
Character-based
recurrent neural networks

for morphological relational reasoning

Olof Mogren1 * and Richard Johansson2
1 olof@mogren.one, RISE Research institutes of Sweden

2 richard.johansson@gu.se, University of Gothenburg, Sweden

abstract
Keywords:
morphological
analogies,
morphological
inflection,
morphological
reinflection,
recurrent neural
network,
character-based
modelling

We present a model for predicting inflected word forms based on mor-
phological analogies. Previous work includes rule-based algorithms
that determine and copy affixes from one word to another, with lim-
ited support for varying inflectional patterns. In related tasks such as
morphological reinflection, the algorithm is provided with an explicit
enumeration of morphological features which may not be available in
all cases. In contrast, our model is feature-free: instead of explicitly
representing morphological features, the model is given a demo pair
that implicitly specifies a morphological relation (such as write:writes
specifying infinitive:present). Given this demo relation and a query word
(e.g. watch), the model predicts the target word (e.g. watches). To ad-
dress this task, we devise a character-based recurrent neural network
architecture using three separate encoders and one decoder.

Our experimental evaluation on five different languages shows
that the exact form can be predicted with high accuracy, consistently
beating the baseline methods. Particularly, for English the prediction
accuracy is 94.85%. The solution is not limited to copying affixes from
the demo relation, but generalizes to words with varying inflectional
patterns, and can abstract away from the orthographic level to the
level of morphological forms.

*A large portion of this work was done while O.M. was a PhD student at
Chalmers university of technology, Sweden.
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1 introduction

Analogical reasoning is an important part of human cognition (Gen-
tner et al. 2001). Resolving analogies bymapping unknown data points
to known analogous examples allows us to draw conclusions about
the previously unseen data points. This is closely related to zero-shot
and one-shot learning: strategies that are useful when training data
is very limited, such as when explicit labels may not be available, or
only sparsely available. In linguistics, analogies have been studied ex-
tensively, e.g. phonetic analogies (Yvon 1997) and semantic analogies
(Mikolov et al. 2013a). In general, an analogy is defined as a quadruple
of objects A, B, C , and D having the analogical relation: A is to B as C
is to D, and the problem is to predict D given A, B, and C . In this work,
we study morphological analogies where A, B, C , and D are words.
The pair (A, B) represents a demo relation representing some morpho-
logical transformation between two word forms, and the problem is
to transform the query word C from the source form to the target form
as specified by the demo relation. The task may be illustrated with a
simple example: see is to sees as eat is to what?

A good solver for morphological analogies can be of practical help
as writing aids for authors, suggesting synonyms in a form specified
by examples rather than using explicitly specified forms. Furthermore,
models that can generate words with correct inflection are important
building blocks for many tasks within natural language processing.
Studying how systems can learn the right abstraction to generate in-
flected words using limited supervision, can help us learn how to cre-
ate systems for more complex language generation tasks, such as ma-
chine translation, automatic summarization, and dialogue systems.

Previous work has tackled the problem of predicting the target
form by identifying the string transformation (insertions, deletions, or
replacements of characters) in the demo relation, and then trying to
apply the same transformation to C (Lepage 1998). For instance, this
algorithm correctly solves the example given above, since it just needs
to add an s to the query word.

However, such solutions are brittle, as they are unable to abstract
away from the raw strings, failing when the given relation is realized
differently in A and B than in C and D. On a basic level, the model
needs to take into account phonological processes such as umlaut and
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vowel harmony, as well as orthographic quirks such as the rule in En-
glish that turns y into ie in certain contexts. Furthermore, an evenmore
challenging problem is that the model will need to take into account
that words belong to groups whose inflectional patterns are different –
morphological paradigms. In all these cases, to be successful, a solution
needs to abstract away from the raw character-based representation
to a higher level representation of the relations.

In this work, we propose a supervised machine learning approach
to the problem of predicting the target word in a morphological anal-
ogy. The model is based on character-level recurrent neural networks
(RNNs), which have recently seen much success in a number of mor-
phological prediction tasks (Faruqui et al. 2016; Kann and Schütze
2016). This model is able to go beyond the simple string substitutions
handled by previous approaches: it picks up contextual string trans-
formations including orthograpic and phonological rules, and is able
to generalize between inflection paradigms.

Machine learning approaches, including character-based RNNs,
have been successfully applied in several types of prediction prob-
lems in morphology, including lemmatization, inflection and reinflec-
tion (see Section 2.2). However, those tasks have either been more
restricted than ours (e.g. lemmatization), or relied on an explicit enu-
meration of morphological features, which may not be available in all
cases. In contrast, our model is a completely feature-free approach to
generating inflected forms, which can predict any form in a morpho-
logical paradigm.

The fact that our model does not rely on explicit features makes
it applicable in scenarios with under-resourced languages where such
annotations may not be available. However, since the model is trained
using a weaker signal than in the traditional feature-based scenario,
it needs to learn a latent representation from the analogies that play
the same role as the morphological features otherwise would, making
the task more challenging.

2 related work

Analogical reasoning is useful in many different tasks. In this section
we will limit the survey to work that is relevant to morphological
applications.
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2.1 Morphological analogies
Lepage (1998) presented an algorithm to solve morphological analo-
gies by analyzing three input words, determining changes in prefixes,
infixes, and suffixes, and adding or removing them to or from the
query word, transforming it into the target:

reader:unreadable = doer:x → x = undoable.

