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Abstract
Interest in Artificial Intelligence (AI) and its applications has seen unprecedented

growth in the last few years. This success can be partly attributed to the advancements
made in the sub-fields of AI such as machine learning, computer vision, and natural lan-
guage processing. Much of the growth in these fields has been made possible with deep
learning, a sub-area of machine learning that uses artificial neural networks. This has
created significant interest in the integration of vision and language. In this survey, we
focus on ten prominent tasks that integrate language and vision by discussing their prob-
lem formulation, methods, existing datasets, evaluation measures, and compare the results
obtained with corresponding state-of-the-art methods. Our efforts go beyond earlier sur-
veys which are either task-specific or concentrate only on one type of visual content, i.e.,
image or video. Furthermore, we also provide some potential future directions in this field
of research with an anticipation that this survey stimulates innovative thoughts and ideas
to address the existing challenges and build new applications.

1. Introduction

Recent wave of unprecedented progress in deep learning methods has advanced the fields
of Computer Vision (CV) and Natural Language Processing (NLP) to an extent that they
are now making significant progress across several challenging tasks. Independent of NLP,
computer vision has achieved prominent improvements in tasks such as visual content clas-
sification (He et al., 2016), object detection (Redmon & Farhadi, 2017), semantic seg-
mentation (He et al., 2017), etc., using large annotated datasets or by employing self-
supervision (Jing & Tian, 2019) on large-scale unlabeled data. Similarly, independent from
computer vision, NLP has seen a surge of interest in solving multiple tasks at once with
unsupervised pretraining of language models (Devlin et al., 2019; Radford et al., 2019; Con-
neau & Lample, 2019; Brown et al., 2020b) using large unlabeled corpora. However, there
is a growing interest in solving challenges that combine linguistic and visual information
from these traditionally independent fields. The methods which address the challenge of
integration should provide a complete understanding of visual and/or textual content, and
are expected to (1) generate comprehensible but concise and grammatically well-formed de-
scriptions of the visual content, or vice versa by generating the visual content for a given
textual description in a natural language of choice, (2) identify objects in the visual content
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and infer their relationships to reason about, or answer arbitrary questions about them, (3)
navigate through an environment by leveraging input from both vision and natural language
instructions, (4) translate textual content from one language to another while leveraging the
visual content for sense disambiguation, (5) generate stories about the visual content, and so
on. Designing methods which can process and relate information from multiple modalities
(i.e., linguistic and visual information) is usually considered to be a sub-part of multimodal
learning models (Mogadala, 2015).

Efficiently solving the above mentioned and other related challenges can result in many
potential real-world applications. For example, visually impaired individuals can be as-
sisted by visual scene understanding, where they can get information about a scene from
generated descriptions and by being able to ask questions about it. Other applications
include automatic surveillance (Baumann et al., 2008), autonomous driving (Kim et al.,
2018), human-computer interaction (Rickert et al., 2007), city navigation (de Vries et al.,
2018), and so on. Also, solving such challenges can serve as an excellent test bed for com-
puter vision and NLP systems, one that is much more intelligent and comprehensive than
independent computer vision and NLP evaluations.

Given such a broad scope for fundamental and applied research, there has been several
surveys in recent years aiming to provide a comprehensive overview of the integration of
vision and language tasks. These surveys, however, have restricted themselves on covering
specific vision and language integration tasks such as image description (Bernardi et al.,
2016; Bai & An, 2018; Hossain et al., 2019) or video description generation (Aafaq et al.,
2020), visual question answering (Kafle & Kanan, 2017; Wu et al., 2017), action recog-
nition (Gella & Keller, 2017) and visual semantics (Liu et al., 2019). The surveys which
went beyond these specific tasks have summarized dataset statistics (Ferraro et al., 2015),
provided a comprehensive overview of only NLP tasks such as natural language generation
(NLG) (Gatt & Krahmer, 2018; Garbacea & Mei, 2020) and commonsense reasoning (Storks
et al., 2019). However, there was also an attempt to cover multiple modalities (including
sound) (Baltrušaitis et al., 2019), but it was structured in a bottom-up manner giving more
importance to underlying fusion technologies than the task itself. Also, there was some inter-
est in understanding the limitations of the integration of vision and language research (Kafle
et al., 2019). However, it is limited to the task of language-grounded image understanding.
Furthermore, there were ideas to develop theories on the complementarity of language and
visual data in the human-machine communication from a theoretical point of view (Moens
et al., 2019).

With our efforts in this survey, we go beyond these and present a comprehensive overview
of ten different tasks that are prominent in the current integration of vision and language
research. We first begin with a background on the traditional tasks in computer vision and
NLP separately, and then show how they facilitate in designing the prominent ten tasks for
the integration of vision and language modalities in Section 2. Following that, we provide
an in-depth exploration of each of the ten tasks and present details about the datasets,
methods, results, and open challenges in separate sections beginning from Section 3 and
ending at Section 9. In Section 10, we provide details about the joint pretraining of vision
and language, which is gaining momentum in recent years, that aims to solve multiple tasks
at once using learned representations. It is then followed in Section 11 by potential future
research directions. Finally, in Section 12, we conclude our survey and offer some insights.
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2. Background

In this section, we first briefly introduce some of the standard tasks that are studied in
computer vision and NLP separately. We then present how the tasks are modified such that
they facilitate in designing ten prominent tasks for the integration of vision and language.

2.1 Computer Vision (CV) Tasks

An array of different tasks are studied in computer vision. Keeping in mind the underlying
goal of computer vision is to describe and explain visual information, we divide these tasks
based on where the visual data arises. In this survey, we mainly focus on images and videos
as the visual information, although RGB-D and point cloud data are becoming prevalent.

2.1.1 Image as Visual Information

We describe two different aspects of the use of images in computer vision: (1) the tasks
where images are used as input, and (2) the representation of images. In the following,
we discuss various computer vision tasks that use images as input and present the recent
progress and improvements made for representing image data.

Tasks. The following tasks use images as input: (1) Image Classification (2) Object Local-
ization (3) Object Detection (4) Object Segmentation (5) Object Identification (6) Instance
Segmentation and (7) Panoptic Segmentation.

The fundamental difference between aforementioned tasks is that majority of them focus
on carving out the exact position of visual object in an image, while rest of them provide a
predefined class label for an image. There are also advanced tasks that use images as visual
information and assist in the integration of computer vision and NLP. These tasks include
(1) Image Style Transfer (2) Image Colorization and (3) Image Synthesis.

Representation. The advent of deep learning (LeCun et al., 2015; Bengio et al., 2021)
has tremendously changed the field of computer vision. Convolutional Neural Networks
(CNNs) (LeCun et al., 1995) have become the de facto standard for generating representa-
tions of images using end-to-end trainable models.

There are several variations of CNNs that learn image features with supervised or self-
supervised techniques (Jing & Tian, 2019). Most of these techniques are designed to learn
transferable general image features by leveraging tasks presented earlier.

Commonly, transferable global image representations are learned with deep CNN archi-
tectures such as AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015), Inception-v3 (Szegedy et al., 2016), Residual Networks
(ResNets) (He et al., 2016), DenseNets (Huang et al., 2017), and Efficient Net (Tan & Le,
2019) using large datasets, viz. ImageNet1 (Deng et al., 2009), MSCOCO2 (Lin et al., 2014),
and Visual Genome3 (Krishna et al., 2017b). However, for some vision and language inte-
gration tasks, it is preferred to learn global image features during task-specific training as
opposed to independently learning generic, pretrained representations.

1https://www.image-net.org
2http://cocodataset.org/#home
3https://visualgenome.org

1185



Mogadala, Kalimuthu, & Klakow

For learning local features of objects that are typically represented with bounding boxes
in images, the preferred choice is to utilize some region specific CNN architectures such
as Region-based CNNs (R-CNN) (Ren et al., 2015b). More recently, there is an interest
in using self-attention based approaches, namely Transformers (Vaswani et al., 2017) for
achieving end-to-end object detection (Carion et al., 2020).

2.1.2 Video as Visual Information

Similar to images, when a video is used as visual data, we need to consider two crucial
aspects: (1) knowing the tasks where videos are used as inputs, and (2) the representation
of a video. In the following, we discuss different tasks in computer vision that use video as
input and further present the recent progress made in video representations.

Tasks. Recently, the tasks on videos are also gaining importance, such as (1) Object Track-
ing (2) Action Classification (3) Emotion Detection (4) Scene Detection and (5) Automated
Editing. The core difference between earlier tasks is that majority of them focus on tracking
a visual object present in a scene of a video, while rest of them identify the task happening
in a video such a action etc.

Representation. To account for the temporal nature of videos, RGB images are stacked
as frames to form a 4D representation (i.e., video). Usually, visual data observed in videos is
extracted in the form of screenshots that are amenable to the same techniques for image local
and global representation. However, in addition, spatio-temporal features are also developed
with general video analysis such as C3D (Tran et al., 2014), or from action recognition
datasets i.e., Kinetics action recognition (Kay et al., 2017) to build RGB-D or Inflated 3D
ConvNet (I3D) features (Carreira & Zisserman, 2017) using different CNN architectures.

2.2 NLP Tasks

Like in Section 2.1, the fundamental goals of most NLP tasks are to comprehend or generate
language. In this section, we describe a few of the popular tasks that drive NLP research.
We also discuss current approaches used to represent language.

Tasks. The aim of NLP tasks is two-fold: i) understanding language, ii) generating lan-
guage. Some of the classical NLP tasks, that are used to comprehend language, are shallow
parsing, syntax parsing, semantic role labeling, named entity recognition, entity linking,
co-reference resolution, etc. Tasks to generate language in a conditional or unconditional
manner are machine translation, text summarization, etc.

Representation. In deep learning based approaches, language is usually represented ei-
ther as a bag-of-words or as distributed representations. For words in a sentence, ini-
tializations are commonly done with pretrained word embeddings (Mikolov et al., 2013;
Pennington et al., 2014). Additionally, to represent variable-length text inputs, sequence
learning techniques such as recurrent neural network variations like unidirectional Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), or bidirectional LSTM
(BiLSTM) and unidirectional Gated Recurrent Units (GRUs) (Chung et al., 2014), or bidi-
rectional GRUs (BiGRUs) are applied. Recently, to provide parallelization in sequential
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training, self-attention based approaches, viz. Transformers (Vaswani et al., 2017), have
been employed to build architectures such as BERT (Devlin et al., 2019) and its variations.

2.3 CV and NLP Integration Tasks

Over the past few years, significant progress has been made in the research concerning the
integration of language and vision. Several tasks exist which combine language, observed
at different levels (i.e., words, phrases, sentences, paragraphs, and documents), with visual
information, typically represented as images or videos. Initially, most works concentrated
on combining low-level linguistic units, such as words with images or videos for building
visual-semantic embeddings (Barnard et al., 2003; Frome et al., 2013; Kiros et al., 2014b;
Liu et al., 2015; Cao et al., 2016; Tsai et al., 2017; Guo et al., 2018; Mogadala et al., 2018b;
Wang et al., 2019; Kim et al., 2020), which are beneficial for downstream applications, as
well as understanding adversarial attacks (Wu et al., 2019) to improve model robustness.

However, it will be appealing to look into those tasks that go beyond words and consider
variable-length texts larger than words as language input. Most of these tasks can be seen
as an extension to either CV, NLP, or both. Figure 1 provides an illustration of different
tasks and their groupings.

Language
(Text)

  Vision
(Image or Video)

Description Generation Question Answering Dialog

ReasoningVisual Generation

Storytelling

Entailment

Navigation

Machine TranslationReferring Expression 

Extension of NLP tasks

Extension of CV tasks

Extension of both NLP and CV tasks

Figure 1: Ten different Language and Vision integration tasks.

To get a grasp on how these tasks are perceived as a natural extension of tasks in
computer vision, NLP, or both, we briefly describe their relation with similar tasks addressed
in their research.
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Extension of NLP Tasks

• Visual Description Generation is closely related to conditional language model-
ing (De Mulder et al., 2015) or the Natural Language Generation (NLG) (Reiter &
Dale, 2000) tasks in NLP. Given non-linguistic information (e.g., image or video), the
goal is to generate a human-readable text snippet that describes the input.

• The task of Visual Storytelling solves a similar problem to visual description gen-
eration. However, instead of dealing with a single visual input, a sequence of visual
inputs is used to generate a narrative summary based on the text aligned with them.
It can be seen that the task is closely aligned to text summarization (Nallapati et al.,
2016; Liu et al., 2018), mostly generating abstractive summaries.

• Visual Question Answering draws its inspiration from text-based question answer-
ing (Harabagiu et al., 2000; Strzalkowski & Harabagiu, 2006), which is one of the
long-standing topics in NLP research. Here, answering questions about a visual input
is perceived as its natural extension.

• The task of Visual Dialog aims at creating a meaningful dialog in a natural and
conversational language about a visual content. It is perceived as the visual analogue
of the text-based dialog and conversation system (Weizenbaum, 1966; Dodge et al.,
2016; Li et al., 2016) that has been explored in NLP over many years.

• Visual Referring Expression is an extension of referring expression (Krahmer &
Van Deemter, 2012) in natural language generation systems. Also, the sub-problem
in visual referring expression (i.e., comprehension) is perceived as an analogy of prag-
matics in linguistics (Thomas, 2014) due to its usage of context.

• Visual Entailment is an inference task for predicting whether the image semantically
entails the text. The task has been proposed as a natural extension to natural language
inference (Condoravdi et al., 2003; Bowman et al., 2015), where the premise is text,
instead of a visual content.

• The goal inMultimodal Machine Translation is to achieve translation from source
language(s) to target language(s) by leveraging the visual information as auxiliary
modality along with the natural language text in source language(s). It is influenced by
the well-known NLP task of machine translation that aims to automatically translate
textual contents between any two natural languages (Brown et al., 1990; Bahdanau
et al., 2015).

Extension of CV Tasks

• Visual Generation deals with the generation of visual content by conditioning on
input text from a chosen natural language. It can be perceived as a multimodal
extension of the popular computer vision tasks of image-to-image translation (Isola
et al., 2017) and neural style transfer (Gatys et al., 2016).

• The task of Visual Reasoning is a direct extension of visual perception where stan-
dard computer vision tasks such as image classification (Krizhevsky et al., 2012),
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object detection (Ren et al., 2015c), or semantic segmentation (Long et al., 2015) are
performed. Instead of providing only class labels (in case of classification), bounding
boxes (in case of detection), or segments (in case of segmentation), visual reasoning
is expected to output a relationship between detected objects by generating an entire
visual scene graph. Furthermore, the scene graph is leveraged to reason and answer
questions about visual content. It can also be used to reason about whether a natural
language statement is true or not regarding a visual input (Suhr et al., 2017).

Extension of both NLP and CV Tasks

• Vision-and-Language Navigation is one task that can be seen as a transition from
standard vision-based navigation using only visual input (Sinopoli et al., 2001; Blösch
et al., 2010) or natural language instruction based navigation (MacMahon et al., 2006;
Vogel & Jurafsky, 2010). The expectation here is that the natural language navigation
instruction should be interpreted based on visual input. Hence, it combines both vision
and language.

Representation. In earlier sections, we discussed different architectures used to represent
both vision and language separately. Combining representations of language and vision is
essential to address vision and language integration tasks in an effective manner. There are
various models that have been proposed for each task to build representations that integrate
vision and language. We discuss these in greater detail in forthcoming sections where each
of the tasks are introduced.

2.4 Summary

In background section, we have reviewed a variety of tasks that integrate vision and NLP.
Additionally, we explored diverse methods that are used for the representation of vision and
language modalities. Furthermore, we understood the training procedure used by different
methods that use supervised learning. For example, models built using those methods lever-
age first-order optimization algorithms such as Stochastic Gradient Descent (SGD) (Bottou,
2010), ADAM (Kingma & Ba, 2015) or RMSProp (Tieleman & Hinton, 2012). While, some
methods also utilize Reinforcement Learning (RL) (Sutton et al., 1998) in contrast with only
supervised learning.

We will see that many of the models developed for these tasks use similar architectures
for the representation of vision and language modalities and depend on standard gradient-
based optimization algorithms for training. This shows that, although the aims of each task
are different, the underlying principles to extract meaning from unstructured data remain
the same.

3. Visual Description Generation and Storytelling

In this section, we explore two different tasks, Visual Description Generation and Visual
Storytelling. Although the goals of these tasks do not perfectly line up, they share the
common intention of generating a textual description when conditioned on visual input. In
the following, we present more details about each of these tasks separately.
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3.1 Visual Description Generation

The aim in description generation is to generate either a global description or dense captions
for a given visual input. Depending on the type of visual input, i.e., either an image or a
video, there are various ways to explore the problem.

3.1.1 Image Description Generation - Introduction

There are many subareas of image description generation where the underlying goal of
generating global or dense descriptions remains the same, but the way those descriptions
appear is different. In the following section, we explore some of the popular categories
observed in image description generation.

Standard Image Description Generation. The goal in standard image description
generation is to generate a sentence-level description of the scene in a given image. Here,
methods leverage only vocabulary of the dataset to generate the best description that depicts
the scene in the image. Figure 2 provides a conceptual representation of the task.

Figure 2: Given an image, the Standard Image Caption Generation Model generates a single
global textual description of the scene.

Initially, several methods were developed based on templates, n-grams, and dependency
parsing (Farhadi et al., 2010; Yang et al., 2011; Li et al., 2011; Mitchell et al., 2012; Kulkarni
et al., 2013; Elliott & Keller, 2013; Fang et al., 2015). Recently, however, image description
generation models based on the encoder-decoder a.k.a. Sequence-to-Sequence (Seq2Seq)
frameworks (Cho et al., 2014; Vinyals et al., 2015) have become popular. Moreover, the
above said frameworks have been extended with attention mechanisms (Bahdanau et al.,
2015) to support the selection of local image features that are useful for the generation of
words at each time step (Xu et al., 2015a). Table 1 summarizes different setups for generating
image descriptions using neural network based non-attention, attention, and reinforcement
learning techniques. Other variations include cross-lingual image captioning (Miyazaki &
Shimizu, 2016) and multi-language image description generation (Elliott et al., 2015).

In the following, we explore some of the related ideas that expand the scope of image
description generation.

Dense Image Description Generation. Dense image description generation task aims
to create descriptions at the local object-level in a given image. It is referred to as dense
captions since the commonly used image datasets have images containing multiple objects.
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Approach Attention RL
MLBL (Kiros et al., 2014a) 7 7
m-RNN (Mao et al., 2015) 7 7
Minds Eye (Chen & Lawrence Zitnick, 2015) 7 7
BRNN (Karpathy & Fei-Fei, 2015) 7 7
NIC (Vinyals et al., 2015) 7 7
LRCN (Donahue et al., 2015) 7 7
Guided LSTM (Jia et al., 2015) 7 7
Deep Bidirectional LSTM (Wang et al., 2016) 7 7
Regional Visual Attributes (Wu et al., 2018) 7 7
Language CNN (Gu et al., 2017) 7 7
ConceptNet-NIC (Zhou et al., 2019) 7 7

Visual Attention (Xu et al., 2015a) 3 7
Region-based Attention (Jin et al., 2015) 3 7
Attribute Attention (You et al., 2016) 3 7
Review Attention (Yang et al., 2016) 3 7
Adaptive Attention (Lu et al., 2017b) 3 7
Areas of Attention (Pedersoli et al., 2017) 3 7
Contrastive Adaptive Attention (Dai & Lin, 2017) 3 7
Neural Baby Talk w/ Attention (Lu et al., 2018) 3 7
Convolutional Attention (Aneja et al., 2018) 3 7
Reflective Decoding Network (Ke et al., 2019a) 3 7

Self-Critical Attention (Rennie et al., 2017) 3 3
Policy Gradient (Liu et al., 2017) 3 3
Up-Down (Anderson et al., 2018a) 3 3
Multi-task Captioning (Zhao et al., 2018) 3 3
Stack Captioning (Gu et al., 2018) 3 3
Attention on Attention (Huang et al., 2019) 3 3
Meshed-Memory Transformer (Cornia et al., 2020) 3 3

Table 1: Summary of methods for generating a global description of an image. Approaches
are segregated based on their usage of no-attention, attention, and RL techniques.

Several approaches (Plummer et al., 2017b; Johnson et al., 2016; Rohrbach et al., 2016a;
Hu et al., 2017a) have been proposed to generate dense captions in images. Usually, they
use representations of phrases and their relationships to generate descriptions (Kim et al.,
2019).

Image Paragraph Generation. The aim in image paragraph generation is to create
paragraphs instead of generating a single simple description, or dense descriptions for an
image. Generated paragraphs are expected to be coherent and contain fine-grained natural
language descriptions (Krause et al., 2017; Liang et al., 2017; Chatterjee & Schwing, 2018).

Spoken Language Image Description Generation. Spoken language image descrip-
tion generation expands the description generation task to work with spoken language,
instead of limiting to only the written forms of language. Investigations such as visually
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grounded speech signals (Chrupała et al., 2017) address the standard image description
generation task from the perspective of a spoken language.

Stylistic Image Description Generation. Stylistic image description generation adds
styles to the standard image description generation, where the generated descriptions adhere
to a specific style. For example, Mathews et al. (2016) generated captions which capture
the sentiments of an image, while Gan et al. (2017) attempted at generating humorous
and romantic captions. In addition, this task has been extended by leveraging unpaired
textual corpora (Mathews et al., 2018) to generate story-like captions. Furthermore, to
make the generated captions more human-like, personality traits have been used to generate
captions (Shuster et al., 2019). Recently, multi-style image description generation (Guo
et al., 2019) has been explored, in which a single model using unpaired data is built to
generate different stylized captions.

Unseen Objects Image Description Generation. Unseen objects image description
generation leverages images which lack paired descriptions. Most of the paired image-
description datasets have few visual objects to represent. Hence, methods such as Deep Com-
positional Captioning (DCC) (Hendricks et al., 2016), Novel Object Captioner (NOC) (Venu-
gopalan et al., 2017), Constrained Beam Search (CBS) (Anderson et al., 2017), and LSTM-
C (Yao et al., 2017) address the challenge of generating descriptions for these images.
They generate descriptions for visual object categories that are previously unseen in image-
description corpora, either by transferring information between seen and unseen objects
before inference (i.e., before test time), or by keeping constraints on the generation of de-
scription words during inference (i.e., during test time). A few approaches (Mogadala et al.,
2018a; Lu et al., 2018) have transferred information both before and during inference. Re-
cently, pointing LSTM was designed to point to the novel objects (Li et al., 2019a) by
balancing generation and copying of words. Nevertheless, earlier approaches work only with
a limited set of objects. To address this issue, a large-scale nocaps dataset (Agrawal et al.,
2019) was created.

Diverse Image Description Generation. Diverse image description generation task
aims to incorporate variety and diversity in the generated captions. A few approaches (Dai
et al., 2017; Shetty et al., 2017) have leveraged adversarial training, while Vijayakumar et al.
(2016) used diverse beam search to decode diverse image captions in English. Approaches
have also been proposed to describe cross-domain images (Chen et al., 2017).

Controllable Image Description Generation. Controllable image description gener-
ation task focuses on selecting specific objects in an image, defined by a control signal, to
generate descriptions. Initially, Yin and Ordonez (2017) generated layouts from images,
while Wang et al. (2018) counted image objects to produce multiple captions for a given
image. Additionally, a control signal has been used to make the image captioning process
more controllable, and also to generate diverse captions. Cornia et al. (2019) used either a
sequence or a set of image regions. Also, chunks of the generated sentences were explicitly
grounded on regions. Moreover, instead of making captions only diverse, there were also
attempts to make the generated descriptions more accurate (Deshpande et al., 2018).

Image Caption Emendation as Generation. Caption emendation task is a variant of
caption generation where the aim is to build a model to emend (a.k.a. edit or correct) both
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syntactic and semantic errors in the captions. There has been a lot of interest in recent
years on this emerging topic of research. Guo et al. (2020) proposed Show, Tell, and Polish
framework to better mimic humans in sentence constructions. That is, coming up with a
first version and then keep polishing it until it feels right. The core idea of this architecture
is to perform a two-pass decoding, instead of the typical single-pass decoding. Thus, the
model contains two decoder modules, viz., base decoder and ruminant decoder, whereby the
base decoder generates a first version of caption which then feeds into the ruminant decoder
for refinement (a.k.a. polishing). Along the same lines, Kalimuthu et al. (2020) introduced
fusion models for caption emendation, which is a generic fusion model framework containing
a standard encoder-decoder format image captioning model, a pretrained auxiliary language
model (AuxLM - BERT MLM), and a fusion module component that fuses language-only
representations of AuxLM and visual-linguistic representations of decoder using different
fusion techniques. The intuition behind introducing an external language model trained on a
large-scale language corpora is to capture world knowledge and rich linguistic features, which
are both scarce in annotated captions data, in an attempt to generate fluent and accurate
descriptions. In both of the above approaches, emendation is achieved by generating a
caption while utilizing the baseline caption as a reference. That is, the model is trained to
correct any errors and incongruencies in the baseline caption. Likewise, Sammani and Melas-
Kyriazi (2020) propose Show, Edit, and Tell framework as an iterative adaptive refinement
approach that utilizes attention LSTMs and denoising autoencoders for correcting captions.

3.1.2 Image Description Generation - Datasets

A wide range of datasets are available for conducting research in integration of vision and
language. In fact, they are one of the main driving forces behind recent accelerated ad-
vancements that we are witnessing in this field (Bengio et al., 2021). Visual information
associated with textual content in these datasets differ from each other in many aspects such
as size, quality, and the way in which they are collected. In our survey, we summarize the
characteristics of these datasets and provide basic statistics about them. However, we do
not furnish a deeper analysis of them, as this was already done by Ferraro et al. (2015).

An array of diverse datasets, both of small and large-scale, were created and made
available publicly in the past decade to address the challenge of image description generation.
Some of the early large-scale datasets focus on image captions, while the others are only
of small- or medium-scale. In the following sections, we cover only those datasets that are
extensively used in the image captioning literature.

