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Abstract

Deep reinforcement learning has achieved great successes in
recent years, however, one main challenge is the sample in-
efficiency. In this paper, we focus on how to use action guid-
ance by means of a non-expert demonstrator to improve sam-
ple efficiency in a domain with sparse, delayed, and pos-
sibly deceptive rewards: the recently-proposed multi-agent
benchmark of Pommerman. We propose a new framework
where even a non-expert simulated demonstrator, e.g., plan-
ning algorithms such as Monte Carlo tree search with a small
number rollouts, can be integrated within asynchronous dis-
tributed deep reinforcement learning methods. Compared to a
vanilla deep RL algorithm, our proposed methods both learn
faster and converge to better policies on a two-player mini
version of the Pommerman game.

Introduction

Deep reinforcement learning (DRL) has enabled better scal-
ability and generalization for challenging domains (Arulku-
maran et al. 2017; Li 2017; Hernandez-Leal, Kartal, and
Taylor 2018) such as Atari games (Mnih et al. 2015),
Go (Silver et al. 2016) and multiagent games (e.g., Starcraft
IT and DOTA 2) (OpenAl 2018). However, one of the current
biggest challenges for DRL is sample efficiency (Yu 2018).

On the one hand, once a DRL agent is trained, it can be
deployed to act in real-time by only performing an infer-
ence through the trained model. On the other hand, planning
methods such as Monte Carlo tree search (MCTS) (Browne
et al. 2012) do not have a training phase, but they perform
computationally costly simulation based rollouts (assuming
access to a simulator) to find the best action to take.

There are several ways to get the best of both DRL and
search methods. AlphaGo Zero (Silver et al. 2017) and Ex-
pert Iteration (Anthony, Tian, and Barber 2017) concurrently
proposed the idea of combining DRL and MCTS in an imi-
tation learning framework where both components improve
each other. The idea is to combine search and neural net-
works sequentially in a loop. First, search is used to gener-
ate an expert move dataset, which is used to train a policy
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Figure 1: An example of the 8 x 8 Mini-Pommerman board,
randomly generated by the simulator. Agents’ initial posi-
tions are randomized among four corners at each episode.

network (Guo et al. 2014). Second, this network is used to
improve expert search quality (Anthony, Tian, and Barber
2017). These two steps are repeated. However, expert data
collection by search algorithms can be slow in a sequential
framework depending on the simulator (Guo et al. 2014),
which can render the training too slow.

In this paper, complementary to the aforementioned ex-
isting work, we show it is also possible to blend search
with distributed model-free DRL methods such that search
and neural network components can be executed simulta-
neously in an on-policy fashion. The main focus of this
work is to show how to use relatively weak demonstrators
(i.e., lightweight MCTS with a small number of rollouts) for
model-free RL by coupling the demonstrator and model-free
RL through an auxiliary task (Jaderberg et al. 2016). The
idea is that this auxiliary task would provide denser signals
and more efficient learning with better exploration.

In this paper, we experiment on the recently proposed
benchmark for (multi-agent) reinforcement learning: Pom-
merman (Resnick et al. 2018). This environment is based on
the classic console game Bomberman. Pommerman is chal-
lenging game for many standard RL algorithms due its mul-
tiagent nature and its delayed, sparse, and deceptive rewards.

We consider Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al. 2016) as a baseline algorithm and we
propose a new framework based on diversifying some of
the workers of A3C with MCTS-based planners (serving as



non-expert demonstrators) by using the parallelized asyn-
chronous training architecture. This has the effect of pro-
viding action guidance, which in turns improves the training
efficiency measured by higher rewards.

Related Work

Our work lies at the intersection of different areas, here we
review the related existing work.

Safe RL: Safe Reinforcement Learning tries to en-
sure reasonable system performance and/or respect safety
constraints during the learning and/or deployment pro-
cesses (Garcia and Ferndndez 2015). Roughly, there are two
ways of doing safe RL: some methods adapt the optimality
criterion, while others adapt the exploration mechanism. Our
work uses continuous action guidance of lookahead search
with MCTS for better exploration.