Stroppa and Yvon (2005) presented algebraic definitions of analogies
and a solution for analogical learning as a two-step process: learning a
mapping from a memorized situation to a new situation, and transfer-
ring knowledge from the known to the unknown situation. The solu-
tion takes inspiration from k-nearest neighbour (k-NN) search, where,
given a query q, one looks for analogous objects A, B, C from the train-
ing data, and selects a suitable output based on a mapping of A, B, C
from input space to output space. The task studied in these papers
is the same as in the current paper. The solutions, are however much
limited in the generality. Our solution can learn very flexible relations
and different inflectional patterns.
2.2 Character based modeling for morphology
The 2016 and 2017 SIGMORPHON shared tasks on morphological rein-
flection (Cotterell et al. 2016a, 2017) have spurred some recent interest
in morphological analysis. In this task, a word is given in one form,
and should be transformed into a form specified by an explicit feature
representation. These features represent number, gender, case, tense,
aspect, etc. In comparison, the problem of morphological analogies is
more difficult, as no explicit tags are provided: the forms must instead
be inferred from a demo relation.

While morphological inflection tasks have previously been stud-
ied using rule-based systems (Koskenniemi 1984; Ritchie et al. 1991)
and learned string transducers (Yarowsky and Wicentowski 2000;
Nicolai et al. 2015a; Ahlberg et al. 2015; Durrett and DeNero 2013),
they have more recently been dominated by character-level neural
network models (Faruqui et al. 2016; Kann and Schütze 2016) as they
address the inherent drawbacks of traditional models that represent
words as atomic symbols. This offers a number of advantages: the vo-
cabulary in a character-based model can be much smaller, as it only
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needs to represent a finite and fairly small alphabet, and as long as
the characters are in the alphabet, no words will be out-of-vocabulary
(OOV). Character-level models can capture distributional properties,
not only of frequent words but also of words that occur rarely (Luong
and Manning 2016), and they need no tokenization, freeing the sys-
tem from one source of errors. Neural models working on character-
or subword-level have been applied in several natural language pro-
cessing (NLP) tasks, ranging from relatively basic tasks such as text
categorization (Zhang et al. 2015) and language modelling (Kim et al.
2016) to complex prediction tasks, such as translation (Luong and
Manning 2016; Sennrich et al. 2016). Because they can recognize pat-
terns on a subword level, character-based neural models are attractive
in NLP tasks that require an awareness of morphology.
2.3 Other morphological transformations
Lemmatization is the task of predicting the base form (lemma) of an
inflected word. A lemmatizer may make use of the context to get
(implicit) information about the source form of the word (Kosken-
niemi 1984; Kanis and Müller 2005; Chrupała et al. 2008; Jongejan
and Dalianis 2009; Chakrabarty et al. 2017). In comparison, our task
does not offer contextual information, but instead provides the (sim-
ilarly implicit) cues for the forms from the demo relation. With this
in mind, predicting the lemma is just a special case of the morpho-
logical analogy problem. Paradigm filling is the more general task of
predicting all unknown forms in a paradigm (Dreyer and Eisner 2011).
2.4 Morphological relations in word embedding models
Word analogies have been proposed as a way to demonstrate the util-
ity of neural word embeddings and to evaluate their quality (Mikolov
et al. 2013a; Mnih and Kavukcuoglu 2013; Nicolai et al. 2015b; Pen-
nington et al. 2014). Such embeddings show simple linear relation-
ships in the resulting continuous embedding space that allow for
finding impressive analogous relations such as

v(king)− v(man) + v(woman)≈ v(queen)
where v(w) is the word embedding of the word w. Analogies have been
categorized as either semantic or syntactic. (The example with “king”
and “queen” is a semantic analogy, while syntactic analogies relate
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different morphological forms of the same words). Google’s dataset
for syntactic analogies (Mikolov et al. 2013a) was proposed as a task
to evaluate word embedding models on English.

Cotterell et al. (2016b) presented an approach using a Gaussian
graphical model to process word embeddings computed using a stan-
dard toolkit such as Word2Vec to improve the quality of embeddings
for infrequent words, and to construct embeddings for morphologi-
cal forms that were missing in the training data (but belonging to a
paradigm that had some form or forms in the data).

3 the neural morphological
analogy system

In this paper, we present the Neural morphological analogy system
(NMAS), a neural approach for morphological relational reasoning.
We use a deep recurrent neural network with gated recurrent unit
(GRU) cells that take words represented by their raw character se-
quences as input.
3.1 Morphological relational reasoning with analogies
We define the task as follows. Given a query word q and a demo word
in two forms w1 and w2, demonstrating a transformation from one
word form to another, and where q is another word in the same form
as w1, the task is to transform q into the form represented by w2.
3.2 Recurrent neural networks
A recurrent neural network (RNN) is an artificial neural network that
can model a sequence of arbitrary length. Gated RNNs were proposed
to solve some issues of basic “vanilla” RNNs (the difficulty to capture
long dependencies and vanishing gradients) (Hochreiter 1998; Bengio
et al. 1994). The long short term memory (LSTM) (Schmidhuber and
Hochreiter 1997) is one of the most famous types. At every step in
the sequence, it has a cell with three learnable gates that controls
what parts of the internal memory vector to keep (the forget gate),
what parts of the input vector to store in the internal memory (the
input gate), and what to include in the output vector (the output gate).
The gated recurrent unit (GRU) (Cho et al. 2014a) is a simplification
of this approach, having only two gates by replacing the input and
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forget gates with an update gate that simply erases memory whenever
it is updating the state with new input. Hence, the GRU has fewer
parameters, and still obtains similar performance as the original LSTM.

