partial translations, explicit 
connections stated across different sources (owl: sameAs) can be use to efficiently search 
for cross ontology connections across entities as if they were part of the same graph. 

7   Conclusions and Future Work 

In the early stages of development, sparseness overshadowed the potential for QA using 
semantic data [4], however the transition from restricted domains to real world scale 
structured datasets stimulated by Linked Data, adds a new dimension of scalability for both 
applications and back-end technologies that aim to exploit the SW, opening new QA 
possibilities, beyond prototypes and proof of concepts. In this paper, we analyzed the 
implications of fusion and mapping techniques for querying large scale Linked Data 
content across multiple domains in NL, which allow us to extract useful lessons for the 
Linked Data community and developers in the wider SW community.  

Existing techniques focusing simply on effectiveness may not scale to large amounts of 
data. To scale to a large amount of data, applications need to leverage precision and recall 
needs with the potential of scaling up through parallelization and adaptive load balancing. 
Although still more work needs to be done in our back end infrastructure to cover not just a 
subset but all Linked Data available, in this paper we analyzed the implications from the 
front-end (application) perspective on the way the query process should be realized to 



efficiently extract answers from large and highly heterogeneous community-driven open 
data, beyond any particular implementation, and in particular, the issues that we have 
addressed in order to scale our mapping and fusion techniques to millions of triples. 

Currently, evaluation initiatives that would allow formal evaluations and direct 
comparison between systems are being investigated, e.g., in the SEALS (semantic 
evaluation at large scale) project. In this work our aim is to present some examples and 
initial experiments to justify our claim that we can obtain answers to queries from the huge 
amount of semantically rich information extracted from DBpedia – even in its current form.  

QA over Linked Data opens the way to ambitious future research directions. For 
instance, DBpedia entities are also being used to annotate web content, i.e., DBpedia is 
being used as the controlled vocabulary to annotated BBC news. In this way, stories across 
different BBC domains are linked together through DBpedia data [6]. As the number of 
annotated sites increases, the answers to a question extracted by PowerAqua in the form of 
lists of entities (e.g., from DBpedia), that can be used as a valuable resource for discovering 
classic web content that is related (annotated) with those entities. Our future goal is to 
complement the answers given by PowerAqua with web pages to enhance the expressivity 
of traditional search engines with semantic information. Summing up, PowerAqua aims to 
provide a service that extends capabilities from querying a large number of unconnected 
sources to more interlinked ecosystems of data, in response to a user demand.  
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