SBU Captioned Photo Dataset (SBU1M). SBU1M4 (Ordonez et al., 2011) is an
automatically collected image description dataset that uses query terms to retrieve images
and associated text from Flickr5. This web-scale dataset is distributed as a single plain text
file containing 1 million URLs of Flickr images and their corresponding captions. Although
one of the older datasets in image description research, it has been rarely used in recent
years. Table 2 provides basic statistics about this dataset.

4http://vision.cs.stonybrook.edu/~vicente/sbucaptions
5https://www.flickr.com
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Total Images Captions per Image Total Captions Object Categories
1,000,000 1 1,000,000 89

Table 2: Basic statistics of the SBU1M image description dataset.

Flickr8k. As with SBU1M, images in the Flickr8k6 (Hodosh et al., 2013) dataset are
also retrieved from Flickr5. However, unlike the automated way of collection of SBU1M, the
images in Flickr8k are selected through user queries for specific objects and actions using the
Amazon Mechanical Turk (AMT) platform. The images are then captioned by annotators
on AMT such that each image contains five captions that are independently created. Table 3
presents the so-called karpathy split7 of the dataset.

Split Images Captions per Image Total Captions
Training 6,000 5 30,000
Validation 1,000 5 5,000
Test 1,000 5 5,000

Total 8,000 5 40,000

Table 3: Splits of the Flickr8k image description dataset.

Flickr30k. Flickr30k8 (Young et al., 2014) is an extended version of the previously pub-
lished Flickr8k dataset, containing images collected from Flickr5 and captions obtained via
crowdsourcing using AMT platform, following the same strategies employed in Flickr8k.
Table 4 presents the previously-mentioned karpathy split7 of the dataset.

Split Images Captions per Image Total Captions
Training 29,000 5 145,000
Validation 1,014 5 5,070
Test 1,000 5 5,000

Total 31,014 5 155,070

Table 4: Splits of the Flickr30k image description dataset.

Flickr30k-Entities. Flickr30k-Entities9 (Plummer et al., 2017b) extends Flickr30k with
manually annotated bounding boxes for images and entity mentions in the captions in order
to accomplish the task of language grounding in images, viz. phrase localization, while
performing captioning. Specifically, there are 275,775 bounding boxes for the images of
Flickr30k and 513,644 entity mentions in the 158k captions of Flickr30k. One peculiarity
of this dataset is that it comes with 244k co-reference chains, in which each chain is a link
between the mentions of the same entities across the five different captions of a given image.
Some statistics and karpathy split7 of this dataset is presented in Table 5.

6http://hockenmaier.cs.illinois.edu/8k-pictures.html
7https://cs.stanford.edu/people/karpathy/deepimagesent
8http://hockenmaier.cs.illinois.edu/Denotation.html
9http://bryanplummer.com/Flickr30kEntities
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Num. of Object Objects Objects Captions TotalSplit Images Categories per Category per Image per Image Captions
Training 29,783 - - - 5 148,915
Validation 1,000 - - - 5 5,000
Test 1,000 - - - 5 5,000

Total 31,783 44,518 6.2 8.7 5 158,915

Table 5: Splits and statistics of the Flickr30k-Entities image description dataset.

MSCOCO. MSCOCO2 (Lin et al., 2014) is a widely-used and considerably larger-scale
dataset than the image captioning datasets discussed so far. It contains natural images that
are collected from Flickr5. The AMT platform is then used to curate and collect descriptions
for the images. This dataset does not have an official split, hence the karpathy split7 from
the above datasets is commonly used in the vision and language research community. The
statistics and splits of the dataset can be found in Table 6.

Split Images Captions per Image Total Captions Object Categories
Training 113,287 5 566,435 -
Validation 5,000 5 25,000 -
Test 5,000 5 25,000 -

Total 123,287 5 616,435 80

Table 6: Splits of the MSCOCO image description dataset.

MSCOCO-Entities. MSCOCO-Entities10 (Cornia et al., 2019) is a recently-introduced
dataset based on the original MSCOCO (Lin et al., 2014) dataset, with the goal of achiev-
ing the twin challenges of grounding and controllability in generated image captions. Un-
like Flickr30k-Entities, the grounding annotations in this dataset are obtained in a semi-
automated way. Table 7 presents some statistics about the dataset as well as its split.

Split Images Total Captions Noun chunks Noun chunks per caption Unique Classes
Training 113,287 545,202 1,518,667 2.79 1,330
Validation 5,000 7,818 20,787 2.66 725
Test 5,000 7,797 20,596 2.64 730

Table 7: Splits and statistics of the MSCOCO-Entities image description dataset.

STAIR Captions. STAIR Captions11 (Yoshikawa et al., 2017) is a large-scale Japanese
image captioning dataset that provides Japanese language descriptions for the 164,062 im-
ages of MSCOCO, while retaining the same dataset splits, viz. karpathy split7, as with
MSCOCO (see Table 6). The annotation of captions is done manually using crowdsourcing.
Original statistics from the authors of the dataset is provided in Table 8.

10https://github.com/aimagelab/show-control-and-tell
11http://captions.stair.center
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Total Num. Captions Total Num. Vocabulary Avg. Number
of Images per Image of Captions Size of Chars
164,062 (123,287) 5 820,310 (616,435) 35,642 (31,938) 23.79 (23.80)

Table 8: Statistics of the STAIR Captions image description dataset (Japanese). Details
on the public part of the dataset is indicated in brackets.

Multi30k-CLID. The Multi30k-CLID12 (Elliott et al., 2016) dataset was designed for the
task of Cross-Lingual Image Description (CLID) generation with an ultimate goal of pushing
existing vision and language research towards multilingual multimodal language processing.
In the first edition of the task in 2016, the Flickr30k-Entities9 dataset (Plummer et al.,
2017b) was extended to the German language by crowdsourcing the descriptions indepen-
dently from their English language counterparts with the help of professional translators.
As with original Flickr30k, each image comes with five descriptions in German. Hence, the
English-German pairs are considered as comparable, though not parallel, corpora. The splits
of this dataset for English and German languages can be found in Table 9.

Language of the CaptionsSplit Images English German
Training 29,000 145,000 145,000
Validation 1,014 5,070 5,070
Testing 1,000 5,000 5,000

Table 9: Splits and statistics of the Multi30k-CLID (2016) dataset.

In the second version13 of the task in 2017, the Flickr30k-Entities9 dataset was further
extended to support French language captions (Elliott et al., 2017). The annotations were
again obtained via crowdsourcing following the same principles as with the previous version.
Table 10 presents the number of instances in each language and the splits of the dataset.

Language of the CaptionsSplit Images English French German
Training 29,000 145,000 145,000 145,000
Validation 1,014 5,070 5,070 5,070
Testing 1,000 5,000 5,000 5,000

Table 10: Splits and statistics of the Multi30k-CLID (2017) dataset.

Similar to the earlier editions of the task, in the 2018 version14 Czech language transla-
tions of the captions were added (Barrault et al., 2018). Following the same strategy of the
prior versions of this dataset for obtaining annotations, human translators were employed to

12https://www.statmt.org/wmt16/multimodal-task.html
13https://www.statmt.org/wmt17/multimodal-task.html
14http://www.statmt.org/wmt18/multimodal-task.html
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produce Czech translations for the captions of Flickr30k-Entities9. Table 11 presents splits
and statistics of all four languages of the dataset.

Language of the CaptionsSplit Images Czech English French German
Training 29,000 145,000 145,000 145,000 145,000
Validation 1,014 5,070 5,070 5,070 5,070
Testing 1,071 5,355 5,355 5,355 5,355

Table 11: Splits and statistics of the Multi30k-CLID (2018) dataset.

Conceptual Captions (CC). Conceptual Captions15 (Sharma et al., 2018) is a recently
introduced web-scale dataset containing more than 3.3M images paired with English lan-
guage captions. The dataset was harvested from the web in an automatic manner in which
the captions were extracted from the alt text of retrieved HTML webpages. As a conse-
quence, contrary to other curated image captioning datasets in which each image is paired
with five captions, the images in CC have only one description, a fact that is evident in
Table 12 which also presents the dataset splits.

Split Images Captions
Training 3,318,333 3,318,333
Validation 15,840 15,840
Test 22,530 22,530

Table 12: Splits of the Conceptual Captions dataset.

Although it is a large-scale dataset with a wide variety and style in captions, continued
availability of the dataset for downloading by future users is a major issue, primarily due
to the fact that the dataset has been distributed as a CSV file containing URLs of images.
Thus, it inherently suffers from the problem of URLs becoming stale (for instance due to
contents being removed, unresponsive HTTP requests, etc.), which puts the dataset at a
disadvantage.

Personality Captions (PC). Personality Captions16 (Shuster et al., 2019) is a large
scale image caption dataset that comes with so-called personality traits that are useful for
controllable and style-based image captioning. Thus, the samples in the PC dataset are
provided as triplets (image, personality trait, caption). Basic statistics such as vocabulary
size, including the dataset splits, is provided in Table 13.

15https://ai.google.com/research/ConceptualCaptions/download
16https://parl.ai/projects/personality_captions
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Num. of Captions Num. of Personality Vocabulary Avg. TokensSplit Images per Image Captions Types Size per Caption
Training 186,858 1 186,858 215 33,641 11.2
Validation 5,000 1 5,000 215 5,460 10.9
Test 10,000 5 50,000 215 16,655 11.1

Table 13: Splits and statistics of the Personality Captions dataset.

3.1.3 Image Description Generation - Evaluation Measures, Models, and
Results

In this section, we describe only the evaluation measures which are used for the task of Image
Description Generation, as Models, Results, and some Discussion have been broadly
presented in recent surveys (Hossain et al., 2019).

Evaluation Measures. We divide the evaluation measures into three different categories.
The first set of measures is “Language Metrics”, the second category is about “Retrieval Met-
rics”, and the third category denotes “Human Evaluation”.

“Language Metrics” evaluate machine-generated text based on reference text by comput-
ing similarity scores using simple n-gram statistics and word overlaps.

• Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) was originally
developed for machine translation to compare machine generated output with human
Ground Truth (GT). BLEU calculates the overlap between predicted unigrams (BLEU-
1 (B-1)), or, more generally, n-grams (BLEU-2 (B-2) with bigrams, BLEU-3 (B-3) with
trigrams, BLEU-4 (B-4) with quadrigrams, and so on.) from the set of candidate and
reference sentences. To achieve a high BLEU score, generated descriptions should
match the human GT words as well as their order. Maximum achievable BLEU score
is 1.0 (or sometimes, equivalently 100), which is obtained when an exact match occurs
between generated and reference sentence.

• Metric for Evaluation of Translation with Explicit Ordering, popularly known
as METEOR (Banerjee & Lavie, 2005) has overcome some issues of BLEU, such as
the need for exact word matching. Instead of a literal token matching, METEOR
rather performs semantic matching by leveraging WordNet to match words at vari-
ous levels, using synonymy and paraphrase matching. The METEOR score is then
computed using the alignment between the machine generated output and the corre-
sponding reference sentences. To be more specific, initially, the set of unigrams from
the generated and reference sentences is used to perform an alignment. If multiple
options are available for alignments between the generated and reference sentence, the
alignment setting with least comparisons is preferred. After finalizing the alignment
process, the METEOR score is calculated.

• Recall Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) was
designed to evaluate textual summaries. As opposed to BLEU, which concentrates on
n-gram precision, ROUGE instead calculates the recall score of the generated sentences
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corresponding to the reference sentences. The most prominent ROUGE variant used is
ROUGE-L, which is based on the longest common subsequence. Other variants include
ROUGE-W (Weighted Longest Common Sub-sequence) and ROUGE-S (Skip-Bigram
Co-Occurrences Statistics). One advantage of ROUGE-L over BLEU and METEOR
is that it checks for subsequences within a sentence. Moreover, specifying the n-gram
length (as required in BLEU) is not necessary as it is automatically incorporated.

• Consensus-based Image Description Evaluation (CIDEr) (Vedantam et al.,
2015) evaluates the consensus between a generated sentence and a set of reference
sentences by performing different language pruning techniques, such as stemming and
building a set of n-grams. N-grams that are common among the reference sentences
of all visual data are given lower weight, as they are less informative about the visual
content, and biased towards the textual content of the sentences. The weight for
each n-gram is computed using Term Frequency (TF) - Inverse Document Frequency
(IDF) (TF-IDF), where TF puts higher weight on frequently occurring n-grams in the
reference sentence of the visual content, whereas IDF puts lower weight on commonly
appearing n-grams across the whole dataset. To remove the mismatch between human
evaluation and CIDEr scores, a variant of CIDEr, CIDEr-D, is used. It adds small
variations, such as not performing stemming and ensuring that the words with high
confidence are not repeated in a sentence by introducing a Gaussian penalty over
length differences between the generated and reference sentences. As in the case of
vanilla CIDEr, it produces high scores even if the sentences do not make sense.

• Semantic Propositional Image Captioning Evaluation (SPICE) (Anderson
et al., 2016) measures the similarity between the scene graph tuples parsed from gen-
erated sentences and human created GT sentences. The scene graph encodes objects
and their relationships through dependency parsing. Hence, it makes SPICE heavily
dependent on parsing, which can be prone to errors. Similar to METEOR, SPICE
uses WordNet to find and treat synonyms as positive matches when computing the F1
score between the tuples of generated sentences and the ground truth.

“Retrieval Metrics” evaluate the machine generated text based on standard information
retrieval measures (Manning et al., 2010) and are presented in the following paragraphs.

• Recall@k (R@k)’s goal is to evaluate the number of relevant ground truth sentences
retrieved in the Top-k (e.g., Top-1, Top-5 etc.) candidates. A higher R@k indicates
better performance.

• Median Rank (MedRank) finds the median rank value of the retrieved ground
truth. A lower MedRank value indicates better performance.

• Mean Reciprocal Rank (MRR) is a binary measure, where the rank of the highest
ranking relevant document for a query is used to calculate the reciprocal rank averaged
over all queries. A higher MRR indicates better performance.

• Mean Rank (Mean) refers to the mean rank achieved in retrieving the relevant
sentence. A lower Mean value is better.
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• Normalized Discounted Cumulative Gain (NDCG) is a variant of Discounted
Cumulative Gain (DCG) (Järvelin & Kekäläinen, 2000). NDCG is a cumulative,
multilevel measure of ranking quality that is usually truncated at a particular rank
level.

“Human Evaluation” employs crowd-workers to evaluate the quality of the generated content
and is described in the following paragraph.

• Human Evaluation The earlier discussed metrics provide only quantitative measures
for evaluating different tasks. Due to the lack of high correlation between machine-
generated textual or visual data with the human provided GT, most of the tasks,
however, require human evaluations to judge the quality of the generated content.
Therefore, based on the task, various kinds of instructions are given to humans who
act as an evaluator in the evaluation study. In most tasks, we are interested only in
finding relevance of the output to input.

3.1.4 Video Description Generation - Introduction

Going beyond images, the goal in video captioning is to comprehend the spatio-temporal
information in a video for the purpose of generating either a single or multiple textual
descriptions. As with image description generation (Section 3.1.1), we explore some of the
popular types and categories of video description generation tasks in the following.

Global Video Description Generation. Global video description generation approaches
(Motwani & Mooney, 2012; Regneri et al., 2013) initially started by grounding sentences that
describe actions in the visual information extracted from videos. It was further expanded
into generating global natural language descriptions for videos with various approaches, for
example, leveraging latent topics (Das et al., 2013), corpora knowledge (Krishnamoorthy
et al., 2013), graphical models (Rohrbach et al., 2013), and sequence-to-sequence learn-
ing (Venugopalan et al., 2015b, 2015a; Donahue et al., 2015; Srivastava et al., 2015; Xu
et al., 2016; Ramanishka et al., 2016; Jin et al., 2016). Figure 3 depicts the description
generation task for a complete video. The aforementioned approaches leverage only those

Figure 3: Given a video (represented as sequence of frames), the Video Caption Generation
Model generates a single global description.

training datasets with a limited set of visual objects. However, the recognition and descrip-
tion of entities and activities in real-world videos is more difficult. Nevertheless, generating
natural language descriptions for such videos is addressed with a factor graph by combining
visual detection with language statistics (Thomason et al., 2014).

Additionally, sequence-to-sequence (seq2seq) based approaches have been improved with
external corpora (Venugopalan et al., 2016) and also using attention with various techniques
such as soft-attention (Yao et al., 2015), multimodal fusion (Hori et al., 2017), temporal
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attention (Song et al., 2017), semantic consistency (Gao et al., 2017), and residual connec-
tions (Li et al., 2019). Apart from attention-based methods, novel architectures have also
been explored, such as incorporation of semantic attributes learned from videos (Pan et al.,
2017), ensemble-based description generator networks (Shetty et al., 2018) and encoder-
decoder-reconstructors which leverage both the forward and backward flows, i.e., video-to-
description and description-to-video, for video captioning (Wang et al., 2018). Multi-faceted
attention has also been used to select the most salient visual features or semantic attributes,
with which an overall sentence is generated (Long et al., 2018).

Apart from architecture improvements, different machine learning approaches have also
been explored. Video captioning has been tackled using a multi-task learning scenario by
sharing knowledge between two related tasks (such as temporal- and context-aware video)
combined with entailment generation task (Pasunuru & Bansal, 2017a). Other approaches
have leveraged reinforcement learning, either by providing entailment rewards (Pasunuru
& Bansal, 2017b) , or to address the description generation for multiple fine-grained ac-
tions (Wang et al., 2018b). Further, Mazaheri and Shah (2018) proposed a deep network
designed to detect inaccuracies in a sentence, and fix them by replacing the inaccurate
word(s) with the help of a Visual Text Correction system. Recently, Zhang et al. Zhang
et al. (2020) introduced an object relational graph (ORG) based encoder which encapsulates
the relation among visual objects to build richer representation and a decoder the integrates
the external language model to capture abundant linguistic knowledge for efficient video
description generation.

In the following, we discuss some related ideas which expand the scope of video descrip-
tion generation.

Dense Video Description Generation. The aim of dense video description generation
is to achieve fine-grained video understanding by addressing two sub-problems: (1) local-
izing events in a video, and (2) generating captions for these localized events (Zhou et al.,
2018b; Xu et al., 2019). Further, extending earlier research, some approaches (Zhou et al.,
2019) have explicitly linked the sentence to a corresponding bounding box in one of the
frames of a video by annotating each of the noun phrases observed in the sentence. In-
corporating background knowledge for video description generation is also another line of
research (Whitehead et al., 2018). However, the core challenge, namely the automatic evalu-
ation of video captioning, is still unsolved. It is currently being studied from the perspective
of direct assessment with the help of human assessors (Graham et al., 2018).

Movie Description Generation. Movie description generation perceives the video de-
scription generation task from a different perspective, in which movie clips are used as
inputs. Initially, aligning books to movies (Tapaswi et al., 2015; Zhu et al., 2015) was used
to generate story-like explanations. Later, movie descriptions (Rohrbach et al., 2015) were
directly created by transcribing audio descriptions by concentrating on precisely describing
what is shown in the movie scenes.

3.1.5 Video Description Generation - Datasets

Similar to the image description generation task, several datasets have been created to
address the task of video description generation. In the following, we cover those datasets
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that are popular and extensively used. For the sake of brevity, we denote hours → h, minutes
→ m, and seconds → s.

Microsoft Video Description (MSVD). MSVD17 (Chen & Dolan, 2011) is an open
domain dataset collected from YouTube clips and annotated using AMT. The dataset is
multilingual and contains human generated descriptions in languages such as German, En-
glish, Chinese, etc. On average, there are forty-one single sentence descriptions per clip.
More statistics about the dataset are presented in Table 14 whereas Table 15 presents its
split.

Total Total Total Avg. Total Total Total Vocabulary
Videos Classes Length Length Clips Sentences Words Size
1,970 218 5.3 h 10 s 1,970 70,028 607,339 13,010

Table 14: Statistics of the MSVD dataset.

Split Frames Videos
Training 33,682 1,200
Validation 3,275 100
Test 20,528 670

Total 57,485 1970

Table 15: Splits of the MSVD dataset.

MPII Cooking Activities. The MPII Cooking18 (Rohrbach et al., 2012) dataset consists
of 65 different cooking activities such as “wash hands”, “put in bowl”, etc., when participants
are preparing one of 14 dishes such as fruit salad, casserole, etc. The dish preparation time
ranges between 3 and 41 minutes. The videos are recorded in high resolution (1624x1224),
following which the activity annotations are manually created by 6 people. Table 16 presents
more statistics about the dataset whereas the splits of it can be found in Table 17.

Num. of Total Total Total Video Total Num. of Total Activity
Subjects Clips Videos Frames Length Length Activities Dishes Annotations
12 5,609 44 881,755 3 to 41 m 8.0 h 65 14 5,609

Table 16: Statistics of the MPII Cooking Activities dataset.

YouCook. YouCook19 (Das et al., 2013) is a more complex real-world cooking dataset
when compared to MPII Cooking in which the complexity arises because of dynamic scene
and camera changes. The videos are all downloaded from YouTube and are broadly cat-
egorized into 6 different cooking styles, viz. baking, grilling, etc. Video descriptions are

17https://www.cs.utexas.edu/users/ml/clamp/videoDescription
18https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/

human-activity-recognition/mpii-cooking-activities-dataset
19http://web.eecs.umich.edu/~jjcorso/r/youcook
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Split Frames Subjects
Training 1,071 10
Validation - -
Test 1,277 7

Table 17: Splits of the MPII Cooking dataset.

obtained via crowdsourcing using AMT. On average, eight descriptions are collected per
video. Frames are annotated with objects belonging to categories (such as bowls, utensils,
etc.) and actions. More details and splits of the dataset can be found in Table 18 and
Table 19 respectively.

Cooking Object Total Total Num. of Num. of Vocabulary
Styles Classes Videos Length Sentences Words Size
6 10 88 2.3 h 2,688 42,457 2,711

Table 18: Statistics of the YouCook dataset.

Split Videos
Training 49
Validation -
Test 39

Table 19: Splits of the YouCook dataset.

YouCook II. Similar to the YouCook dataset, YouCook II20 (Zhou et al., 2018a) also
consists of instructional cooking videos that are all collected from YouTube. The videos
include 89 cooking recipes from four regions: South Asia, East Asia, Europe/Middle East,
and America. One unique aspect of this dataset when compared to previously discussed
video description datasets is that that the videos are annotated with procedure segments
that contain rich semantic information. Table 20 presents the statistics about the dataset.

Cooking Total Total Video Avg. Video Procedure Total Num. of Vocab.
Recipes Videos Length Length Seg. per Video Clips Sentences Size
89 2,000 175.6 h 316 s 3-16 15,400 15,400 2,600

Table 20: Statistics of the YouCook II dataset.

For each recipe, the videos are randomly split into training, validation, and testing in
ratios of 67%, 23%, and 10% respectively. The actual numbers are presented in Table 21.

Textually Annotated Cooking Scenes (TACoS). The TACoS21 (Regneri et al., 2013)
dataset is an extended version of a subset of MPII Composites (Rohrbach et al., 2012)

20http://youcook2.eecs.umich.edu
21https://www.coli.uni-saarland.de/projects/smile/page.php?id=tacos
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Split Videos
Training 1,340
Validation 460
Test 200

Table 21: Splits of the YouCook II dataset.

which contains cooking videos that are each annotated with multiple textual descriptions. It
contains only those videos that include activities such as manipulation of cooking ingredients.
Around 26 cooking activities are collected with 127 videos. More statistics on the dataset
is presented in Table 22 and Table 23. For building and evaluating models, the dataset is
split into 50% for training, 25% for validation, and 25% for testing.

Total Total Descriptions Annotation Annotations Cooking Action
Videos Clips per Video Assignments after filtering Tasks/Dishes Descriptions
127 7,206 20 2,540 2,206 26 17,334 (tokens)

Table 22: The TACoS dataset statistics - I.

Sentence Total Content Words Num. of Num. of
Types Words (viz. nouns, verbs, adjectives) Verbs (tokens) Verbs (lemmas)
11,796 146,771 75,210 28,292 435

Table 23: The TACoS dataset statistics - II.

TACoS-MultiLevel. The above discussed TACoS dataset was extended into TACoS-
MultiLevel22 (Rohrbach et al., 2014) by collecting three levels of descriptions constituting
(i) 15 detailed descriptions per video, (ii) 3-5 short descriptions, and (iii) a single sentence
description, using AMT platform. Overall, the dataset comes with 2,600 triplets of descrip-
tions. Further statistics on the dataset can be found in Table 24.

Total Total Total Video Avg. Number of Total
Videos Clips Length Length Sentences Words
185 14,105 27.1 h 360 s 52,593 2,000

Table 24: Statistics of the TACoS-MultiLevel dataset.

MPII Movie Description (MPII-MD). MPII-MD23 (Rohrbach et al., 2015) dataset
contains clips extracted from Hollywood movies and their transcribed audio descriptions.
In addition, each clip is paired with a single sentence that is extracted from the script of

22https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/
vision-and-language/tacos-multi-level-corpus

23https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/
vision-and-language/mpii-movie-description-dataset
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the movie. Furthermore, transcribed audio is associated with spoken sentences by using
timestamps. Misalignment between the audio and visual content is handled by leveraging
manual annotation. Additional statistics on the dataset is presented in Table 25.

Unique Before alignment After alignment
Movies Words Words Sentences Clips Avg. Length Total

Audio Desc. 55 346,557 332,846 37,272 37,266 4.1 s 42.5 h
Movie script 50 398,072 320,621 31,103 31,071 3.6 s 31.1 h

Total 94 744,629 653,467 68,375 68,337 3.9 s 73.6 h

Table 25: Statistics of the MPII-MD dataset.

For the task of video description, the MPII-MD dataset is split as follows: 11 movies
with associated scripts and audio descriptions (in total 22 alignments, 2 per movie) are used
as validation (8) and test sets (14). The remaining 83 movies are used for training purposes.