An RNN can easily be trained to predict the next token in a
sequence, and when applied to words this essentially becomes a lan-
guage model. A sequence-to-sequence model is a neural language
model conditioned on another input sequence. Such a model can be
trained to translate from one sequence to another (Sutskever et al.
2014; Cho et al. 2014b). This is the major building block in modern
neural machine translation systems, where they are combined with
an attention mechanism to help with the alignment (Bahdanau et al.
2015).

In language settings it is common to have a linear input layer
that learns embeddings for a vocabulary of words. However, these
models suffer from the limitations of having fixed word vocabularies,
and being unable to learn subword patterns. As an alternative, an RNN
can work either using a vocabulary of subword units, or a vocabulary
of characters, as is the case in this paper.
3.3 Model layout
The proposed model has three major parts, the relation encoder, the
query encoder, and the decoder, all working together to generate the
predicted target form given the three input words: the demo relation
(w1, w2), and the query word q. The whole model is trained end-to-end
and requires no other input than the raw character sequences of the
three input words w1, w2, and q.

A. The relation encoder. The first part encodes the demo relation Rdemo =
(w1, w2) using an encoder RNN for each of the two words w1 and w2.
The relation encoder RNNs share weights but have separate internal
state representations. The outputs of the relation encoders are fed into
a fully connected layer with tanh activation FC relation:

hrel = tanh(Wrel[grel(0,w1), grel(0,w2)]),

where grel is the output from the relation encoder RNN (using zero
vectors as initial hidden states), w1,w2 are sequences of one-hot en-
codings for the characters of w1 and w2, Wrel is the weight matrix for
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the FC relation layer, and tanh is the element-wise nonlinearity. Here,
[x,y] means the concatenation of the vectors x and y.

B. The query encoder. The query word q is encoded separately using a
distinct encoder RNN. The final output from the query encoder is fed
together with the output from FC relation (A) through a second fully
connected layer (with tanh activation) FC combined:

hcomb = tanh(Wcomb[hrel, gq(0,q)]),

where hrel is the output from FC relation, gq is the output from the
query RNN encoder, q is a sequence of embeddings of the characters
of the query word, Wcomb is the weight matrix for the FC combined
layer, and tanh is the element-wise nonlinearity. The result hcomb is
fed as the initial hidden state into the RNN decoder.

C. The decoder. The decoder RNN employs a standard attention mech-
anism (Bahdanau et al. 2015), computing a weighted sum of the se-
quence of outputs of the query encoder at every step td in the gen-
eration process. For each step te in the query encoder, the attention
weight is computed using a multi-layer perceptron taking the decoder
state at td and the query encoder state at te as inputs. For each decoder
step td , the output character is decided by computing a distribution
over the alphabet using the softmax output layer, and then sampling
greedily from this distribution; this is fast and has yielded good re-
sults. The distribution p(ytd

= i) = h(i)dec;td
for each character i in the

alphabet and for each step td in the decoder is modelled using:

hdec;td
= s(Wdec[gdec(hcomb,y(0:td−1)),a]),

where hcomb is the output from FC combined (used as the initial hidden
state for the decoder RNN), gdec is the output from the decoder RNN,
y(0:td−1) is a sequence of embeddings of the characters generated by
the decoder until step td −1, Wdec is the weight matrix for the decoder
output layer, a is the weighted sum of hidden states from the query
encoder RNN computed by the attention mechanism, and s is the soft-
max activation function: s(z) = ez∑

i ez(i)
. The result hdec;td

is a vector that
sums to one, defining the distribution over the alphabet at time td .
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The whole model is similar to a sequence-to-sequence model used
for translation, with the addition of the relation encoder. Figure 1
shows the architecture of the model pictorially.

4 experimental setup

This section explains the setup of the empirical evaluation of our
model: how it is designed, trained, and evaluated.

The model was implemented using Pytorch;1 all source code is
freely available.2 With the final hyperparameter settings (see Sec-
tion 4), the model contains approximately 155,000 parameters, and
it can be trained in a few hours on a modern GPU. In the experiments
reported in this paper, the code was executed on a desktop PC with
an NVIDIA Titan X GPU using Ubuntu 18.04.

The hyperparameters relevant to the proposed model are pre-
sented in Table 1. The RNN hidden size parameter decides the dimen-
sionality of all four RNNs in the model, as we noticed no performance
gain from varying them individually.

