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So we see how we stand then like children at the edge of the
ocean of information and we’re putting our feet in and wondering,
you know, “Could we swim in that? What would it be like to
be wet in that? What would it be like to go into that new medium?”

— Terence McKenna, Final Earthbound Interview, 1998





Thesis Summary

Visual analytics tools play an important role in the scenario of ‘big data’ solutions, combining
data analysis and interactive visualization techniques in effective ways to support the
incremental exploration of large data collections from a wide range of domains. One
particular challenge for visual analytics is the analysis of multidimensional datasets, which
consist of many observations, each being described by a large number of dimensions, or
attributes. Finding and understanding data-related patterns present in such spaces, such as
trends, correlations, groups of related observations, and outliers, is hard.

Dimensionality reduction methods, or projections, can be used to construct low (two or
three) dimensional representations of high-dimensional datasets. The resulting representa-
tion can then be used as a ‘proxy’ for the visual interpretation of the high-dimensional space
to efficiently and effectively support the above-mentioned data analysis tasks. Projections
have important advantages over other visualization techniques for multidimensional data,
such as visual scalability, high degree of robustness to noise and low computational complex-
ity. However, a major obstacle to the effective practical usage of projections relates to their
difficult interpretation.

Two main types of interpretation challenges for projections are studied in this thesis.
First, while projection techniques aim to preserve the so-called structure of the original
dataset in the final produced layout, and effectively achieve the ‘proxy’ effect mentioned
earlier, they may introduce a certain amount of errors that influence the interpretation of
their results. However, it is hard to convey to users where such errors occur in the projection,
how large they are, and which specific data-interpretation aspects they affect. Secondly,
interpreting the visual patterns that appear in the projection space is far from trivial, beyond
the projections’ ability to show groups of similar observations. In particular, it is hard to
explain these patterns in terms of the meaning of the original data dimensions.

In this thesis we focus on the design and development of novel visual explanatory
techniques to address the two interpretation challenges of multidimensional projections
outlined above. We propose several methods to quantify, classify, and visually represent
several types of projection errors, and how their explicit depiction helps interpreting data
patterns. Next we show how projections can be visually explained in terms of the high-
dimensional data attributes, both in a global and a local way. Our proposals are designed to
be easily added, and used with, any projection technique, and in any application context
using such techniques. Their added value is demonstrated by presenting several exploration
scenarios involving various types of multidimensional datasets, ranging from measurements,
scientific simulations, software quality metrics, software system structure, and networks.

Keywords:
Computer graphics, Visualization, Visual analytics, Multidimensional data





Resumo

Ferramentas de análise visual desempenham um papel importante no cenário de soluções
para grandes volumes de dados (‘big data’), combinando análise de dados e técnicas inte-
rativas de visualização de forma eficaz para apoiar a exploração incremental de coleções
de dados em diversos domı́nios. Um desafio importante em análise visual é a exploração
de conjuntos de dados multidimensionais, que consistem em muitas observações, sendo
cada uma descrita por um grande número de dimensões, ou atributos. Encontrar e com-
preender os padrões presentes em tais espaços, tais como tendências, correlações, grupos de
observações relacionadas e valores extremos, é dif́ıcil.

Técnicas de redução de dimensionalidade – ou projeções – são utilizadas para construir,
a partir de conjuntos de dados multidimensionais, representações de duas ou três dimensões
que podem então ser utilizadas com substitutas do espaço original para sua interpretação
visual, apoiando de forma eficiente as tarefas de análise de dados acima mencionadas.
Projeções apresentam vantagens importantes sobre outras técnicas de visualização para
dados multidimensionais, tais como escalabilidade visual, resistência a rúıdos e baixa
complexidade computacional. No entanto, um grande obstáculo para o uso prático de
projeções vem da sua dif́ıcil interpretação.

Dois principais tipos de desafios de interpretação de projeções são estudados nesta tese.
Em primeiro lugar, mesmo que as técnicas de projeção tenham como objetivo preservar,
na representação final, a estrutura do conjunto de dados original, elas podem introduzir
uma certa quantidade de erros que influenciam a interpretação dos seus resultados. No
entanto, é dif́ıcil transmitir aos usuários onde tais erros ocorrem na projeção, quão severos
eles são e que aspectos espećıficos da interpretação dos dados eles afetam. Em segundo
lugar, interpretar os padrões visuais que aparecem em uma projeção, além da percepção de
grupos de observações semelhantes, está longe de ser trivial. Em particular, é dif́ıcil explicar
tais padrões em termos do significado das dimensões dos dados originais.

