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INTRODUCTION

This study deals with counts of organisms for a range
of species, or higher taxa, in replicate samples from dif-
ferent sites, times and/or treatments (where we use the
term ‘sample’ to denote a single sampling unit such as
a grab, quadrat, net haul, etc.). Such data sets are com-
monly analysed by a multivariate procedure with the
following steps:

(1) Transformation of the counts, choosing from
options of increasing severity, ranging from no trans-
formation, square root, 4th-root (and, equivalently,
log(1 + x), Clarke & Warwick 2001), to reduction of the
counts to presence (1) or absence (0), which can be
viewed as the ultimate in severe power transformation,
as the exponent goes to zero.

(2) Calculation of similarity between every pair of
replicates, within and among the sample groups. This
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frequently uses the Bray-Curtis coefficient (Bray &
Curtis 1957), for good reason (the benefits of this
choice are articulated by Clarke & Warwick 2001, and
Clarke at al. 2006).

(3) Construction of non-metric multi-dimensional
scaling plots (MDS, Kruskal 1964) for displaying the
patterns among sample groups, and analysis of similar-
ity tests (ANOSIM, Clarke & Green 1988, Clarke 1993)
for testing hypotheses about group differences, in rela-
tion to variability among replicates within a group. The
latter are multivariate permutation procedures carry-
ing out the equivalent hypothesis tests to (inter alia)
1-way ANOVA in univariate statistics.

The initial transformation step is usually justified on
the grounds that it reduces the contribution of highly
abundant species in relation to less abundant ones in
the calculation of the Bray-Curtis measure, with the
more severe the transformation, the greater the contri-
bution made by rarer species (Clarke & Green 1988,
Clarke & Warwick 2001). This is certainly true. The
Bray-Curtis dissimilarity between any 2 samples, 1 and
2, is defined as

(1)

where yl1 and yl2 are the transformed counts of the lth
species (l = 1, 2, …, p) in Samples 1 and 2, respectively.
Species with high abundance clearly dominate both
the numerator and denominator of this coefficient,
unless a heavy transform reduces the differential
between large and small counts. For example, a reduc-
tion to presence/absence leaves each species only
capable of contributing either ‘0’ or ‘1’, and less-fre-
quently observed species can contribute more to the
numerator now than common species, especially if the
latter are ubiquitous (so always return |1 – 1| = 0 to the
top line of Eq. 1). 

This is not, however, the last word on the subject of
globally-applied transformations. Quite often, a severe
transformation is employed not as a subtle way of
weighting up the contribution from a modestly abun-
dant but consistently observed species, compared with
a more highly abundant but also consistently observed
species, but as a simple reaction to a species whose
numbers are fluctuating strongly in replicates, from
zero to very high counts, and this variability is
dominating the analysis. Typically, certainly for soft-
sediment marine communities, disturbed environ-
ments are characterised by the presence of opportunist
species, which are often small-bodied but found in
very large and variable numbers because of strongly
clustered spatial distributions. The presence of species
with highly erratic counts among replicates within a
treatment (or site or time) group is not restricted to
impact studies, but frequently arises naturally, perhaps

as a function of the species’ mode of reproduction or
from behavioural traits such as schooling. Use of a
severe transformation will downweight the large
element of ‘noise’ that this variability can throw into
the ‘signal’ of natural or induced community change,
but at quite a high price. Good discriminating species,
which have consistent but modest abundance levels
among replicates within a group, and subtle but con-
sistent changes between groups, will also feel the full
weight of a severe transformation, which will reduce
the contribution of their signal. What is needed here is
to separate out the statistical and biological reasons for
transformation, by first dealing with the statistical
problem that some species should be given less weight
because of their inherent unreliability in replicates—a
sampling problem caused by spatial clumping of the
organisms. Only then is it possible to address, by trans-
formation, the biological problem of whether it is bet-
ter to look for a consistent signal of change in common
or rarer species. 

This study describes a simple, and fully transparent,
means of downweighting species counts that exhibit
clumping in replicates. The procedure is fully justified
under a general, flexible model of clustering behaviour
that is partly distribution-free (a form of generalised
Poisson or ‘contagious’ distribution, Douglas 1979),
which is realistic in many ecological contexts. The
derived weighting is still likely to be sensible even
when the model conditions are not strictly met. As
described in this study, suitable applications in prac-
tice require 3 conditions: that the data for each species
are genuine counts (not densities that have been stan-
dardised to some unit volume of water or unit area of
sediment etc.); that there are independent replicates
within each of the sample groups, so that there is some
basis for assessing the within-group variance struc-
ture; and that each replicate is of a uniform size (same
core diameter, same tow length etc.). It is not required
that the number of replicates within each group be the
same—though balance in experimental or observa-
tional design is always a desirable trait that increases
power when carrying out tests for group differences,
subsequent to calculation of dispersion-weighted
similarities. 

METHODS

Generalised Poisson model. The data structure is
assumed to be that of a standard 1-way layout, with p
species counted for a total of N samples, the latter split
into g groups, defined a priori. This does not exclude
higher-way designs. Groups could be different treat-
ments, sites, times or some combination of these, e.g. a
2-way structure of sites (S) and times (T) would simply
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be ‘flattened’ to a 1-way layout of groups S1T1, S1T2,
S1T3, S2T1, S2T2, S2T3, etc. (After the dispersion
weighting step, the original higher-way design struc-
ture can simply be re-instated for subsequent analy-
sis.) The ith group (i = 1, 2, …, g) contains ni replicate
samples (quadrats, cores, tows etc.) identified by the
subscript j ( j = 1, 2, …, ni). Balanced replication would
have ni = n, for all i, giving a total of N = gn replicates;
for unbalanced replication, N = Σni. Although clearly
more widely applicable than this, it is helpful to think
of the organisms of a single species as points located in
2D space, the groups as different sites, and the repli-
cate samples as quadrats ‘capturing’ these points, with
a count of Xij individuals of that species in the jth repli-
cate quadrat of the i th group. This is shown schemati-
cally in Fig. 1.

The simple conceptual model for species counts,
which motivates the dispersion-weighting procedure,
begins by assuming that locations of organisms of dif-
ferent species are independent of each other. This is
not to say that correlations calculated between pairs of
species across all samples will be zero, because differ-
ent groups will represent changed environmental con-
ditions, which will cause some species to increase or
decrease their mean density in the same way and other
species to react in opposite ways. What it is saying is
that, within a group (assumed to represent a fixed
environmental condition), species do not have compet-
itive interactions or synergies that cause inter-species
correlations in the counts across replicates within that
group. This is inevitably an over-simplification, but a
very necessary one in order to make any sort of theo-
retical progress. Such inter-species correlations within

replicates are usually ‘second-order’ in relation to the
induced correlations from changing conditions along
an environmental gradient, or differing treatment
regimes in an experimental manipulation. A conse-
quence of this local independence assumption is that
we can deal with each species separately, and choose
the weighting that is appropriate to its clumping struc-
ture (different species can, and will, exhibit different
degrees of clustering). There is therefore no need to
identify each species by a different subscript in what
follows (or in Fig. 1). All notation and formulae refer
to the specific, single species under consideration.