Hyperparameter Explored Selected
Embedding size 50–350 100
FC relation size 50–350 100
FC combined size 50–350 200
RNN hidden size 25–350 100
RNN depth 1–3 2
Learning rate 1× 10−3

L2 weight decay 5× 10−5

Drop probability 0.0, 0.2, ..., 0.8 0.0

Table 1:
Hyperparameters in the model

Training was done with backpropagation through time (BPTT)
and minibatch learning with the Adam optimizer (Kingma and Ba
2015). For each example in a minibatch, a relation type is selected
uniformly randomly. Then two word pairs are selected randomly
from that relation type; one of these will be the demo relation, and
one will be the query–target pair. The output from the decoder (see

1http://pytorch.org/
2https://github.com/olofmogren/char-rnn-wordrelations
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... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

FC relation

FC combined

Attention

... ...Deep GRU Deep GRU Deep GRU

Decoder RNN

Figure 1: The layout of the proposed model. The demo relation is encoded using
two encoder RNNs with shared weights for the two demo word forms. A fully
connected (FC) layer FC relation follows the demo relation pair. The query word
is encoded separately, and its embedding is concatenated with the output from
the fully connected (FC) layer FC relation, and fed as the initial hidden state into
the RNN decoder which generates the output while using an attention pointer to
the query encoder. In the example see is to sees as eat is to what, see is fed into
the demo relation RNN encoder 1, sees is fed into the demo relation RNN encoder 2,
eat is fed into the query RNN encoder, and the whole model is trained to generate
the correct output eats at the decoder RNN
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Section 3.3 C) is a categorical distribution over the alphabet. We use
the cross-entropy loss function for each character at position td in
the output word as the learning objective for all parameters θ in the
model:

L (θ ) = −
∑

td
y(td ) · loghθ ;td

N
,

where N is the length of the target word, y(td ) is the one-hot encoding
of the true target at position c and hθ ;td

is the model output distri-
bution at position c. Training duration was decided using early stop-
ping (Wang et al. 1994).

One model with separate parameters was trained per language.
The parameters are shared between the two encoding RNNs in the
relation encoder, but the query encoder RNN and the decoder RNN
have separate weights, as the model search showed best performance
using this configuration. Ensembling did not improve the results.
4.1 Baselines
The task considered in this work is closely related to morphological
reinflection. Systems trained for the latter task generally obtain higher
absolute numbers of prediction accuracy than ours, because more in-
formation is given through the explicit enumeration of morphological
tags. Our task is also related to the syntactic analogy task used to eval-
uate word embeddings (Mikolov et al. 2013c), and we also include the
word embedding-based word-level analogy solution as a baseline.

Lepage. This baseline was implemented from the description in (Lep-
age 1998). The algorithm is rule-based, and uses information collected
when computing edit distance between w1 and w2, as well as between
w1 and q (Wagner and Fischer 1974). It can handle changes in prefix,
infix, and suffix, but fails when words exhibit different inflectional
patterns.

Word embedding baseline. This baseline uses pre-trained word embed-
dings using Word2Vec CBOW (continuous bag-of-words) (Mikolov
et al. 2013b) and FastText (Bojanowski et al. 2017), referred to as
W2V and FT, respectively. The FastText embeddings are designed to
take subword information into account, and they performed better
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than Word2Vec CBOW-based vectors in our experiments. The predic-
tion is selected by choosing the word in the vocabulary that has an
embedding with the highest cosine similarity compared to

v(q)− v(w1) + v(w2),

where v(w) is the word embedding of the word w, q is the query word,
and w1, w2 are the two demo words in the demo relation.

Word embeddings have been used in previous work for this task
(then called syntactic analogies), but the solution is limited by a fixed
vocabulary, and needs retraining to incorporate new words. Although
it is trained without supervision, training requires much data and com-
paring the resulting vector above with all words in the vocabulary is
expensive.

In this work, pretrained embeddings were downloaded and used.
The utilized Word2Vec CBOW embeddings were downloaded from
Kyubyong Park’s repository.3 The embeddings were trained using
data from Wikipedia. The FastText embeddings used were down-
loaded from the FastText authors’ website.4 The embeddings were
trained using data from CommonCrawl and Wikipedia. All the em-
beddings used have 300 dimensions.

To make the word embedding baseline stronger, we used the Lep-
age baseline as a fallback whenever any of the three input words are
missing in the vocabulary.
4.2 Datasets
One model was trained and evaluated on each of five different lan-
guages. Data for all languages except for English and Swedish was
taken from the SIGMORPHON 2016 dataset (Cotterell et al. 2016a).
The code for downloading the data and performing dataset split is
available for download.5

English. A total of 10 relations and their corresponding inverse rela-
tions were considered:

• nouns:
– singular–plural, e.g. dog–dogs
3https://github.com/Kyubyong/wordvectors/
4https://fasttext.cc/
5https://github.com/olofmogren/char-rnn-wordrelations/
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• adjectives:
– positive–comparative, e.g. high–higher
– positive–superlative, e.g. high–highest
– comparative–superlative, e.g. higher–highest

• verbs:
– infinitive–past, e.g. sit–sat
– infinitive–present, e.g. sit–sits
– infinitive–progressive, e.g. sit–sitting
– past–present, e.g. sit–sits
– past–progressive, e.g. sit–sitting
– present–progressive, e.g. sits–sitting

For English, the dataset was constructed using the word list with in-
flected forms from the SCOWL project.6 In the English data, 25,052
nouns, 1,433 adjectives, and 7,806 verbs were used for training.
1000 word pairs were selected randomly for validation and 1000
for testing, evenly distributed among relation types.

Swedish. Words were extracted from SALDO (Borin et al. 2013). In
the Swedish data, 64,460 nouns, 12,507 adjectives, and 7,764 verbs
were used for training. The division into training, validation, and test
sets were based on the same proportions as in English. The same forms
were used as in English, except that instead of the progressive form
for verbs, the passive infinitive was used, e.g. äta:ätas ‘eat:be eaten’.