Imitation Learning: Domains where rewards are delayed
and sparse are difficult exploration problems when learning
tabula rasa. Imitation learning can be used to train agents
much faster compared to learning from scratch.

Approaches such as DAgger (Ross, Gordon, and Bagnell
2011) formulate imitation learning as a supervised problem
where the aim is to match the demonstrator performance.
However, the performance of agents using these methods is
upper-bounded by the demonstrator. Recent works such as
Expert Iteration (Anthony, Tian, and Barber 2017) and Al-
phaGo Zero (Silver et al. 2017) extend imitation learning to
the RL setting where the demonstrator is also continuously
improved during training. There has been a growing body
of work on imitation learning where demonstrators’ data is
used to speed up policy learning in RL (Hester et al. 2017).

Hester et al. (2017) used demonstrator data by combin-
ing the supervised learning loss with the Q-learning loss
within the DQN algorithm to pre-train and showed that
their method achieves good results on Atari games by us-
ing a few minutes of game-play data. Kim et al. (2013) pro-
posed a learning from demonstration approach where lim-
ited demonstrator data is used to impose constraints on the
policy iteration phase. Another recent work (Bejjani et al.
2018) used planner demonstrations to learn a value function,
which was then further refined with RL and a short-horizon
planner for robotic manipulation tasks.

Combining Planning and RL: Previous work (Leonetti,
Tocchi, and Stone 2016) combined planning and RL in such a
way that RL can explore on the action space filtered down by
the planner, outperforming using either solely a planner or
RL. Other work (Lee et al. 2019) employed MCTS as a high-
level planner, which is fed a set of low-level offline learned
DRL policies and refines them for safer execution within
a simulated autonomous driving domain. A recent work by
Vodopivec et al. (2017) unified RL, planning, and search.

Combining Planning, RL, and Imitation Learning: Al-
phaGo (Silver et al. 2016) defeated one of the strongest hu-
man Go players in the world. It uses imitation learning by
pretraining RL’s policy network from human expert games
with supervised learning (LeCun, Bengio, and Hinton 2015).
Then, its policy and value networks keep improving by self-
play games via DRL. Finally, an MCTS search is employed
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where a policy network narrows down move selection (i.e.,
effectively reducing the branching factor) and a value net-
work helps with leaf evaluation (i.e., reducing the number
of costly rollouts to estimate state-value of leaf nodes).

Our work differs from AlphaGo-like works in multi-
ple aspects: (i) our framework specifically aims to en-
able on-policy model-free RL methods to explore safely in
hard-exploration domains where negative rewarding termi-
nal states are ubiquitous, in contrast to off-policy methods
which use intensive search to fully learn a policy; (ii) our
framework is general in that other demonstrators (human or
other sources) can be integrated to provide action guidance
by using the proposed auxiliary loss refinement; and (iii) our
framework aims to use the demonstrator with a small looka-
head (i.e., shallow) search to filter out actions leading to im-
mediate negative terminal states so that model-free RL can
imitate those safer actions to learn to safely explore.

Preliminaries
Reinforcement Learning

We assume the standard reinforcement learning setting of
an agent interacting in an environment over a discrete num-
ber of steps. At time t the agent in state s; takes an ac-
tion a; and receives a reward r;. The discounted return is
defined as Ri.oo = Zfi 0 ~tr;. The state-value function,
V™(s) = E[Rp.ool|st = s, is the expected return from
state s following a policy 7(a|s) and the action-value func-
tion, Q™ (s,a) = E[Ry.0o|st = s, a: = a, 7], is the expected
return following policy 7 after taking action a from state s.