O trabalho desenvolvido nesta tese concentra-se no projeto e desenvolvimento de novas
técnicas visuais explicativas para lidar com os dois desafios de interpretação de projeções
multidimensionais descritos acima. São propostos alguns métodos para quantificar, classificar
e representar visualmente diversos tipos de erros de projeção, e é descrito como essas
representações expĺıcitas ajudam na interpretação dos padrões dos dados. Além disso,
também são propostas técnicas visuais para explicar projeções em termos dos atributos dos
dados multidimensionais, tanto de forma global quanto local. As propostas apresentadas
foram concebidas para serem facilmente incorporadas e usadas com qualquer técnica de
projeção e em qualquer contexto de aplicação. As contribuições são demonstradas pela
apresentação de vários cenários de exploração, envolvendo vários tipos de conjuntos de
dados multidimensionais, desde medições e simulações cient́ıficas até métricas de qualidade
de software, estruturas de sistema de software e redes.

Palavras-chave:
Computação gráfica, Visualização, Análise visual, Dados multidimensionais





Samenvatting

Visuele analyse spelt een sleutelrol in de zogenaamde ‘big data’ oplossingen door data-analyse
met interactieve visualisatietechnieken te combineren om de stapsgewijze exploratie van
grote gegevensverzamelingen te ondersteunen. Multidimensionale datasets zijn een aparte
uitdaging voor visuele analyse. Deze bevatten veel datapunten, elk dat beschreven wordt
door veel dimensies of attributen. Omdat men dergelijke hoog-dimensionale datasets zich
niet makkelijk kan voorstellen, het vinden van trends, correlaties, groepen van gerelateerde
observaties, en uitschieters is hard.

Dimensionaliteitsreductiemethoden, of projecties, kunnen gebruikt worden om laag
(twee of drie) dimensionale representaties van hoog-dimensionale data te bouwen. Deze rep-
resentaties dienen als hulpmiddelen voor de visuele interpretatie van de hoog-dimensionale
ruimte. Projecties hebben een aantal voordelen zoals visuele schaalbaarheid, hoge robu-
ustheid tegen ruis, afstandspreservatie, en een lage rekencomplexiteit. Integendeel is hun
interpretatie een grote praktische uitdaging.

Dit proefschrift benadert twee interpretatie uitdagingen. Eerst, alhoewel projecties
streven naar het bewaren van de zogenaamde datastructuur, creëren zij altijd een bepaalde
mate van fouten, die hun interpretatie bëınvloeden. Het is hard om de gebruikers de locatie,
grootte, en invloed (op de data interpretatie) van dergelijke fouten weer te geven. Ten
tweede, de interpretatie van de visuele patronen die in projecties voorkomen is verre van
triviaal – in het bijzonder het is hard om dergelijke patronen uit te leggen in termen van de
oorspronkelijke data dimensies.

Dit proefschrift presenteert het ontwerp en ontwikkeling van nieuwe visuele explorati-
etechnieken die de twee bovengenoemde interpretatie uitdagingen van multidimensionale
projecties verhelpen. We presenteren een aantal methodes voor de kwantificatie, classi-
ficatie, en visuele weergaven van verschillende types projectiefouten, en laten zien hoe
hun weergave de interpretatie van datapatronen verhelpt. We laten vervolgens zien hoe
projecties uitgelegd kunnen worden via hoog-dimensionale attributen op een lokale en
ook globale wijze. Onze oplossingen kunnen makkelijk toegevoegd worden aan elke pro-
jectietechniek en gebruikt worden in elk toepassingscontext waar dergelijke technieken
voorkomen. De toegevoegde waarde van onze oplossingen wordt afgebeeld door verschil-
lende scenario’s voor de exploratie van multidimensionale datasets afkomstig uit metingen,
wetenschappelijke simulaties, software kwaliteitsmetrieken, softwaresysteemstructuur, en
netwerken.