Montreal Video Annotation Dataset (M-VAD). M-VAD24 (Torabi et al., 2015) is a
large Descriptive Video Service (DVS)-derived video dataset that is created using 92 Movies,
covering a wide variety of genres. It is collected in a semi-automatic manner with minimal
human intervention. The words in the descriptions are annotated with Part-Of-Speech
(POS) tags using the Stanford POS tagger. Around 500 proper names are removed from
the corpus, since learning proper names is not interesting for a video description model.

Type Movies Words Paragraphs Sentences Avg. Length Total
Un-filtered 92 531,778 52,683 59,415 6.3 s 91 h
Filtered 92 510,933 48,986 55,904 6.2 s 84.6 h

Table 26: Statistics of the M-VAD dataset.

Table 26 presents some statistics about the dataset, while Table 27 presents the official
dataset split that balances the genre within each split.

Split Video Clips
Training 38,949
Validation 4,888
Test 5,149

Table 27: Splits of the M-VAD dataset.

MSR Video to Text (MSR-VTT). MSR-VTT25 (Xu et al., 2016), also known as MSR-
VTT-10k, is a large-scale video dataset containing automatically crawled videos belonging
to 20 categories for the task of video description generation. The sentence annotations are
obtained via crowdsourcing using AMT. In addition to the video content, the dataset also
contains audio information. Table 28 presents more statistics about the dataset.

24https://mila.quebec/en/publications-archive/public-datasets/m-vad/
25http://ms-multimedia-challenge.com/2017/dataset
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Categories Videos Clips Sentences per Clip Sentences Words Vocab. Duration
20 7,180 10,000 20 200,000 1,856,523 29,316 41.2 h

Table 28: Statistics of the MSR-VTT dataset.

Out of 7.2k videos, 30k video clips have been created. However, only a random subset
of 10k clips has been released. The dataset is split in the ratio of 65%:30%:5% for training,
validation, and testing. Specific numbers are presented in Table 29.

Split Video Clips
Training 6,513
Validation 497
Test 2,990

Table 29: Splits of the MSR-VTT dataset.

Videos Titles in the Wild (VTW). VTW26 (Zeng et al., 2016) is a large-scale dataset
of automatically crawled user-generated YouTube videos paired with titles and descriptions.
The video clips are on average 90 seconds in duration and are described with one sentence per
clip to enable video title generation. It also comes with augmented sentences that contain
information that may not be present in the video clip. More statistics of the dataset can be
found in Table 30.

Dataset Sentences Vocab. Sentences/Word Nouns Verbs Adjective Adverb
VTW-title 18,100 8,874 2.0 5,850 2,187 1,187 224
VTW-full 44,603 23,059 1.9 13,606 6,223 3,967 846

Table 30: Statistics of the VTW dataset.

Similar to M-VAD, the dataset is randomly split into 80% for training and 10% each for
validation and testing. Specific numbers are presented in Table 31.

Split Videos Sentences/Titles
Training 14,100 14,100
Validation 2,000 2,000
Test 2,000 2,000

Table 31: Splits of the VTW dataset.

ActivityNet Captions (ANetCap). ANetCap27 (Krishna et al., 2017a) is a large-scale
video dataset28 that extends a subset of videos from ActivityNet with dense descriptions.

26http://aliensunmin.github.io/project/video-language/index.html#VTW
27http://activity-net.org/challenges/2017/captioning.html
28https://cs.stanford.edu/people/ranjaykrishna/densevid
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There are multiple descriptions for every video and the videos contain multiple events oc-
curring at the same time. Another notable aspect of this dataset is that the descriptions
focus more on actions happening in videos. As a result, this dataset falls under the category
of being more action-centric than object-centric.

Videos Total Video Hours Avg. Video Length Sentences Avg. Sentence Length
20,000 849 180 s 100,000 13.48 (words)

Table 32: Statistics of the ANetCap dataset.

Table 32 presents more statistics on the dataset, while Table 33 presents its split.

Split Videos
Training 10,024
Validation 4,926
Test 5,044

Table 33: Splits of the ANetCap dataset.

ActivityNet Entities (ANetEntities). The ANetEntities29 (Zhou et al., 2019) dataset
augments ANetCap (Krishna et al., 2017a) with manually annotated bounding boxes, and
was created for the task of grounding language in videos while generating descriptions. It
adds around 158k bounding box annotations on ANetCap, each grounded to a Noun Phrase
(NP) in the sentence description. More statistics and the dataset splits can be found in
Table 34.

Split Videos Sentences Objects Bounding Boxes
Training 10,000 35,000 432 105,000
Validation 2,500 8,600 427 26,500
Test 2,500 8,500 421 26,100
Total 15,000 52,100 432 157,600

Table 34: Statistics and splits of the ANetEntities dataset.

COmprehensive INstructional video analysis (COIN). COIN30 (Tang et al., 2019)
is a large-scale dataset of instructional YouTube videos from 12 domains such as vehicles,
gadgets, sports, etc., that are common in our daily lives. It is aimed at overcoming two
limitations of current instructional video datasets, namely diversity and scale. It covers over
180 tasks in 12k videos.

One unique aspect of this dataset is that it introduces a three-level hierarchy, viz. do-
main, task, and step, for organizing videos. Table 35 shows some statistics of the dataset
whereas Table 36 presents training and validation splits of COIN.

29https://github.com/facebookresearch/ActivityNet-Entities
30https://coin-dataset.github.io
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Num. of Num. of Total Total Total Avg. Video Avg. Segment
Domains Tasks Videos Segments Duration Length Length
12 180 11,827 46,354 476 h, 38 m 2.36 m 14.91 s

Table 35: Statistics of the COIN dataset.

Split Videos
Training 9,030
Validation -
Test 2,797

Table 36: Splits of the COIN dataset.

HowTo100M. HowTo100M31 (Miech et al., 2019) is a large-scale dataset of narrated
videos with emphasis on instructional YouTube videos where the video creators teach com-
plex tasks with an explicit intention of explaining the visual content on screen. The dataset
includes a wide variety of 23k activities from the domains such as gardening, personal care,
fitness, hand crafting, cooking, etc. and is three orders of magnitude than the previously
discussed video description datasets. Table 37 presents more statistics about the dataset.

Num. of Num. of Total Total Total Total Avg. Video Avg. Clip-Caption
Domains Tasks Videos Clips Duration Captions Length Pairs per Video
12 23,611 1.221M 136M 134,472 h 136M 6.5 m 110

Table 37: Statistics of the HowTo100M dataset.

This dataset has not yet been used for the task of video description generation. Hence,
an official dataset split is not available for evaluation purposes.

3.1.6 Video Description Generation - Evaluation Measures, Models, and
Results

In this section, we describe only the evaluation measures which are used for the task of Image
Description Generation as Models, Results, and some Discussion have been broadly
discussed in recent surveys (Aafaq et al., 2020).

Evaluation Measures. The measures used for Video Description Generation are the
same as the Language metrics and Retrieval metrics used in Image Description Generation
and are presented in the Section 3.1.3.

3.2 Visual Storytelling

The task of visual storytelling aims to encode a sequence of images or frames (in the video)
to generate a paragraph which is story-like. This is usually considered more beneficial than
generating a paragraph from a single image or video.

31https://www.di.ens.fr/willow/research/howto100m
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3.2.1 Image Storytelling - Introduction

The aim of image storytelling is to generate stories from a sequence of images. Although
sequence of images can be perceived as a video, consecutive images in the streams can have
sharp changes of visual content, which can cause an abrupt discontinuity between consec-
utive sentences (Park & Kim, 2015). Hence, it is seen as a sequential vision-to-language
task (Huang et al., 2016) where images are not considered in isolation. Figure 4 shows a
schematic representation of image storytelling where a story in a sequence is generated.

        Image Storytelling Model

(1) (2) (3) (4) (5)

(1)  The campsite was up on a hill

(2)  They had a lot of tents

(3) Flowers were nearby the campsite

(4) In the distance a lake could be seen

(5) The camper took a rest to enjoy the scenery

Figure 4: Given a sequence of images, an Image Storytelling Model generates a textual story
in sequence.

Initially, semantic coherence in a photo stream is captured by reducing the visual vari-
ance. Further, the semantic space is acquired by jointly embedding each photo with its
corresponding contextual sentence such that their correlations are discovered (Liu et al.,
2017). It was then improved by exploiting hierarchical architecture (Yu et al., 2017) and
further optimized by incorporating reinforcement learning with rewards (Wang et al., 2018)
for generating relevant and expressive narrative paragraphs. Instead of flat deep reinforce-
ment learning, a hierarchically structured reinforced training has also been studied (Huang
et al., 2019) and has been shown to achieve significantly better performance than with a
flat structure. Similarly, Wang et al. (2018a) used adversarial reward learning to learn
an implicit reward function from human demonstrations to optimize policy search with the
learned reward function.

Nevertheless, the standard form of narration suffers from repetitiveness, with the same
objects or events serving to undermine a good story structure. Hence, inter-sentence diver-
sity was explored with diverse beam search to generate more expressive stories (Hsu et al.,
2018). The task has also been approached from a different perspective, in which, given a
jumbled set of aligned image-description pairs that belong to a story, the task is to sort
them such that the output sequence forms a coherent story (Agrawal et al., 2016).

1209



Mogadala, Kalimuthu, & Klakow

While earlier research addresses only natural images, some approaches (Li et al., 2019)
also incorporated medical domain knowledge to generate realistic and accurate descriptions
for medical images.

3.2.2 Image Storytelling - Datasets

There are not many datasets created to address the creative task of image storytelling. In the
following, we cover all datasets that have been used to advance this artistically interesting
and challenging problem.

New York City Storytelling (NYC-Storytelling). The NYC-Storytelling32 (Park &
Kim, 2015) dataset was created from blogs in which users post their travelogues. The dataset
is collected in a semi-automatic manner: automatic crawling followed by manual selection of
travelogues and finally preprocessing using the NLTK33 library. For evaluation purposes, the
dataset is split in a ratio of 8:1:1 for training, validation, and testing respectively. Table 38
presents minimal statistics of the dataset.

Images Blog posts
78,467 11,863

Table 38: Statistics of the NYC-Storytelling dataset.

Disneyland Storytelling. Similar to NYC-Storytelling, Disneyland Storytelling is also
based on blogs documenting travelogues but specifically about Disneyland Park. This
dataset was originally created by (Kim et al., 2015) but has been reused for visual sto-
rytelling tasks. The same ratio of data splits as with the NYC-Storytelling dataset is used
for evaluation purposes. The minimal statistics of the dataset can be found in Table 39.

Images Blog posts
60,545 7,717

Table 39: Statistics of the Disneyland-Storytelling dataset.

Sequential Image Narrative Dataset (SIND). SIND (Huang et al., 2016) is the first
large-scale dataset created for the task of image storytelling. Natural language descriptions
of the dataset are divided into three types: (i) Descriptions of Images-in-Isolation (DII), (ii)
Descriptions of Images-in-Sequence (DIS), and (iii) Stories for Images-in-Sequence (SIS).
The stories are collected via crowdsourcing using AMT. Similar to other image storytelling
datasets, this dataset is split into 80%, 10%, and 10% for training, validation, and testing
purposes respectively. Table 40 presents the statistics of the dataset.

Visual Storytelling Dataset (VIST). VIST34 is the second version (v.2) of SIND (see
Section 3.2.2) and is aimed at modeling the social language of humans for evolving AI to

32https://github.com/cesc-park/CRCN
33https://www.nltk.org
34http://visionandlanguage.net/VIST
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Images Flickr Albums (Text, Image) Vocab
DII - - 151,800 13,800
DIS - - 151,800 5,000
SIS - - 252,900 18,200
Total 210,819 10,117 - -

Table 40: Statistics of the SIND dataset.

be more human-like in understanding. Basic statistics of the dataset are shown in Table 41
while the splits of it can be found in Table 42.

Images Text Sequences
81,743 10,117

Table 41: Statistics of the VIST (SIND v.2) dataset.

Split Stories Sentences
Training 40,155 200,775
Validation 4,990 24,950
Test 5,055 25,275

Table 42: Splits of the VIST dataset.

3.2.3 Image Storytelling - Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different Image Storytelling models
and the results obtained by them.

Evaluation Measures. To evaluate Image Storytelling models, the Language metrics and
Retrieval metrics presented in Section 3.1.3 are used.

Models. Many models have been created in attempts to solve the Image Storytelling task.
In Table 43, we present some exemplar architectures (refer to Combined column) created to
address the task by integrating both image and language inputs. We also include a column
that showcases the optimization techniques used to train those models.

Results. In Table 44, Table 45, Table 46, and Table 47 we present the results obtained
with a subset of models which use the datasets presented earlier in Section 3.2.2.

3.2.4 Image Storytelling - Discussion

We observe that for Image Storytelling, the adversarial approach, i.e., Adversarial REward
Learning (AREL) proposed by Wang et al. (2018a), achieves best results on both retrieval
and language metrics for different datasets. This attests to AREL’s ability to clone expert
behaviors while still generating more human-like stories.
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Approach Image Language Combined Optimizer RL
(Kiros et al., 2014a) AlexNet LM MLBL - 7
(Karpathy & Fei-Fei, 2015) VGG RNN NeuralTalk RMSprop 7
(Vinyals et al., 2015) GoogLeNet LSTM NIC SGD 7
(Park & Kim, 2015) VGG RNN CRCN RMSprop 7
(Huang et al., 2016) VGG GRU Story-Flat - 7
(Krause et al., 2017) VGG LSTM HierarchicalRNN ADAM 7
(Liu et al., 2017) VGG LSTM BARNN - 7
(Wang et al., 2018) VGG LSTM GAN ADAM 3
(Wang et al., 2018a) ResNet-152 GRU AREL ADAM 3

Table 43: Exemplar Image Storytelling architectures.

Model B-4 CIDEr METEOR R@1 R@5 MedRank
MLBL (Kiros et al., 2014a) 0.01 2.6 5.29 1.19 4.52 100.5
NeuralTalk (Karpathy & Fei-Fei, 2015) 0.00 0.5 1.34 0.48 2.86 120.5
NIC (Vinyals et al., 2015) 0.10 9.1 5.73 0.95 7.38 88.5
CRCN (Park & Kim, 2015) 2.08 30.9 7.69 11.67 31.19 14.00
Story-Flat (Huang et al., 2016) - - 7.37 - - -
HierarchialRNN (Krause et al., 2017) - - 6.07 - - -
BARNN (Liu et al., 2017) - 41.6 - 29.37 45.43 8
AREL (Wang et al., 2018) - - 8.39 - - -

Table 44: Results of different models on the NYC-Storytelling dataset.

Model B-4 CIDEr METEOR R@1 R@5 MedRank
MLBL (Kiros et al., 2014a) 0.01 3.4 4.99 1.02 4.08 62
NeuralTalk (Karpathy & Fei-Fei, 2015) 0.00 0.4 1.34 1.02 3.40 88
NIC (Vinyals et al., 2015) 0.07 10.0 4.51 2.83 10.38 61.5
CRCN (Park & Kim, 2015) 3.49 52.7 8.78 14.29 31.29 16
Story-Flat (Huang et al., 2016) - - 7.61 - - -
HierarchialRNN (Krause et al., 2017) - - 7.72 - - -
BARNN (Liu et al., 2017) - 54.1 - 35.01 49.07 6
AREL (Wang et al., 2018) - - 9.90 - - -

Table 45: Results of various models on the Disneyland-Storytelling dataset.

Model B-4 CIDEr METEOR R@1 R@5 MedRank
CRCN (Park & Kim, 2015) - - - 9.87 28.74 21
Story-Flat (Huang et al., 2016) 3.50 6.84 10.25 - - -
HierarchialRNN (Krause et al., 2017) 3.7 6.51 9.97 - - -
AREL (Wang et al., 2018) 5.16 11.35 12.32 - - -

Table 46: Results of different models on the SIND dataset.

3.2.5 Video Storytelling - Introduction

In comparison to image storytelling, which only deals with a small sequence of images,
the aim of video storytelling is to generate coherent and succinct stories for long videos.
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Model B-4 CIDEr METEOR R@1 R@5 MedRank
enc-attn-dec (Xu et al., 2015a) - 4.96 32.98 - - -
h-attn-rank (Yu et al., 2017) - 7.38 33.94 - - -
BARNN (Liu et al., 2017) - - 33.32 24.07 44.29 9
AREL-t-100 (Wang et al., 2018a) 14.1 9.4 35.0 - - -

Table 47: Results of various models on the VIST dataset.

However, video storytelling is less explored. The video storytelling task was pioneered by Li
et al. (2020) to address challenges such as diversity in the story and the inherent complexity
of video. They introduced residual Bidirectional RNNs (BiRNNs) for leveraging context and
a narrator model with reinforcement learning. Further, Gella et al. (2018) created a multi-
sentence video description dataset (VideoStory) to resemble stories from social media videos.
The goal of social media-specific video description generation was to offer support to people
with visual disabilities or other technical issues such as internet bandwidth limitations.
Figure 5 illustrates the task of video storytelling where a story in a sequence is generated
based on a video as the sole input.

        Video Storytelling Model

(1) (2) (3) (4) (5)

(1)  Young teenage boys are travelling on a boat together

(2)  The boys begin to set up their tents

(3) The boys cook pasta over a fire in a skillet

(4) The boys disassemble their tent in the morning

(5) The boys reach the boat port from which they arrived

Figure 5: Given video frames (adopted from (Li et al., 2020)) as input, a Video Storytelling
Model generates a textual story in sequence.

It is worth noting that this task bears close resemblance to the well-researched area of
video summarization using only videos (Ma et al., 2002).

3.2.6 Video Storytelling - Datasets

Similar to image storytelling datasets, currently two different datasets are available to ad-
dress the task of video storytelling. In the following, we elaborate on these two datasets.
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VideoStory. VideoStory (Gella et al., 2018) is a multi-sentence description dataset cre-
ated from social media videos that are selected to be highly diverse and engaging. Table 48
shows more statistics on the dataset.

Total Total Total Avg. Video Total Sentences
Videos Length Clips Duration Sentences per Video
20,000 396 h 123,000 70s 123,000 4.67

Table 48: Statistics of the VideoStory dataset.

Models can be evaluated locally on the earmarked test set whereas test (blind) is reserved
for online evaluation purposes. However, the dataset including annotations has not been
made public yet. Table 49 presents actual number of videos, clips, and sentence annotations
for each of the splits.

Split Videos Clips Paragraphs/video Paragraphs Words/paragraph
Training 17,098 80,598 1 17,098 61.76
Validation 999 13,796 3 2,997 59.88
Testing 1,011 14,093 3 3,033 59.77
Test (Blind) 1,039 14,139 3 3,117 69.45
Total 20,147 122,626 - 26,245 62.23

Table 49: Splits of the VideoStory dataset.

VideoStory-NUS. The VideoStory-NUS35 (Li et al., 2020) dataset contains social event
videos that were collected from YouTube by querying for common and complex events,
namely Birthday, Camping, Christmas, and Wedding. Specifically, it comes with 105 manu-
ally chosen videos with sufficient inter-event and intra-event variations which are annotated
with descriptive stories obtained through AMT. Each video is annotated by at least 5 dif-
ferent AMT workers, thus resulting in 529 stories in total. More statistics of the dataset can
be found in Table 50.

Avg. Video Avg. Story Avg. Sentence Vocab.Domain Videos Length Length Length Size
Open 105 12 m 35 s 162.6 12.1 4,045

Table 50: Statistics of the VideoStory-NUS dataset.

For experimental purposes, the dataset is randomly split in a ratio of 14:3:3 for training,
validation, and testing respectively. Actual numbers are presented in Table 51.

3.2.7 Video Storytelling - Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different Video Storytelling models
and the results obtained by them.

35https://zenodo.org/record/2383739
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Split Percentage (%) Videos
Training 70 73
Validation 15 16
Test 15 16

Table 51: Splits of the VideoStory-NUS dataset.

Evaluation Measures. To evaluate Video Storytelling models, the Language metrics and
Retrieval metrics presented in Section 3.1.6 are used.

Models. There are a number of different models available for the task of Video Story-
telling. These models combine representations of video and language in an efficient manner
to address the task. In Table 52, we present some exemplar architectures (refer to Combined
column) created to accomplish the task by integrating both video and language inputs. To
understand the optimization techniques used, we also include a column that showcases the
optimization method used to train the models.

Approach Video Frame Language Combined Optimizer RL
(Yu et al., 2016) C3D VGG GRU H-RNN RMSProp 7
(Gella et al., 2018) R3D ResNet-101 GRU seq-seq+context ADAM 7
(Li et al., 2020) - ResNet-101 GRU ResBRNN ADAM 3

Table 52: Exemplar Video Storytelling architectures.

Results. The Video Storytelling results showcases the efficacy of the proposed models. In
Table 53 and Table 54 we present results obtained with a subset of models built using the
datasets presented earlier in Section 3.2.6.

Model B-4 CIDEr METEOR R@1 R@5 MedRank
seq-seq+context (Gella et al., 2018) 1.20 9.37 33.88 - - -

Table 53: Results obtained with different models on the VideoStory dataset.

Model B-4 CIDEr METEOR R@1 R@5 MedRank
mRNN (Mao et al., 2015) 11.8 81.3 18.0 5.34 21.23 29
Deep Video-Text (Xu et al., 2015b) 11.5 79.5 17.7 4.72 19.85 31
H-RNN (Yu et al., 2016) 16.1 64.6 15.5 - - -
ResBRNN (Li et al., 2020) 14.7 94.3 19.6 7.44 25.77 22
ResBRNN-kNN (Li et al., 2020) 15.6 103.6 20.1 - - -

Table 54: Results obtained with different models on the VideoStory-NUS dataset.

3.2.8 Video Storytelling - Discussion

For Video Storytelling, a different set of methods are used for comparing two datasets.
In Table 53, we observe that only one method utilizing the sequence-to-sequence paradigm
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with contextual information (i.e., seq2seq+context) is evaluated on the “VideoStory” dataset.
Nevertheless, another set of methods used for comparison for the “VideoStory-NUS” dataset
is in Table 54. It shows that the approach proposed by Li et al. (2020) using Residual
BRNN with k-Nearest Neighbours (i.e., ResBRNN-kNN) outperforms most of the baseline
methods.

4. Visual Referring Expression Comprehension and Generation

In this section, we explore the task of Visual Referring Expression Comprehension and
Generation. The objective of the task is to ground a natural language expression (e.g. a
noun phrase or a longer piece of text) to objects in a visual input.

4.1 Image Referring Expression Comprehension and Generation

In the following, we provide a detailed description of the Visual Referring Expression Com-
prehension and Generation by using an image as the visual input.

4.1.1 Image Referring Expression Comprehension and Generation - Intro

In a natural environment, people use referring expressions to unambiguously identify, indi-
cate, or point to particular objects. This is usually done with a simple phrase or within a
larger context (e.g. a sentence). Having a larger context provides better scope for avoiding
ambiguity and allows the referential expression to easily map to the target object. However,
there can also be other possibilities in which people are asked to describe a target object
based on its surrounding objects.

This provides us with two different possibilities for the visual referring expression task. In
the first scenario, referring expressions deal with generation, in which an algorithm generates
a referring expression for a given target object that is present in a visual scene. In the second
scenario, the referring expression is used to perform comprehension, in which an algorithm
locates in an image the object described by a given referring expression. Figure 6 shows an
example for the task of referring expression comprehension.

Figure 6: Given an image and a referring expression, an Image Referring Expression Com-
prehension Model identifies it in the image using bounding boxes.

Given these tasks, different approaches have been proposed for referring expression gen-
eration (Golland et al., 2010; Mitchell et al., 2013), comprehension (Kazemzadeh et al.,
2014), and both combined (Mao et al., 2016; Yu et al., 2016). Note that there is a difference
between referring expression tasks and grounding of free-form textual phrases (Rohrbach
et al., 2016b) in an image.
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Image Referring Expression Generation. An initial approach (FitzGerald et al., 2013)
tackled the problem from the perspective of density estimation, in which the goal was to learn
distributions over logical expressions identifying sets of objects in the world. Other research
designed a comprehension-guided referring expression generator (Luo & Shakhnarovich,
2017) by using a comprehension module trained on human-generated expressions to gen-
erate referring expressions.

Image Referring Expression Comprehension. Nagaraja et al. (2016) investigated
referring expression comprehension to integrate contexts between objects. Later on, tech-
niques such as Multiple Instance Learning (MIL) were used to explore context regions and
max-margin based MIL objective functions for training. Further, Hu et al. (2016) leveraged
a natural language query of the object to localize a target object using a Spatial Context
Recurrent Convnet (SCRC) model. It operates as a scoring function on candidate boxes for
object retrieval, integrating spatial configurations and global scene-level contextual infor-
mation. This explicit modeling of the referent and context region pairs has proven useful.
Approaches such as compositional modular networks (Hu et al., 2017b) analyzed referential
expressions by identifying entities and relationships mentioned in the input expression and
grounding them all in the scene. Such an approach has been shown to effectively inspect lo-
cal regions and pairwise interactions between them. A modular approach was also explored
where three modular components related to subject appearance, location, and relationship
to other objects was used to model with Modular Attention Network (Yu et al., 2018). It
has proven effective at focusing on the subjects and their relationships. Approaches such has
GroundNet (Cirik et al., 2018a) have leveraged syntactic analysis of the input referring ex-
pression to build a dynamic computation graph of neural modules that definesan architecture
for performing localization. Variational models have also been used for referential expression
comprehension where variational Bayesian methods called variational context (Zhang et al.,
2018) were used to solve the problem of complex context modeling. These methods have
proven capable of exploiting the relation between the referent and context, thereby reducing
the search space of context. Furthermore, an accumulated attention mechanism (Deng et al.,
2018) has been proposed to accumulate the attention for useful information in image, query,
and objects. It has demonstrated the ability to reduce the redundancy and noise issues that
were in other approaches.