The A3C method, as an actor-critic algorithm, has
a policy network (actor) and a value network (critic)
where the actor is parameterized by m(a|s;0), up-
dated by A0 =Vylogm(as|ss;0)A(se, ae;6,), and
the critic is parameterized by V(s;0,), updated by
NG, = A(st,at50,)Ve,V(s) where

n—1
A(siyai:00) = > 7 ripn +9"V (s10a) = Vi(st)
k

with A(s,a) = Q(s,a) — V(s) representing the advantage
function.

The policy and the value function are updated after ev-
ery tmar actions or when a terminal state is reached. It
is common to use one softmax output layer for the policy
m(a¢|s¢; 0) head and one linear output for the value function
V (s¢;0,) head, with all non-output layers shared.

The loss function for A3C is composed of two terms:
policy loss (actor), £, and value loss (critic), £,. An en-
tropy loss for the policy, H(7), is also commonly added,
which helps to improve exploration by discouraging prema-
ture convergence to suboptimal deterministic policies (Mnih
et al. 2016). Thus, the loss function is given by:

[/ASC = Av‘cv + A‘n"Cﬂ' - )\HESNTF[H(W(S) ) 9)]

with A\, = 0.5, A, = 1.0, and Ay = 0.01, being standard
weighting terms on the individual loss components.
UNREAL (Jaderberg et al. 2016), which is based on A3C,
proposed unsupervised auxiliary tasks (e.g., reward predic-
tion task where the agent predicts the next reward, which



is observed in a self-supervised fashion) to speed up learn-
ing. In contrast to vanilla A3C, UNREAL uses an experi-
ence replay buffer that is sampled with more priority given
to positively rewarded interactions to improve the critic net-
work, and it uses off-policy learning. We compare against
A3C rather than UNREAL for better ablation by just aug-
menting the auxiliary task on top of A3C.

Monte Carlo Tree Search

MCTS is a best-first search algorithm that gained trac-
tion after its breakthrough performance in Go (Coulom
2006). It has been used for many purposes, e.g., for game
playing (Sturtevant 2015; Silver et al. 2016), for playtest-
ing (Zook, Harrison, and Riedl 2015; Holmgard et al. 2018;
Borovikov et al. 2019), and for robotics (Kartal et al. 2015;
Best et al. 2019).

In MCTS, a search tree is generated where each node in
the tree represents a complete state of the domain and each
link represents one possible valid action, leading to a child
node representing the resulting state after taking an action.
The root of the tree is the initial state (for example, the initial
configuration of the Pommerman board including the agent
location). MCTS proceeds in four phases of: selection, ex-
pansion, rollout, and back-propagation. The standard MCTS
algorithm proceeds by repeatedly adding one node at a time
to the current tree. Given that leaf nodes are likely to be far
from terminal states, it uses random actions, a.k.a. rollouts,
to estimate state-action values. The rollout policy can also
be biased based on information obtained during search, or
external domain knowledge. After the rollout phase, the to-
tal collected rewards during the episode is back-propagated
through the tree branch, updating their empirical state-action
values, and visit counts.

Exploration vs. Exploitation Dilemma Choosing which
child node to expand (i.e., choosing an action) becomes
an exploration/exploitation problem given the empirical es-
timates. Upper Confidence Bounds (UCB1) (Auer, Cesa-
Bianchi, and Fischer 2002) is a bandit algorithm that is used
for such settings with provable guarantees. Using UCB1
with MCTS is also referred to as Upper Confidence bounds
applied to Trees (UCT) (Kocsis and Szepesvari 2006). Ap-
plied to our framework, each parent node s chooses its child
s’ with the largest UC B1(s, a) value according to Eqn. 1.

Inn(s)
n(s’)

UCBI1(s,a) = Q(s,a) + C (1)
Here, n(s) denotes number of visits to the node s and n(s’)
denotes the number of visits to s’, i.e., the resulting child
node when taking action a from node s. The value of C'is a
tunable exploration parameter.