If organisms were always randomly located in space
then the count Xij from the j th replicate of the i th
group would come from a Poisson distribution and,
taken across the replicates from a single group, the
sample mean and variance would be much the same (a
characteristic of the Poisson distribution is that the true
mean and variance are identical). Different groups
would have different mean densities of organisms, as
the species responds to differing conditions, but the
variance would always go up or down with the mean
density. The ideal would be for all species to display
this property because then every ‘capture’ of an indi-
vidual is an independent event, and the multivariate
analysis would end up giving equal weight to each
such event. This ideal, however, is rarely the case in
practice. Many species are spatially clumped: they are
not captured one at a time but perhaps 5, 50 or even
500 at a time. The variance in replicates is now very
much greater than the mean (this is referred to as over-
dispersion) and such ‘erratic’ species need to be down-
weighted in relation to those that are Poisson-distrib-

uted. Fig. 1 displays such a situation,
with a mild degree of clustering:
organisms tend to arrive in clumps
of 3 (with some variation around that
mean number) but the centres of
clumps appear to be more or less
randomly distributed in space, with
higher mean density of centres for
Site 2, lower for Site 1 and least for the
final Site (group) g. This is the sce-
nario that needs to be modelled, and it
can be achieved by any distribution
from the generalised Poisson family,
which has 2 components

(1) ‘Centres of population’ are ran-
domly located in space. The number
of centres, Cij, in the j th replicate of
the i th group therefore has a Poisson
distribution, with mean γi say. The
density of centres, γi, changes with the
group i, in response to the changing
environment. Some groups will have
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Fig. 1. Schematic of quadrat sampling from a generalised Poisson model for the
spatial locations of organisms (d) of a single species. Groups are denoted by 
i (= 1, …, g), replicate quadrats within a group by j (= 1, …, ni), and the organism
count for the (i, j)th replicate by Xij, consisting of Cij centres with Zijk organisms
at the kth centre (= 1, …, Cij). Mean density of centres per quadrat (γi) varies
across groups but clustering structure is constant (mean cluster size μ ≈ 3,
variance σ2 ≈ 1). The only recorded quantities would be the counts {Xij}
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replicate samples with low, or even zero, density; other
groups will represent advantageous conditions for that
species and replicates will contain many centres.

(2) Associated with each centre are a number of
organisms, Z, from some probability distribution whose
form does not need to be specified but which has mean
μ and variance σ2. In effect, this says that for every
‘centre’ which falls into the replicate, an average of μ
organisms are counted. If σ2 = 0, then that is exactly
what happens: every time we come across 1 organism
we capture μ of them. The further special case of μ =
1 gets back to the simple Poisson model for replicate
counts. In the general case, the degree of clumping
for that species, which is specified by μ (and σ2), is
assumed to remain constant across all groups; the
effect of the changing sites, times or experimental con-
ditions is assumed to change the density of this species
but not its innate clustering structure.

Under these conditions, Appendix 1 shows that the
mean of Xij, the count for a particular species from the
j th replicate of the i th group, is γi μ, and the variance of
Xij is γi(μ2 + σ2). The ratio of the variance to the mean,
called the ‘index of dispersion’ D, is therefore (μ2 +
σ2)/μ, which is not a function of the group i to which the
replicate belongs. (The term ‘index of dispersion’ has a
long history in statistics, dating from Fisher at al. 1922;
many ecologists will have first met it in the work of
Greig-Smith 1952 or the book by Elliott 1971). 

Dispersion weighting procedure. The properties of
this generalised Poisson model motivate the weighting
procedure for any particular species, with the follow-
ing steps

(1) Calculate the observed index of dispersion, Di, for
each group i, simply as the ratio of the sample variance
to the sample mean for the ni replicates in that group.

(2) Average these indices across all g groups, since
they are all estimating the same quantity, to obtain the
average index of dispersion:

(2)

This is a weighted average of the dispersions for each
group because, in general, the numbers of replicates
in each group {ni} may not be equal. The choice of
weighting is a natural one, following from the close
link between indices of dispersion and chi-squared
statistics (see the discussion on testing for the absence
of clumping in the Appendix). When replication is
balanced, Eq. 2 is an unweighted average, (ΣDi)/g, of
the estimates from each group, a point returned to in
the ‘Discussion’.

(3) Use this average index of dispersion to down-
weight that species, i.e. divide all of its counts, Xij, by 
D-. The effect of this downweighting is to produce
values for that species which are ‘Poisson-like’, in the

sense that their mean and variance, over replicates
within a group, are now approximately equal; their
over-dispersion has been removed. In fact, Appendix 1
shows that the mean and variance of are
both approximately .

Exactly the same procedure is repeated for each spe-
cies, so that no species should be left with an erratic,
over-dispersed distribution among replicates. The
downweighted matrix can now be analysed in a stan-
dard way, e.g. by calculating Bray-Curtis similarities
between all samples and entering this resemblance
matrix into multivariate display and testing routines.

There is another small step that could be interpo-
lated in the procedure between Steps (2) and (3). If
there is no statistical evidence that a particular species
exhibits any over-dispersion at all, then it clearly
should not be subject to any downweighting, irrespec-
tive of the observed value of D-. This can only happen if
D- is close to 1—its value under the null hypothesis (H0)
of no clumping—or if there are very few replicates
and/or very sparse counts; it is not logically satisfactory
to divide a species through by D- = 1.5 say, if there is no
evidence that this departs from a true dispersion index
of 1. What is needed here is an exact hypothesis test for
over-dispersion, valid for both large and small counts. 

Test for over-dispersion. Under the H0 that the
counts for a species are Poisson, i.e. the dispersion
index is D = 1, Appendix 1 shows that 

(3)

has the form of a chi-squared statistic (the standard
form of a sum of (O – E)2/E terms being clearly dis-
cernible). Under the usual ‘large sample’ conditions, it
therefore follows a χ2 distribution on Σ(ni – 1) degrees
of freedom (df), and a significance test would reject
the H0 if Χ2 were greater than the upper 5% point of
χ2 on Σ(ni – 1) df. 

Assuming that the quadrats displayed are the only
data (i.e. g = 3, n1 = 3, n2 = 4, n3 = 4), the working steps
of the χ2 test and dispersion weighting procedure for
the data in Fig. 1 are shown (Table 1). The test sug-
gests that the observed dispersion of 3.17 is large
enough to reject the hypothesis that D = 1 unambigu-
ously (p < 0.001), so that downweighting of the counts
Xij would be carried out. The resulting values, Xij

DW,
are seen to have the ‘Poisson-like’ property of approx-
imate equality of variance and mean. The counts in this
case are more or less large enough for the χ2 approxi-
mation to be reasonable, even though the standard
guideline that expected values should mostly be >5
(see Cochran 1954) is not maintained for the counts in
Site 3. In practice, the approximation will be much
more doubtful for many species in a typical assem-
blage matrix. In addition to the species that are rare

Χ2
1

2

1
1= −( )⎡⎣ ⎤⎦ ⋅ = −( )

= =∑ ∑n D X X Xii

g
ij i ij

ni⎡⎡⎣ ⎤⎦=∑i

g

1

γ σ μi / /1 2+ ( )[ ]
X X Dij

DW
ij= /

D
n D

n

i ii

g

ii

g
=

−( )

−( )
=

=

∑
∑

1

1

1

1

14



Clarke et al.: Dispersion-based weighting in assemblage analyses

everywhere, if the groups correspond to a long base-
line of environmental change, giving a high turnover
of species, many species will have low counts in repli-
cates from at least one group and thus expected values
that are ‘too low’. 

Permutation tests come to the rescue here, as they
do in other aspects of community analysis (Clarke
1993) and in biology in general (Manly 1997). The Χ2

form of Eq. (3) is a perfectly valid and sensible test
statistic for assessing the hypothesis of clumping of
organisms (indeed, tests based on indices of disper-
sion ‘have no serious rivals’ in the simple case of
replicate quadrat counts from a single group, accord-
ing to Diggle (1983), and the same is likely to be true
of the compound dispersion index introduced here).
The problem is simply in determining its exact proba-
bility distribution in small samples under the H0 of no
clumping, but this can be derived by permutation.
For the data of Table 1, the 14 ind. in Group 1 are
independently and randomly allocated to one of the 3
quadrats, mimicking the reality (under H0) of random
arrivals from a known density of organisms. Simulta-
neously, the 41 ind. in Group 2 are similarly dispersed
amongst its 4 replicates, and the 9 ind. from Group 3
amongst its 4 replicates. This is a constrained permu-
tation: obviously organisms are not permuted across
the boundaries between groups (a total of 64 ind. allo-
cated randomly to 11 quadrats) because that would
only be appropriate to an H0 specifying common
densities across groups, in addition to spatial random-
ness. A value of Χ2 is calculated from Eq. (3) for this
re-arrangement and the whole simulation is then
repeated, e.g. a total of 999 times. A histogram of the
resulting Χ2 values gives the null distribution and an
upper 5% point, against which the genuine Χ2 can be
compared. In this case, all 999 simulations give a
smaller value than 25.4 for Χ2 (3.17 for D-), so the
significance level is confirmed at p < 0.001 and the
hypothesis D = 1 rejected. 