Finnish, German, and Russian. For these languages, data from task1 and
task2 in SIGMORPHON 2016 was used for training, and task2 data
was used for evaluation. In this dataset, each word pair is provided
along with morphological tags for the source and target words. We
define a relation R as the combination of two sets of morphological
tags, for which there exist words in the data.

The SIGMORPHON datasets consist of word pairs along with the
corresponding morphological tags, specifying properties such as gen-
der, number, case, and tense. For training set and validation set, we
generate analogies from this as follows. First, we read each word pair

6See http://wordlist.aspell.net/.
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(w1, w2) from the dataset, building tables of paradigms by storing the
word pairs together with their tags. If w1 or w2 with the exact same
set of tags has already been stored in a table (it may be part of another
word pair (u1, u2)), then w1 and w2 is stored in the same table as u1

and u2. Second, when all words are stored in tables, we go through
them and consider each pair of word forms members of a morpholog-
ical relation. All words having a given source form and target form
make up the set of word pairs for that relation. This procedure allows
us to get more training data, as some new pairs can be generated from
the tables (e.g. (w1, u1) from the example above). For the test set, we
do not enhance the data in any such way, but use the exact relations
provided from the original SIGMORPHON data set.

As the task described in this paper differs from the original SIG-
MORPHON task, with the additional requirement that every query–
target word pair needs to be accompanied by a demo relation with
the same forms, all relations with only one word pair were discarded.
Of the SIGMORPHON datasets, we did not include Arabic, Georgian,
Hungarian, Maltese, Navajo, Spanish, and Turkish, either because of
the sparsity problemmentioned above,7 or because the morphological
features used in the languagemade it difficult to generate query–target
pairs. The percentage of test set word pairs from the SIGMORPHON
data being discarded in the remaining languages: Finnish: 1.2%, Ger-
man: 2.1%, and Russian: 0.5%. Details about dataset sizes can be found
in Table 2.
4.3 Evaluation
To evaluate the performance of the model, the datasets for English and
Swedish were randomly split into training, validation, and test sets.
Exact dataset split is defined within the openly shared code reposi-
tory.8 For the SIGMORPHON languages (Finnish, German, and Rus-
sian), the provided dataset split was used, and the test was performed
as specified in the dataset, ignoring the specified morphological tags.
For English and Swedish, each word pair was tested in both directions
(switching the query word and the target word). Within one relation
type, each word pair was randomly assigned another word pair as

7We decided on a threshold of at most 3% of the word pairs that could be
discarded for the evaluation to be meaningful.

8https://github.com/olofmogren/char-rnn-wordrelations/
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Table 2: Number of relations (“Rels”, after discarding size-1 relations) and word
pairs (“WPs”) in the data set. *English and Swedish word pairs are all used exactly
twice, once in original order, and once reversed. This means that the effective
number of word pairs for these two languages are double the numbers in this
table

Language Training set Validation set Test set Total
Rels WPs Rels WPs Rels WPs Rels WPs

English 10 74,187 10 1,000 10 1,000 10 76,187∗
Finnish 1,291 49,312 427 1,246 1,092 11,471 1,322 62,029
German 1,571 58,651 400 1,174 1,249 7,768 1,571 67,593
Russian 830 51,939 285 1,399 666 11,492 834 64,830
Swedish 10 146,551 10 1,000 10 1,000 10 148,551∗

demo relation. Each word pair was used exactly once as a demo rela-
tion, and once as a query–target pair. Both word pairs in each analogy
were selected from the same data partition; i.e. the test set for the
evaluation. Relations having only one word pair were dropped from
the test set, this is the only difference between the original SIGMOR-
PHON test data and the test data used here (for more information,
see Section 4.2). Where nothing else is specified, reported numbers
are the prediction accuracy. This is the fraction of predictions that
exactly match the target words.
4.4 Data ambiguity
As noted in Section 1, different words can have different inflectional
patterns, and some words may also have the same expression for sev-
eral forms. We note that there are such examples in the training data
and in the validation data, but no such examples were detected in
any of the test sets, see Table 3. This may affect the training, but not
the evaluation of the system. When such ambiguities are presented
as the target in demo relations, there is of course no way for a sys-
tem with this setup to know which form to pick. However, the aim
of our study was to keep the setup realistic, and hence, such am-
biguous expressions were not removed from the datasets. Since no
ambiguities were found in the test sets, there is always exactly one
correct target for each query, but with a corresponding amount of
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Table 3: Number of ambiguities detected in the data. This is the number of words
that occur twice or more as a source word or as a target word in respective dataset
partition

Language Training set Validation set Test set Total
Twice More Twice More Twice More Twice or more

English 407 6 0 0 0 0 413
Finnish 20 0 0 0 0 0 20
German 415 0 2 0 0 0 417
Russian 186 0 0 0 0 0 186
Swedish 2,852 41 0 0 0 0 2,893

Table 4: Prediction accuracy and average Levenshtein distance of the proposed
model (NMAS) trained using one language. Baseline: Lepage (1998)

Language Accuracy AVG Levenshtein
NMAS Lepage NMAS Lepage

English 94.85% 56.05% 0.08 0.67
Finnish 85.64% 31.39% 0.22 1.76
German 87.96% 76.63% 0.20 0.39
Russian 75.85% 48.19% 0.36 1.01
Swedish 91.40% 64.80% 0.15 0.60

ambiguous data in the training set, the model may learn robustness
and the noise provided by the ambiguities may also help to regularize
the training.