Recently, a Cross-Modal Relationship Extractor (CMRE) and a Gated Graph Convo-
lutional Network (GGCN) were combined into a cross-modal relationship inference net-
work (Yang et al., 2019). CMRE has been shown to highlight objects and relationships
which have connections with a given referring expression, while GGCN computes multi-
modal semantic contexts by fusing information from different modes and propagating mul-
timodal information through the structured relation graph. Coming from a perspective of
natural language understanding, a Recursive Grounding Tree (Hong et al., 2019) sought to
automatically compose a binary tree structure by parsing the referring expression, in order
to perform visual reasoning along the tree in a bottom-up fashion. It has been shown to
allow gradients from continuous score functions with a discrete tree construction. There
has also been interest in combining visual reasoning with referential expressions through the
creation of new dataset (Liu et al., 2019). Most of the above approaches use bounding box
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localization, but additionally object segmentation (Liu et al., 2017) has also been explored
for referring expression comprehension.

Image Referring Expression Generation and Comprehension. Few approaches
have performed both generation and comprehension tasks. Visual context (Mao et al., 2016;
Yu et al., 2016) was initially used in referring expression models to find visual comparison
to other objects within an image. It has shown significant improvements. Further, a unified
framework (Yu et al., 2017a) was designed using a speaker, a listener, and a reinforcer.
The speaker generates referring expressions, the listener comprehends referring expressions,
and the reinforcer introduces a reward function to guide sampling of more discriminative
expressions. Feedback from the discriminative reinforcer has proven capable of benefiting
the tasks. The role of attributes (Liu et al., 2017) was also studied to show that they help
in disambiguation when referring to a particular object.

4.1.2 Image Referring Expression Comprehension and Generation - Datasets

For the task of image referring expression, both real and synthetic image datasets have been
designed. In the following, we present the details of the datasets in separate sections.

Real Images. In the real and natural images category, the ImageCLEF36 and MSCOCO2

(see Section 3.1.2) datasets are commonly used for creating referring expression annotations.
From a subset of ImageCLEF’s IAPR dataset36, referring expressions are collected in a game-
based setting, namely ReferItGame38 (Kazemzadeh et al., 2014). The resulting dataset is
called as RefCLEF37 and its statistics can be found in Table 55.

Real Distinct Referring Train/Test
Images Objects Expressions Splits
19,894 96,654 130,525 Per-Image split

Table 55: Statistics of the RefCLEF dataset.

The RefCOCO37, RefCOCO+37 (Yu et al., 2016), and RefCOCOg (Mao et al., 2016)
datasets were all created using MSCOCO images. For RefCOCO and RefCOCO+, the
“People vs. Object” split evaluates images containing multiple people (Test A) and images
containing multiple instances of all other objects (Test B). Both RefCOCO and RefCOCO+
were collected in the same interactive setting as above, ReferItGame38 (Kazemzadeh et al.,
2014). Table 56 presents the statistics of the RefCOCO dataset whereas Table 57 shows the
statistics of the RefCOCO+ dataset.

Total Referring Train/TestImages Objects Expressions Splits
19,994 50,000 142,209 People vs. Object

Table 56: Statistics of the RefCOCO dataset.

36https://www.imageclef.org/SIAPRdata
37https://github.com/lichengunc/refer
38http://tamaraberg.com/referitgame

1218



Trends in Integration of Vision and Language Research

One important distinction between the RefCOCO and RefCOCO+ datasets is that the
latter was collected in a comparatively restrictive setting when compared to the former.
Specifically, the usage of location words was not permitted in the referring expressions in
case of RefCOCO+ whereas there was no such restriction on the language for RefCOCO.

Total Referring Train/TestImages Objects Expressions Splits
19,992 49,856 141,564 People vs. Object

Table 57: Statistics of the RefCOCO+ dataset.

To overcome some of the limitations of RefCLEF, a dataset based on based on MSCOCO2

was created. This dataset, known as RefCOCOg39 (Mao et al., 2016), contains much longer
sentences and was collected in a non-interactive setting using AMT, in contrast to the
interactive setting used with RefCLEF, RefCOCO, and RefCOCO+. The statistics of this
dataset is presented in Table 58.

Total Referring Train/TestImages Objects Expressions Splits
26,711 54,822 85,474 Per-Object

Table 58: Statistics of the RefCOCOg dataset.

Earlier mentioned referring expression datasets use single sentences for image referring
expression. In contrast, the GuessWhat40 (de Vries et al., 2017) dataset was created with a
cooperative two-player guessing game, the goal of which was to locate an unknown object
in an image (collected from MSCOCO) by asking a sequence of questions. Hence, it creates
multiple sentences (i.e., a dialog) for a given image in order to perform referring expression.
Another notable aspect of this dataset is that only images containing a number of objects
in the range of 3 to 20 are chosen from MSCOCO. The dialogue collection was achieved
via crowdsourcing using AMT. For evaluation, the dataset is randomly split into 70% for
training, 15% for validation, and 15% for testing. Table 59 presents more details about the
dataset.

Dataset Type Images Objects Dialogues Questions Words Vocab. Size
Full 66,537 134,073 155,280 821,889 3,986,192 11,465
Finished 65,112 125,349 144,434 732,081 3,540,497 10,985
Success 62,954 114,271 131,394 648,493 3,125,219 10,469

Table 59: Statistics of “GuessWhat” dataset. The row ‘Full’ means all the dialogues are
included, ‘Finished’ means all finished dialogues (successful and unsuccessful) are included,
and ‘Success’ means only successful dialogues are included.

39https://github.com/mjhucla/Google_Refexp_toolbox
40https://github.com/GuessWhatGame/guesswhat
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Synthetic Images. In the synthetic category, the CLEVR-Ref+41 (Liu et al., 2019)
dataset was introduced to address issues such as bias in datasets with real images, since it
has been recently been shown that referring expression models suffer from unintended biases
(Cirik et al., 2018b). CLEVR-Ref+ reuses the images from the CLEVR dataset (see Section
5.2.2), while replacing the questions in CLEVR with referring expressions and answers with
referred objects. The main purpose of CLEVR-Ref+ is to diagnose image reasoning with
referring expressions by exercising the desired control over the nature of samples. Table 60
present splits of the dataset.

Split Images Referring Expressions
Training 70,000 700,000
Validation 15,000 150,000
Test 15,000 150,000

Table 60: Splits of the CLEVR-Ref+ dataset.

4.1.3 Image Referring Expression Comprehension and Generation -
Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different Image Referring Expression
models and the results achieved by them.

Evaluation Measures. The measure that is usually used for the evaluation of Image
Referring Expression models is Precision@1, i.e., precision calculated with the Intersection
over Union (IoU) ratio between the true and predicted bounding box.

Models. The models designed to approach the task of Image Referring Expression provide
an effective way to optimize the Precision@1 measure by identifying the right object in a
visual input which matches the textual phrase. In Table 61, we present some exemplar
architectures (refer to Combined column) created to address the task by integrating both
image and language inputs. We also include a column that showcases the optimization
techniques used to train those models.

Results. Several models and datasets have been created to address the task of Image
Referring Expression. These datasets provide variety in the content so that they enhance
the generalization ability of the models. In this section, we cover the results obtained by the
models on some representative datasets. Table 62 and Table 63 presents results obtained with
a subset of models built using the datasets such as RefCOCO, RefCOCO+, and RefCOCOg
presented in Section 4.1.2.

4.1.4 Image Referring Expression Comprehension and Generation -
Discussion

For Image Referring Expression, on all MSCOCO based datasets (i.e., RefCOCO, Ref-
COCO+, and RefCOCOg) the technique proposed by Yang et al. (2019) outperforms ex-
isting baselines. This approach builds a Cross-Modal Relationship Extractor (CMRE) to

41https://cs.jhu.edu/~cxliu/2019/clevr-ref+.html
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Approach Image Language Combined Optimizer RL
(Mao et al., 2016) VGG LSTM MMI SGD 7
(Nagaraja et al., 2016) VGG LSTM Neg. Bag SGD 7
(Yu et al., 2016) VGG LSTM Context - 7
(Luo & Shakhnarovich, 2017) VGG BiLSTM CG ADAM 7
(Liu et al., 2017) VGG LSTM Combined ADAM 7
(Hu et al., 2017b) VGG LSTM CMN - 7
(Yu et al., 2017a) VGG LSTM Reinforcer ADAM 3
(Zhang et al., 2018) VGG BiLSTM VarContext SGD 3
(Deng et al., 2018) VGG LSTM AccumulateAtt SGD 7
(Zhuang et al., 2018) VGG LSTM ParallelAtt ADAM 7
(Yu et al., 2018) ResNet-101 BiLSTM MAttNet - 7
(Hong et al., 2019) ResNet-101 BiLSTM RVG-Tree ADAM 7
(Yang et al., 2019) ResNet-101 BiLSTM CMRIN ADAM 7

Table 61: Exemplar Image Referring Expression and Comprehension architectures.

RefCOCOModel val testA testB
MMI (Mao et al., 2016) - 63.15 64.21
Neg. Bag (Nagaraja et al., 2016) 76.90 75.60 78.00
Context (Yu et al., 2016) 76.18 74.39 77.30
CG (Luo & Shakhnarovich, 2017) - 74.04 73.43
Attributes (Liu et al., 2017) - 78.85 78.07
CMN (Hu et al., 2017b) - 75.94 79.57
Reinforcer (Yu et al., 2017a) 79.56 78.95 80.22
VarContext (Zhang et al., 2018) - 78.98 82.39
AccumulateAtt (Deng et al., 2018) 81.27 81.17 80.01
ParallelAtt (Zhuang et al., 2018) 81.67 80.81 81.32
MAttNet+ResNet-101 (Yu et al., 2018) 85.65 85.26 84.57
RVG-Tree+ResNet-101 (Hong et al., 2019) 83.48 82.52 82.90
CMRIN+ResNet-101 (Yang et al., 2019) 86.99 87.63 84.73

Table 62: Comparison of Precision@1 (%) scores of different methods on RefCOCO.

highlight objects and their relationships. Furthermore, a Gated Graph Convolutional Net-
work (GGCN) is used to compute multimodal semantic contexts by fusing information from
different modes and propagating multimodal information. This Cross-Modal Relationship
Inference Network (CMRIN) along with ResNet-101 visual features have been shown to
achieve the best results.

4.2 Video Referring Expression Comprehension and Generation

In the following, we describe the setting of Visual Referring Expression Comprehension and
Generation task when a video is used as the visual input.
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RefCOCO+ RefCOCOgModel val testA testB val test
MMI (Mao et al., 2016) - 48.73 42.13 - -
Neg Bag (Nagaraja et al., 2016) - - - - 68.40
Context (Yu et al., 2016) 58.94 61.29 56.24 - -
CG (Luo & Shakhnarovich, 2017) - 60.26 55.03 - -
Attributes (Liu et al., 2017) - 61.47 57.22 - -
CMN (Hu et al., 2017b) - 59.29 59.34 - -
Reinforcer (Yu et al., 2017a) 62.26 64.60 59.62 71.65 71.92
VariationalContext (Zhang et al., 2018) - 62.56 62.90 - -
AccumulateAttn (Deng et al., 2018) 65.56 68.76 60.63 - -
ParallelAttn (Zhuang et al., 2018) 64.18 66.31 61.46 - -
MAttNet+ResNet-101 (Yu et al., 2018) 71.01 75.13 66.17 78.10 78.12
RVG-Tree+ResNet-101 (Hong et al., 2019) 68.86 70.21 65.49 76.82 75.20
CMRIN+ResNet-101 (Yang et al., 2019) 75.52 80.93 68.99 80.45 80.66

Table 63: Comparison of Precision@1 (%) scores of different methods on the RefCOCO+
and RefCOCOg datasets.

4.2.1 Video Referring Expression Comprehension and Generation - Intro

When compared to image referring expression comprehension and generation, the task of
video referring expression comprehension and generation is less explored at the time of
publication of this survey. Although, there has been a surge in interest in tackling the
spatio-temporal contexts and motion features that are inherent to videos, most of the works
thus far, however, have concentrated on only one variant of image referring expression,
namely comprehension. Vasudevan et al. (2018) used stereo videos to exploit richer and more
realistic temporal-spatial contextual information along with gaze cues for referring expression
comprehension. Figure 7 shows an example of the video referring expression comprehension.
Another approach by Khoreva et al. (2018) explored Language Referring Expressions to

Video Referring 
Expression 

Model
The white car 

parked on the left 
side of the road

Figure 7: Given a video (represented as a sequence of frames from Vasudevan et al. (2018))
and a referring expression, a Referring Expression Comprehension Model identifies it in the
video using bounding boxes.

point to the objects in the video to achieve object segmentation. Slightly different from
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the described task, Wang et al. (2020) proposed an end-to-end boundary-aware model for
video grounding. The model uses a lightweight branch to predict semantic boundaries
corresponding to the given linguistic information. It aggregates contextual information by
explicitly modeling the relationship between the current element and its neighbours.

4.2.2 Video Referring Expression Comprehension and Generation - Datasets

In this section, we present the datasets used to evaluate the task of Video Referring Expres-
sion Comprehension.

Object Referring in videos with Gaze (ORGaze). For performing Video Referring
Expression, the Cityscapes42 dataset containing a diverse set of stereo video sequences
recorded in street scenes has been modified to have gaze information. Therefore, the
ORGaze43 (Vasudevan et al., 2018) dataset contains object referring in videos with lan-
guage and human gaze. More details of the dataset is presented in Table 64.

Videos Objects Condition Lighting Annotations
Bounding Boxes

5,000 30,000 Urban Daytime Gaze Recordings
Language Expression

Table 64: Statistics of the ORGaze dataset.

The authors split the cities in the training set of Cityscapes for training and validation
while using all the cities in validation set of Cityscapes for testing purposes. More concretely,
the validation set is constructed by selecting one city (e.g., Zürich) from Cityscapes training
set while leaving the rest of the cities as part of the training set. For constructing the
test set, the videos from all the cities in Cityscapes validation set (e.g., Frankfurt, Lindau,
Münster) of Cityscapes are used. Of the total 30,000 annotated objects, 80% has been used
for training and the remaining 20% was reserved for model evaluation of the task.

4.2.3 Video Referring Expression Comprehension and Generation -
Evaluation Measures, Models, and Results

In this section, we review the evaluation measures used to benchmark different Video Re-
ferring Expression Comprehension models and the results achieved by them.

Evaluation Measures. The measure that is used for the evaluation of Video Referring
Expression Comprehension model is “Top-1 Accuracy” and also object proposal accuracy re-
ferred with Language-based Object Proposals (LOP), Faster R-CNN (FRCNN), and Edge-
Box (Zitnick & Dollár, 2014).

Models. Many models have been created to solve the task of Video Referring Expression
Comprehension. In Table 65, we present some exemplar architectures (refer to Combined
column) created to address the task by integrating both video and language. We also include
a column that showcases the optimization techniques used to train those models.

42https://www.cityscapes-dataset.com
43https://people.ee.ethz.ch/~arunv/ORGaze.html
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Approach Video Frame Language Combined Optimizer RL
(Vasudevan et al., 2018) - VGG LSTM WithGaze - 7

Table 65: Exemplar Video Referring Expression and Comprehension architectures.

Results. As discussed earlier, several models have been created to approach the task of
Video Referring Expression Comprehension. In Table 66 we present results obtained with a
subset of models built using the ORGaze dataset presented earlier in Section 4.2.2.

Methods Edgebox FRCNN (↑) LOP (↑)
MNLM (Kiros et al., 2014b) - 23.954 32.418
VSEM (Liu et al., 2015) - 24.833 32.961
MCB (Fukui et al., 2016) - 26.445 33.366
SimModel (Plummer et al., 2017a) 4.5 18.431 35.556
WithGaze (Vasudevan et al., 2018) - 47.256 47.012

Table 66: Comparison of Top-1 Accuracy (%) of different methods on the ORGaze dataset.

4.2.4 Video Referring Expression Comprehension and Generation -
Discussion

The Video Referring Expression Comprehension task is benchmarked using a single dataset.
Evaluated using different task-specific metrics, the approach proposed by Vasudevan et al.
(2018), which uses the gaze information, produces the best results.

5. Visual Question Answering, Reasoning, and Entailment

In this section, we explore three different tasks, namely, Visual Question Answering, Visual
Reasoning, and Visual Entailment. The goal of each of these tasks are different. However,
they share the common intention of answering questions when conditioned on a visual input.
In the following sections, we elaborate on each of these three tasks separately.

5.1 Visual Question Answering

The goal of Visual Question Answering (VQA) is to learn a model that comprehends visual
content at both the global and local level for finding an association with pairs of questions
and answers in the natural language form. The visual information for VQA includes both
images and videos.

5.1.1 Image Question Answering - Introduction

The aim of Image Question Answering (Image Q&A) is to answer natural language questions
about the contents of images. Earlier research efforts have focused on designing different
algorithms and constructing datasets to address this challenge. The first approaches (Mali-
nowski & Fritz, 2014; Malinowski et al., 2015; Geman et al., 2015) considered Image Q&A
as a Visual Turing Test, where the expectation was to incorporate human-level abilities for
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semantically accessing the visual information to answer different questions. These were then
improved as fill-in-the-blank tasks (Yu et al., 2015), where the goal of the system was focused
on multiple-choice question-answering for images. Also, it was expanded to address both
multilingual (Gao et al., 2015) and automatic question generation, in which descriptions
of sentences are converted into questions (Ren et al., 2015a). However, it lacked natural
language questioning ability of humans. Hence, a broader task was proposed with an aim
of addressing open-ended Image Q&A (Antol et al., 2015; Agrawal et al., 2017), where the
challenge was to ask a free-form natural language question about an image and make the
system to answer the question. Figure 8 provides a schematic representation of the task
where a free-form question about the contents of an image is asked to obtain an answer.

Image Question Answering
Model

What is the 
color of shirt?

 

       

        Red

      

     

Figure 8: Given an image and a question about the image, an Image Question Answering
model produces an answer to it.

However, designing such a system can contain several other challenges, such as coming
up with strong baselines (Jabri et al., 2016). To address these, binary image Q&A (Zhang
et al., 2016) was explored by providing complementary images for abstract scenes. These
complementary images were used to provide visual verification of concepts contained in the
questions. Some of the questions were understood as a loose, global association between
Q&A sentences and images. Hence, more confined and dedicated tasks were created for
relating local regions in the images (Zhu et al., 2016) by addressing object-level grounding.
Some approaches (Zhang et al., 2018) concentrated only on counting objects in natural
images. There are many methods that are proposed to address the challenging image Q&A
task. The details about different methods are already covered in earlier surveys (Kafle
& Kanan, 2017; Wu et al., 2017). Therefore, we briefly present new methods that were
introduced after the publication of these surveys.

Recent works aim at interpretability or explainability by overcoming priors (Agrawal
et al., 2018), concentrating better on the image to extract relevant information (Goyal et al.,
2019), generating human-interpretable rules that provide better insights (Manjunatha et al.,
2019), and cycle-consistency (Shah et al., 2019a), while other works try to understand the
text inside an image to answer and reason about it (Singh et al., 2019). More recent works
sought to incorporate outside knowledge (Marino et al., 2019) in the image Q&A framework
to support real-world knowledge-aware question answering (Shah et al., 2019b).

There are different kinds of learning approaches used for image Q&A, such as Multi-task
learning and Federated learning. A multi-task learning approach (Nguyen & Okatani, 2019)
is used to learn a vision-language representation that is shared by many tasks from their
diverse datasets to address image Q&A. In contrast, federated learning is used with the
aimNet (Liu et al., 2020) and is validated on federated learning settings that include both
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horizontal and vertical federated learning. To focus on language priors, a modular language
attention mechanism is used by Jing et al. (2020) to parse a question into three phrase rep-
resentations, namely type representation, object representation, and concept representation.
It has prevented language priors from dominating the answering process.

5.1.2 Image Question Answering - Datasets

Several datasets were created in the past decade to address the challenge of image question
answering. In the following, we cover the datasets that are extensively used for this Human-
Computer Interaction (HCI) themed task.

VQA v1.0. VQA v1.044 (Antol et al., 2015) contains open-ended questions about images.
These questions target different areas of an image, including background details and the
underlying contexts. The answers are also open-ended and contain either a few words or
a closed set of answers that can be provided in a multiple-choice format. Table 67 and
Table 68 present the dataset splits of images with real and abstract scenes observed in the
dataset respectively.

Dataset Real Questions Answers Textual Annotations
Split Scenes per Image per Question Questions Answers
Training 82,783 3 10 248,349 2,483,490
Validation 40,504 3 10 121,512 1,215,120
Test 81,434 3 10 244,302 2,443,020

Table 67: Splits of the VQA v1.0 dataset with real scenes.

Dataset Abstract Questions Answers Textual Annotations
Split Scenes per Image per Question Questions Answers
Training 20,000 3 10 60,000 600,000
Validation 10,000 3 10 30,000 300,000
Test 20,000 3 10 60,000 600,000

Table 68: Splits of the VQA v1.0 dataset with abstract scenes.

VQA v2.0. VQA v2.0 extends VQA v1.0 and has three parts: Balanced Real Images,
Balanced Binary Abstract Scenes, and Abstract Scenes. Table 69 and Table 70 presents the
dataset splits of the images with balanced real and binary abstract scenes observed in the
dataset respectively. However, abstract scenes in VQA v2.0 are same as that of VQA v1.0.

The term complementary pairs in Table 69 means that a given question is associated
with a pair of similar images such that the answer is different depending on the image (i.e.
two different answers)

Outside Knowledge VQA (OK-VQA). OK-VQA45 (Marino et al., 2019) uses a subset
of MSCOCO (see Section 3.1.2) and is constructed with additional annotations such as

44https://visualqa.org
45https://okvqa.allenai.org
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Dataset Real Answers Textual Annotations
Split Images per Question Questions Answers Complementary Pairs
Training 82,783 10 443,757 4,437,570 200,394
Validation 40,504 10 214,354 2,143,540 95,144
Test 81,434 10 447,793 4,477,930 -

Table 69: Splits of the VQA v2.0 dataset with balanced real images.

Dataset Binary Abstract Answers Textual Annotations
Split Scenes per Question Questions Answers
Training 20,629 10 22,055 220,550
Validation 10,696 10 11,328 113,280

Table 70: Splits of VQA v2.0 with balanced binary abstract scenes.

questions, answers, knowledge category, etc. Table 71 presents more details about the
dataset, while the Table 72 shows the splits of it.

Total Total Answers per Unique Unique Unique Total Average
Images Questions Question Questions Answers Ques. Words Categories Ans. Length
14,031 14,055 5 12,591 14,454 7,178 10 + 1 1.3

Table 71: Statistics of the OK-VQA dataset.

Split Percent (%) Questions
Training 64 9,009
Test 36 5,046

Total 100 14,055

Table 72: Splits of the OK-VQA dataset.

Knowledge-aware VQA (KVQA). The KVQA46 (Shah et al., 2019b) dataset was de-
signed to emphasize questions that require access to external knowledge. Table 73 presents
more details about the dataset, while Table 72 shows the splits of it. In order to get a mean
score, the KVQA dataset provides five such splits.

Total Q&A Unique Unique Avg. Avg. Avg. number of
Images Pairs Named Entities Answers Ques. Len Ans. Len Questions per Image
24,602 183,007 18,880 19,571 10.14 1.64 7.44

Table 73: Statistics of the KVQA dataset.

46http://malllabiisc.github.io/resources/kvqa
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Split Percent (%) Images Q&A pairs
Training 70 17k 130k
Validation 20 5k 34k
Test 10 2k 19k

Table 74: Splits of the KVQA dataset.

5.1.3 Image Question Answering - Evaluation Measures, Models, and
Results

In this section we describe only the evaluation measures used for Image Question Answer-
ing as Models, Results, and some Discussion are extensively presented in the recent
surveys (Wu et al., 2017).

Evaluation Measures Image Q&A models are evaluated based on the Accuracy measure.

5.1.4 Video Question Answering - Introduction

The goal of Video Question Answering (Video Q&A) is to answer natural language questions
about videos. Unlike Image Q&A, Video Q&A is less explored. Nevertheless, there are a
few works which have explored this spatio-temporal domain. One of the early attempts in
this domain was jointly parsing the videos with corresponding text to answer queries (Tu
et al., 2014). Further, an open-ended Movie Q&A (Tapaswi et al., 2016) with multiple-choice
question pairs was designed to solve challenging questions that require semantic reasoning
over a long temporal domain. Additionally, to limit the involvement of crowdworkers, the
task was modified using fill-in-the-blank questions (Zhu et al., 2017; Mazaheri et al., 2017)
and were automatically generated from different manually created video description datasets
(Section 3.1.5). Other works (Zeng et al., 2017) modified this dataset to support answering
free-form natural language questions. Beyond this, open-ended video question answering is
also addressed with methods such as spatio-temporal attentional encoder-decoder learning
framework (Zhao et al., 2017). There has been interest shown in jointly addressing multiple
tasks that handle video and language. High-level concept words (Yu et al., 2017b) are
detected in order to be integrated with any video and language models addressing fill-in-the
blank and multiple-choice test. Spatio-temporal reasoning from videos to answer questions
has also been addressed by designing a spatial and temporal attention mechanism (Jang
et al., 2017).

Recently, due to large interest in Video Q&A, similar to Movie Q&A, six popular TV
shows were used to create a dataset, where questions are compositional (Lei et al., 2018).
The TV Q&A dataset made the proposed multi-stream models to jointly localize relevant
moments within a clip, comprehend subtitle-based dialogue, and then recognize relevant
visual concepts. Furthermore, spatio-temporal grounding (Lei et al., 2020) is employed to
link depicted objects to visual concepts in questions and answers. Figure 9 shows an example
of this task, in which the model is given a video and a question and is asked to choose an
answer from multiple choices.
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Figure 9: Given a video (represented as sequence of frames from TV Q&A dataset) and
question, a Video Question Answering model finds the right answer from Multiple Options.

5.1.5 Video Question Answering - Datasets

Similar to image question answering, several datasets were created to address the challenge
of video question answering. In the following, we cover those datasets that are popular and
extensively used.