A simple permutation procedure of this sort is easy to
program, and powerful in detecting departures of
counts from the Poisson model denoting spatial (or
temporal) randomness, even with sparse data, so it is
surprising that it has not been more commonly used in
ecology. For example, consider just a single group for
the moment, in which there are 8 replicate samples
giving counts of (0, 0, 0, 0, 4, 0, 0, 0) organisms. The
standard Χ2 ‘model goodness-of-fit’ test, attempting to
fit Poisson probabilities e–λλk/k! to the frequencies of
occurrence of each response (7, 0, 0, 0, 1, 0, 0, … for k
= 0, 1, 2, 3, 4, …) cannot even be contemplated with
such a small total frequency as 8. The index of disper-
sion test, which also utilises a Χ2 form of test statistic
(though conceptually different to the model goodness-
of-fit test), has expected values Ei = 0.5 in all samples,
matching the observed values Oi = (0, 0, 0, 0, 4, 0, 0, 0).
This gives Χ2 = 28, but a χ2

7df approximation to the null
distribution would be untenable with all Ei = 0.5. The
permutation test, on the other hand, has no such con-
straints and shows that this Χ2 value is too large to have
been obtained by chance (p < 0.002); if the density of
organisms per quadrat is 0.5, and they are genuinely
located randomly and independently, it is too much of
a coincidence that the only organisms captured were
all in the same quadrat. If this were the only group
of samples being analysed, the dispersion weighting
procedure would therefore divide all counts by D (= 4)
and give the sensible downweighted values of (0, 0, 0,
0, 1, 0, 0, 0) for that species. 

Special cases of generalised Poisson model. As pre-
sented earlier, the generalised Poisson model is not
fully parametric: it is not necessary to specify the distri-
bution of clump sizes (Z) in order for dispersion weight-
ing to be justifiable and operable. Nonetheless, some
widely used models are special cases of this general
construction, so are worth noting; 5 cases are discussed

(1) Poisson distribution: If μ = 1, σ2 = 0, then there is
only 1 organism at each ‘centre’, so the counts Xij are

15

Groups i = 1 2 3 
Replicates j = 1 2 3 1 2 3 4 1 2 3 4

Observed counts Xij 8 5 1 12 17 4 8 3 0 0 6

Expected counts (mean) 4.67 10.25 2.25 Χ2 = 25.4 (p < 0.001 approx)

Var = 12.33 30.92 8.25

Dispersion index Di 2.64 3.02 3.67 D- = 3.17 (p < 0.001 exact)

2.5 1.6 0.3 3.8 5.4 1.3 2.5 0.9 0 0 1.9

Mean Xi
DW 1.47 3.24 0.71

Var Xi
DW 1.23 3.08 0.82 DDW ≡ 1

X X Dij
DW

ij= /

X X nij i ij
−( ) −( )∑ 2

1

Xi

Table 1. Dispersion weighting procedure for the hypothetical data displayed in Fig. 1. Final column shows both the approximate
test of Χ2, referred to χ2 on 8 df, and the exact permutation test of the average of the {Di} dispersion indices, D- = (Χ2/8). 

{Xij
DW} are the resulting dispersion weighted values 
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Poisson distributed, Po(γi) for group i and dispersion
D = 1. This is the ‘ideal’ that we aim to approximate in
other cases by downweighting.

(2) Fixed size clusters: If μ = m, σ2 = 0, all individuals
arrive in clusters of size Z = m. The dispersion index
is D = (μ2 + σ2)/ μ = m, and dividing the counts by m
exactly restores the Poisson distribution, Xij is Po(γi) for
group i. Although never a precisely realistic model, in
many ways this is the defining model for the approach
adopted here. We would like the data to be Poisson
distributed, reflecting independent arrivals of organ-
isms into a sample — which is the basis of many eco-
logical models, such as the rarefaction approach of
Sanders (1968) and Hurlbert (1971). Some species
arrive in ones, but some in tens and some in hundreds.
If, for a particular species, every time we see 1 we see
10, then nothing could be more natural than to divide
the counts by 10, which restores the Poisson dis-
tribution and the independence of arrivals (in effect,
‘centres’ C, not individuals, are counted). A model in
which cluster size Z varies (σ2 ≠ 0) is more realistic of
course, but the same idea carries over. The dispersion
index gives the parameter with which to divide by,
in order to bring the data back to the Poisson-like
property of variance = mean.

(3) Negative binomial distribution: If the cluster
sizes Z are drawn from a log series distribution with
probabilities [log(1 + β)]–1[β /(1 + β)]z/z for z ≥ 1
(Fisher et al. 1943), which has μ = β / log(1 + β), σ2 =
μ[(1 + β) – μ], then Quenouille (1949) showed that
the resulting counts Xij are negative binomial. Here
the mean of Xij is γiβ/log(1 + β) and the variance
γiβ(1 + β)/ log(1 + β), so the dispersion index D = 1 + β,
and the parameter β reflects the degree of clustering.

(4) Neyman type A distribution: Neyman (1939).
For all these models, the number of ‘centres’ (C) is
assumed to be Poisson, mean γi, but if the number of
organisms at each centre (Z) is also drawn from a
Poisson distribution Po(λ) with probabilities e–λλz/z!
(z ≥ 0), then μ = λ, σ2 = λ, and the mean and variance

of the counts Xij are γiλ and γiλ (1 + λ) respectively. This
gives a dispersion index of D = 1 + λ, so λ again reflects
the extent of clustering.

(5) Pólya-Aeppli distribution: (Kendall & Stuart
1963). This is obtained if the cluster size Z has the
geometric probabilities (1 + τ)–1[τ / (1 + τ)]z –1 (z ≥ 1), so
that μ = 1 + τ, σ2 = τ (1 + τ), and the mean and variance
of Xij are γi(1 + τ) and γi (1 + τ)(1 + 2τ). This gives D = 
1 + 2τ, which is independent of the mean number of
centres γi, as it must always be in this formulation. In
all these cases, by definition, dividing Xij by D restores
the property of variance = mean.

RESULTS

Simple numerical example

Return to the hypothetical data of Table 1 but add 2
further species (Table 2a). The counts for Species 2
have the same structure as for Species 1 but are a
factor of 10 greater. Clearly, Species 2 has much
greater clumping of individuals, reflected in a D- that is
also multiplied by 10. Dispersion weighted values
(Table 2b) are now identical for the 2 species, and they
are given exactly the same weight in the subsequent
analysis. In contrast, Species 3 has precisely the same
mean abundance for each of the 3 groups as Species 2,
but arrivals are much less clustered. In fact, Species 3
has the same degree of clumping of organisms as
Species 1 (D- = 3.17), so clearly has a substantially
larger number of independent ‘centres’. After disper-
sion weighting, it is seen to have much greater impact
than the other 2 species (Table 2b), making an order of
magnitude greater contribution to the numerator and
denominator of the (untransformed) Bray-Curtis coeffi-
cient. This is precisely what dispersion weighting sets
out to achieve: emphasis is placed on those species
(such as Species 3) that are both high in abundance
and consistent in replication. In fact, if this were a sub-
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Group 1 Group 2 Group 3 D-
Mean Mean Mean

(a) Xij

Species 1 8 5 1 4.7 12 17 4 8 10.3 3 0 0 6 2.3 3.17
Species 2 80 50 10 47 120 170 40 80 103 30 0 0 60 23 31.7
Species 3 55 50 35 47 105 125 85 95 103 25 15 15 35 23 3.17

(b) Xij
DW

Species 1 2.5 1.6 0.3 1.5 3.8 5.4 1.3 2.5 3.2 0.9 0 0 1.9 0.7 1
Species 2 2.5 1.6 0.3 1.5 3.8 5.4 1.3 2.5 3.2 0.9 0 0 1.9 0.7 1
Species 3 17.3 15.7 11.0 14.7 33.1 39.4 26.8 29.9 29.0 7.9 4.7 4.7 11.0 7.1 1

Table 2. Dispersion weighting for hypothetical data from 3 species. (a) Counts {Xij}, mean counts in each group and average index 
of dispersion D- over the groups. (b) Dispersion weighted values {Xij

DW}, and their means in each group
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set of real data, it might legitimately be argued that
Species 3 could be overdominant in an untransformed
analysis. A mild transformation such as a square root
(applied after dispersion weighting) could therefore
be justifiable, appealing to the usual argument about
needing to balance contributions of abundant (and
consistent) species with rarer (and consistent) ones. 