Safer RL with MCTS Action Guidance

In this section, we present our framework PI-A3C (Plan-
ner Imitation - A3C) that extends A3C with a lightweight
search-based demonstrator through an auxiliary task based
loss refinement as depicted in Figure 2.
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We propose a framework that can use planners, or other
sources of demonstrators, within asynchronous DRL meth-
ods to accelerate learning. Even though our framework can
be generalized to a variety of planners and DRL methods,
we showcase our contribution using MCTS and A3C. In
particular, we employ the UCB1 method to balance explo-
ration versus exploitation during planning. During rollouts,
we simulate all agents as random agents as in vanilla MCTS
and we perform limited-depth rollouts for time-constraints.

The motivation for combining MCTS and asynchronous
DRL methods stems from the need to decrease training time,
even if the planner or the simulator is very slow. In this work,
we assume the demonstrator and actor-critic networks are
decoupled, i.e., a vanilla UCT planner is used as a black-box
that takes an observation and returns an action resembling
UCTtoClassification method (Guo et al. 2014), which uses
slower MCTS to generate an expert move dataset and trains
a NN in a supervised fashion to imitate the search algorithm.

However, the UCTtoClassification method used a high-
number of rollouts (10K) per action selection to construct
an expert dataset. In contrast, we show how vanilla MCTS
with a small number of rollouts' (= 100) can still be em-
ployed in an on-policy fashion to improve training efficiency
for actor-critic RL in challenging domains with abundant,
easily reachable, terminal states with negative rewards.

Within A3C’s asynchronous distributed architecture, all
the CPU workers perform agent-environment interactions
with their policy networks, see Figure 2(a). In our new
framework, PI-A3C (Planner Imitation with A3C), we as-
sign k& > 1 CPU workers (we performed experiments with
different k£ values) to perform MCTS-based planning for
agent-environment interaction based on the agent’s obser-
vations, while also keeping track of how its policy network
would perform for those cases, see Figure 2(b). In this fash-
ion, we both learn to imitate the MCTS planner and to opti-
mize the policy. The main motivation for the PI-A3C frame-
work is to increase the number of agent-environment inter-
actions with positive rewards for hard-exploration RL prob-
lems to improve training efficiency.

Note that the planner-based worker still has its own neu-
ral network with actor and policy heads, but action selec-
tion is performed by the planner while its policy head is
used for loss computation. In particular, the MCTS plan-
ner based worker augments its loss function with the auxil-
iary task of Planner Imitation®. The auxiliary loss is defined
as Lpr = —+ SV a’log(a’), which is the supervised cross
entropy loss between a‘ and @', representing the one-hot en-
coded action the planner used and the action the policy net-
work would take for the same observation respectively dur-
ing an episode of length /N. The demonstrator worker’s loss
after the addition of Planner Imitation is defined by

Lerasc = Laszc + AprLlpr
where Ap; = 1 is a weight term (which was not tuned). In
PI-A3C non-demonstrator workers are left unchanged. By

"Tn Pommerman 10K rollouts would take hours due to very
slow simulator and long horizon (Matiisen 2018).

2Both Guo et al. (2014) and Anthony et al. (2017) used MCTS
moves as a learning target, referred to as Chosen Action Target.
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Figure 2: a) In the A3C framework, each worker independently interacts with the environment and computes gradients. Then,
each worker asynchronously passes the gradients to the global neural network which updates parameters and synchronizes with
the respective worker. b) In Planner Imitation based A3C (PI-A3C), k > 1 CPU workers are assigned as demonstrators taking
MCTS actions, while keeping track of what action its actor network would take. The demonstrator workers have an additional
auxiliary supervised loss. PI-A3C enables the network to simultaneously optimize the policy and learn to imitate MCTS.

formulating the Planner Imitation loss as an auxiliary loss,
the objective of the resulting framework becomes a multi-
task learning problem where the agent learns to both maxi-
mize the reward and imitate the planner.

Experiments and Results

In this section, we present the experimental setup and results
in the simplified version of the Pommerman game.