5 results

This section presents the results of the experimental evaluation of the
system.
5.1 Language-wise performance
The prediction accuracy results for the test set can be seen in Table 4,
reaching an accuracy of 94.85% for English. While Finnish is a mor-
phologically rich language, with 1323 distinct relations in the dataset,
and with the lowest Lepage baseline score of all evaluated languages
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(31.39%), NMAS is able to learn its relations rather well, with a predic-
tion accuracy of 85.64%. For German and Swedish, the performance
is 87.96% and 91.40%, respectively. They both have more complex
morphologies with more inflectional patterns for nouns and verbs. On
Russian, NMAS obtains an accuracy of 75.85%. This may be explained
by its complex morphology and phonology, and is consistent with the
results of top scoring systems on the SIGMORPHON tasks.
5.1.1 Detailed analysis of phonological and orthographic regularities
To successfully predict inflected word forms, our model must take the
inflectional paradigms into account, as well as the orthographic and
the phonological regularities that sometimes cut across the paradigms.
We will now consider a number of examples of such regularities for
all five languages and investigate how well they are handled by our
model.
English. A basic textbook example of an orthographic rule condi-
tioned on the immediate context is the y/ie alternation in English,
such as fry/fries, hurry/hurried, etc. This simple regularity poses no
difficulty for our model which predicted the correct form in all cases
where such alternations occurred in the data.
Finnish. A more interesting case is the phonology of Finnish, which
is well-known for its vowel harmony and consonant gradation. To in-
vestigate how well the model handles vowel harmony, we considered
instances where the final vowel (which typically corresponds to the in-
flection) in the gold-standard output is either in the back-vowel group
(a, o, or u) or the front-vowel group (ä, ö, or y). In these cases, the
model predicts the correct vowel of the output form in 97% of the
cases. This figure is identical for the subset of instances where vowel
in the output is in a different group from the corresponding vowel in
the demo output, which occurs in about 18% of the instances. It is
notable that several of the model’s vowel harmony errors correspond
to exceptions where the usual rules of vowel harmony do not apply:
(1) in a compound such as hiuspinnit (‘hairpins’), the model is con-
fused by the back vowel u in the compound prefix, and incorrectly
predicts an a instead of ä in inflections; (2) a non-native word such as
desideratiivi (‘desiderative’) may take an “unexpected” vowel (in this
case the inflections use front vowels despite the preceding a).
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In consonant gradation, consonants or consonant clusters may ap-
pear in either the strong or theweak grade, depending on the phonolog-
ical context. For instance, the cluster rt in parta (‘beard’ in the nomina-
tive singular) is in the strong grade, which in the weak grade becomes
rr, as in parrat (nominative plural). We selected the occurrences where
the query word and the gold-standard output differed in grade (about
15% of the instances). The correct grade is predicted by the model in
84% of these cases, and this does not seem to be affected by whether
the demo pair involves consonant gradation or not.

German. For German, we considered umlaut alternations such as
Baum/Bäume. We selected the instances where there is an umlaut
vowel in either the query word or in the gold-standard output, but not
both. This is about 2.7% of the instances. In such cases, the model pre-
dicts the vowel correctly just 27% of the time. This can be contrasted
with results we saw for Finnish, where vowel harmony was handled
almost perfectly. This difference is probably due to the unpredictabil-
ity and rarity of the German umlaut, while the Finnish vowel harmony
is very common and almost perfectly regular.

Swedish. Somewords in Swedish exhibit the process of syncope where
the unstressed vowel e is lost in some contexts. For instance, the word
nyckel (‘key’) has the plural form nycklar. We found 36 instances in-
volving a syncope of the query word or the gold-standard output. This
corresponds to 1.8% of the total set. The model predicts the correct
form in 94% of these cases.

Russian. This is the language which has proven to be the most prob-
lematic for our model, due to the rich system of its inflectional
paradigms, as well as the complex phonological processes (e.g. palatal-
ization) affecting some of the inflections. While irregularities are chal-
lenging for the model, it successfully handles phenomena that are
more predictable. As an example of a regular pattern that the model
handles well, we can consider the clitic used with reflexive verbs,
which takes the form -sya or -s’ depending on the phonological con-
text. The form of this clitic is predicted correctly by our model 98%
of the time.
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5.2 Model variants
Attend to relation. Kann and Schütze (2016) explicitly feeds the mor-
phological tags as special tokens being part of the input sequence, and
the attention mechanism learns when to focus on the forms during out-
put generation. Inspired by this we decided to evaluate a variant of our
model where the embedding of the relation encoder is appended to the
query encoder output sequence, allowing the decoder to attend to the
whole query as well as the relation embedding, see Figure 2. The per-

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder FC relation

FC combined

(e) Attend to relation

... ...Deep GRU Deep GRU Deep GRU

Decoder RNN

(c) Disabling FC combined

(d) FC shortcut

Tag classifier

(b) Auxilliary training criterion

(f) Disabling relation encoder for source form, (g) Disabling relation encoder for both forms

(a) Disabling attention mechanism

Attention

Figure 2: The evaluated variants of the proposed model. (a) disabling attention
mechanism, (b) auxiliary training criterion, (c) disabling FC combined, (d) FC
shortcut, (e) attend to relation, (f) disabling relation encoder for source form,
and (g) disabling relation encoder for both forms
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Table 5: Prediction accuracy of the proposed model trained with “attend to re-
lation”, with and without the relation embedding fed to initial hidden state (FC
combined), all words reversed, feeding the relation embedding using a shortcut
to each step in the decoder RNN, and using auxiliary tags classification criterion,
respectively. English validation set

Variant Validation accuracy
Full model 96.40%
Attend to relation 96.20%
Attend to relation & No FC combined 95.35%
Reversed words 96.00%
Relation shortcut 95.40%
Auxiliary tags classification 95.25%

formance of the model was not affected by this change (see Table 5),
and there was no clear trend spanning over different languages. When
also disabling FC combined, and thus feeding the relation embedding
directly as input to the decoder, there was a noticeable decrease in
performance: 95.35% accuracy on the English validation set.