Copepods in creeks of the Fal estuary

Somerfield at al. (1994) present data from 5 creeks of
the Fal estuary system, southwest England, charac-
terised by high and varying sediment concentrations of
heavy metals—a result of tin and copper mining over
hundreds of years. The data used here consist of abun-
dances of 23 infaunal copepod species in 5 replicate
meiofauna cores from each creek (7 from the largest
creek). Somerfield at al. (1994) showed a significant
and substantial difference between creeks in copepod
assemblages, using a 1-way analysis of similarities
(ANOSIM) test (R = 0.66, p < 0.001) on Bray-Curtis
similarities calculated from 4th-root transformed abun-
dances. 

Table 3 gives counts for 5 replicates from each of 2
creeks, Mylor and Pill, together with the estimated dis-
persion indices D- for 19 species (the omitted species
are absent from both creeks) and significance levels (p,
as a percentage) of their departure from D = 1 in a 1-
sided permutation test based on 999 simulations. MDS
ordinations (Fig. 2), based on Bray-Curtis coefficients

without and with dispersion weighting (and with no
subsequent transformation), show that a greater sepa-
ration of the 2 creeks is evident under dispersion
weighting, as is a tightening up of the variation among
replicates for Mylor. This is confirmed by a 1-way
ANOSIM test, which takes place in the high-dimen-
sional space of the similarity matrices and not the 2D
approximation represented by the ordinations (Clarke
& Green 1988, Clarke 1993). The ANOSIM statistics
are R = 0.41 for Fig. 2a and R = 0.71 for Fig. 2b, both
significant (p < 0.016 and p < 0.008, respectively) but
the latter clearly larger, indicating greater distinction
of the assemblages. 

The reason for the comparative success of dispersion
weighting in this case is clear. Of the 3 most abundant
species, Microarthridion fallax, Enhydrosoma gariene
and Platychelipus littoralis, which will tend to domi-
nate the unweighted analysis, the latter 2 are rather
erratic across replicates. The greatest dispersion is
found for P. littoralis, with abundances ranging from 1
to 88 for Mylor and 12 to 112 for Pill samples. This rep-
resents relatively strong over-dispersion, DM = 35.9 for
Mylor and DP = 36.2 for Pill, giving an average D- = 36.1.
E. gariene is similarly over-dispersed, D- = 27.7. These
2 species will therefore be heavily downweighted in
relation to others, allowing the analysis to be steered
by less erratic but also abundant (M. fallax) or fairly
abundant (Mesochra lilljeborgi) species, and by highly
consistent though low abundance species such as
Stenhelia elizabethae. Global transformation would, of
course, achieve some of the same objectives: the con-
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Species D- p% Div M1 M2 M3 M4 M5 P1 P2 P3 P4 P5

Pseudobradya curticorne 8.7 0 8.7 19 2 12 32 13 18 0 6 26 7
Pseudobradya sp. 2 1.5 20.2 1 0 0 2 0 0 0 0 0 0 1
Halectinosoma gothiceps 7.3 0 7.3 0 0 0 0 0 16 6 8 0 0
Tachidius discipes 3.1 0 3.1 6 2 8 0 0 0 0 0 0 2
Microarthridion fallax 8.2 0 8.2 110 88 76 92 58 60 38 38 22 7
Harpacticus flexus 1.5 23.9 1 0 0 0 0 0 2 2 0 0 0
Stenhelia palustris 2.2 2.1 2.2 3 2 8 4 6 12 6 14 2 5
Stenhelia elizabethae 0.5 73.4 1 1 4 4 4 4 0 0 0 0 0
Amphiascoides limicola 3.4 0.1 3.4 1 0 0 0 0 14 14 8 22 0
Robertsonia celtica 5.8 0 5.8 4 24 8 8 0 0 4 6 2 1
Mesochra lilljeborgi 6.6 0 6.6 1 0 6 0 1 10 12 14 34 3
Mesochra pygmaea 2.7 2.3 2.7 0 0 0 0 0 2 0 0 4 0
Enhydrosoma gariene 27.7 0 27.7 19 130 26 44 21 50 34 44 24 6
Enhydrosoma longifurcatum 2.1 2.5 2.1 0 0 2 0 0 10 8 6 4 1
Enhydrosoma propinquum 1.5 20.2 1 1 0 0 0 0 0 0 0 2 0
Platychelipus littoralis 36.1 0 36.1 43 88 26 8 1 12 34 76 112 18
Paronchocamptus curticaudatus 3.6 1.4 3.6 0 0 0 0 0 0 8 8 12 3
Paronychocamptus nanus 1 100 1 0 0 0 0 1 0 0 0 0 0
Asellopsis sp. 1 100 1 1 0 0 0 0 0 0 0 0 0

Table 3. Fal estuary copepods. Original counts from 5 replicate meiofauna cores in each of 2 creeks (Mylor, M and Pill, P). Initial
columns give the average dispersion index D-, its % significance (p%) in a test of D = 1, and the divisor actually used to 

downweight each row of the table under the dispersion weighting procedure
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tribution of M. fallax, E. gariene and P. littoralis could
be removed altogether by a reduction to presence/
absence data, since they are present in all samples,
instead placing strong emphasis on species like
S. elizabethae and Amphiascoides limicola that are
largely present in one creek and not the other. How-
ever, this also upweights the relative contribution of
rare species, likely to be randomly distributed across
the creeks (e.g. E. propinquum), which will prove
unhelpful in general. 

Although it is convenient in Table 3 to consider only
a subset of 2 creeks, in order to illustrate the workings
of the method on real assemblages without needing to
reproduce a complete data matrix, a fairer comparison
of the performance of dispersion weighting in this
example would use all 27 samples from the 5 creeks.
Table 4 contrasts the global ANOSIM R statistics, for a
test of no differences between any of the creeks, under
all 8 combinations of dispersion weighting or no
weighting, with no transform, root, 4th-root and pres-
ence/absence transformations. This is based, as usual,

on Bray-Curtis dissimilarities computed after any
weighting and then transformation has taken place
(note, it does not make sense to transform prior to dis-
persion weighting because the nature of the data as
discrete counts is destroyed by transformation). This
table shows that the highest value of R is achieved by
a combination that includes dispersion weighting. In
fact, such weighting always improves the separation of
the creeks, for any given transformation, because it
reduces an element of the ‘noise’; however, the effect
cannot be claimed to be dramatic. The final column
shows that if all the emphasis is ultimately going to
be placed on the presence/absence pattern of species
occurrence, rather than any quantitative measure,
then dispersion weighting is, of course, irrelevant. 

Australian mangrove benthic macrofauna

An example showing a more extreme degree of
over-dispersion concerns assemblages of 35 macro-
faunal taxa from mangrove habitats at 3 locations,
denoted A, B and C, approximately 500 m apart, in
Bicentennial Park, New South Wales, Australia. From
each location 8 replicate quadrats are sampled, and
organisms sorted to a mixed taxonomic resolution
because of a lack of local taxonomic expertise for many
of the groups. Nevertheless, mixed resolution captures
many of the important differences in this fauna among
habitats (Chapman & Tolhurst 2004) and at different
spatial scales (Chapman 1998).