Pommerman

In Pommerman, each agent can execute one of 6 actions at
every timestep: move in any of four directions, stay put, or
place a bomb. Each cell on the board can be a passage, a
rigid wall, or wood. The maps are generated randomly, albeit
there is always a guaranteed path between agents. Whenever
an agent places a bomb it explodes after 10 timesteps, pro-
ducing flames that have a lifetime of 2 timesteps. Flames de-
stroy wood and kill any agents within their blast radius. An
episode can last up to 800 timesteps. Pommerman is chal-
lenging due to the following characteristics:

Multiagent component: the agent needs to best respond
to any type of opponent, but agents’ behaviours also change
based on collected power-ups.

Delayed action effects: the only way to make a change
to the environment (e.g., kill an agent) is by means of bomb
placement, but the effect of such an action is only observed
when the bombs explodes after 10 time steps.

Sparse and deceptive rewards: the former refers to the
fact that rewards are episodic. The latter refers to the fact
that quite often a winning reward is due to the opponents’
involuntary suicide, which makes reinforcing an agent’s ac-
tion based on such a reward deceptive.

For these reasons, we consider this game challenging for
many standard RL algorithms and a local optimum is com-
monly learned, i.e., not placing bombs (Resnick et al. 2018).
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Setup

We run ablation experiments on the contribution of Planner
Imitation to compare against the standard A3C method for:
(i) single demonstrator with different expertise levels, (ii)
different number of demonstrators with the same expertise
level, and (iii) using rollout biasing within MCTS in contrast
to uniform random rollout policy.

We considered two types of opponents:

e Static opponents: the opponent waits in the initial position
and always executes the ‘stay put’ action. This opponent
provides the easiest configuration (excluding suicidal op-
ponents). It is a baseline opponent to show how challeng-
ing the game is for model-free RL.

e Rule-based opponents: this is the benchmark agent within
the simulator. It collects power-ups and places bombs
when it is near an opponent. It is skilled in avoiding blasts
from bombs. It uses Dijkstra’s algorithm on each time-
step, resulting in longer training times.

All training curves are obtained from 3 runs with different
random seeds. From these 3 separate runs, we compute aver-
age learning performance (depicted with bold color curves)
and standard deviations (depicted with shaded color curves).
At every training episode, the board is shuffled.

Because of all the complexities mentioned in this domain
we simplified it by considering a game with only two agents
and a reduced board size of 8 x 8, see Figure 1. Note that we
still randomize the location of walls, wood, power-ups, and
the initial position of the agents for every episode.

Results

We conducted two sets of experiments learning against
Static and Rule-based opponents. We benchmark against the
standard A3C with learning curves in terms of converged
policies and time-efficiency. All approaches were trained us-
ing 24 CPU cores. Training curves for PI-A3C variants are
obtained by using only the model-free workers, excluding
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Figure 3: a) Against Static agent, all variants have been trained for 12 hours. The PI-A3C framework using MCTS demon-
strator with 75 and 150 rollouts learns significantly faster compared to the standard A3C. b) Against Rule-based opponent,
all variants have been trained for 3 days. Against this more skilled opponent, PI-A3C provides significant speed up in learning
performance, and finds better best response policies. ¢) Against Rule-based opponent, employing different number (n = 1, 3, 6)
of Demonstrators, i.e. increasing from 1 to 3, slightly improved the results, however, there is almost no variation from 3 to 6
demonstrators. For both (a) and (b), increasing the expertise level of MCTS through doubling the number of rollouts (from
75 to 150) does not yield improvement, and can even hurt performance. Our hypothesis is that slower planning decreases the
number of demonstrator actions too much for the model-free RL workers to learn to imitate for safe exploration.

rewards obtained by the demonstrator worker, to accurately
observe the performance of model-free RL.