Trefwoorden:
Computer graphiek, Visualisatie, Visuele analyse, Multidimensionale gegevens
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Chapter 1

Introduction

The last decade has witnessed an explosion in the prominence of data as a central
artifact of scientific and technological development. Multiple facets characterize

this unprecedented development. The advent of increasingly sophisticated, accurate,
high-throughput and cheap sensing devices and technologies make us, as a society, able
to collect amounts of data from a huge range of sources and up to extents that were
unthinkable years ago. The increase of computing power and data storage, and decrease
of corresponding prices, has made it possible to analyse and explore large amounts of
data of virtually any type. These analyses and explorations support a very diverse set
of activities, such as validation and verification of models and theories, optimization
of algorithms and tools, and obtaining new insights on phenomena described by the
underlying data, which can lead to new theories, models, and ultimately socially relevant
technological developments.

A critical component of the analysis of this universe – known under the generic
name of ‘big data’ – is the availability of efficient and effective analysis tools. These
encompass a wide variety of technologies, developed in traditionally separate research
domains, such as data mining, knowledge engineering, statistics, databases, business
intelligence, mathematical analysis, computer graphics, human-computer interaction,
and data visualization. As the problems to be studied become increasingly complex,
the size and complexity of datasets describing them increase too. As such, tools and
techniques that combine data mining and analysis and interactive exploration techniques
are of increasing interest and added value. Such tools are created and used in a new
field of expertise called visual analytics.

Visual analytics has emerged from the classical fields of scientific and information
visualization as a separate discipline focused on the development of theories, methods,
techniques and tools for analytical reasoning facilitated by interactive visual inter-
faces [209]. The field has known a rapid development in the last decade since its advent,
which was related to applications in homeland security and business intelligence [37].
Currently, visual analytics tools and techniques are actively being developed and used
in areas as diverse as medical science, physics, chemistry, biology, material sciences,
geographical information systems, e-governance, and (surely not surprisingly) computer
science and information technology [102]. One of the main reasons for the success of
visual analytics is its proposal to support incremental sensemaking, in terms of discover-
ing unknown facts in large data collections and next building and refining hypotheses
related to the underlying phenomena captured by the data. This is made effective, easy
to learn, and generically applicable to a wide range of audiences and domains by using
interactive data visualization techniques that present and support the exploration of data
in intuitive ways [125].
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1.1 Multidimensional Data: Importance and Challenges

A particular place in the described context is occupied by multidimensional data. Such
data typically consists of a set of observations, each being characterized by a number
of dimensions, also called attributes. A multidimensional dataset can be thought of
as a sampling of a high-dimensional space, whereby the observations play the role of
sample points. Multidimensional datasets include, among many other possible examples,
population studies (where observations are persons and dimensions are attributes of
a person, such as age, gender, profession, salary, job description, or education) [23];
medical studies (where observations are diseases and dimensions are diagnostic and
treatment-related data) [133, 67, 9]; software repositories (where observations are files
under version control and dimensions include file attributes such as type, size, authors,
bug reports, or modification requests) [200, 201].

Multidimensional data pose particularly hard challenges to visual analytics. First,
humans find it hard to visually imagine spaces having more than three (or possibly four)
dimensions. As such, understanding datasets having hundreds or possibly thousands of
dimensions becomes very challenging. Related to this, it is difficult to create depictions,
or visualizations, of such spaces. This, in turn, leads to the difficulty of being able to spot
patterns, trends, and outliers – which are tasks at the core of the added-value of data
visualization. Secondly, multidimensional data may have a mix of attributes of different
types and ranges. For instance, our population study example mentioned earlier features
attributes which are quantitative (age and salary), categorical (gender, education), and
text (job description). Different attribute types require different visual encodings, which
makes the design of an effective visualization harder than in the case where all attributes
are of the same type. Additionally, reasoning about relative similarities and differences
of such distinct attribute types is difficult.

The challenge of multidimensional data has been recognized since long in visual
analytics. To address this, several visualization methods have been researched. These
range from classical two-dimensional scatterplots to scatterplot matrices, parallel coor-
dinates and space-filling curves. In this family of techniques, Dimensionality Reduction
(DR) methods, also sometimes known as projections, occupy a particular position. Given
any set of observations or points, having several dimensions each, and a suitable dis-
tance or similarity function defined for them, projections typically construct a two- or
three-dimensional scatterplot, under the main constraint of keeping inter-point relation-
ships in the projection space proportional with inter-point relationships in the original
high-dimensional space. This allows analysts to employ the scatterplot as a ‘proxy’ for
the interpretation of the high-dimensional space in tasks that involve comparing points,
such as finding groups or clusters of highly similar points, finding outliers, and detecting
trends and correlations.