Many of the taxa are highly variable across repli-
cates; for example, at Location C, Oligochaeta counts
range from 6 to 509, Sabellidae from 0 to 194 and
Nematoda from 0 to 723, and all are sparser at the
other sites. Replicate counts for insect larvae vary from
0 to 997 at Location B, from 5 to 131 at A and 0 to 70 at
C. This inevitably leads to high values of the average
dispersion index (D- = 100.0, 164.8, 232.1 and 261.1,
respectively, for Oligochaeta, Sabellidae, Nematoda
and insect larvae). Indeed, the range of D- values
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Fig. 2. Fal estuary copepod assemblages from 5 replicates in
each of Mylor (M) and Pill (P) creeks. Non-metric multi-
dimensional scaling (MDS) ordinations based on Bray-Curtis
similarities from untransformed data: (a) unweighted data
(standard analysis); (b) dispersion weighting carried out using 

divisors from Table 3. Stress values: (a) 0.08; (b) 0.06 

No Square 4th- Presence/
transformation root root Absence

Unweighted 0.465 0.606 0.662 0.640
Dispersion 0.488 0.636 0.675 0.640
weighted

Table 4. Fal copepod study for all creeks, showing the effect
of dispersion weighting (or not), followed by various trans-
formations of counts prior to calculating Bray-Curtis dissimi-
larities. Tabulated is the global ANOSIM R statistic, larger
values indicating greater assemblage differences between 

creeks (p < 0.001 in all cases)
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obtained across taxa could be a useful
structural characteristic of an assem-
blage so defined, and is best illustrated
by a cumulative frequency plot (Fig. 3).
The continuous line to the right of
Fig. 3 records the D- values for this
mangrove data, showing the strong
asymmetry in the distribution, with
median D- of 8.0 but maximum of 261.
This is contrasted with successively
less extreme profiles, namely for the
Fal estuary copepods (long dashed
line, median D- of 4.7), and further
examples discussed later, where
clumping of individuals is much less
pronounced (median D- of 1.5 and 1).

The formal generalised Poisson
model represented by Fig. 1 might be
thought less convincing for the man-
grove data set, where taxa consist of
aggregated species counts. Pragmati-
cally, however, the dispersion weight-
ing procedure will still achieve the
goal of downweighting counts which are highly erratic
across replicates. Thus, Fig. 4 compares the MDS plot
from Bray-Curtis similarities based on the standard un-
weighted, untransformed data matrix with that from
dispersion-weighted counts (also untransformed). As
with the previous example, the effect of the weighting
is apparently to reduce the multivariate variation
within Location C, relative to the overall dissimilarities
between C, and A and B. The stress levels of the 2D
MDS plots are not small in this case, so an ANOSIM
test becomes a better arbiter. The R statistics for com-
paring Location C with combined Locations A and B
(A & B do not differ) are RC vs. A&B = 0.42 for Fig. 4a and
RC vs. A&B = 0.50 for Fig. 4b. Both are highly significant
(p < 0.001 and p < 0.0001, respectively), but the latter
indicates a greater difference between the assem-
blages.

More interesting in this case is a similarity percent-
age analysis (SIMPER, Clarke 1993), Table 5, which
breaks down the average dissimilarity between Loca-
tions A and B and Location C into its contribution from
each species. Using the original data, nematodes and
insect larvae are seen to contribute heavily (Table 5a),
because for some pairs of replicates from different
locations these taxa have very different counts. How-
ever, their abundances are not at all consistent among
replicates within a group, the wide range of values
being remarked on earlier. These counts are therefore
heavily compressed by the dispersion weighting divi-
sors of D- = 232 and 261, whereas oligochaetes are
somewhat less so, and the relatively large but slightly
less erratic abundances of the mussel Xenostrobus
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Fig. 3. Cumulative frequency plot (‘sample distribution function’) for average dis-
persion indices D- calculated over all species, in each of 4 real data sets analysed. 
D- scale (x-axis) is plotted logarithmically, and the y-axis (numbers of species with
dispersion less than the specified x value) is plotted as a percentage of total 

numbers in the study (35, 23, 156 and 67 species, respectively)

Location
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C

Unweighted

a

Dispersion weighted

b

Fig. 4. Australian mangrove benthic macrofauna. MDS ordi-
nations based on Bray-Curtis similarities from 8 untrans-
formed replicate counts in each of 3 locations, using: (a) un-
weighted data (standard analysis); (b) dispersion weighted 

matrix. Stress values: (a) 0.11; (b) 0.18
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securis are downweighted less severely (D- = 33). Thus,
the SIMPER results for the dispersion weighted case
(Table 5b) promote X. securis to slightly greater promi-
nence, but insect larvae are demoted to the point
where they scarcely feature in this comparison and
the Nematoda disappear altogether. To judge by the
mean nematode abundance in the 2 location groups
(Columns 1 and 2 of Table 5a) this would appear harsh,
but it becomes entirely understandable, and the pit-
falls of simple averaging become only too apparent,
when it is known that the actual counts in the 8 repli-
cates at Location C were 0, 0, 0, 0, 0, 3, 34, 723! Com-
pare this with counts of 0, 4, 5, 6, 16, 17, 27, 40 for the
Nereididae, also for Location C replicates, contrasted
with complete absence at Locations A and B, and it is
clear why this taxon has moved up to third ranking
contribution in Table 5b. Note also the larger set of 13
taxa, across a wide taxonomic range, which now con-
tribute to 75% of the average dissimilarity (of 96.2%)
between Locations A and B and Location C, whereas
in the unweighted analyses only 4 taxa contributed to
the 75% threshold and the average dissimilarity was

lower (at 89.8%). The erratic contribu-
tion from 2 of these taxa (Nematoda
and insect larvae) is, of course, the
main reason why the dissimilarity
between the groups increases after
dispersion weighting.

Nematodes in Yealm sea-grass beds

The third data set is an example of
a 2-way layout, with a small number
of replicates but a large number of
species. It examines the differences
between free-living nematode compo-
sitions in soft sediments, inside and
outside seagrass beds (Factor A: ‘treat-
ment’, with levels in/out). Small cores
(internal diameter 19 mm) were taken
from 4 different seagrass patches off
Cellars Beach in the Yealm estuary,
on the southwest coast of England
(Factor B: ‘blocks’, with levels 1 to 4,
crossed with Factor A), with a total of
156 nematode species identified and
counted. For each block, samples were
taken at the corners of a 2 × 2 m
square, with corners 1 and 2 in the
patch, and 3 and 4 outside the patch;
there are therefore only 2 replicates
for each treatment × block combina-
tion. For the average index of disper-
sion calculation, this 2-way crossed

structure is flattened to a 1-way layout, so the disper-
sion Di is computed separately over the 2 replicates for
each treatment × block combination. The resulting 8
indices are averaged to obtain D-, using a simple aver-
age in this case because replication is balanced.
Although the availability of only 2 replicates in each
group would seem (and is) a minimal requirement, it is
nonetheless viable. D- is estimated with 8 degrees of
freedom, 1 for each treatment × block combination
(somewhat analogously to the 8 degrees of freedom for
estimating residual error in a univariate ANOVA with
this 2-factor design). The test is, in any case, a permu-
tation procedure which is valid for any sample size, so
the worst that can happen in situations of relatively low
power is that the H0 is over-protected. That is, D may
be set to 1 in some cases where more replicates would
have demonstrated some clumping, and a certain
degree of downweighting applied. This is no more
than a potential loss of efficiency, not in any sense an
introduction of bias, since failing to downweight any
species at all leads to a perfectly viable analysis (the
standard one). 
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A & B mean C mean Dissimilarity δ -
i /SD (δi) Cumulative

abundance abundance contrib. δ -
i % of δ -

(a) Unweighted 

Oligochaeta 7.31 175.75 32.13 1.39 35.78
Insect larvae 101.75 25.25 16.74 0.82 54.42
Xenostrobus 0.00 40.75 13.17 0.93 69.09
securis