MovieQA. The MovieQA47 (Tapaswi et al., 2016) dataset is used to evaluate story com-
prehension of both video and text in an automatic manner. The dataset consists of almost
15,000 multiple choice questions and answers obtained from over 400 movies having high
diversity. Table 75 reports the statistics and splits of the dataset.

Training Validation Test Total
Movies with Plots and Subtitles

Movies 269 56 83 408
QA pairs 9848 1958 3138 14944
Q words 9.3 9.3 9.5 9.3 ± 3.5
CA. words 5.7 5.4 5.4 5.6 ± 4.1

Movies with Video Clips
Movies 93 21 26 140
QA pairs 4318 886 1258 6462
Video clips 4385 1098 1288 6771
Mean clip Length 201.0 s 198.5 s 211.4s 202.7 ± 216.2 s
Mean QA shots 45.6 49.0 46.6 46.3 ± 57.1

Table 75: Statistics & Splits of the MovieQA dataset. The column ‘Total’ represents mean
counts with standard deviations.

TVQA. The TVQA48 (Lei et al., 2018) dataset was created from videos of six different
English TV shows, viz. Friends, The Big Bang Theory, How I Met Your Mother, House
M.D., Grey’s Anatomy, and Castle. It consists of 460 hours of video and the questions are
designed to be compositional, expecting the models to comprehend subtitles-based dialogue
and to recognize relevant visual concepts. Table 76 presents the statistics of the dataset,
while Table 77 shows the splits.

47http://movieqa.cs.toronto.edu/home
48http://tvqa.cs.unc.edu
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Video Video Clip Q&A Total Questions per Answers per
Clips Length Pairs Duration Video Clip Video Clip
21,793 60 to 90 s 152,545 460 h 7 5

Table 76: Statistics of the TVQA dataset.

The testing data of TVQA is further split into two subsets named “test-public” containing
7,623 Q&A pairs and “test-reserved” consisting of 7,630 Q&A pairs. The test-public set is
available for the TVQA leaderboard49 whereas test-reserved is preserved for future use.

Split Percent (%) Q&A pairs
Training 80 122,039
Validation 10 15,253
Test 10 15,253

Table 77: Splits of the TVQA dataset.

The TVQA+50 (Lei et al., 2020) is an augmented subset of the original TVQA dataset
where the augmentation comes in the form of bounding boxes linking depicted objects to
visual concepts in both questions and answers. Table 78 presents the splits of TVQA+
dataset.

Avg. Span Avg. Video Annotated Bound.Split Q&As Clips Length (s) Length (s) Images Boxes Categories

Training 23,545 3,364 7.20 61.49 118,930 249,236 2,281
Validation 3,017 431 7.26 61.48 15,350 32,682 769
Test 2,821 403 7.18 61.48 14,188 28,908 680
Total 29,383 4,198 7.20 61.49 148,468 310,826 2,527

Table 78: Splits of the TVQA+ dataset.

5.1.6 Video Question Answering - Evaluation Measures, Models and Results

In this section, we present the evaluation measures, models, and results achieved with various
architectures of Video Q&A.

Evaluation Measures. Video Q&A models are evaluated based on Accuracy. In addition,
other measures such as Temporal mean Intersection-over-Union (Temp. mIoU) (Hendricks
et al., 2017), Answer-Span joint Accuracy (ASA), that jointly evaluates both answer predic-
tion and span prediction, and object grounding performance calculated with mean Average
Precision (Grd. mAP) (Lei et al., 2020) are used.

Models. The models which are created to address the task of Video Question Answering
aim to provide an overall understanding of the visual and the aligned textual content such as
subtitles. In Table 79, we present some exemplar architectures (refer to Combined column)

49http://tvqa.cs.unc.edu/leaderboard.html
50http://tvqa.cs.unc.edu/download_tvqa_plus.html
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created to address the task by integrating both video and language. We also include a
column that showcases the optimization techniques used to train those models.

Approach Video Frame Language Combined Optimizer RL
(Jang et al., 2017) C3D ResNet-152 LSTM ST-VQA ADAM 7
(Lei et al., 2018) - R-CNN+ResNet-101 BiLSTM Two-stream - 7
(Lei et al., 2020) - R-CNN+ResNet-101 BERT STAGE ADAM 7

Table 79: Exemplar Video Question Answering architectures.

Results. Several models have been created to approach the task of Video Question An-
swering. At the same time, many datasets have been created to provide diversity in the
content so that they boost the generalization ability of the models. In this section, we
cover the results achieved by the models on some representative datasets. Table 80 and Ta-
ble 81 presents results obtained with a subset of models built using the TVQA and TVQA+
datasets presented in Section 5.1.5. Results for TVQA51 and TVQA+52 can also be found
on the respective leaderboards.

Model Accuracy (↑)
Random 20.00
Retrieval-SkipThought 24.77
Longest Answer 30.22
NNS-SkipThought (Subtitle) 38.29
NNS-TFIDF (Subtitle) 50.79
Two-stream (Subtitle+Videos) (Lei et al., 2018) 66.36
Three-stream (Subtitle+Videos+Questions) (Lei et al., 2018) 68.48

Table 80: Accuracy attained on TVQA test (public) set. All models use timestamp anno-
tation without which the scores achieved by them are lower.

Model Accuracy Grd. mAP (↑) Temp. mIOU (↑) ASA (↑)
ST-VQA (Jang et al., 2017) 48.28 - - -
Two-stream (Lei et al., 2018) 68.13 - - -
STAGE-LXMERT (Lei et al., 2020) 71.46 21.01 26.31 18.04
STAGE (Lei et al., 2020) 74.83 27.34 32.49 22.23
Human (Lei et al., 2020) 90.46 - - -

Table 81: Results obtained on TVQA+ test set.

5.1.7 Video Question Answering - Discussion

It has been observed from STAGE (Lei et al., 2020) that aligned fusion is essential for
improving Video Q&A performance. STAGE uses all of the existing information such as

51http://tvqa.cs.unc.edu/leaderboard.html
52https://competitions.codalab.org/competitions/22705#results
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Subtitles, Video, and Questions to build an efficient model. It has also proven to be effective
if the models have access to the timestamp information as shown in Table 80.

5.2 Visual Reasoning

The goal in visual reasoning is to learn a model that comprehends the visual content by
reasoning about it. Both images and videos are used as visual inputs for visual reasoning.
In the following, we provide a detailed description of this complex and challenging task.

5.2.1 Image Reasoning - Introduction

The goal of image reasoning is to answer sophisticated queries by reasoning about the vi-
sual world. Initial efforts (Johnson et al., 2017a) aimed at designing diagnostic tests going
beyond benchmarks such as VQA. They reduced the biases by having detailed annota-
tions describing the kind of reasoning each question requires. It has also been observed
that VQA models struggle when comparing the attributes of objects, or when novel at-
tribute combinations needs to be recognized (such as in compositional reasoning). A novel
approach (Johnson et al., 2017b) used a program generator to construct an explicit represen-
tation of the reasoning process, and an execution engine to execute the resulting program,
producing an answer. Then, end-to-end module networks (Hu et al., 2017) were proposed
which learn to reason by directly predicting instance-specific network layouts without the
aid of a parser as used in neural module networks. Santoro et al. (2017) went beyond and
proposed Relation Networks (RNs) as a simple plug-and-play module to solve the problem
of visual reasoning. RNs are further used to learn relation-aware visual features for content
based image retrieval (Messina et al., 2018) and also Multi-Relational Networks (Chang
et al., 2018). Furthermore, global context reasoning (Cao et al., 2018) is explored for better
aligning image and language domains in diverse and unrestricted cases.

A recent approach (Perez et al., 2018) introduced a general-purpose conditioning method
called Feature-wise Linear Modulation (FiLM) layers which influence neural network com-
putation via a simple, feature-wise affine transformation based on conditioning information.
FiLM was modified by Strub et al. (2018) to generate parameters of FiLM layers going up
the hierarchy of a convolutional network in a multi-hop fashion rather than all at once.
Cascaded Mutual Modulation (CMM) (Yao et al., 2018) is an end-to-end visual reasoning
model that also uses the FiLM technique to enable the textual/visual pipeline to mutually
control each other. Another approach modified neural modular networks (Hu et al., 2018)
such that it performs compositional reasoning by automatically inducing a desired sub-task
decomposition without relying on strong supervision. Mascharka et al. (2018) proposed a
set of visual-reasoning primitives which, when composed, manifest as a model capable of
performing complex reasoning tasks in an explicitly interpretable manner. Also, in the con-
text of interpretable learning frameworks, Learning-By-Asking (LBA) (Misra et al., 2018b)
attempted to closely mimic natural learning with the goal to make it more data efficient than
the traditional VQA setting. Further, compositional attention networks (Hudson & Man-
ning, 2018) were designed as fully differentiable neural network architectures to facilitate
explicit and expressive reasoning. The goal of this architecture is to provide a strong prior
for iterative reasoning, allowing it to support structured learning, as well as to generalize
from a modest amount of data.
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Recently, neural-symbolic visual question answering (Yi et al., 2018) attempted to com-
bine deep representation learning with symbolic program execution. It first recovers struc-
tural scene representation from the image and a program trace from the question. This was
extended with a Neuro-Symbolic Concept Learner (NS-CL) (Mao et al., 2019) that learns
visual concepts, words, and semantic parsing of sentences without explicit supervision. It
learns by simply looking at images and reading paired questions and answers. Further, a
multimodal relational network (MuRel) (Cadène et al., 2019) was proposed to learn end-to-
end reasoning over real images. Additionally, Aditya et al. (2019) used spatial knowledge to
aid visual reasoning. Their framework combined knowledge distillation, relational reason-
ing, and probabilistic logical languages. Existing diagnostic tests have been further modified
with referring expressions to handle bias (Liu et al., 2019) and with structural, relational,
and analogical reasoning in a hierarchical representation (Zhang et al., 2019). Explainable
and explicit neural modules (Shi et al., 2019) have also been explored with scene graphs.
Objects as nodes and pairwise relationships as edges were used for explainable and explicit
reasoning with structured knowledge.

Further expanding the scope of inquiry on this subject, Andreas et al. (2016a, 2016b)
exploit the compositional linguistic structure of complex questions by forming neural mod-
ule networks which query about the abstract shapes observed in an image. Improvement is
further seen in how images are interpreted. For example, compositional question answer-
ing (Hudson & Manning, 2019) was addressed with scene graph structures on real-world
images going beyond abstract shapes. Figure 10 demonstrates the task of reasoning about
real-world images.

Image Reasoning
Model

Does the device 
to the right of 
the bag look 

open and red?

Is the device 
that is not off 

open and 
white?

 

       
         No

        Yes

Figure 10: Given a real-world image and a question, an Image Reasoning Model reasons
about the question to produce an answer.

Zellers et al. (2019) introduced a reasoning task that requires commonsense knowledge,
while the goal of NLVR (Suhr et al., 2017) and NLVR2 (Suhr et al., 2019) tasks is to
determine whether a sentence is true about a visual input or not.

5.2.2 Image Reasoning - Datasets

For image reasoning, both real and synthetic image datasets have been developed. In the
following, we present the datasets belonging to both of these categories.

Compositional Language and Elementary Visual Reasoning (CLEVR). CLEVR53

(Johnson et al., 2017a) is a diagnostic dataset created using a 3D computer graphics toolkit

53https://cs.stanford.edu/people/jcjohns/clevr
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known as Blender54. It consists of synthetic images of simple 3D objects that vary in their
attributes, viz. size, color, shape, and material. Images contain three to ten different com-
binations of these objects and attributes and are arranged in different spatial positions.
Such complex configurations require good visual reasoning capabilities from VQA models to
produce correct answers. Table 82 presents the splits of dataset.

Split Images Questions Unique Questions Overlap with train
Training 70,000 699,989 608,607 -
Validation 15,000 149,991 140,448 17,338
Test 15,000 149,988 140,352 17,335

Total 100,000 999,968 853,554 -

Table 82: Splits of the CLEVR dataset.

Natural Language Visual Reasoning (NLVR). The Cornell Natural Language for
Visual Reasoning dubbed as NLVR55 (Suhr et al., 2017) is a multimodal dataset that comes
with natural language sentences grounded in synthetic images. The images are rendered
and encapsulate different objects such as triangles, circles, and squares. These objects come
in various sizes and are placed at different positions within images. The descriptions of the
images were manually written by crowdworkers. Table 83 presents the official splits of the
dataset for evaluation purposes.

Split Unique Sentences Examples
Training 3,163 74,460
Validation 267 5,940
Test-P 266 5,934
Test-U 266 5,910

Total 3,962 92,244

Table 83: Splits of the NLVR dataset. Test-P and Test-U means Test set (public) and Test
set (unreleased) respectively.

Natural Language Visual Reasoning for Real (NLVR2). The limitations such as
limited expressivity and semantic diversity that arose due to the synthetic nature of the
NLVR dataset, has been addressed in the next incarnation of NLVR named as Natural
Language for Visual Reasoning for Real, NLVR255 (Suhr et al., 2019). Similar to NLVR,
the images in NLVR2 also come as a pair along with a grounded natural language description.
Table 84 presents the official splits of the dataset.

CLEVR-CoGenT. A modified version of CLEVR is the Compositional Generalization
Test (CLEVR-CoGenT)53 (Johnson et al., 2017a) dataset. It is used to test models’ ability
to find novel combinations of attributes at test-time. There are two types of conditions in
this dataset, viz. Condition A and Condition B, where based on the condition, the color

54https://www.blender.org
55http://lil.nlp.cornell.edu/nlvr
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Split Unique Sentences Examples
Training 23,671 86,373
Validation 2,018 6,982
Test-P 1,995 6,967
Test-U 1,996 6,970

Total 29,680 107,292

Table 84: Splits of the NLVR2 dataset. Test-P denotes Test set Public, whereas Test-U
means Test set Unreleased.

of the geometrical shape can vary as show in Table 85. Based on these conditions, the
CLEVR-CoGenT dataset is divided for evaluation purposes as shown in Table 86.

Geometrical Shape Condition Colors of Geometrical Shape

Cubes A gray, blue, brown, yellow
B red, green, purple, cyan

Cylinders A red, green, purple, cyan
B gray, blue, brown, yellow

Spheres A any color
B any color

Table 85: Conditions in the CLEVR-CoGenT dataset.

Split Condition Images Questions
Training A 70,000 699,960

Validation A 15,000 150,000
B 15,000 149,991

Test B 15,000 149,980
B 15,000 149,992

Table 86: Splits of the CLEVR-CoGenT dataset.

GQA. The GQA56 (Hudson & Manning, 2019) dataset was created to address the short-
comings in earlier VQA datasets. GQA consists of compositional questions over real-world
images. Each image is associated with a scene graph of the image’s objects, attributes, and
relations. Also, each question is associated with a structured representation of its semantics.
Table 87 presents the statistics and splits of the dataset.

Images Questions Vocabulary Size Training Validation Testing Challenge
113,018 22,669,678 3,097 70% 10% 10% 10%

Table 87: Statistics & splits of the GQA dataset.

56https://cs.stanford.edu/people/dorarad/gqa
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Relational and Analogical Visual rEasoNing (RAVEN). The RAVEN57 (Zhang
et al., 2019) dataset was designed to perform relational and analogical visual reasoning. It is
built by keeping in mind Raven’s Progressive Matrices (RPM) (Burke, 1958). Furthermore,
it associates vision with structural, relational, and analogical reasoning in a hierarchical
representation. The dataset is split into training, validation, and testing in the ratio 6:2:2
respectively. Table 88 presents the statistics of the dataset.

RPM Tree-structure Structural Rule Avg. rulesImages Problems per problem Labels Annotations per problem
1,120,000 70,000 16 1,120,000 440, 000 6.29

Table 88: Statistics of the RAVEN dataset.

Visual Commonsense Reasoning (VCR). VCR58 (Zellers et al., 2019) is a large-scale
dataset for achieving cognition-level visual understanding. It contains about 110k images,
290k multiple choice questions and correspondingly 290k correct answers and rationales.
This dataset is very diverse and, consequently, it is challenging. Table 89 presents the
official splits and some high-level statistics of the dataset.

Dataset Characteristic Train Validation Test
Number of questions 212,923 26,534 25,263
Number of answers per question 4 4 4
Number of rationales per question 4 4 4

Number of images 80,418 9,929 9,557
Number of movies covered 1,945 244 189

Average question length 6.61 6.63 6.58
Average answer length 7.54 7.65 7.55
Average rationale length 16.16 16.19 16.07
Average num. of objects mentioned 1.84 1.85 1.82

Table 89: High-level statistics of the VCR dataset. One fold in the dataset was held-out
for blind evaluation at a later date. Hence, the statistics of that fold are not shown here.

Visual COMmonsense rEasoning in Time (Visual COMET). Visual COMET59 (Park
et al., 2020) is a large-scale dataset of Visual Commonsense Graphs for reasoning about the
dynamic context of static images in order to achieve cognitive visual scene understanding.
VisualCOMET contains images with person grounding (i.e., multimodal co-reference chains)
and the images are connected with inference sentences. Table 90 presents the official splits
and more statistics about the dataset.

57http://wellyzhang.github.io/project/raven.html
58https://visualcommonsense.com
59https://visualcomet.xyz
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Images/ Events at Inferences on TotalSplit Places Present Events Before Intents at Present Events After Inferences
Train 47,595 111,796 467,025 237,608 469,430 1,174,063
Dev 5,973 13,768 58,773 28,904 58,665 146,332
Test 5,968 13,813 58,413 28,568 58,323 145,309
Total 59,356 139,377 584,211 295,080 586,418 1,465,704

Table 90: Statistics and splits of the Visual Commonsense Graph dataset.

5.2.3 Image Reasoning - Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different models of Image Reasoning
and the results obtained by them.

Evaluation Measures. The standard evaluation measures such as Accuracy are used for
benchmarking purposes. However, there are evaluation measures that are explicitly used
for Image Reasoning (e.g., CLEVR), viz. Querying Attribute (QA) that uses questions
to ask about an attribute of a particular object, Compare Attribute (CA) which uses
comparison questions for asking whether two objects have the same value for some attribute,
Compare Numbers (CN) which uses comparison questions to ask which of two object
sets is larger, Count which asks counting questions to find the number of objects fulfilling
some conditions, and Exist which asks existence questions to check whether a certain type
of object is present or not.

Models. The models that are designed to approach the task of Image Reasoning are
built such that they provide an effective way of reasoning about vision with language as
additional input. In Table 91, we present some exemplar architectures (refer to Combined
column) created to address the task by integrating both image and language. We also include
a column that showcases the optimization techniques used to train the Image Reasoning
models.

Approach Image Language Combined Optimizer RL
(Johnson et al., 2017a) ResNet-101 LSTM SA+MLP ADAM 7
(Hu et al., 2017) VGG LSTM N2NMN ADAM 3
(Johnson et al., 2017b) ResNet-101 LSTM PGEE ADAM 3
(Santoro et al., 2017) Custom LSTM RN ADAM 7
(Cao et al., 2018) ResNet-101 BiLSTM ACMN ADAM 7
(Perez et al., 2018) ResNet-101 GRU FiLM ADAM 7
(Hudson & Manning, 2018) ResNet-101 BiLSTM MAC ADAM 7
(Mascharka et al., 2018) ResNet-101 - TbD ADAM 7
(Haurilet et al., 2019) ResNet-152 LSTM FinalDestGraph ADAM 7
(Hu et al., 2019) ResNet-101 LSTM LCGN ADAM 7
(Mao et al., 2019) ResNet-34 BiGRU NS-CL - 3

Table 91: Exemplar Image Reasoning architectures. “Custom” - Own CNN architecture.
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Results. The models designed on different Image Reasoning datasets aim to achieve gen-
eralization. In this section, we cover the results achieved by the models from some represen-
tative datasets. Table 92, Table 93, Table 94, and Table 95 presents results obtained with
a subset of models built using the datasets such as CLEVR, GQA, VCR, and RAVEN that
were presented in Section 5.2.2. Results for the NLVR and NLVR2 tasks can be found on
the respective leaderboards60.

Model Count Exist CN QA CA Overall
CNN+LSTM+SA+MLP (Johnson et al., 2017a) 59.7 77.9 75.1 80.9 70.8 73.2
N2NMN+700KProgLabel (Hu et al., 2017) 68.5 85.7 84.9 90.0 88.7 83.7
PGEE+700KProgLabel (Johnson et al., 2017b) 92.7 97.1 98.7 98.1 98.9 96.9
CNN+LSTM+RN (Santoro et al., 2017) 90.1 97.8 93.6 97.9 97.1 95.5
ACMN (Cao et al., 2018) 94.2 81.3 81.6 90.5 97.1 89.3
CNN+GRU+FiLM (Perez et al., 2018) 94.3 99.1 96.8 99.1 99.1 97.7
MAC (Hudson & Manning, 2018) 97.2 99.5 99.4 99.3 99.5 98.9
TbD+700KProgLabel (Mascharka et al., 2018) 97.6 99.2 99.4 99.5 99.6 99.1
FinalDestGraph (Haurilet et al., 2019) 91.3 98.6 99.6 99.5 99.8 97.5
LCGN+single-hop (Hu et al., 2019) - - - - - 97.9
NS-CL (Mao et al., 2019) 98.2 98.8 99.0 99.3 99.1 98.9

Table 92: Comparison of different models on the CLEVR dataset.

Model val test-dev test
CNN+LSTM (Hudson & Manning, 2019) 49.2 - 46.6
Bottom-up (Anderson et al., 2018b) 52.2 - 49.7
MAC (Hudson & Manning, 2018) 57.5 - 54.1
LCGN+single-hop (Hu et al., 2019) 63.8 55.6 56.0

Table 93: Comparison of accuracy (%) scores of different methods on the validation (val),
test-dev, and test splits of the GQA dataset.

(Q→ A) (QA→ R) (Q→ AR)Model val test val test val test
R2C (Zellers et al., 2019) 63.8 65.1 67.2 67.3 43.1 44.0
ViLBERT (Lu et al., 2019) 72.4 73.3 74.5 74.6 54.0 54.8
B2T2 (Alberti et al., 2019) 71.9 72.6 76.0 75.7 54.9 55.0
VL-BERT (Su et al., 2020) 73.7 74.0 74.5 74.8 55.0 55.5
Unicoder-VL (Li et al., 2020) 72.6 73.4 74.5 74.4 54.5 54.9

Table 94: Comparison of accuracy (%) scores of different models on the validation (val)
and test splits of the VCR dataset.

60http://lil.nlp.cornell.edu/nlvr
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2x2 3x3Model Acc Grid Grid L-R U-D O-IC O-IG

WReNDRT (Santoro et al., 2018) 15.02 23.26 29.51 6.99 8.43 8.93 12.35
ResNetDRT (Zhang et al., 2019) 59.56 46.53 50.40 65.82 67.11 69.09 60.11

Human (Zhang et al., 2019) 84.41 81.82 79.55 86.36 81.81 86.36 81.81
PerfectSolver 100 100 100 100 100 100 100

Table 95: Comparison of accuracy (%) scores of different models on the RAVEN dataset.

5.2.4 Image Reasoning - Discussion

The task of Image Reasoning has been studied using different types of datasets. Initially, a
synthetic dataset, viz. CLEVR, was used. Later, real-world datasets like GQA were created
for developing more complex vision and language integration models. Table 92 shows the
results for the CLEVR dataset. Recently introduced Neuro-Symbolic Concept Learner (NS-
CL) (Mao et al., 2019) reaches state-of-the-art results without explicit supervision on visual
concepts, words, and semantic parsing of sentences. However, for the real-world image
datasets like GQA, the approach by Hu et al. (2019) that creates Language-Conditioned
Graph Networks (LGCN) providing different hops to effectively support relational reasoning
achieve best results. Most of the works that outperform on the VCR task are pretrained
and fine-tuned as shown in Table 94.

The RAVEN dataset differs from both CLEVR and GQA as it depends only on the image
input. We can observe from Table 95 that a perfect solver achieves 100% accuracy, while
the approach introduced by Zhang et al. (2019) achieves reasonable system performance.

5.2.5 Video Reasoning - Introduction

When compared to image reasoning, the video reasoning task is in its nascent stages and
hence there is no clearly defined goal. However, for video reasoning, there exists a task of
configurable visual question and answer (COG) designed by Yang et al. (2018). The goal of
COG is to address problems related to visual and logical reasoning and memory. To be more
concrete, the task is aimed at deducing the correct answer by pointing to the right object
while taking into account the changes of the scene i.e., from both spatial and temporal
perspective. Figure 11 demonstrates the task of temporal reasoning about synthetic 2D
scenes resembling video input.

Further, Haurilet et al. (2019) addressed both image and video reasoning by introducing
the concept of a question-based visual guide to constrain the potential solution space by
learning an optimal traversal scheme. In their approach, the final destination nodes alone
are used to produce the answers.

5.2.6 Video Reasoning - Datasets

There are not many datasets for video reasoning. One of the few examples is listed below.
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Figure 11: Given a video (represented as a sequence of synthetic 2D images (Yang et al.,
2018)) and a question, a Video Reasoning Model reasons about the video to perform the
task presented to it in the question.

Configurable Visual Question and Answer (COG). COG61 (Yang et al., 2018) was
created to parallel experiments in humans and animals. Table 96 presents splits of the
dataset.

Total Examples perSplit Examples Task Family
Training 10,000,320 227,280
Validation 500,016 11,364
Test 500,016 11,364

Table 96: Splits of the COG dataset.

5.2.7 Video Reasoning - Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different models of Video Reasoning
and the results obtained by them.

Evaluation Measures. For Video Reasoning (e.g., COG) the evaluation measures used
are based on changes of the scene in three different query types.

• Pointing (Point) queries ask the system to point to a certain object.

• Yes/No seeks a binary decision, while Conditional (Condit) is composed of ques-
tions based on objects that needs to fulfill certain conditions.

• Attribute-related (Atts) which is composed of questions about certain attributes.