Relation shortcut. In the layout of the proposed model, the information
from the relation encoder is available to the decoder only initially. To
explore if it would help to have the information available at every
step in the decoding process, a shortcut connection was added from
FC relation to the final layer in the decoder. This helped the model to
start learning fast (see Figure 3), but then resulted in a slight decrease
in accuracy (95.25% on English validation set). (See Table 5).

Auxiliary training criterion. Multi-task learning using a related auxil-
iary task can lead to stronger generalization and better regularized
models (Caruana 1998; Collobert and Weston 2008; Bingel and Sø-
gaard 2017). We evaluated a model that used an auxiliary training
task: the model had to predict the morphological tags as an output
from the relation encoder. This addition gave a slight initial train-
ing speedup (see Figure 3), but did not give a better performing
model once the model finished training. This indicates a strength
in the originally proposed solution: the model can learn to differenti-
ate the morphological forms of the words in the demo relation, even
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Figure 3:
Prediction accuracy
on the English
validation set during
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without having this explicit training signal, something that is also
demonstrated by the visualized relation embeddings (see Figure 4).

Disabling model components. The relation encoder learns to represent
the different morphological relations with nicely disentangled embed-
dings (see Figure 4). The fact that the prediction accuracy drops as
far as to 39.35% when disabling the relation input (see Table 6) in-
dicates that the setup is useful, and that the model indeed learns to
utilize the information from the demo relation. Disabling only the first
word in the demo relation allows the model to perform much better
(94.60% validation accuracy), but it does not reach the accuracy of the
full model with both demo words (96.40%). Disabling the attention
mechanism is a small modification of our model, but it substantially
degrades performance, resulting in 91.90% accuracy on the English
validation set.
5.3 Mechanisms of word inflection
As English (and many other languages) forms inflections mainly
by changing suffixes, an experiment was performed where every
word was reversed (e.g. “requirement” → “tnemeriuqer”), to evaluate
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(+) ADJ: Comparative-Positive

(x) ADJ: Positive-Comparative

(+) ADJ: Comparative-Superlative

(x) ADJ: Superlative-Comparative

(+) ADJ: Positive-Superlative

(x) ADJ: Superlative-Positive

(+) N: Plural-Singular

(x) N: Singular-Plural

(+) V: Progressive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Progressive

(+) V: Progressive-Past

(x) V: Past-Progressive

(+) V: Infinitive-Progressive

(x) V: Progressive-Infinitive

(+) V: Infinitive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present

(+) V: Infinitive-Past

(x) V: Past-Infinitive

(+) V: 3rd Pers. Sg. Present-Past

(x) V: Past-3rd Pers. Sg. Present

Figure 4: t-SNE visualization of all demo relation pairs from English validation
set embedded using the relation encoder. Each point is colored by the relation
type that it represents

Table 6: Prediction accuracy of the proposed model without attention mecha-
nism, without the first (source) word in the demo relation, and completely with-
out demo relation encoder, respectively. English validation set

Variant Validation accuracy

Full model 96.40%
Disable attention mechanism 91.90%
Disable relation source 94.60%
Disable relation input 39.35%

whether the model can cope with other mechanisms of word inflec-
tion. On this data, NMAS obtains a prediction accuracy that is only
slightly worse than the original version (96.00% on English valida-
tion set). This indicates that the model can cope with different kinds
of inflectional patterns (i.e. suffix and prefix changes). As can be
noted in the example outputs (see Table 7), the model does handle
several different kinds of inflections (including orthographic varia-
tions such as y/ie), and it does not require the demo relation to show
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Table 7: Correct (top), and incorrect (bottom) example outputs from the model.
Samples from English validation set

Correct:
Demo word 1 Demo word 2 Query Target Output
misidentify misidentifies bottleneck bottlenecks bottlenecks
obliterate obliterated prig prigged prigged
ventilating ventilates disorganizing disorganizes disorganizes
crank cranker freckly frecklier frecklier
debauchery debaucheries bumptiousness bumptiousnesses bumptiousnesses

Incorrect:
Demo word 1 Demo word 2 Query Target Output
repackage repackaged outrun outran outrunned
misinformed misinform gassed gas gass
julep juleps catfish catfish catfishes
cedar cedars midlife midlives midlifes
affrays affray buzzes buzz buzze

the same inflectional pattern as the query word. In fact, often when
the system fails, it does so by inflecting irregular words in a regular
manner, suggesting that patterns with less data availability poses the
major problem.
5.4 Relation embeddings
Figure 4 shows a t-SNE visualization of the embeddings from the rela-
tion encoder (“FC relation”) of all data points in the English validation
set. One can see that most relations have been clearly separated into
one distinct cluster each, with the exception of two clusters, both con-
taining points from two relations each. The first such cluster contains
the two relation types “N: Singular-Plural” and “V: Infinitive-3 Pers. Sg.
Present”; both of these are realized in English by appending the suffix
-s to the query word. The second cluster contains the relation types “N:
Plural-Singular” and “V: 3 Pers. Sg. Present-Infinitive”; both of these are
realized by the removal of the suffix -s. It is worth noting that no ex-
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(+) ADJ: Comparative-Positive