Projections have a number of important advantages as compared to other multidi-
mensional visualization techniques. First, they scale visually reasonably well in terms of
both number of observations and, more importantly, number of dimensions. Secondly, re-
cent projection methods offer a high degree of robustness to noise, distance-preservation
accuracy, computational complexity, and ease of use. Thirdly, projection methods exist
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for datasets having quantitative, categorical, and mixed quantitative-and-categorical
attributes [149, 1, 24, 172]. Fourthly, projection plots require typically little to no
parameter definitions or choices on the part of the user. This is in contrast to other
multidimensional visualization techniques where one has to explicitly decide how to
arrange the dimension axes (parallel coordinates, scatterplot matrices). To summarize,
we can basically use projections as black boxes to create two-dimensional scatterplots
easily, quickly, and efficiently. There are still, however, important challenges related to
their usability and ease of interpretation, as described next.

Projection errors: Most projections introduce a certain amount of error that influences
the interpretation of their results (“I cannot trust what I am seeing.”)

All projection techniques aim to preserve the structure of the high-dimensional
dataset. At a low level, this structure is typically quantified in terms of distances
between point pairs or, alternatively, in terms of nearest-neighbors of points. Groups of
data points exhibiting different local structures can then be seen to form larger-scale
data patterns. By preserving this data structure, projections effectively aim to achieve
the ‘proxy’ effect mentioned earlier, i.e., the fact that one can use the resulting low-
dimensional scatterplot to reason about high-dimensional similarities or neighbors. Early
projection methods, such as Principal Component Analysis (PCA), essentially ignore
the variation of all dimensions by describing the data in terms of two components with
the highest variance. As such, they introduce considerable errors when projecting any
dataset that is not essentially in a hyperplane embedded into a high-dimensional space.
More recent non-linear projection methods considerably increase the projection accuracy,
quantified in terms of distance and/or neighborhood preservation, by essentially making
different decisions on how to project the data for each separated local neighborhood
of points [141, 95, 138]. However, even such projections cannot achieve a perfect
neighborhood and/or distance preservation, not even for two-dimensional manifold
surfaces embedded in high-dimensional spaces – consider, for example, the projection of
points spread over the surface of a sphere into a plane.

Given the above, there is often a loss of information that stems from the inability
of the DR methods to fully achieve their goal of keeping the original structure of the
data intact. Where this information loss occurs and its severity is, however, usually not
obvious to the user. Typical projection-quality metrics, such as aggregated stress [139],
only provide a global assessment of how accurate a projection is. Such metrics are useful
when comparing several different projection techniques, in order to see which one gets on
average the lowest projection errors. We note that, in this context, projection error metrics
are further specialized in metrics that measure distance-preservation errors and metrics
that measure neighborhood-preservation errors, in line with the two refinements of the
definition of data structure introduced above. However, when users face the concrete
task of analysing a given projection to make decisions, global aggregate error metrics
are less useful. Indeed, consider for example that a neighborhood in the projection
might apparently represent very similar points while, in high-dimensional space, those
points are not neighbors; or a compact cluster in the projection might actually represent
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the union of two separate groups of similar points from the original space. Unless
explicitly detected and depicted, such local projection errors can easily mislead users
when interpreting a projection, thereby severely diminishing the advocated role of the
projection as an effective analysis proxy for the high-dimensional dataset.

Apart from showing projection errors, users should also be given ways to correct these
where and when needed. In operational terms, this can be done by changing the various
parameters of a given projection technique, or replacing that technique by a different
one. However, to be able to make an informed decision on this, users need to see how
parameter variation affects projection errors – or, in other words, one needs effective
ways to explore the parameter space of projection techniques. To our knowledge, there
is little research that addresses this goal.

Absence of dimension encoding: There is no obvious way of interpreting projected points
in relation to the original attributes of the dataset (“I do not know what I am seeing.”)