Models. Many models have been created to approach the task of Video Reasoning. In
Table 97, we present some exemplar architectures (refer to Combined column) created to
address the task by integrating video and language.

Results. As discussed earlier, several models have been created to approach the task of
Video Reasoning. In Table 98, we present the results obtained with a subset of models built
using the COG dataset presented in Section 5.2.6.

61https://github.com/google/cog#datasets

1240



Trends in Integration of Vision and Language Research

Approach Video Frame Language Combined RL
(Yang et al., 2018) - Custom LSTM WorkMemory 7
(Haurilet et al., 2019) - ResNet-152 LSTM FinalDestGraph 7

Table 97: Exemplar Video Reasoning architectures.

Model Atts Condit Point Yes/No All
WorkMemory (Yang et al., 2018) - - - - 93.7
QuestionNodes (Haurilet et al., 2019) 73.7 63.5 92.5 57.9 63.3
FinalDestGraph (Haurilet et al., 2019) 99.2 98.4 100.0 95.0 97.2

Table 98: Comparison of measures using different methods on the COG dataset.

5.2.8 Video Reasoning - Discussion

The results presented in Table 98 show that the recently proposed approach by Haurilet et al.
(2019) achieves the best result on different task-specific measures. This approach proposes
a question-based visual guide, which constrains the potential solution space by learning an
optimal traversal scheme of a graph.

5.3 Visual Entailment

Goal of the Visual Entailment task is to learn a model that predicts whether the visual
content entails the augmented text along with hypothesis. Both images and videos are used
as visual inputs. In the following, we describe the task, datasets used, and the approaches
that have been proposed to tackle the problem.

5.3.1 Image Entailment - Introduction

To address the perceived drawbacks of VQA and visual reasoning, i.e. that they deal
with similar objects and sentence structures, Vu et al. (2018) initially proposed a visually-
grounded version of the Textual Entailment task where an image is augmented with textual
premise and hypothesis. However, this task was refined by Xie et al. (2019) to predict
whether the image semantically entails the text, given image-sentence pairs, where the
premise is defined by an image instead of a natural language sentence. Figure 12 illustrates
the task, where the image as a premise and a piece of text as hypothesis are used by the
Image Entailment model to predict whether the hypothesis is an entailment, contradiction,
or neutral.

5.3.2 Image Entailment - Datasets

The image entailment task is achieved using two different datasets. One dataset extends Nat-
ural Language Inference with Visually-grounded Natural Language Inference (V-SNLI) (Vu
et al., 2018) while the other extends the Flickr30K dataset (see Section 3.1.2) into a visual
entailment dataset (SNLI-VE)62 (Xie et al., 2019). Table 99 and Table 100 presents the
statistics and splits of these two datasets respectively.

62https://github.com/necla-ml/SNLI-VE
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Image Entailment Model
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Figure 12: Given an image as a premise and a natural language text as a hypothesis, an
Image Entailment Model predicts whether the hypothesis is an entailment, contradiction,
or neutral by understanding the evidence(s) present in the image.

Split Entailment Neutral Contradiction
Training 182,167 181,515 181,938
Validation 3,329 3,235 3,278
Test 3,368 3,219 3,237
V-SNLIhard Test 1,058 1,068 1,135

Table 99: Splits of the V-SNLI dataset.

Split Images Entailment Neutral Contradiction Vocab
Training 29,783 176,932 176,045 176,550 29,550
Validation 1000 5,959 5,960 5,939 6,576
Test 1000 5,973 5,964 5,964 6,592

Table 100: Splits of the SNLI-VE dataset.

5.3.3 Image Entailment - Evaluation Measures, Models, and Results

In this section, we review the measures used to evaluate different models of Image Entailment
and the results obtained by them.

Evaluation Measures. Image Entailment task is evaluated using the Accuracy measure.

Models. Two different models are created to approach the task of Image Entailment. In
Table 101, we present some exemplar architectures (refer to Combined column) created to
address the task. We also include a column that showcases the optimization techniques used
to train those models.

Approach Image Language Combined Optimizer RL
(Vu et al., 2018) VGG BiLSTM V-BiMPM ADAM 7
(Xie et al., 2019) ResNet-101 GRU EVE-Image ADAM 7

Table 101: Exemplar Image Entailment architectures.

Results. The Image Entailment models leverage both image and textual input represen-
tations to build an entailment pipeline. In Table 102, Table 103, and Table 104 we present
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results obtained with a subset of models that were built using the datasets presented in
Section 5.3.2.

Model Contradiction Neutral Entailment Overall
Relation Network (Santoro et al., 2017) 67.29 68.86 66.50 67.55
Bottom-up (Anderson et al., 2018a) 70.52 70.96 65.23 68.90
Top-Down (Anderson et al., 2018a) 69.72 69.33 71.86 70.3
Hypothesis Only (Gururangan et al., 2018) 67.60 67.71 64.83 66.71
EVE-ROI (Xie et al., 2019) 67.69 69.45 74.25 70.47
EVE-Image (Xie et al., 2019) 71.56 70.52 71.39 71.16

Table 102: Comparison of accuracies (%) of different models on the SNLI-VE dataset.

Model Contradiction Neutral Entailment Overall
Hypothesis Only (Bowman et al., 2015) 66.29 66.36 72.65 68.49
LSTM (blind) (Bowman et al., 2015) 79.7 76.79 87.71 81.49
V-LSTM (Anderson et al., 2018a) 71.39 68.06 87.14 75.70
BiMPM (Wang et al., 2017) 86.25 82.79 90.03 86.41
V-BiMPM (Vu et al., 2018) 87.53 82.91 90.38 86.99

Table 103: Comparison of accuracies (%) of different models on the V-SNLI dataset.

Model Contradiction Neutral Entailment Overall
Hypothesis Only (Bowman et al., 2015) 25.29 20.22 31.28 25.57
LSTM (blind) (Bowman et al., 2015) 60.79 50.19 72.12 60.99
V-LSTM (Anderson et al., 2018a) 46.34 32.02 69.09 49.03
BiMPM (Wang et al., 2017) 77.62 59.36 80.43 72.55
V-BiMPM (Vu et al., 2018) 76.12 63.67 81.38 73.75

Table 104: Comparison of accuracy (%) scores of various models on V-SNLIhard.

5.3.4 Image Entailment - Discussion

The task of Image Entailment was evaluated using two different datasets. Table 103 and
Table 104 shows results obtained from V-SNLI in different settings. The approach proposed
by Vu et al. (2018) that creates a visually grounded Bilateral Multi-Perspective Matching
(BiMPM) model achieves the best result for the entailment task.

Similarly, evaluations conducted with SNLI-VE dataset (cf. Table 102) show that the
Explainable Visual Entailment (EVE) approach proposed by Xie et al. (2019) achieves the
best overall result.

5.3.5 Video Entailment - Introduction

Video entailment (Liu et al., 2020) aims to infer whether the natural language hypothesis is
entailed or contradicted when given a video clip aligned with the subtitles information. The
video contains diverse temporal dynamics, event shifts, and social interactions. Figure 13
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illustrates the task: given a video clip with aligned subtitles as premise and a natural
language hypothesis based on the video content, a video entailment model needs to infer
whether the hypothesis is entailed or contradicted by the given video clip.

Video Entailment Model

The woman 
becomes upset 
when the man 

answers the phone 
because he 

pretends it is his 
own office

  Entailment

Contradiction

Subtitles

Figure 13: Given a video along with aligned subtitles as premise and a paired natural
language text as hypothesis, the goal of a Video Entailment Model is to predict whether the
hypothesis is an entailment or contradiction, by understanding the evidence(s) observed in
the video. Example modified from Liu et al. (2020).

5.3.6 Video Entailment - Datasets

The Video Entailment task is proposed by Liu et al. (2020), with the introduction of a
large-scale dataset called as VIdeO-and-Language INference (VIOLIN)63. Detailed statistics
of the dataset is presented in Table 105.

Video Source Num. of Num. of Avg. Clip Avg. Pos. Avg. Neg. Avg. Sub-
(TV Show/Movie Clips) Episodes Clips Len Stmnt Len Stmnt Len Title Len
Friends 234 2,676 32.89s 17.94 17.85 72.80
Desperate Housewives 180 3,466 32.56s 17.79 17.81 69.19
How I Met Your Mother 207 1,944 31.64s 18.08 18.06 76.78
Modern Family 210 1,917 32.04s 18.52 18.20 98.50
MovieClips 5,885 5,885 40.00s 17.79 17.81 69.20
All 6,716 15,887 35.20s 18.10 18.04 76.40

Table 105: Statistics of different video sources in the VIOLIN dataset.

For training and model evaluation purposes, the VIOLIN dataset is split into training,
validation, and test splits in the ratio of 8:1:1. The exact number of triplet instances in each
of the splits is shown in Table 106.

5.3.7 Video Entailment - Evaluation Measures, Models, and Results

In this section, we present the evaluation measures, models, and results achieved with various
architectures introduced for solving the Video Entailment task.

Evaluation Measures. The Video Entailment models are evaluated using Accuracy.
63https://github.com/jimmy646/violin
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Number of Number of Number ofSplit Videos (V) Hypotheses (H) Triplets (V, S, H)
Training 12,687 76,122 76,122
Validation 1,600 9,600 9,600
Testing 1,600 9,600 9,600
Total 15,887 95,322 95,322

Table 106: Splits of the VIOLIN dataset.
(V: Video, S: Subtitle, H: Hypothesis)

Models. Very few models have been created to approach the task of Video Entailment.
The variation of the Video Entailment models include the usage of different type of textual
content such as subtitles, statements, etc. In Table 107, we present some exemplar archi-
tectures (refer to Combined column) created to address the task by integrating both video
and language inputs. We also include a column that showcases the optimization techniques
used to train those models.

Approach Video Frame Language Combined Optimizer RL
(Liu et al., 2020) - Detection Feat BERT SSV ADAM 7

Table 107: Exemplar Video Entailment architectures. SSV - Statement+Subtitles+Visual.

Results. Few models which have been designed to approach the task of Video Entailment
use different types of textual content aligned with video. In Table 108 we present results
obtained with subset of models built using the VIOLIN dataset presented in Section 5.3.6.
For building textual or visual representations, models such as SSV has used pretrained
vision and language integration models such as LXMERT (Tan & Bansal, 2019).

Model Visual Text Accuracy
Statement (Liu et al., 2020) - BERT 54.20
Statement+Visual (Liu et al., 2020) Detection Feat BERT 59.45
Statement+Subtitles (Liu et al., 2020) - BERT 66.05
SSV (Tan & Bansal, 2019) LXMERT LXMERT 66.25
SSV (Liu et al., 2020) Detection Feat BERT 67.84

Table 108: Comparison of accuracies (%) of different methods on the VIOLIN dataset.

5.3.8 Video Entailment - Discussion

The task of Video Entailment was evaluated using the VIOLIN dataset and the recently
proposed method by Liu et al. (2020) has shown that using multi-source information arising
from different types of data such as Statements, Subtitles, and Visual features are useful for
building a robust model. In addition, textual features generated using contextualized word
embedding models are effective as well.
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6. Visual Dialog

In this section, we explore the task of Visual Dialog. The objective of visual dialog is different
from the previously discussed tasks and involves a complex interaction between a human
and an artificial agent.

6.1 Image Dialog

In the following, we describe the setting of Visual Dialog where an image is used as the
visual input.

6.1.1 Image Dialog - Introduction

The goal of the image dialog task is to create AI agents that can hold dialog with humans
in a natural language of choice about a visual content (Das et al., 2017a), represented by
an image. To be more specific, given an image, a history of dialogs, and a question about
the image, the goal of an AI agent is to ground the question in the image, infer the context
from the history, and then answer the question accurately. However, this problem can also
be construed as a task where the goal of the AI system is to locate an unknown object in the
image by asking a sequence of questions (de Vries et al., 2017) or to hold natural-sounding
conversations about a shared image (Mostafazadeh et al., 2017). In Figure 14, we provide a
visual depiction to illustrate the said task.

Image Dialog Model (Q1) Is this in a 
park

(A1) Yes, i believe it is

(Q1) Is this in a 
park
(Q2) Are there 
others around

(A1) Yes, i 
believe it is

Image Dialog Model (A2) No, she is alone

(Q1) Is this in a 
park
(Q2) Are there 
others around
(Q3) does she 
have a 
collection 
bucket

(A1) Yes, i 
believe it is
(A2) No, she is 
alone

Image Dialog Model (A3) No

.

.

.

Figure 14: Given an image, question and the dialog history, an Image Dialog Model generates
an answer based on these multimodal information.

Further, a standard agent can be extended to have a question and answer bot cooper-
ating with each other for guessing images (Das et al., 2017b). To counter generic responses
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in dialog generation, knowledge transfer from dialog generation was explored with a dis-
criminative dialog module trained to rank a list of candidate human responses (Lu et al.,
2017a). However, other approaches constrained themselves to specific domains and pro-
posed end-to-end optimization schemes (Strub et al., 2017). Seo et al. (2017) introduced
attentive memory that exploits visual attention in the past to resolve the current reference.
Recently, reinforcement learning and Generative Adversarial Networks (GANs) were also
used to generate more human-like responses to questions in the image-based dialog (Wu
et al., 2018). Dialog can also be seen from the perspective of a system which asks ques-
tions, and demonstrates how a visual dialog can be generated from discriminative question
generation and answering (Jain et al., 2018). Furthermore, co-reference resolution was also
investigated (Kottur et al., 2018) to bridge the gap between nouns and pronouns with the
usage of modules that form explicit and grounded co-reference resolution at word-level.

Recently, a novel attention mechanism called recursive visual attention (Niu et al., 2019)
was proposed to resolve visual co-reference for visual dialog by browsing the dialog his-
tory. Another approach (Zheng et al., 2019) formalized the task as inference in a graphical
model with partially observed nodes and unknown graph structures, i.e., relations in di-
alog. Further, Guo et al. (2019) extended one-stage solution to a two-stage solution by
building an image-question-answer synergistic network to value the role of the answer for
precise visual dialog. Other novel approaches (Shekhar et al., 2019) were also designed
where a visually-grounded encoder was employed to synergize between guessing and asking
questions. Further, a cooperative learning regime was followed to improve the accuracy.

6.1.2 Image Dialog - Datasets

For addressing the task of image dialog several datasets have been created. In the following,
we elaborate each of them separately.

VisDial. For Image Dialog, there exists two versions of this dataset, VisDial v0.9 and
VisDial 1.064 (Das et al., 2017a). VisDial was created using the MSCOCO dataset. For
VisDial v0.9, splits are divided only into the training and validation set. Table 109 and
Table 110 present details about the splits of VisDial v0.9 and VisDial v1.0 respectively.

Split Images Questions Answers Dialog Turns
Training 82,783 827,830 827,830 10
Validation 40,504 405,040 405,040 10
Test - - - -

Table 109: Splits of the VisDial v0.9 dataset.

CLEVR-Dialog. The CLEVR-Dialog65 (Kottur et al., 2019) dataset was developed for
studying multi-round reasoning in visual dialog. The dialog grammar is grounded in the
scene graphs of the CLEVR dataset (Section 5.2.2), originally developed for reasoning about
images. Table 111 provides statistics of the dataset, while Table 112 shows the dataset splits.

64https://visualdialog.org/data
65https://github.com/satwikkottur/clevr-dialog
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Split Images Questions Answers Dialog Turns
Training 123,287 1,232,870 1,232,870 10
Validation 2,064 20,640 20,640 10
Test 8,000 80,000 80,000 1

Table 110: Splits of the VisDial v1.0 dataset.

CLEVR Total Total Unique Unique Vocabulary Dialog Mean Ques.
Images Dialogs Questions Questions Answers Size Turns Length
85k 425k 4.25M 73k 29 125 10 10.6

Table 111: Statistics of the CLEVR-Dialog dataset.

Split Images Q&A Pairs Instances Dialog Rounds
Training 70,000 3.5M 5 10
Validation 15,000 0.75M 5 10
Test - - - -

Table 112: Splits of the CLEVR-Dialog dataset.

6.1.3 Image Dialog - Evaluation Measures, Models and Results

In this section, we review the measures used to evaluate different models of Image Dialog
and the results achieved by these models.

Evaluation Measures. The Image Dialog models are evaluated using the Retrieval met-
rics that have been discussed in Section 3.1.3.

Models. The models created to approach the Image Dialog task continuously process a
stream of images and textual dialog information. In Table 113, we present some exemplar
architectures (refer to Combined column) designed to integrate image and textual dialog to
address the task.

Approach Image Language Combined RL
(Das et al., 2017a) VGG LSTM MemoryNetwork 7
(Lu et al., 2017a) VGG LSTM HCIAE-NP-ATT 7
(Seo et al., 2017) VGG LSTM AMEM 7
(Jain et al., 2018) VGG LSTM SF 7
(Kottur et al., 2018) ResNet-152 LSTM CorefNMN 7
(Wu et al., 2018) VGG LSTM CoAtt-GAN 3
(Niu et al., 2019) ResNet-152 LSTM RvA 7
(Zheng et al., 2019) VGG LSTM GNN 7
(Guo et al., 2019) ResNet-101 LSTM Synergistic 7

Table 113: Exemplar Image Dialog Architectures (Discriminative and Generative).

Results. Models that are created to solve the task of Image Dialog effectively comprehends
the complexity of the task. Several approaches are used to build the models with different
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versions of the same dataset. However, few approaches share some commonalities such as
usage of Memory Networks (Sukhbaatar et al., 2015). Table 114 and Table 115 presents the
results obtained with a subset of both discriminative and generative models built using
the “VisDial0.9” dataset. While Table 116 presents the results obtained only with a subset
of generative models built using the “VisDial1.0” dataset presented earlier in Section 6.1.2.

Model MRR R@1 R@5 R@10 Mean
LF (Das et al., 2017a) 0.5807 43.82 74.68 84.07 5.78
HRE (Das et al., 2017a) 0.5846 44.67 74.50 84.22 5.72
HREA (Das et al., 2017a) 0.5868 44.82 74.81 84.36 5.66
MN (Das et al., 2017a) 0.5965 45.55 76.22 85.37 5.46

HCIAE-NP-ATT (Lu et al., 2017a) 0.6222 48.48 78.75 87.59 4.81
AMEM (Seo et al., 2017) 0.6227 48.53 78.66 87.43 4.86
CoAtt (Wu et al., 2018) 0.6398 50.29 80.71 88.81 4.47
SF (Jain et al., 2018) 0.6242 48.55 78.96 87.75 4.70
SCA (Wu et al., 2018) 0.6398 50.29 80.71 88.81 4.47
CorefNMN (Kottur et al., 2018) 0.641 50.92 80.18 88.81 4.45

GNN (Zheng et al., 2019) 0.6285 48.95 79.65 88.36 4.57
RvA (Niu et al., 2019) 0.6634 52.71 82.97 90.73 3.93

Table 114: Results of different discriminative models on the validation split of the
VisDial v0.9 dataset.

Model MRR R@1 R@5 R@10 Mean
LF (Das et al., 2017a) 0.5199 41.83 61.78 67.59 17.07
HRE (Das et al., 2017a) 0.5237 42.29 62.18 67.92 17.07
HREA (Das et al., 2017a) 0.5242 42.28 62.33 68.17 16.79
MN (Das et al., 2017a) 0.5259 42.29 62.85 68.88 17.06

HCIAE-NP-ATT (Lu et al., 2017a) 0.5386 44.06 63.55 69.24 16.01
CorefNMN (Kottur et al., 2018) 0.535 43.66 63.54 69.93 15.69
CoAtt (Wu et al., 2018) 0.5411 44.32 63.82 69.75 16.47
CoAtt-RL (Wu et al., 2018) 0.5578 46.10 65.69 71.74 14.43

RvA (Niu et al., 2019) 0.5543 45.37 65.27 72.97 10.71

Table 115: Results of different generative models on the validation split of the VisDial
v0.9 dataset.

6.1.4 Image Dialog - Discussion

For the Image Dialog task, two versions of the same dataset were used for evaluation.
Similar approaches were used for the evaluation of both datasets with retrieval metrics.
Nevertheless, the methods that achieve state-of-the-art performance on both datasets differ.
Among the generative and discriminative methods on VisDial v0.9 dataset, the Recursive
Visual Attention (RvA) approach proposed by Niu et al. (2019) achieves the best result.
RvA refines the visual attention recursively by browsing through the dialog history until
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the agent has sufficient confidence in its visual co-reference resolution. This has also been
shown to generate interpretable attention maps without additional annotations.

For the VisDial v1.0 dataset, the results presented in Table 116 show that Synergistic-
ensemble by Guo et al. (2019) outperform RvA.

Model MRR R@1 R@5 R@10 Mean NDCG
LF (Das et al., 2017a) 0.5542 40.95 72.45 82.83 5.95 0.4531
LF-att (Das et al., 2017a) 0.5707 42.08 74.83 85.05 5.59 0.4976
HRE (Das et al., 2017a) 0.5416 39.93 70.45 81.50 6.41 0.4546
MN (Das et al., 2017a) 0.5549 40.98 72.30 83.30 5.92 0.4750
MN-att (Das et al., 2017a) 0.5690 42.43 74.00 84.35 5.59 0.4958
CorefNMN (Kottur et al., 2018) 0.615 47.55 78.10 88.80 4.40 0.547

GNN (Zheng et al., 2019) 0.6137 47.33 77.98 87.83 4.57 0.5282
RvA (Niu et al., 2019) 0.6303 49.03 80.40 89.83 4.18 0.5559
Synergistic-ensemble (Guo et al., 2019) 0.6342 49.30 80.77 90.68 3.97 0.5788

Table 116: Results of different discriminative models on the test-standard split of the
VisDial v1.0 dataset.

6.2 Video Dialog

In this part, we present details about the Visual Dialog task in which a video is used as the
visual input and a conversational chat with humans about the visual content is expected.

6.2.1 Video Dialog - Introduction

The aim of video dialog is to leverage scene information containing both audio (which can be
transcribed as subtitles) and visual frames to hold a dialog (i.e., an exchange) with humans
in a natural language of choice about the multimedia content (Alamri et al., 2019b, 2019a).
A successful system is expected to ground concepts from the question in the video while
leveraging contextual cues from the dialog history. Figure 15 illustrates the video dialog
task.

Several approaches have been proposed to address the task, where initially multimodal
attention-based video description features were used to improve dialog (Hori et al., 2019).
Further, a novel baseline (Schwartz et al., 2019) analyzed components such as data repre-
sentation, extraction, attention, and answer generation in order to show that there can be
relative improvements as compared to other approaches.

6.2.2 Video Dialog - Datasets

Audio Visual Scene-Aware Dialog (AVSD)66 (Alamri et al., 2019b) was created for the Scene-
Aware Dialog Challenge, in which the agent grounds its responses on the dynamic scene, the
audio, and the history (previous rounds) of the dialog. Table 117 presents some statistics
and the splits of the AVSD dataset.

66https://video-dialog.com
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Video Dialog Model
 (Q1) How many 
people in the 
video?

(A1) There is only one 
person.

(Q1) How 
many people 
in the video?
(Q2) How 
does the 
video start?

(A1) There is 
only one 
person.

Video Dialog Model
(A2) The video begins 
with this person 
laughing

(Q1) How many 
people in the 
video?
(Q2) How does 
the video start?
(Q3) Do you know 
what they are 
laughing at?

(A1) There is only 
one person.
(A2) The video 
begins with this 
person laughing

Video Dialog Model
(A3) No, I don't but 
they laugh several 
times in the beginning.

.

.

.

Figure 15: Given a video (represented as a sequence of frames), a question, and the dialog
history, a Video Dialog Model generates answers based on these information.

Split Dialogs Turns Words
Training 7,985 123,480 1,163,969
Validation 1,863 14,680 138,314
Test 1,968 14,660 138,790

Table 117: Splits of the AVSD dataset.

6.2.3 Video Dialog - Evaluation Measures, Models, and Results

In this section, we review the evaluation measures used to benchmark different models of
Video Dialog and the results obtained by these models.

Evaluation Measures. The Video Dialog models are evaluated using the “Retrieval met-
rics” discussed in Section 3.1.3.

Models. Only a couple of models have been proposed so far to approach the task of Video
Dialog. These models aim to capture the temporal aspect of a video and incorporate it in
the textual dialog. In Table 118, we present some exemplar architectures (refer to Combined
column) designed to address the task by integrating both video and language inputs. We
also include a column that showcases the optimization techniques used to train those models.

Approach Video Frame Language Combined Optimizer RL
(Hori et al., 2019) I3D VGG LSTM MultimodalAtt ADAM 7
(Schwartz et al., 2019) I3D VGG LSTM i3d-rgb-spatial-10 ADAM 7

Table 118: Exemplar Video Dialog architectures.
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Results. As discussed earlier only few models have been created to address the task of
Video Dialog. In Table 119 we present the results obtained with those models built using
the “AVSD” dataset presented earlier in Section 6.2.2.

Model B-1 B-2 B-3 B-4 METEOR CIDEr
Att-base (Hori et al., 2019) 0.273 0.173 0.117 0.084 0.117 0.766
Att-weightshare (Schwartz et al., 2019) 0.293 0.191 0.133 0.097 0.127 0.923
i3d-rgb-spatial-10 (Schwartz et al., 2019) 0.290 0.190 0.133 0.097 0.127 0.928
Att-base-beam (Schwartz et al., 2019) 0.285 0.187 0.131 0.096 0.128 0.941

Table 119: Results of different models on the “AVSD” dataset.

6.2.4 Video Dialog - Discussion

The Video Dialog task is evaluated with the AVSD dataset. Different strategies have been
explored to fuse the language and video features to create a strong baseline. In particular,
the approach proposed by Schwartz et al. (2019), which uses beam search and the atten-
tion mechanism (i.e., Att-base-beam) over different modalities, outperforms other baseline
methods.

7. Multimodal Machine Translation

In this section, we explore the task of Multimodal Machine Translation (MMT). The goal of
this task is to translate natural language sentences that describe visual content (e.g. image)
in a source language into a target language by taking the visual content as an additional
input to the source language sentences.