(x) ADJ: Positive-Comparative

(+) ADJ: Comparative-Superlative

(x) ADJ: Superlative-Comparative

(+) ADJ: Positive-Superlative

(x) ADJ: Superlative-Positive

(+) N: Plural-Singular

(x) N: Singular-Plural

(+) V: Progressive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Progressive

(+) V: Progressive-Past

(x) V: Past-Progressive

(+) V: Infinitive-Progressive

(x) V: Progressive-Infinitive

(+) V: Infinitive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Infinitive

(+) V: Infinitive-Past

(x) V: Past-Infinitive

(+) V: 3rd Pers. Sg. Present-Past

(x) V: Past-3rd Pers. Sg. Present

Figure 5: t-SNE visualization of all query words from English validation set em-
bedded using the query encoder. Each point is coloured by the relation type that
it represents

plicit training signal has been provided for this to happen. The model
has learned to separate different morphological relations to help with
the downstream task.

Similar clustered representations can be seen when analysing the
embeddings computed by the relation encoder RNN also for other
languages. We refer interested readers to the supplemental material9
for a complete list of these plots.

Figure 5 shows a t-SNE visualization of the embeddings from the
query encoder. As we saw with the relation encoder, query embed-
dings seem to encode information about morphology as similar mor-
phological forms cluster together, albeit with more internal variation
andmore inter-cluster overlaps. The task for the query encoder is more
complex as it needs to encode all information about the query word
and provide information on how it may be transformed. To solve the
task, and be able to correctly transform query words with the same re-
lation type but with different inflection patterns, it needs to be able to
deduce what subcategory of a relation a given query word belongs to.

9http://bit.ly/2oyPEtX
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Figure 6: Results for all relations (total), and for each specific relation of the
English test set

5.5 Word embedding analogies
The Lepage baseline proved to be the strongest baseline for all lan-
guages. For instance, for English it obtains prediction accuracy of
56.05%, compared to 40.75% for the Word2Vec baseline, and 45.00%
for the FastText baseline. Without the Lepage fallback, the Word2Vec
baseline scored 14.45%, and the FastText baseline scored 22.75%. For
other languages, the results were even worse. The datasets in our study
contain a rather large vocabulary, not only including frequent words.
While the fixed vocabulary is one of the major limitations (explaining
the difference between the embedding baselines and the correspond-
ing ones without fallback), the word embedding baseline predictions
were often incorrect even when the words were included in the vo-
cabulary. This led us to use the Lepage baseline in the result tables.
5.6 Relation-wise performance
Figure 6 shows the performance for each relation type, showing that
our model obtains 100% test set accuracy for the transforms between
comparative–superlative. It obtains the lowest accuracy (85.19%) for
past–infinitive, 94.17%, and 92.23% for plural–singular, and singular–
plural, respectively. From Figure 4 we have learned that these very
relations are the most difficult ones for the relation encoder to distin-
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guish between. One difficulty of plural–singular seems to be to deter-
mine how many character to remove, while the patterns for adding
the -s suffix is generally simpler. An example demonstrating this can
be seen in Table 7: buzzes:buzz, where the model incorrectly pre-
dicted buzze.
5.7 Example outputs
We have collected some examples from the English validation set
where our model succeeds and where it fails (see Table 7). Exam-
ples of patterns that can be observed in the failed examples are (1)
words with irregular inflections that the model incorrectly inflects
using regular patterns, e.g. outrun:outran, where the model predicted
outrunned; (2) words with ambiguous targets, e.g. gassed:gas, where
the model predicted gass. If there existed a verb gass, it could very
well have been gassed in its past-tense form. Tables with example
output for the other studied languages are provided in the supple-
mental material.10 In general: the model can learn different inflec-
tional patterns. Suffixes, infixes, and prefixes do not pose problems.
The query word does not need to have the same inflectional pattern
as the demo relation. When the model does fail, it is often due to an
inflection that is not represented in the training data, such as irregular
verbs.

6 discussion and conclusions

In this paper, we have presented a neural model that can learn to carry
out morphological relational reasoning on a given query word q, given
a demo relation consisting of a word in two different forms (source
form and desired target form). Our approach uses a character based
encoder RNN for the demo relation words, and one for the query word,
and generates the output word as a character sequence. The model is
able to generalize to unseen words as demonstrated by good prediction
accuracy on the held-out test sets in five different languages: English,
Finnish, German, Russian, and Swedish. It learns representations that
separate the relations well provided only with the training signal given
by the task of generating the words in correct form.

10http://bit.ly/2oyPEtX
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Our solution is more general than existing methods for morpho-
logical inflection and reinflection, in the sense that they require ex-
plicit enumeration of the morphological tags specifying the transfor-
mation; our solution instead learns to build its own internal repre-
sentation of this information by observing an analogous word pair
demonstrating the relation.
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