On action guidance, quantity versus quality Within our
framework, we can vary the expertise level of MCTS by
simply changing the number of rollouts. We experimented
with 75 and 150 rollouts. Given finite training time, higher
rollouts imply deeper search and better moves, however, it
also implies that number of guided actions by the demon-
strators will be fewer in quantity, reducing the number of
asynchronous updates to the global neural network. As Fig-
ure 3 shows, the relatively weaker demonstrator (75 rollouts)
enabled faster learning than the one with 150 rollouts against
both opponents. We also measured the Vanilla-MCTS per-
formance against both opponents as reported in Table 1. The
results show that average rewards increase when given more
rollouts against both opponents. Against static opponents,
Vanilla-MCTS performance is worse than both A3C and
PI-A3C methods. This occurs because even when vanilla-
MCTS does not commit suicides often, it fails to blast the
opponent, resulting in too many tie games (episodic reward
of -1). In contrast, PI-A3C makes use of the demonstrator
for safer exploration with higher-quality atomic actions and
learns to explore faster than A3C. Against a more challeng-
ing Rule-based opponent, pure MCTS (mean episodic re-
ward of —0.23 using 75 rollouts) is slightly better than pure
A3C (mean episodic reward of —0.27), however PI-A3C
with either 75 or 150 rollouts combines both approaches
well and perform the best, see Figure 3(b).

We hypothesize that the faster demonstrator (MCTS with
only 75 rollouts) makes more updates to the global neural
network, warming up other purely model-free workers for
safer exploration earlier in contrast to the slower demonstra-
tor. This is reasonable as the model-free RL workers consti-
tute all but one of the CPU workers in these experiments,
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Table 1: Vanilla MCTS-based demonstrator evaluation: av-
erage episodic rewards of 200 games. Note that mean re-
wards are affected by too many tie games (rewarded -1 by
the Pommerman simulator), e.g. against Static opponent,
MCTS wins 88 games, loses 4 games by suicide, and ties
108 games, which results in average reward of -0.12.

Vanilla-MCTS vs. | Static | Rule-based
75 Rollouts ‘ -0.12 ‘ -0.23

150 Rollouts -0.08 -0.20

therefore the earlier the model-free workers can start safer
exploration, the better the learning progress is likely to be.?

On the trade-off of using multiple demonstrators Our
proposed method is built on top of an asynchronous dis-
tributed framework that uses several CPU workers: k > 1
act as a demonstrator and the rest of them explore in model-
free fashion. We conducted one experiment to better un-
derstand how increasing the number of demonstrators, each
of which provides additional Planner Imitation losses asyn-
chronously, affects the learning performance. The trade-off
is that more demonstrators imply fewer model-free workers
to optimize the main task, but also a higher number of ac-
tions to imitate. We present the results in Figure 3(c) where
we experimented 3 and 6 demonstrators, with identical re-
sources and with 150 rollouts each. Results show that in-
creasing to 3 improves the performance while extending to 6
demonstrators does not provide any marginal improvement.

Even though we used MCTS with fixed number of rollouts,
this could be set dynamically, for example, by exploiting the re-
ward sparsity or variance specific to the problem domain, e.g., us-
ing higher number of rollouts when close to bombs or opponents.
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Figure 4: Learning against Rule-based opponent: using the
policy head during MCTS rollout phase within the demon-
strator provides improvement in learning speed, but it has
higher variance compared to the default random policy.

We also observe that the 3 demonstrator version using 150
rollouts presented in Figure 3(c) has a relatively similar per-
formance with the 1 demonstrator version using 75 rollouts
(see Figure 3(b)), which is aligned with our hypothesis that
providing more demonstrator guidance early during learning
is more valuable than fewer higher quality demonstrations.

Demonstrator biasing with policy network Uniform
random rollouts employed by MCTS yield unbiased esti-
mates, however it requires a high number of rollouts to re-
duce the variance. One way to improve search efficiency has
been through different biasing strategies, such as prioritiz-
ing actions globally based on their evaluation scores (Kar-
tal, Koenig, and Guy 2014), using heuristically computed
move urgency values (Bouzy 2005), or concurrently learning
a rollout policy (Ilhan and Etaner-Uyar 2017). In a similar
vein with these methods, we let the MCTS-based demonstra-
tor to access the policy head during rollouts, named as PI-
A3C-NN (Planner Imitation - A3C with Neural Network).
Our results suggest that employing a biased rollout policy
improves in the average learning performance, however it
has higher variance, as depicted in Figure 4.