Nematoda 1.06 95.00 6.38 0.49 76.19

(b) Dispersion weighted

Oligochaeta 0.07 1.76 12.73 1.20 13.23
Xenostrobus 0.00 1.22 10.89 1.17 24.55
securis

Nereididae 0.00 1.11 8.95 1.19 33.84
Isopod sp. 1 0.00 0.76 6.10 0.87 40.18
Midges 0.50 0.05 5.29 0.54 45.68
Ostracoda 0.15 0.15 4.86 0.46 50.72
Tanaidacea 0.00 0.67 4.68 1.44 55.58
Arthritica 0.00 0.59 4.53 0.77 60.29
helmsii

Amphipod sp. 1 0.00 0.38 3.99 0.51 64.44
Laternula sp. 0.00 0.63 3.51 0.75 68.08
Nephthyidae 0.18 0.27 3.25 0.59 71.46
Insect larvae 0.39 0.10 2.90 0.56 74.47
Salinator fragilis 0.25 0.00 2.86 0.36 77.45

Table 5. Australian mangrove macrofauna, similarity percentage analyses (SIM-
PER, Clarke 1993). (a) Unweighted, untransformed data: mean counts over all
replicates at Locations A and B and at Location C (Columns 1 and 2), for the spe-
cies making the greatest contribution δ -

i (Column 3) between the 2 groups, sum-
ming to 75% (Column 5) of the average Bray-Curtis dissimilarity δ - = 89.8. Also
shown is the ratio of that contribution to its SD (Column 4), low values indicating
relative inconsistency in contribution. (b) SIMPER analysis, as in (a) but for disper-
sion weighted counts, with average dissimilarity between the 2 groups of δ - = 96.2
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The distribution of D- values obtained for the 156 spe-
cies is one of the sample distribution functions shown
in Fig. 3 (short-dashed line). Note that for these profiles
the actual D- estimates are used and not the divisors
from the dispersion weighting, some of which may be
reset to 1 as a result of the hypothesis tests. Nonethe-
less, several of the estimated D- values are exactly 1 in
this case (and in the final example), corresponding to
species represented only by a singleton in one or more
of the groups. Use of the calculated D- values should
allow comparison of these cumulative profiles across
studies with differing degrees of freedom, without
introducing significant bias, since sample means and
variances are unbiased for true means and variances
whatever the number of replicates employed. The dis-
tribution of D- in this case shows that many species do
not depart far from unclustered spatial distributions,
the median D- being only 1.5, and there is only one
value in double figures (D- = 16.4 for Richtersia
inequalis). In part, this is a reflection of the low densi-
ties of all species in what are relatively small-diameter
cores.

More importantly, the dispersion weighting does
make a real difference to the outcome of the analysis in
this case. The 2-way crossed ANOSIM (Clarke 1993)
gives R = 0.50 (p < 0.037) for a test of the hypothesis of
‘no treatment effect’ (removing block effects) when
dispersion weighting is employed, with no subsequent
transformation. This compares with R = 0.31 (p < 0.148)
for unweighted, untransformed data, both analyses
being based on Bray-Curtis coefficients as usual. Even
more dramatically, the hypothesis test for ‘no block
effects’ (removing treatment effects) gives R = 0.32 (p <
0.034) for dispersion weighted data but only R = 0.05
(p < 0.352) in the unweighted case. The latter improves
a little with transformation, giving R = 0.20 (p < 0.077)
for root-transformed counts and R = 0.19 (p < 0.085) for
4th-root transformed counts, but neither is significant
at the 5% level. It is clear from the corresponding MDS
ordinations (Fig. 5) that the dispersion weighting suc-
ceeds in displaying an additive signal of block differ-
ences (left to right) and treatment differences (bottom
to top) more successfully than the standard analysis
under any transformation. 

Sea-loch macrobenthos in a replication study

Finally, Gage & Coghill (1977) collected a set of 256
contiguous samples of soft-sediment macrobenthos
along a single transect at Site C-12 in Loch Creran,
Scotland. This is included here not as an example of
the application of dispersion weighting to improve a
multivariate analysis, but as a further cumulative dis-
tribution curve for the dispersion index, one exhibiting
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Fig. 5. Yealm estuary nematodes. MDS ordinations of 2
replicate samples from each of 8 conditions: within/outside
seagrass patches (closed/open symbols) at 4 locations (dif-
ferent symbol types). Plots are based on Bray-Curtis dissimi-
larities computed after: (a) dispersion weighting; (b–d) no
weighting and with various transformations. Stress values: 

(a) 0.17; (b–d) 0.16
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even less evidence of clumping. There is no group
structure here, so all 256 samples are regarded as
replicates of a single assemblage, and a single index D
is computed for each species. Its sample distribution
function is plotted in Fig. 3 (dotted line), and the
median dispersion is 1, with 90% of the species having
D < 1.5 and the largest D being only 5.7. The con-
trast with the mangrove fauna (continuous line), for
example, could not be more marked. 

DISCUSSION

Validity of approach

It is argued in this study that weighting each species
by its index of dispersion, calculated from replicates,
stabilises the quality of information from each species
that is input to multivariate routines. Any objection
that this is in some way ‘interfering with the data’ can-
not logically be sustained: in the final analysis, all that
has happened is that the values for each species have
been divided through by a constant. For any particular
species, there can have been no change to the relative
differences between mean responses for each of the
groups. All that has changed is the relative attention
given to each species in constructing a similarity coef-
ficient drawn from all p of them. In fact, dispersion
weighting will have no effect at all when using a
resemblance measure with an explicit species stan-
dardisation, designed to equalise the contributions
from all species. An example would be the Gower coef-
ficient (Gower 1971, Legendre & Legendre 1998) that
divides each count by the range or, in practice, the
maximum abundance for that species, so that all data
are scaled over the same interval of 0 to 1 (or 0 to 100).
However, such coefficients tend to commit the oppo-
site misdemeanour to that which this study tries to
correct. Instead of overweighting high abundance spe-
cies, whose numbers can sometimes be very erratic,
they overweight rare species, the range of whose
absolute abundances can be very small. Many of the
rare species could be more or less random in their
occurrence and will tend to add further noise, not
signal, when upweighted to have the same range
as common species. Coefficients with automatic vari-
able standardisation or normalisation (e.g. normalised
Euclidean distance) should be seen as a last resort, in
cases where there is no convincing way of balancing
the contributions from each of the variables. 

Where the latter are not species but environmental
variables, a normalised version of Euclidean or Man-
hattan distance is almost inevitable because of the
likely mixture of measurement scales. Here, however,
we start with a common count scale and an objective

means of deciding which species have counts which
are inherently more reliable, so to use a coefficient
which removes that knowledge is likely to prove inef-
ficient. Sample standardisation raises a different set of
problems: clearly it is not valid to turn each sample into
relative compositional data (with all samples adding to
100% across species) prior to dispersion weighting,
since the requirement for identically distributed counts
over replicates has been compromised. The require-
ment for uniform-sized replicates was made clear in
the ‘Introduction’. After weighting, sample standardis-
ation may be justifiable, at least in so far as distance
measures that automatically build in such standardisa-
tion—Hellinger distance, chi-squared distance etc.
(Legendre & Legendre 1998)—are appropriate to the
applied context. Indeed, although untested at the
moment, it may be that dispersion weighting brings
the data closer into line with the spatial Poisson model
(multinomial frequencies) that motivates the use of
chi-squared distance, since we are more nearly count-
ing ‘clumps’ now rather than individuals. However, the
double standardisation (by both samples and vari-
ables) that is inherent in chi-squared distance is likely
to remain problematic, because it will continue to over-
emphasise rare species (Clarke et al. 2006). 