7.1 Machine Translation with Image

In the following, we elaborate on the Multimodal Machine Translation task by considering
image as the only visual input.

7.1.1 Machine Translation with Image - Introduction

The aim of MMT (Specia et al., 2016; Hitschler et al., 2016; Elliott et al., 2017; Barrault
et al., 2018) is to translate sentences, that describe an image, in a source language into
equivalent sentences in a target language. However, for any given image the description can
be written in different source languages, resulting in multiple source language descriptions.
This situation opens up the possibility to propose different variants of the MMT task.
The first variant is a single source translation task, in which the image description in a
single source language is translated to the target language with additional cues from the
corresponding image. Figure 16 depicts this variant where an image is accompanied with its
description in English and needs to be translated by the model into a description in German.

The second variant is a target language description generation task with additional
source language cues, i.e., multiple source language descriptions of the same image termed
as multisource MMT. Figure 17 illustrates this variant, where an image is accompanied with
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Image-guided 
Machine Translation Model

Ein kleines mädchen sitzt 
vor einem großen 

gemalten regenbogen .

A little girl is sitting in 
front of a large 

painted rainbow .

Figure 16: Given an image and its description in a source language (e.g. En), an Image-
guided Machine Translation model produces a description in a target language (e.g. De).

its descriptions in English (en), French (fr), and Czech (cs), that are all used to generate
the German (de) translation.

une petite fille est 
assise devant un 
grand arc-en-ciel 

peint .

Multisource 
Image-guided 

Machine Translation 
Model

Ein kleines mädchen sitzt 
vor einem großen 

gemalten regenbogen .

A little girl is 
sitting in front 

of a large 
painted 

rainbow .

malá holčička sedí 
před velkou 

namalovanou 
duhou .

Figure 17: Given an image and its description in multiple source languages (e.g. en, fr, cs),
a Multisource Image-guided Machine Translation model produces a description in a target
language (e.g. de).

Different approaches have been proposed to handle single source MMT by associating
visual and textual features with multimodal attention (Huang et al., 2016). Further, a
novel approach where a doubly-attentive decoder incorporated visual features to bridge the
gap between image description and translation was proposed (Calixto et al., 2017). In
a similar vein, global visual features were incorporated in an attention-based multimodal
NMT (Calixto & Liu, 2017). This is achieved by attending to source-language words and
parts of an image independently by means of two separate attention mechanisms.

MMT task can also be solved using two sub-tasks: learning to translate, and learning
visually grounded representations (Elliott & Kádár, 2017), both combined in a multi-task
learning framework. Further, an advanced multimodal compact bilinear pooling method (Del-
brouck & Dupont, 2017a, 2017b) has also been used for MMT in which the outer product
of two vectors combines the attention features of the two modalities. Another model (Zhou
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et al., 2018c) used a shared visual-language embedding and a translator for learning. This
joint model leverages a visual attention grounding mechanism that links the visual semantics
with the corresponding textual semantics. Due to the presence of large multimodal data
on the web, noisy image captions have also been tried for MMT (Schamoni et al., 2018).
A latent variable model (Calixto et al., 2019) has also been attempted in which the latent
variable can be seen as a multimodal stochastic embedding of an image and its description
in a foreign language.

MMTmodels have also been used in an adversarial setting. Elliott (2018) found that even
in the presence of visual features from unrelated images there is no significant performance
degradation. Due to the recent success of unsupervised machine translation (Lample et al.,
2018), there is also a growing interest in extending it for unsupervised MMT (Su et al.,
2019). Other studies (Caglayan et al., 2019) have reduced criticism of MMT by showing
that under the limited textual context, MMT models are capable of leveraging the visual
input to generate better translations. Regarding multisource models, Libovickỳ and Helcl
(2017) explored MMT using neural multi-source sequence-to-sequence learning.

7.1.2 Machine Translation with Image - Datasets

The main dataset used with the models above (Section 7.1.1) is the Multi30k-MMT67

dataset (Barrault et al., 2018), extended using the Flickr30k dataset. Along with English,
it contains human translated German, French, and Czech language sentences. The splits of
this dataset can be found in Table 120.

Split Images Captions
Training 29,000 29,000
Validation 1,014 1,014
Test 1,000 1,000

Table 120: Splits of Multi30k-MMT for English, German, French, and Czech.

7.1.3 Machine Translation with Image - Evaluation Measures, Models, and
Results

In this section, we review the evaluation measures used to benchmark different models of
Machine Translation with Image and the results obtained by these models.

Evaluation Measures. To evaluate Machine Translation with Image models, the “Re-
trieval metrics” presented in the Section 3.1.3 are used.

Models. Several models have been created for the task ofMachine Translation with Image.
The aim of these models is to tackle translation using either a single or multiple language
textual sources along with an image. In Table 121, we present some exemplar architectures
(refer to Combined column) which integrate both image and language to address the task.
We also include an “Optimizer” column that indicates the optimization techniques used to
train those models.

67https://www.statmt.org/wmt18/multimodal-task.html
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Approach Image Language Combined Optimizer RL
(Calixto et al., 2017) ResNet-50 BiGRU DoubleAtt Adadelta 7
(Calixto & Liu, 2017) VGG BiGRU GVF Adadelta 7
(Elliott & Kádár, 2017) Inception-V3* BiGRU Imagination ADAM 7
(Caglayan et al., 2017) ResNet-50 BiGRU Lium-cvc-ensemble ADAM 7
(Calixto et al., 2019) ResNet-50 BiGRU VMMTF ADAM 7
(Helcl et al., 2018) ResNet-50 LSTM CUNI-ensemble ADAM 7

Table 121: Exemplar Machine Translation with Image architectures. * - compares with
ResNet-50 and VGG also.

Results. In Table 122 and Table 123 we present the results obtained with a subset of
models built using the Multi30k-MMT dataset presented earlier in Section 7.1.2.

Results of Different Methods
Model Language en → de en → fr en → cs

BLEU 36.5 - -DoubleAtt (Calixto et al., 2017) METEOR 55.0 - -

BLEU 37.3 - -GVF (Calixto & Liu, 2017) METEOR 55.1 - -

BLEU 36.8 - -Imagination (Elliott & Kádár, 2017) METEOR 55.8 - -

BLEU 41.0 56.7 -Lium-cvc-ensemble (Caglayan et al., 2017) METEOR 60.5 73.0 -

BLEU 37.6 - -VMMTF (Calixto et al., 2019) METEOR 56.0 - -

BLEU 42.6 62.8 35.9CUNI-ensemble (Helcl et al., 2018) METEOR 59.4 77.0 32.7
Translation

Table 122: Machine Translation with Image on the Multi30k test set [2016 (en→ de), 2017
(en → fr), 2018 (en → cs)].

Results of Different Methods
Model Language en → de en → fr en → cs

BLEU 32.5 40.6 31.8CUNI-single (Helcl et al., 2018) METEOR 52.3 61.0 30.6

BLEU 38.5 44.1 -MeMAD (Grönroos et al., 2018) METEOR 56.6 64.3 -

Table 123: Machine Translation with Image on Multi30k test set [2018 (en → de, en → fr,
en → cs)].
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7.1.4 Machine Translation with Image - Discussion

This task is evaluated using only one dataset, e.g., Multi30k-MMT, containing descriptions
in three source languages and one target language. Results presented in Table 122 and
Table 123 refer to the shared task proposed in different years. We can observe that based on
different years of test set release, varied sets of approaches outperform the baseline methods.

7.2 Machine Translation with Video

In the following, we present more details about Multimodal Machine Translation by using
the video as the visual input.

7.2.1 Machine Translation with Video - Introduction

The goal in video-guided machine translation (Wang et al., 2019b) is to translate a source
language description into the target language equivalent using the video information as
additional spatio-temporal context.

Figure 18 illustrates this task where the English language description accompanied by a
video needs to be translated into the equivalent description in German.

Video-guided 
Machine Translation 

Model
Eine Frau auf einem Pferd

A woman riding a 
horse

Figure 18: Schematic representation of Video-guided Machine Translation task.

7.2.2 Machine Translation with Video - Datasets

The VATEX68 (Wang et al., 2019b) dataset was created for English and Chinese languages
to perform machine translation with video and also for the task of generating multilingual
video descriptions. Table 124 presents more details about the dataset.

Split Videos Action Label
Training 25,991 3
Validation 3,000 3
Public Test 6,000 -
Secret Test 6,278 -

Table 124: Splits of the VATEX dataset. Secret Test denotes human-annotated captions
heldout for organizing challenges; Hence, this split is unavailable to the public.

68http://vatex.org/main/index.html
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7.2.3 Machine Translation with Video - Evaluation Measures, Models, and
Results

In this section, we review the measures used to evaluate different models of Machine Trans-
lation with Video and the results obtained by them.

Evaluation Measures. To evaluate the Machine Translation with Video models, the
Language metrics discussed in Section 3.1.3 are used.

Models. Very few models have been created to investigate the task ofMachine Translation
with Video. The temporal aspect of a video is crucial for providing effective translations.
In contrast to Machine Translation with Image, the task of Machine Translation with Video
only has models which are built using single textual source. In Table 125, we present some
exemplar architectures (refer to Combined column) which integrate both video and language
inputs for addressing the task. We also include a column that showcases the optimization
techniques used to train those models.

Approach Video Frame Language Combined Optimizer RL
(Wang et al., 2019b) I3D - LSTM NMT+LSTM VI ADAM 7

Table 125: Exemplar Machine Translation with Video architectures.

Results. The models that have been created to address the task of Machine Translation
with Video is built using a single dataset, namely VATEX. In Table 126 we present re-
sults obtained with a subset of models built using the VATEX dataset presented earlier in
Section 7.2.2.

Model B-4 METEOR
NMT+LSTM VI (Wang et al., 2019b) [English → Chinese] 30.20 -
NMT+LSTM VI (Wang et al., 2019b) [Chinese → English] 27.18 -

Table 126: Comparison of different methods on the VATEX dataset.

7.2.4 Machine Translation with Video - Discussion

In Table 126, we observe that only one method utilizing LSTM with video features from the
pretrained I3D model (i.e., NMT+LSTM VI) is evaluated using the language metrics on the
challenging VATEX dataset for both English and Chinese.

8. Language-to-Vision Generation

In this section, we explore the task of Language-to-Vision Generation. The goal of this task
is to generate visual content given their natural language descriptions. However, different
variations of the task exist and will be discussed in the following.
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8.1 Language-to-Image Generation

In the following, we describe the setting of Language-to-Image Generation where an image
is desired from a piece of natural language text (e.g., a sentence) describing the scene.

8.1.1 Language-to-Image Generation - Introduction

A litany of different variations of the Language-to-Image Generation exists. For example,
generation of an image can also be thought as a manipulation of an image. It allows for
the generation of a new image using desired natural language description. We present some
variations in the following.

Sentence-level Language-to-Image Generation. The goal is to generate images con-
ditioned on the natural language descriptions. It is considered as a fundamental problem in
many applications. The success of Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) has made possible the generation of interesting images of specific categories,
such as room interiors, album covers, and faces (Radford et al., 2016). This has led to an
interest in bridging the gap between natural language text and image modeling. Figure 19
shows the usage of natural language description for generating image with a Text-to-Image
Generation Model.

Text-to-Image 
 Generation Model

This bird is white with 
blue on its back and has 

a long, pointy beak.

Figure 19: Given a natural language description, a Language-to-Image Model generates an
image by conditioning on the provided description.

Initially, alignDRAW (Mansimov et al., 2016) was introduced to iteratively draw patches
on a canvas, while attending to the relevant words in the description. Further, it was shown
that visual concepts could be translated from characters to pixels (Reed et al., 2016b) with
a conditional GAN. This was further improved by taking instructions about what content
should be drawn in which location in order to achieve high-quality image generation (Reed
et al., 2016a). Models which were developed to condition on classes for image genera-
tion (Nguyen et al., 2017) have also been used to generate images. However, the quality of
images generated is much lower than when not conditioning on classes. Very close to this ap-
proach is Text-conditioned Auxiliary Classifier GAN (TAC-GAN) (Dash et al., 2017) which
conditions images on both the sentence and class information, which has been shown to
improve their structural coherence. To generate images with high resolution, several GANs
were stacked together yielding stackGAN (Zhang et al., 2017, 2019) that used a global
sentence representation. This helped generate images of different sizes. To overcome the
bottleneck of global-level sentence representation, attention-based GAN like AttGAN (Xu
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et al., 2018) was used to capture the fine-grained details at different sub-regions of the image.
It pays attention to the relevant words in the natural language description.

In other research efforts, a hierarchical approach (Hong et al., 2018) was taken by infer-
ring the semantic layout of the image. Instead of learning a direct description to an image
mapping, the generation process is decomposed into multiple steps. First a semantic layout
from the text is constructed by the layout generator. Then, the layout is converted to an
image by the image generator. Other kinds of approaches such as HDGAN (Zhang et al.,
2018) aim to accommodate hierarchical adversarial objectives inside the network to regu-
larize mid-level representations and assist generator training in order to capture complex
image information. This has been shown to generate images with high resolutions.

Later, instead of dealing with natural-language descriptions, Johnson et al. (2018) used
image-specific scene graphs enabling explicitly reasoning about objects and their relation-
ships. Further, for obtaining better high resolution images, coarse-resolution features were
taken as input and Perceptual Pyramid Adversarial Network (PPAN) was introduced to di-
rectly synthesize multi-scale images conditioned on texts in an adversarial way (Gao et al.,
2019). Another approach named MirrorGAN (Qiao et al., 2019) targets the main goal of
visual realism and semantic consistency for generating images from text. It proposes global-
local attention and semantics-preserving framework where the image generated from the
text is further used to generate the text back. This has been shown to semantically align
with the given text and generated description.

In the following, we explore some of the related ideas which expand the scope of language-
to-image generation.

Image Manipulation. Image manipulation takes a different path from the earlier bench-
mark approaches about image generation, and so the TAGAN (Nam et al., 2018) was in-
troduced to generate semantically manipulated images while preserving text-irrelevant con-
tents. Here, the generator learns to generate images where only regions that correspond to
the given text are modified. Another interesting approach is to have an interactive system
that generates an image in an iterative manner. Recent approaches (Zhu et al., 2019) used
attention in both the generator and the discriminator, while others (Li et al., 2020) have
designed error correction modules to rectify mismatched attributes and complete the missing
contents in the generated image. There are also other variations where the source image is
manipulated via natural language dialogue (Cheng et al., 2018).

Fine-grained Image Generation. Fine-grained image generation uses a recurrent image
generation model (El-Nouby et al., 2018) to take into account both the generated output
up to the current step as well as all past instructions for generation. This has been shown
to add new objects, apply simple transformations to existing objects, and correct previous
mistakes. Earlier research never concentrated on fine-grained generation of images, i.e.,
localizing objects. Recently, control of the location of individual objects within an image
was made possible (Hinz et al., 2019) by adding a pathway in an iterative manner and
applying them at different locations specified by the bounding boxes to both the generator
and the discriminator.

Sequential Image Generation. The sequential image generation approach StoryGAN (Li
et al., 2019b), based on the sequential conditional GAN, concentrates on story by generating
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a sequence of images, when given a multi-sentence paragraph. Termed as story visualization,
it behaves exactly opposite to image storytelling and has been shown to generate images
with high quality, while also achieving contextual consistency.

8.1.2 Language-to-Image Generation - Datasets

For image generation, existing image datasets have been modified to accommodate image
descriptions. Initially, the Oxford-10269 and Caltech-UCSD Birds (CUB)70 datasets con-
sisting of flower and bird images belonging to 102 and 200 classes respectively are expanded
with image descriptions (Reed et al., 2016b). Table 127 and Table 128 presents splits of the
datasets.

Split Images Captions per Image Total Captions
Training 5,878 10 58,780
Validation 1,156 10 11,560
Test 1,155 10 11,550
Total 8,189 10 81,890

Table 127: Splits of the Oxford-102 dataset with image descriptions.

Split Images Captions per Image Total Captions
Training 8,855 10 88,550
Validation - - -
Test 2,933 10 29,330
Total 11,788 10 117,880

Table 128: Splits of the CUB dataset with image descriptions.

Similarly, the MSCOCO dataset (see Section 3.1.2) is also used for the reversed task of
description generation, i.e., given a description, generate the image matching the description.
We represent this dataset as MSCOCO-Gen. Table 129 presents the splits of the dataset.

Split Images Captions per Image Total Captions
Training 82,783 5 413,915
Validation - - -
Test 40,504 5 202,520
Total 123,287 5 616,435

Table 129: Splits of the MSCOCO-Gen dataset.

69http://www.robots.ox.ac.uk/~vgg/data/flowers/102
70http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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8.1.3 Language-to-Image Generation - Evaluation Measures, Models, and
Results

In this section, we review the measures used to evaluate different models of Language-to-
Image Generation and the results obtained by them.

Evaluation Measures. There are different evaluation measures which are explicitly used
for evaluating Language-to-Image generation models and are discussed below in detail.

• Inception Score (IS) (Salimans et al., 2016) was initially proposed to compare the
quality of images generated by GANmodels. A pretrained Inception-v3 model (Szegedy
et al., 2016) is applied to the generated image to get the conditional label distribution
with low entropy. A similar idea is applied for the generated images on the given text
descriptions for automatic evaluation. Higher scores are better for IS.

• Fréchet Inception Distance (FID) (Heusel et al., 2017) is supposed to improve
on IS by comparing the statistics of generated samples to original samples, instead of
evaluating generated samples in an isolated manner. It also depends on the Inception-
v3 model. In particular, the pool3 layer of the Inception-v3 is used for generating
original samples for comparison. Lower FID is better as it corresponds to more similar
generated and original samples.

• R-precision is inspired from the ranking retrieval results. It is used as a complemen-
tary evaluation metric for the language-to-image generation. Specifically, generated
images are used to query their corresponding natural language descriptions to find
how many relevant descriptions are retrieved.

Models. Many models have been created to approach the task of Language-to-Image Gen-
eration. In Table 130, we present some exemplar architectures (refer to Combined column)
that integrate both image and language for addressing the task. We also include a column
that showcases the optimization techniques used to train those models.

Approach Image Language Combined Optimizer RL
(Reed et al., 2016b) - char-CNN-RNN GAN-INT-CLS ADAM 7
(Reed et al., 2016a) - char-CNN-GRU GAWWN ADAM 7
(Zhang et al., 2017) - - StackGAN ADAM 7
(Xu et al., 2018) Inception-v3 BiLSTM AttGAN - 7
(Qiao et al., 2019) - BiLSTM MirrorGAN - 7

Table 130: Exemplar Language-to-Image Generation architectures.

Results. In Table 131, Table 132, and Table 133 we present results obtained with a sub-
set of models built using the CUB, Oxford-102, and COCO datasets presented earlier in
Section 8.1.2.

8.1.4 Language-to-Image Generation - Discussion

The Language-to-Image Generation task has been evaluated using three different datasets.
The CUB and Oxford-102 datasets contain only one visual object per image, while COCO
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Model Resolution IS FID HR
GAN-INT-CLS (Reed et al., 2016b) 64x64 2.88 ± .04 68.79 2.76 ± .01

64x64 3.10 ± .03 53.51 -GAWWN (Reed et al., 2016a) 128x128 3.62 ± .07 72.65 1.95 ± .02

64x64 3.02 ± .03 35.11 -StackGAN (Zhang et al., 2017) 256x256 3.70 ± .04 51.89 1.29 ± .02

StackGAN++ (Zhang et al., 2019) 256x256 4.04 ± .05 15.30 1.19 ± .02

AttGAN (Xu et al., 2018) 256x256 4.36 ± .03 - -

MirrorGAN (Qiao et al., 2019) 256x256 4.56 ± .05 - -

Table 131: Comparison of different methods using generated images of different resolutions
on the “CUB” dataset. R-precision (%) for 256x256 with AttGAN (53.31) and MirrorGAN
(57.67). HR - Human Ranking.

Model Resolution IS FID HR
GAN-INT-CLS (Reed et al., 2016b) 64x64 2.66 ± .03 79.55 1.84 ± .02

64x64 2.73 ± .03 43.02 -StackGAN (Zhang et al., 2017) 256x256 3.20 ± .01 55.28 1.16 ± .02

StackGAN++ (Zhang et al., 2019) 256x256 3.26 ± .01 48.68 1.30 ± .03

Table 132: Comparison of different methods using generated images of different resolutions
on the “Oxford-102” dataset.

Model Resolution IS FID HR
GAN-INT-CLS (Reed et al., 2016b) 64x64 7.88 ± .07 60.62 1.82 ± .03

64x64 8.35 ± .11 33.88 -StackGAN (Zhang et al., 2017) 256x256 8.45 ± .03 74.05 1.18 ± .03

StackGAN++ (Zhang et al., 2019) 256x256 8.30 ± .10 81.59 1.55 ± .05

PPGN (Nguyen et al., 2017) 256x256 9.58 ± .21 - -

AttGAN (Xu et al., 2018) 256x256 25.89 ± .47 - -

MirrorGAN (Qiao et al., 2019) 256x256 26.47 ± .41 - -

Table 133: Comparison of different methods using generated images of different resolutions
on the “COCO” dataset. R-precision (%) for 256x256 with AttGAN (72.13) and MirrorGAN
(74.52).

has multiple objects. Several methods based on modified GAN objectives have been pro-
posed for the generation of an image for a given textual description. From Table 131,
Table 132, and Table 133 we observe the recent MirrorGAN (Qiao et al., 2019) achieves best
results for different image resolution types using task-specific measures on CUB and COCO.
It is built on the idea of back-translation of the image to text. However, for Oxford-102,
StackGAN++ (Zhang et al., 2019) achieves the best result.
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8.2 Language-to-Video Generation

In the following, we discuss the setting of Language-to-Video Generation where a video is
desired as the visual output from a natural language text description of the scene in video.

8.2.1 Language-to-Video Generation - Introduction

The goal of Language-to-Video generation is to mimic language-to-image generation by
considering the temporal aspect. However, language-to-video generation requires a stronger
conditional generator than what is generally required for the language-to-image generation.
This is because of the temporal nature of the videos. To address this challenge, a conditional
generative model is trained (Li et al., 2018) to extract both static and dynamic information
from text which combines variational autoencoders (VAE) (Kingma & Welling, 2014) with
GANs. Figure 20 shows the usage of natural language description to generate a video with
a text-to-video generation model.

Text-to-Video 
 Generation Model

Swimming in swimming 
Pool

Figure 20: Given a natural language description, a Language-to-Video model generates a
video (represented as sequence of frames from Li et al. (2018)) conditioned on the description.

Another novel approach is to generate video from script. The composition, retrieval, and
fusion network (Craft) model (Gupta et al., 2018) is capable of learning knowledge from the
video-description data and applying it in generating videos from novel captions. It has been
shown that the Craft model performs better than the direct pixel generation approaches and
generalizes well to unseen captions and to video databases with no text annotations.

8.2.2 Language-to-Video Generation - Datasets

For video generation there are no publicly available datasets. However, Li et al. (2018) have
collected the Text2Video dataset belonging to ten different categories of YouTube videos,
each ranging between 10-400 seconds for language-to-video generation. The categories of
videos are biking in snow, playing hockey, jogging, playing soccer, playing football, kite surf-
ing, playing golf, swimming, sailing and water skiing. For the purposes of model evaluation,
the dataset is split into training, validation, and test sets in the ratio of 7:1:2 respectively,
the details of which can be found in Table 134.

Split Videos
Training 2800
Validation 400
Test 800

Table 134: Splits of Text2Video (Combines all categories).
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8.2.3 Language-to-Video Generation - Evaluation Measures, Models, and
Results

In this section, we review the measures used to evaluate different models of Language-to-
Video Generation and the results obtained by them.

Evaluation Measures. The Language-to-Video Generation models are evaluated based
on the Accuracy measure.

Models. Only a limited set of models have been created so far to handle the task of
Language-to-Video Generation. In Table 135, we present an exemplar architecture (refer to
Combined column) which integrates video and language to address the task. We also include
a column that showcases the optimization technique used to train the model.

Approach Video Frame Language Combined Optimizer RL
(Li et al., 2018) MotionFeatures - LSTM T2V ADAM 7

Table 135: Exemplar Language-to-Video Generation architectures.

Results. In Table 136 we present results obtained with a subset of models built using the
“TexttoVideo” dataset presented earlier in Section 8.2.2.

Model Accuracy
DT2V-baseline (Li et al., 2018) 0.101
PT2V (Reed et al., 2016b) 0.134
GT2V (Li et al., 2018) 0.192
T2V (Li et al., 2018) 0.426

Table 136: Comparison of accuracy (%) scores of different models on Text2Video.

8.2.4 Language-to-Video Generation - Discussion

The task of Language-to-Video Generation is not as well-explored as the Language-to-Image
generation task due to its complexity. Results presented in Table 136 show that the approach
proposed by Li et al. (2018) achieves the best accuracy which is calculated using a simple
video classifier which is a five-layer neural network model with 3D full convolutions and
ReLU nonlinearities as activation functions.

9. Vision-and-Language Navigation

In this section, we explore the task of Vision-and-Language Navigation. The goal of this task
is to carry out navigation in an environment by interpreting natural language instructions.

9.1 Image-and-Language Navigation

In the following, we provide a detailed description of the Image-and-Language Navigation
task in which photorealistic images forming 3D environments are used as visual inputs.
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9.1.1 Image-and-Language Navigation - Introduction

Most of the attempts at Vision-and-Language Navigation (VLN) use photorealistic images
forming 3D environments. The goal of the Image-and-Language Navigation (ILN) task
is to enable an autonomous agent (e.g., robot) to carry out navigation in an environment
defined by the photo-realistic image views by means of interpreting natural language instruc-
tions (Anderson et al., 2018b). This requires the agent/robot to simultaneously process both
vision and language inputs and navigate from a source to a target location. Figure 21 shows
a visual depiction of the ILN task.