Conclusions

In this work, we present a framework that uses a non-expert
simulated demonstrator within a distributed asynchronous
deep RL method to succeed in hard-exploration domains.
Our experiments use the recently proposed Pommerman do-
main, a very challenging benchmark for pure model-free RL
methods. In Pommerman, one main challenge is the high
probability of suicide while exploring (yielding a negative
reward), which occurs due to the delayed bomb explosion.
However, the agent cannot succeed without learning how to
stay safe after bomb placement. The methods and ideas pro-
posed in this paper address this hard-exploration challenge.
The main idea of our proposed framework is to use MCTS
as a shallow demonstrator (small number of rollouts). In our
framework, model-free workers learn to safely explore and
acquire this skill by imitating a shallow search-based non-
expert demonstrator. We performed different experiments
varying the quality and the number of demonstrators. The

158

results show that our proposed method shows significant im-
provement in learning efficiency across different opponents.

There are several directions to extend our work. Soe-
mers et al. (2016) employed Breadth-First Search to ini-
tialize state-action value estimates by identifying near ter-
minal states before starting MCTS based lookahead search.
This enhancement can be tested within our framework. Also,
MCTS-minimax hybrids method (Baier and Winands 2018)
can be employed as the demonstrator, which can provide
better tactical play through minimax search. Another avenue
is to investigate how to formulate the problem so that ad-hoc
invocation of an MCTS-based simulator can be employed,
i.e., action guidance can be employed only when the model-
free RL agent needs one, e.g., in Pommerman this means
whenever a bomb is about to go off or near enemies where
enemy engagement requires strategic actions.

All of our work presented in the paper is on-policy for
better comparison to the standard A3C method — we main-
tain no experience replay buffer. This means that MCTS
actions are used only once to update neural network and
thrown away. In contrast, UNREAL uses a buffer and gives
higher priority to samples with positive rewards. We could
take a similar approach to save demonstrator’s experiences
to a buffer and sample based on the rewards.

Appendix

Neural Network Architecture: We use a NN with 4 con-
volutional layers that have 32 filters and 3 x 3 kernels, with
stride and padding of 1, followed with a dense layer with 128
units, followed actor-critic heads. Architecture is not tuned.

State Representation: Similar to (Resnick et al. 2018),
we maintain 28 feature maps that are constructed from
the agent observation. These channels maintain location of
walls, wood, power-ups, agents, bombs, and flames. Agents
have different properties such as bomb kick, bomb blast ra-
dius, and number of bombs. We maintain 3 feature maps for
these abilities per agent, in total 12 is used to support up to
4 agents. We also maintain a feature map for the remaining
lifetime of flames. All the feature channels can be readily ex-
tracted from agent observation except the opponents’ prop-
erties and the flames’ remaining lifetime, which are tracked
efficiently from sequential observations.

Hyperparameter Tuning: We did not perform a through
hyperparameter tuning due to long training times. We used
a~vy = 0.999 for discount factor. For A3C loss, the de-
fault weights are employed, i.e., A, = 0.5, A\, = 1.0, and
Ag = 0.01. For the Planner Imitation task, Ap; = 1is used
for the MCTS worker. We employed the Adam optimizer
with a learning rate of 0.0001. We found that for the Adam
optimizer, ¢ = 1 x 10~° provides a more stable learning
curve (less catastrophic forgetting). We used a weight decay
of 1 x 10~ within the Adam optimizer for L2 regularization.

MCTS Implementation Details: After rollouts, demon-
strator action is selected by the max visit count, a.k.a. Ro-
bust Child (Browne et al. 2012). Default UCB1 exploration
constant of v/2 is used. The max search tree depth from any
given state is set to 25 given the low search budget. The value
head by the NN is not used by vanilla MCTS,
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