Returning to the issue of the degree of ‘interference’
with the data inherent in dispersion weighting, it can-
not be argued that the procedure has any element of
subtle selection bias, in the sense of downweighting
species that did not prove to be helpful discriminants
between groups, and upweighting those whose mean
responses did change relatively markedly. This criti-
cism could certainly be levelled at the constrained
ordination methods (Canonical Correspondence Ana-
lysis, Ter Braak 1986; Canonical Analysis of Principal
Co-ordinates, Anderson & Willis 2003), which have to
be rather careful to establish that genuine group differ-
ences exist before they seek ordination axes that will
display those differences to best advantage. They are,
in effect, searching to upweight species which show
large group differences, and therefore have to be care-
ful that they do not magnify random ‘noise’ and mis-
represent it as ‘signal’. This is in sharp contrast with
dispersion weighting, which ignores mean differences
between groups by concentrating only on the disper-
sion properties of the replicates within each group, in
its construction of the divisor D-. It could perfectly well
end up giving greatest weight to a ubiquitous species
that had high and consistent counts in all replicates
within groups, and showed absolutely no difference,
either, in mean count between groups. The fact that
(on the limited evidence to date) dispersion weighting
does seem to improve significance in ANOSIM tests of
group differences is a reflection not of any selection
bias, but of the modest increases in power that can
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result from down-playing counts with high baseline
variability. This is one of the 2 classic ways in univari-
ate statistics of improving power: either increase the
number of replicates (which will certainly improve the
number of permutations, and hence the power of
ANOSIM tests), or reduce the ‘error’ variance of a
replicate. The analogy of the latter is what the disper-
sion weighting procedure attempts to do.

Generality of application

Although dispersion-weighting has been formally
justified in the context of a generalised Poisson model
for species counts, with the organisms regarded as
points in space (or time), and although this semi-
parametric model already has good flexibility to cover
a range of practical situations, it is clear that this is not
the only context in which weighting by the index of
dispersion makes sense. Other structural models could
lead to the same conclusion. For example, the counts
could come from randomly distributed or fixed grid
points on a photographic or remotely-sensed image of
a hard-bottom community (or grid points physically
placed on the substrate itself). For discrete coral stands
of different species (an example of a multivariate
‘marked point process’, Diggle 1983), the counts for a
single image would consist of the number of grid
points falling on each species. Certain models, which
involve a stationary random process for the coral loca-
tions, and distances between sampling points that are
large in relation to the size of an individual coral, could
lead to an approximate Poisson distribution of counts
for each species. ‘Over-dispersed’ counts would result
from individual corals being larger than the grain of
the sampling points, so that effectively the same coral
is ‘captured’ several times by the grid points in one
image. 

This could, of course, lead to high variability in
counts from replicate to replicate, with a single large
coral contributing nearly all the counts in one image
but contributing nothing at all in the next one. Such a
species should logically contribute less to defining the
constitution of its group of samples than another coral
that has the same total area cover but whose indi-
viduals are smaller than the sampling grain size, with
locations more randomly dispersed, giving more con-
sistent counts in replicates (lower variance for a given
mean). Paralleling the generalised Poisson formulation
defined earlier, in which the mean number of centres
varies across the groups but the ‘clumping’ structure
remains the same, one could envisage a model struc-
ture here in which the average numbers of a particular
coral species change from group to group but the aver-
age size of an individual coral does not. The degree of

over-dispersion of counts would then remain the same
across groups: the clumping parameter now reflects
the number of sampling grid points that intercept the
same individual coral, and which are therefore not
providing ‘independent arrivals’; the analogy with our
earlier formulation of a clustered point process is clear.
It is outside the scope of this study to formalise this
model fully and discuss its implications (and lim-
itations), but the practical consequence is the likely
validity and effectiveness of downweighting such grid
counts by the dispersion index D- for each species, cal-
culated from replicate images within a group and then
averaged across groups as usual.

Combination of dispersion indices across groups

Needing further discussion is the specification in the
generalised Poisson model that, for each species, D-
should be calculated as the unweighted average
(given balanced replication) of the separate dispersion
indices calculated from each group (Eq. 2). There are
actually 2 levels of assumption here.

Firstly it is assumed that, if the model is correct, an
unweighted average is an efficient way of combining
the estimates {Di} from each group. This is largely sus-
tainable, although it could possibly be improved upon.
It follows from the assumption that only the number of
‘centres’ changes across the groups, and not the aver-
age cluster size for a given centre, that the dispersion
estimates Di are estimating the same parameter (they
are unbiased). It is also true that they have the same
variance in the H0 case, i.e. when the cluster size is 1,
irrespective of the density of centres in a replicate. This
is what formally justifies the use of the unweighted
average in the test statistic, Eq. (3). Moreover, it can be
shown (with more difficulty) that when the true cluster
size is >1, and the density of centres high enough, then
the indices Di from each group have equal variance.
This again justifies the use of an unweighted average.
However, it must be true that for a group in which the
density of centres is not large but vanishingly small, so
that all the replicate counts for that species are zero,
there can be no information about the real cluster size.
An optimal average index D- would probably therefore
downweight dispersion estimates from the sparser
groups, even though it is not clear at present exactly
how that should best be carried out. Note that the cal-
culations of this study employ the weighting given in
Eq. (2), i.e. equal weights in the balanced case, except
where the replicates of a group are entirely blank for
that species, in which case Di is undefined and given
zero weighting. 

More fundamentally, the model specifies that the
true dispersion indices (and cluster size distributions)
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are the same for each group i, so that an averaged D is
applicable. This is an explicit assumption and it may
not be a very good one in some cases. The effect of an
environmental impact on a species might not just be to
decrease (or increase) its density but also to change its
propensity to form clusters of individuals. For example,
instead of a tendency to catch 10 ind. every time 1 is
caught, organisms may now arrive singly (or vice-
versa). The formal basis for downweighting that spe-
cies breaks down. This does not mean, however, that
when the Di estimates from each group are variable it
becomes undesirable to downweight a species by a
calculated average D-. Suppose that the dispersion esti-
mates from 5 groups (with equal replication) are Di =
10, 1, 20, 5, 14, giving an average of D- = 10. Down-
weighting by a factor of 10 seems eminently sensible. It
recognises that information about differences between
groups from that species is not particularly reliable. To
judge by Groups 2 and 4, the species would perhaps be
given less emphasis than it merits, whereas Groups 3
and 5 suggest that it be paid even less attention, but on
balance it would be right to downweight it in relation
to a species which is not overdispersed at all, and an
average divisor of 10 will serve the purpose. The alter-
natives, after all, are either to not selectively down-
weight anything, however erratic (standard Bray-
Curtis), or to completely homogenise the range of
variation over groups for all species (normalisation,
Gower coefficient etc.). A selective downweighting, for
which there is some objective basis and which cannot
introduce bias, has to perform at least as well as either
of these end-points. What absolutely must not be done,
of course, is to downweight the species counts
in Groups 1, 3 and 5, and leave them unchanged in
Groups 2 and 4. This would simply create differences
in mean value between groups that were not there
before, and totally compromise the multivariate analy-
sis. It is axiomatic that any differential downweighting
of one species in relation to another must be carried
out in exactly the same way across all samples, other-
wise any susbequent analysis of group differences
becomes meaningless. 