Figure 21: Given a sequence of images and few instructions in textual format (represented
with a sequence of images from Anderson et al. (2018b)), an Image-and-Language Navigation
model is expected to carry out the navigation of an agent in an environment (indicated by
blue arrows in the pictures).

Initially, sequence-to-sequence models were proposed to address challenges in which the
student-forcing approach achieved promising results in previously explored environments.
One approach (Wang et al., 2018) integrated a module to combine model-based and model-
free reinforcement learning techniques to better generalize to unseen environments. There
is also the reinforced cross-modal matching approach (Wang et al., 2019a), which enforces
both local and global cross-modal grounding via reinforcement learning.

ILN can also be viewed as a search on a navigation graph (Ma et al., 2019b) with a
progress monitor as a learnable heuristic for search. It is improved by leveraging a visual-
textual co-grounding attention mechanism to better align the instructions and visual scenes,
and incorporates a progress monitor to estimate the agent’s current progress towards the
goal (Ma et al., 2019a). Another substantial improvement came from training an action
space with an embedded speaker model (Fried et al., 2018). New instructions are synthe-
sized for data augmentation and pragmatic reasoning was implemented for evaluating how
well candidate action sequences explain an instruction. Improving over earlier approaches
that make local action decisions or score entire trajectories using beam search, the novel
approach of the FAST framework (Ke et al., 2019b) balances local and global signals when
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exploring the environment allowing it to act greedily, but use global signals to backtrack
when necessary. Also, Tan et al. (2019) explore a generalizable navigational agent by training
it in two stages. In the first stage, mixed imitation and reinforcement learning is combined,
while in the second stage, fine-tuning is performed via newly-introduced “unseen” triplets.

ILN can also be perceived as a form of visual question answering (see Section 5.1) that
requires navigation to answer questions. Embodied Question Answering (Das et al., 2018a,
2018b) is explored with an agent that is spawned at a random location in a 3D environment
and asked a question. For answering the question, the agent navigates through the 3D
environment, for finding the information observed in the question. Other attempts used
interactive question answering (Gordon et al., 2018) and grounded dialog (de Vries et al.,
2018). Another set of approaches (Misra et al., 2018a) aims to map instructions to actions
in 3D Environments with visual goal prediction. Recently, Chi et al. (2020) also made an
interactive learning framework to endow the agent with the ability to ask for users’ help in
ambiguous situations.

9.1.2 Image-and-Language Navigation - Datasets

For the image-and-language navigation task, three different datasets have been designed so
far. In the following, we present the details of these datasets in separate paragraphs.

Room-2-Room (R2R). The R2R71 (Anderson et al., 2018b) dataset consists of real
images of previously unseen building-scale 3D environments from Matterport3D (Chang
et al., 2017). The navigation instructions have been collected with the help of humans using
AMT. Table 137 presents splits of the dataset.

Split Scenes Navigation Instructions
Training 61 14,025
Validation (seen) 11 1,020
Validation (unseen) 11 2,349
Test 18 4,173

Table 137: Splits of the R2R dataset.

ASKNAV. Similar to R2R, the ASKNAV72 (Nguyen et al., 2019) dataset is built on
top of Matterport3D73. However, the objective differs in that the agent queries the advisor
when in confusion and makes progress accordingly. It contains 10,800 panoramic views from
194,400 RGB-D images of 90 building-scale scenes. A data point in the dataset consists of a
single starting viewpoint, but it has multiple goal viewpoints. Table 138 presents the splits
of dataset.

TOUCHDOWN. Extending from building environments, the TOUCHDOWN74 (Chen
et al., 2019) dataset is designed for addressing tasks such as executing navigation instructions

71https://bringmeaspoon.org
72https://github.com/debadeepta/vnla
73https://niessner.github.io/Matterport
74https://github.com/lil-lab/touchdown
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Split Data points Goals
Training 94,798 139,757
Validation (seen) 4,874 7,768
Validation (unseen) 5,005 8,245
Test (seen) 4,917 7,470
Test (unseen) 5,001 7,537

Table 138: Splits of the ASKNAV dataset.

(Navigation Only) and resolving spatial descriptions (SDR) in real-world environments. SDR
is similar to the task of image referring expression (Section 4.1).

The environment includes 29,641 panoramas (360◦ Google Street View RGB images)
and 61,319 edges from the New York City. Table 139 has more details about the dataset,
while Table 140 presents its splits.

Dataset Vocab. Mean TextDataset Size Size Length
TOUCHDOWN (Complete task) 9,326 5,625 108.0
Navigation Only 9,326 4,999 89.6
SDR Only 25,575 3,419 29.7

Table 139: Statistics of the TOUCHDOWN dataset. Vocabulary Size and Text Length are
computed by combining the training and validation sets.

Task Split Examples
Training 6,526Complete & Validation 1,391Navigation Only Test 1,409
Training 17,880

SDR Only Validation 3,836
Test 3,859

Table 140: Splits of the TOUCHDOWN dataset.

Cooperative Vision-and-Dialog Navigation (CVDN). CVDN75 (Thomason et al.,
2019) is a dataset76 of embodied, human-human dialogs situated in a simulated, photoreal-
istic home environment. Table 141 presents some statistics about the dataset.

Action Learning From Realistic Environments and Directives (ALFRED). AL-
FRED77 (Shridhar et al., 2020) is a benchmark and interactive visual dataset for learning
a mapping from natural language instructions and egocentric vision to sequences of actions
for household tasks.

75https://cvdn.dev
76https://github.com/mmurray/cvdn/tree/master/tasks/CVDN/data
77https://askforalfred.com
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Navigation Dialogs Navigation Total Scenes
(Human-Human) Trajectories (MatterPort houses)
2,050 7,000 83

Table 141: Statistics of the CVDN dataset.

Data Number of Number of
Split Fold Scenes Annotations
Training - 108 21,023

Seen 88 820Validation Unseen 4 821
Seen 107 1,533Testing Unseen 8 1,529

Table 142: Splits of the ALFRED dataset.

9.1.3 Image-and-Language Navigation - Evaluation Measures, Models, and
Results

In this section, we present the evaluation measures, models, and results achieved with various
architectures of Image-and-Language Navigation.

Evaluation Measures. The measures that are designed explicitly for the Image-and-
Language Navigation system (e.g., R2R) are:

• Path Length (PL): PL is a trajectory length where it is the total length of the
executed path.

• Navigation Error (NE): NE is based on the shortest path distance in the navigation
graph, and is calculated by measuring the average distance between the end-location
predicted by the follower agent and the true route’s end-location.

• Success Rate (SR): SR is the percentage of predicted end-locations within 3 meters
of the true location.

• Oracle Success Rate (OSR): OSR measures the success rate at the closest point
to the goal that the agent has visited along the trajectory.

• Success Path Length (SPL): SPL is a trade-off between SR and PL, by weighting
SR by inverse PL.

Models. Many models have been created to approach the task of Image-and-Language
Navigation. In Table 143, we present some exemplar architectures (refer to Combined col-
umn) which integrate both image and language to address the task. We also include a
column that showcases the optimization techniques used to train those models.

Results. As discussed earlier several models have been created to approach the task of
Image-and-Language Navigation. Furthermore, many datasets have been created to provide
variety in the content so that they improve the generalization ability of the models. In this
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Approach Image Language Combined Optimizer RL
(Anderson et al., 2018b) ResNet-152 LSTM Seq-to-Seq ADAM 7
(Wang et al., 2018) ResNet-152 LSTM RPA - 3
(Fried et al., 2018) ResNet-152 LSTM Speaker-Follower - 3
(Wang et al., 2019a) ResNet-152 LSTM RCM ADAM 3
(Ma et al., 2019a) ResNet-152 LSTM Self-Monitoring ADAM 7
(Tan et al., 2019) ResNet-152 LSTM BackTranslation RMSprop 3
(Ke et al., 2019b) - LSTM FAST - 7

Table 143: Exemplar Image-and-Language Navigation architectures.

section, we cover the results obtained by the models from a representative dataset for this
task. Table 144 – 146 present results obtained with a subset of models built and evaluated
using the R2R dataset which was introduced in Section 9.1.2.

Model PL NE OSR SR SPL
Random 9.89 9.79 18.3 13.2 12
Seq-to-Seq (Anderson et al., 2018b) 8.13 7.85 26.6 20.4 18
RPA (Wang et al., 2018) 9.15 7.53 32.5 25.3 23
Speaker-Follower (Fried et al., 2018) 14.82 6.62 44.0 35.0 28
Self-Monitoring (Ma et al., 2019a) 18.0 - - 48.0 35
RCM (Wang et al., 2019a) 15.22 6.01 50.8 43.1 35
BackTranslation-Single (Tan et al., 2019) 11.7 - - 51.5 47
TacticalRewind-Greedy (Ke et al., 2019b) 22.08 5.14 - 54 41

BackTranslation-PreExplore (Tan et al., 2019) 9.79 - - 63.9 61
BackTranslation-Beam (Tan et al., 2019) 687 - - 68.9 1
FAST-Beam (Ke et al., 2019b) 196.53 4.29 - 61.0 3

Table 144: Comparison of different methods on the R2R test set.

Model PL NE OSR SR SPL
Speaker-Follower (Fried et al., 2018) - 3.36 73.8 66.4 -
RCM+SIL (Wang et al., 2019a) 10.13 2.78 79.7 73.0 -
BackTranslation-Single (Tan et al., 2019) 11.0 3.99 - 62.1 59
TacticalRewind-Greedy (Ke et al., 2019b) - - - - -

BackTranslation-PreExplore (Tan et al., 2019) 9.92 4.84 - 54.7 52
BackTranslation-Beam (Tan et al., 2019) 703 2.52 - 75.7 1
FAST-Beam (Ke et al., 2019b) 188.6 3.13 - 70.0 4

Table 145: Comparison of different methods on the seen validation set of R2R.

9.1.4 Image-and-Language Navigation - Discussion

Image-and-Language Navigation is evaluated with different splits of the R2R validation and
test datasets. From Table 144, Table 145, and Table 146 we can observe that Frontier Aware
Search with backTracking (FAST)-beam (Ke et al., 2019b) achieves the best result on the
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Model PL NE OSR SR SPL
Speaker-Follower (Fried et al., 2018) - 3.36 73.8 66.4 -
RCM+SIL (Wang et al., 2019a) 10.13 2.78 79.7 73.0 -
BackTranslation-Single (Tan et al., 2019) 10.7 5.22 - 52.2 48
TacticalRewind-Greedy (Ke et al., 2019b) 21.17 4.97 - 56.0 43

BackTranslation-PreExplore (Tan et al., 2019) 9.57 3.78 - 64.5 61
BackTranslation-Beam (Tan et al., 2019) 663 3.08 - 69.0 1
FAST-Beam (Ke et al., 2019b) 224.42 4.03 - 63.0 2

Table 146: Comparison of different methods on the unseen validation set of R2R.

task-specific metrics. This approach balances local and global signals while exploring an
unobserved environment. It also helps to act greedily but use global signals to backtrack
whenever necessary.

10. Vision-and-Language Pretraining

Inspired by the works of pretraining only on vision (He et al., 2016) or solely on language
data (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020a), the vision-and-language
pretraining seeks to jointly learn representations using both visual and textual content for
improving the efficiency of previously discussed vision and language integration tasks. Sev-
eral methods will be discussed for vision-and-language pretraining, the architectures of which
can be broadly divided into Single-stream and Two-stream. In the following, we provide more
details on both types of architectures.

Single-stream Architectures. These neural architectures are based on BERT-like (De-
vlin et al., 2019) models where they incorporate an Image Embedder, a Text Embedder, and
a multi-layer Transformer (Vaswani et al., 2017). The proposed models are pretrained on
data which in general have parallel multimodal components i.e., videos or images along with
captions. Further, the models are optimized with a combination of different objectives such
as vision-based and text-based Masked Language Models (MLM), masked visual-feature
modeling, and visual-linguistic matching. Learned representations are then used for dif-
ferent downstream tasks such as multimodal understanding or generation. For example,
the VideoBERT (Sun et al., 2019) architecture has been designed to learn vision-language
representations for a generative downstream task like video description generation (see Sec-
tion 3.1.4). While there are several other approaches such as Bounding Boxes in Text
Transformer (B2T2) (Alberti et al., 2019), Unicoder-VL (Li et al., 2020), VL-BERT (Su
et al., 2020), UNITER (Chen et al., 2020) are all designed for multimodal understanding
and facilitate downstream tasks. Works such as VLP (Zhou et al., 2020), OSCAR (Li et al.,
2020) and also its extension VinVL (Zhang et al., 2021) have built unified models that can
jointly understand and generate from cross-modal data. There is also an emergence of in-
terest in probing vision-and-language pretrained models (Cao et al., 2020) to comprehend
the contribution from each modality and also help in designing better model architectures
and objectives.
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Two-stream Architectures. In contrast to the single-stream architectures, two-stream
architectures adopted two independent encoders for learning visual and text representations.
ViLBERT (Lu et al., 2019) and LXMERT (Tan & Bansal, 2019) are examples of two-stream
architectures which used self-attention principles to jointly learn representations from visual
and textual data. ViLBERT builds a co-attentional transformer layer, while LXMERT
uses a cross-modality encoder. Similar to single-stream, the two-stream architectures also
optimize their models with pretraining tasks, such as MLM and vision-text matching. Some-
times they use additional text-only corpora for achieving better generalization on long and
complex sentences.

In Table 147, we summarize both Single-stream and Two-stream architectures by enumer-
ating the vision and language integration tasks they support. It has to be noted that these
architectures only use subsets of the datasets from each task. Also, the type of tasks they
select are limited and are mostly discriminative. Broadly, we denote with (3) or (7) to
indicate whether they support the task in question or not.

Approach VDG VS VRE VQA VR VE VDiag MMT LVG VLN
Single-stream

Unicoder-VL 7 7 7 7 3 7 7 7 7 7
VL-BERT 7 7 3 3 3 7 7 7 7 7
VideoBERT 3 7 7 7 7 7 7 7 7 7
VLP 3 7 7 3 7 7 7 7 7 7
OSCAR 3 7 7 3 3 7 7 7 7 7
B2T2 7 7 7 7 3 7 7 7 7 7
UNITER 7 7 3 3 3 3 7 7 7 7
VinVL 3 7 7 3 3 7 7 7 7 7

Two-stream
ViLBERT 7 7 3 3 3 7 7 7 7 7
LXMERT 7 7 7 3 3 7 7 7 7 7

Table 147: Major Vision-and-Language Pretraining Architectures and their support for
various Vision and Language Tasks. VDG - Visual Description Generation, VS - Visual
Storytelling, VRE - Visual Referring Expression, VQA - Visual Question Answering, VR
- Visual Reasoning, VE - Visual Entailment, VDiag - Visual Dialog, MMT- Multimodal
Machine Translation, LVG - Language-to-Vision Generation, VLN - Vision-and-Language
Navigation.

11. Future Directions

The integration of vision and language research has come a long way since the pioneering
works, particularly after the adoption of deep learning techniques. Although the performance
of current state-of-the-art models still needs to catch up with human abilities, the gap
is diminishing at a steady rate. However, there is still ample room for theoretical and
algorithmic improvements. Here, we enumerate several possible future directions that have
the potential to advance the research overall.

1271



Mogadala, Kalimuthu, & Klakow

Learning Common Sense and World Knowledge. There is a vast amount of out-
of-domain data available which is unpaired with vision and language task-specific corpora.
Leveraging such information as factual, hierarchical, or commonsense knowledge can sig-
nificantly improve the intelligence of vision and language systems. Prior works have been
shown to assist independent NLP tasks with pretrained language models such as common-
sense reasoning (Rajani et al., 2019) and fact predictions (IV et al., 2019). It has also shown
promise for image caption generation (Wu et al., 2018; Mogadala et al., 2018a) and question
answering (Shah et al., 2019a; Marino et al., 2019). Extending such ideas to other tasks
would be an interesting research direction to pursue. Another possibility could be to utilize
images, videos, and text in a synchronous and synergistic manner as they encode different
aspects of the world and implicitly. Here, an open question would be how to extract world
and common sense knowledge from these sources.

Addressing Large-scale Data Limitations. Most approaches designed for tasks that
integrate vision and language use large datasets for training. With this trend, it will soon
become harder to design new tasks without having a dataset. To avoid such problems, future
work will need to be adaptable to datasets of different sizes. Therefore, trade-off approaches
are required where we know what amount of data is enough to master a certain task. This
requires designing methods which might inspire from neuro-symbolic reasoning systems (Yi
et al., 2018; Vedantam et al., 2019).

Combining Multiple Tasks. Some tasks are capable of sharing some ideas or represen-
tations of each other. For example, visual referring expression comprehension can be viewed
as a visual dialog task (de Vries et al., 2017) where a sequence of questions is used to refer
to an object in the image. Similarly, image caption generation can be viewed as the visual
referring expression generation task (Mao et al., 2016).

Novel Neural Architectures for Representation. Up until late 2017, the de facto
standard for learning language and visual feature representations were RNNs and CNNs
respectively. However, over the last few years, with the introduction of novel ideas that
address the limitations of aforementioned neural network types, either theoretically or com-
putationally, there is a growing interest to adopt these new techniques. For instance, the
Transformer (Vaswani et al., 2017) architecture that is used extensively for pure NLP tasks
may see adoption for the integration of vision and language tasks. It has already shown
its applicability for image caption generation (Sharma et al., 2018). In a similar manner,
graph neural networks (Scarselli et al., 2008; Kipf & Welling, 2017; Battaglia et al., 2018)
that were introduced to tackle graph-structured data, has already shown its promise in vi-
sual reasoning (Haurilet et al., 2019). Exploiting the compositionality of visual objects to
describe an entire visual scene with neural modular networks is also an interesting direction
to explore for many vision and language tasks.

Image vs Video. Most of the research into integrating vision and language concentrates
on static images. This trend is clearly evident from the array of datasets and methods
available for image and language integration tasks. Nevertheless, although a complex task,
similar attention needs to be embraced for videos for which there is a scarcity of datasets.
For instance, there is only one dataset available for tasks such as Video Dialog (Section 6.2),
Video Referring Expression (Section 4.2), Language-to-Video Generation (Section 8.2), and
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Machine Translation with Videos (Section 7.2), while tasks such as Vision-and-Language
Navigation (Section 9) completely lack video-based datasets.

3D-Vision and Language. The world that we inhabit is inherently 3D. Thinking from
this perspective, restricting vision and language research to just 2D, viz. images and videos,
might be a hindrance for real world agents, e.g., humanoid robots, to fully understand the
complexities of the 3D world and navigate with ease. To avoid such pitfalls, algorithms
and techniques need to be developed for processing 3D inputs such as RGB-D, meshes, and
point clouds in conjunction with language. Some pioneering works have already begun in
this direction (Achlioptas et al., 2020; Chen et al., 2020; Liu et al., 2021; Roh et al., 2021)
and we anticipate the trend78 to shift more towards developing algorithms for understanding
as well as the generation of 3D scenes (Briq et al., 2021), while utilizing language as a main
or auxiliary modality.

Automatic Evaluation Measures. Automatic evaluation measures exist for several vi-
sion and language tasks. However, most of them are adaptations from standalone NLP tasks
such as machine translation. For example, BLEU and METEOR metrics used for evaluat-
ing visual caption generation and storytelling models have been found not to correlate well
with human judgements (Bernardi et al., 2016). The SPICE metric designed specifically
for visual caption generation is dependent on parsing and is, therefore, not adaptable for
other tasks such as storytelling. This kind of shortcoming shows us a promising research
direction to pursue in developing evaluation measures applicable for several tasks. Recent
attempts in developing BLEURT (Sellam et al., 2020) and BERTScore (Zhang et al., 2020)
metrics show promising direction towards this goal. Analogously, language-to-vision gener-
ation, although having quantitative measures, is typically dependent on human evaluation.
It needs to adopt novel techniques for effective quantitative evaluation. Other tasks such as
vision-and-language navigation and visual reasoning have specific measures for evaluation
which can be improved further.

12. Conclusion

In undertaking this survey, we provided an overview as well as elaborate details on the recent
trends in integration of vision and language research. In the beginning, we started with a
background on various tasks in computer vision and NLP. Then, we identified ten distinct
prominent tasks that aim to integrate visual and language modalities. To draw connections
from traditional research tasks to V&L integration tasks, we presented information about
how each integration task is expanded from the standalone computer vision or NLP tasks
on which they are originally based. Following that, we reviewed and analyzed each task
separately by presenting a comprehensive introduction on how the tasks are designed in a
bottom-up manner. Additionally, we presented different state-of-the-art methods used to
address the tasks, along with exemplar architectures that are designed to integrate vision
and language representations. We also provided a review on relevant datasets, evaluation
measures, and the relative performance obtained by several state-of-the-art methods. Fi-
nally, in a separate section, we explored the various ways to pretrain generic models with
large-scale multimodal data for supporting downstream vision and language integration tasks

78https://language3dscenes.github.io
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with minimal fine-tuning efforts. Moreover, we outlined how much the existing pretraining
approaches support the ten prominent integration tasks that we described in earlier sections.

When comparing the standalone research done individually in the fields of computer
vision and NLP, the synergy of both, fuelled by advanced machine learning techniques, are
expected to yield more intelligent and sustainable systems. Making them easily accessible
can, therefore, have direct commercial and societal impact. However, despite the significant
progress achieved so far in many integration tasks, large-scale evaluation of those systems
show that they still fall behind human performance, by a large margin. This fact confirms
that there is still a good deal of room for improvement. In particular, designing novel
evaluation measures and architectures that can adequately deal with the complexity of
vision and language integration problems has the potential to address some of the challenges.
Towards this goal, we outlined a few possible future research directions in the final section.

We believe that our efforts in publishing this survey will help to systematize future
research papers and also investigate the unsolved problems that are hindering the progress
of effective integration of vision and language modalities.
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Appendix

ADAM ADAptive Moment estimation

AI Artificial Intelligence

AMEM Attention MEMory

AMT Amazon Mechanical Turk

ANetCap ActivityNet Captions

AREL Adversarial REward Learning

AVSD Audio Visual Scene-aware Dialog

BDD-X Berkeley Deep Drive eXplanation

BDD Berkeley Deep Drive

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional LSTM

BLEU BiLingual Evaluation Understudy

BRNN Bidirectional Recurrent Neural Network

CIDEr Consensus based Image Description Evaluation

CLEVR-CoGenT CLEVR Compositional Generalization Test

CLEVR Compositional Language and Elementary Visual Reasoning

CLID Cross-Lingual Image Description

CMM Cascaded Mutual Modulation

CMRE Cross-Modal Relationship Extractor
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CNN Convolutional Neural Networks

CoAtt-GAN Co-Attention GAN

COG Configurable Visual Question and Answer

CorefNMN Coreference Neural Module Networks

CUB Caltech-UCSD Birds

DII Descriptions of Images-in-Isolation

DIS Descriptions of Images-in-Sequence

EVE Explainable Visual Entailment

FAST Frontier Aware Search with backTracking

FID Fréchet Inception Distance

FiLM Feature-wise Linear Modulation

GAN Generative Adversarial Network

GAWWN Generative Adversarial What-Where Network

GGCN Gated Graph Convolutional Network

GNN Graph Neural Network

GQA General Question Answering

GRU Gated Recurrent Unit

GVF Global Visual Features

HCIAE-NP-ATT History-Conditioned Image Attentive Encoder n-pair self-ATTentive

HREA Hierarchical Recurrent Encoder with Attention

HRE Hierarchical Recurrent Encoder
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KVQA Knowledge-aware Visual Question Answering

LBA Learning-By-Asking

LF Late Fusion

LGCN Language-Conditioned Graph Networks

LSTM Long Short-Term Memory

LXMERT Learning Cross-Modality Encoder Representations from Transformers

M-VAD Montreal Video Annotation

MAC Memory, Attention, and Composition

MedRank Median Rank

METEOR Metric for Evaluation of Translation with Explicit Ordering

MIL Multiple Instance Learning

MMT Multimodal Machine Translation

MN Memory Network

MPII-MD MPII Movie Description

MPII Max Planck Institute for Informatics

MRR Mean Reciprocal Rank

MSCOCO Microsoft Common Objects in COntext

MSR-VTT Microsoft Research Video to Text

MSVD Microsoft Video Description

MuRel Multimodal Relational network

NDCG Normalized Discounted Cumulative Gain

1277



Mogadala, Kalimuthu, & Klakow

NIC Neural Image Captioning

NMT Neural Machine Translation

NS-CL Neuro-Symbolic Concept Learner

NYC-Storytelling New York City Storytelling

OK-VQA Outside Knowledge Visual Question Answering

OSCAR Object-SemantiCs Aligned pRe-training

PPGN Plug & Play Generative Network

R-CNN Region-based CNN

R2R Room-2-Room

RAVEN Relational and Analogical Visual rEasoNing

RCM Reinforced Cross-modal Matching

RE Referring Expression

RGB-D Red, Green, Blue, Depth

RL Reinforcement Learning

RNs Relation Networks

ROUGE Recall Oriented Understudy for Gisting Evaluation

RvA Recursive Visual Attention

SCA Sequential Co-Attention

SCRC Spatial Context Recurrent Convnet

SDR Spatial Description Resolution

SF Similarity scoring + Fusion
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SGD Stochastic Gradient Descent

SIL Self-supervised Imitation Learning

SIND Sequential Image Narrative Dataset

SIS Stories for Images-in-Sequence

SPICE Semantic Propositional Image Captioning Evaluation

TACoS Textually Annotated Cooking Scenes

UNITER UNiversal Image-TExt Representation Learning

V-SNLI Visually-grounded Natural Language Inference

VATEX Video And TEXt

VDG Visual Description Generation

VGG Visual Geometry Group

VIST Visual Storytelling

VLN Vision and Language Navigation

VLP Vision-Language Pre-training

VMMTF Variational MMT with Fixed Gaussian prior

VRE Visual Referring Expression

VTW Videos Titles in the Wild
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