Upweighting of under-dispersed species

Although the emphasis has been on downweighting
certain (clumped) species whilst leaving others (ran-
domly distributed) unaltered, there is no logical reason
why a third group of species should not be up-
weighted. These would be taxa that are distributed
with a more uniform spacing than would be expected
from random scattering, such as might result from ter-
ritorial behaviour, for example. The counts in fixed-
size quadrats are again not Poisson and are charac-

terised by having an index of dispersion D < 1 (vari-
ance < mean). They cannot be modelled by a gener-
alised Poisson distribution (this is not completely obvi-
ous from Eq. A4 of the Appendix, but it is not difficult
to prove that such models always have D ≥ 1). It is
clear, nonetheless, that one could test for D = 1 against
the alternative D < 1 by the same sort of procedure as
above. The chi-squared form of statistic (Eq. 3) would
now be subject to a 2-sided rather than 1-sided permu-
tation test, and if the H0 of D = 1 is rejected, the species
counts could be divided by the observed average
across the groups, D-, as usual; D- < 1 in the ‘under-
dispersed’ case, so this would be an upweighting of
unifomly-distributed species at the expense of those
that are randomly distributed. In practice, this possibil-
ity will arise rarely and the adjustment will make little
difference, if it was ever justifiable. Certainly for the
range of marine communities examined earlier, it is
uncommon for the calculated D- to be much less than 1
and, on a 2-tailed test, it is never significantly so. For
the Yealm nematode study, 10 of the 156 species
recorded a D- below 1, with 4 of those as low as 0.33;
however, bearing in mind that there are only 2 repli-
cates in each Di calculation in that case, such figures
are readily attainable by chance. (They correspond in
this instance to counts of 1 and 2 for the 2 replicates
from one of the treatment × block combinations, with
no occurrences of that species elsewhere.) It is
clear that, in practice, there is complete asymmetry
with regard to the occurrence of over- and under-
dispersion. Large, sometimes very large, dispersion
indices are common, as shown by the cumulative dis-
tribution curves of Fig. 3, demonstrating virtually no
symmetry around the value D = 1 even though plotted
on a severe 10-cycle log scale for D. Divisors as large as
100, 164, 232 and 261 are found for the mangrove
study, leading to sizeable downweighting of those spe-
cies. Reciprocally small dispersion values (1/100, 1/164
etc.) are simply never found, with D as low as 0.5 being
uncommon in practice. Any upweighting arising from
under-dispersion would thus be quite negligible and
this complication can safely be ignored. 

Other reasons for downweighting species

There can be more than one reason why it might be
desirable to carry out differential downweighting of
the contributions of some species in relation to others.
For example, in a context of volunteer surveys of coral
reefs in Belize, Mumby at al. (1996) introduced the
weighted Bray-Curtis measure:
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which is exactly the form used above (with wl ∝ 1/D-
l)

except that in the Mumby study the weights {wl} were
determined on the basis of how reliably each species
was identified by the volunteer divers. Species often
misidentified were downweighted, potentially leading
to a more robust analysis. One could also envisage sit-
uations in which species were given a priori weights
according to vulnerability, or to economic or charis-
matic status, or perhaps to body size or some other
estimate of functional importance in the ecosystem, so
that the multivariate analysis was directed more
towards identifying change that had the greatest con-
sequences for these properties. In this study we have
chosen to concentrate on an objective statistical reason
for differential weighting, namely the intrinsic reli-
ability of the information provided by each species, but
any of these other types of downweighting could be
legitimate in particular contexts. Indeed they could
even be compounded, provided the temptation of
subjective selection bias is avoided (‘these 2 species
were heavily downweighted because that produced
the desired outcome’!)

Another obvious role for differential weighting is in
combining fauna whose density has to be assessed in
different ways. It is typical in analysis of epibiota of
hard substrates in marine contexts to collect a mixture
of individual counts of motile organisms with area
cover of sessile or colonial biota. This is always trouble-
some, because values for the different species have to
be put on some sort of common scale of measurement
before a coefficient such as Bray-Curtis similarity is
meaningful. Weighting motile species by the area
cover of a typical organism is one possibility, or convert-
ing both area cover and single counts to an approxi-
mate biomass (or even some approximation to produc-
tion) is another weighting option. Such reasoning even
leads one to query whether the common scale of abun-
dances implicit in standard assemblage matrices really
are ‘common’ across species. Species with high density
are very often small-bodied and would therefore get a
very different weight in a biomass similarity than an
abundance-based coefficient. Fortunately, experience
suggests that there is a good deal of robustness in the
outcomes of multivariate ordination or ANOSIM tests
when manipulating the weighting given to each spe-
cies. Warwick (1993) commented on this when con-
trasting specific biomass-based and abundance-based
analyses: ordinations were very similar yet the simi-
larity percentages routine (Clarke 1993), which breaks
down dissimilarities between groups into their contri-
butions from each species, showed that entirely differ-
ent species were responsible for the ordination pattern
in the two cases. The explanation is that, typically, all
parts of an assemblage are responding to a common
set of environmental drivers in a common way, so that

the same among-sample pattern is obtained for species
with higher density as for species with higher biomass.
Clarke & Warwick (1998) show the high level of struc-
tural redundancy in typical soft-sediment macroben-
thic matrices by demonstrating that sample ordinations
virtually identical to that from the full community can
be generated from 4 or 5 mutually exclusive subsets of
the species. They go on to argue that this repetition
is part of the reason for the success of multivariate
methods in capturing subtle underlying changes in
environmental conditions or anthropogenic impacts: it
acts as a buffer to the vagaries of sampling fluctuations
that tend to dominate any attempt to monitor single
populations rather than whole assemblages. However,
the structural redundancy inherent in some species ×
samples arrays does have an obvious corollary: adjust-
ing the weights given to each taxon, as this study does,
is not often likely to have dramatic practical conse-
quences for the final analysis. 

In conclusion

In some ways, the advantages of the dispersion-
weighting approach introduced in this paper are more
conceptually satisfying than practically crucial. Exploit-
ing a plausible structure for typical species abundance
matrices to downweight erratic species, followed if
necessary by mild transformation to balance the
commoner and rarer components of the assemblages,
seems conceptually preferable to using the ‘blunt
instrument’ of a severe transformation to attempt to
solve both problems simultaneously. The fact is,
though, that the latter course is often perfectly effec-
tive, pragmatically, and has the advantage of being
applicable when there are no replicates or the data are
not counts (or analogous to counts). The observed
robustness of multivariate analyses, discussed above,
to major weight changes in the way the species contri-
butions are compounded, means that we should not
expect a dispersion-weighting approach to radically
alter ordination and test results. Indeed, the improve-
ments shown in the real examples of this paper are
sometimes small and subtle, but they are none the less
valuable for that. Given the scale of spatio-temporal
variability of biotic measurements in some environ-
ments, and the difficulties of constructing powerful
sampling regimes, any legitimate and objective means
to reduce ‘noise’, without in any way compromising
the ‘signal’, should be welcome. 
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Dispersion for generalised Poisson model. For the generalised
Poisson distribution, the sample that is replicate j (j = 1, …, ni)
of group i (i = 1, …, g) contains Cij ‘centres’, with Zijk organisms
at centre Cij, giving count:

(A1)

where Cij ~ Po(γi), E(Zijk) = μ, var(Zijk) = σ2, and the {Cij} and
{Zijk} are all independent. Using the conditional expectation
and variance formulae:

(A2)

(A3)

(A4)

Large sample test for D = 1. Within group i, the calculated dis-
persion index is:

(A5)

Under the H0 of only 1 organism at each centre, μ = 1, σ2 = 0, D
= 1 and Xij ~ Po(γi). Conditional on their total ∑jXij, the {Xij; j =
1, …, ni} are jointly multinomial, and (ni – 1)Di is seen to have
the form of a chi-squared statistic with ‘observed’ values O =
Xij and ‘expected’ values . Thus, asymptotically:

(A6)

The {Di} are independent, and estimate the same parameter D
for all i. They are combined naturally in Eqs. (2) & (3) of the
main text. This is the Wald statistic based on the multinomial
likelihoods, asymptotically equivalent to the generalised likeli-
hood ratio statistic (e.g. see Silvey 1975). Under the H0,

(A7)

because a sum of independent χ2 distributions has a χ2 distrib-
ution, the degrees of freedom being simply cumulated. This χ2

distribution is only a ‘large-sample’ approximation, however,
and the main text shows how the same statistic can be tested
by permutation in small samples.

Mean and variance of dispersion weighted samples. D is esti-
mated as an average D- over several groups, from counts in
several replicate samples within each group, so its variability
can be assumed to be small in relation to that of a single count
Xij, for any particular i, j. Thus,

(A8)

is effectively the division of Xij by a constant, and from
Eqs. (A2) to (A4):

(A9)

Of course, if the observed dispersion index D-DW is calculated
for the dispersion weighted Xij

DW values defined by Eq. (A8),
then D-DW ≡ 1, by definition.
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Appendix 1. Theoretical properties of dispersion weighting
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