All mainstream multidimensional visualization techniques, with the exception of
projections, explicitly encode (subsets of) the high-dimensional attributes in the resulting
visualization. For instance, parallel coordinates have axes that explicitly and unequivo-
cally allow the user to locate the value of any attribute on any data element. When a
user sees, for instance, a cluster of edges at a certain region of an axis in such a plot, the
interpretation is clear: Those specific data elements (edges) share similar values for that
attribute (axis), and the values that are shared are immediately available for inspection
by looking at the axis legends. Scatterplot matrices also allow the explicit analysis of any
pairs of attributes. After the user locates a desired attribute pair, the data interpretation
follows the usage of a standard scatterplot. The trends present in the data regarding the
selected attribute-pair can be analysed and, when detected, can be immediately traced
back to the original values of the two attributes, located on either one of the axes of the
scatterplot. Explicit attribute encoding is also present in scientific visualization. To give
just one example, a hedgehog plot shows a three-dimensional vector field (which can be
seen as a three-variate dataset) by explicitly encoding the direction and magnitude of
the vector attributes by the orientation and length of arrow glyphs [160].

In contrast to the above, standard multidimensional projections only depict the
similarity of data points, but not their attribute values. In a projection, a point’s absolute
position has no meaning in terms of its original attributes – that is, we cannot infer the
values of that point’s attributes just by looking at the point itself. If we include in the
analysis the neighbors of the point, we may infer various facts about the similarity of
points. This tells us that the points are similar (and, possibly, how similar these points
are), but not why the points are similar (that is, due to which attributes and/or attribute
values). In other words, the position of a point in a multidimensional projection does
not reflect the sole attributes of that point, but the similarity of these attributes with
those of neighboring points in high-dimensional space. This is a fundamentally different
approach to data encoding than the one used by techniques such as parallel coordinates,
scatterplots, scatterplot matrices, or table lenses. The difficulty of interpreting projections
is aggravated in cases where we do not see a clear separation between different clusters
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in the projected image. Overall, it is quite hard for users to locate a region of interest
in a projection and comprehend why the technique decided to place those points there
rather than somewhere else.

This problem of interpreting, or explaining, projections is well recognized, and
a number of solutions have been developed to address it. The simplest solution is
to color the points based on the value of a user-selected attribute. While this shows
the values of that attribute for all points, and thus allows seeing trends, outliers, and
even the individual attribute values for separate points, we need to know beforehand
which attribute we want to examine. Examining all attribute values in sequence is not
an option, as there may be hundreds of these, and a user’s visual memory is clearly
limited. Biplot axes are also a well-known tool in statistics [71]. These resemble
classical Cartesian-plot axes, and indicate the directions and range of variation of all
attributes in a projection. Biplot axes are particularly useful for detecting strongly
correlated dimensions. However, classical biplot axes are known only in the context of
linear projections, thereby excluding the more recent, high-quality, non-linear projection
techniques, e.g. [141, 95, 138]. Also, biplot axes do not easily explain the reasons of
formation of clusters. Axis legends annotate the two screen axes of a classical linear
projection by the amount of variation of each of the original dimensions along these
axes, and thereby aim to make the interpretation of a projection scatterplot (more)
similar to that of a well-known 2D Cartesian plot [24, 23]. However, such legends do
not address structures in the projection that are not axis-aligned. Separately, none of
the above-mentioned explanatory techniques has been used for projection scatterplots
having more than two dimensions.

1.2 Research Questions

From our analysis outlined above, we conclude that projections are efficient and effective
instruments for visually exploring high-dimensional datasets, but their practical value
is reduced by the absence of explanatory techniques. We focus on two classes of such
explanatory techniques, that address (a) the explanation of the quality of projections
in terms of fine-grained insight on the projection errors; and (b) the explanation of the
meaning of projections in terms of the original high-dimensional attributes.

As such, we can formulate our general research question below:

How can we increase the added value of multidimensional projections of high-dimen-
sional datasets with explanatory techniques that enable a wide range of users to interpret
the information present in a projection in more effective ways?

We can next refine this research question into two sub-questions, based on our earlier
analysis of projection interpretation challenges:

1. How to explain the errors introduced in a projection by the underlying dimension-
ality reduction technique, so that we see how and where these errors influence
our interpretation of the patterns present in the projection?
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2. How to explain patterns present in a projection, such as trends, groups, outliers,
and correlations in terms of the original high-dimensional attributes?

We observe that these two sub-questions are related, but complementary. Answering
sub-question 1 serves the goal of explaining which elements present in the projection are
trustworthy (and thus should be considered for further exploration), and which not (and
thus should be discarded or investigated in other ways). Answering sub-question 2 serves
the goal of telling the users how to construct an interpretation of projection regions
based on the original data attributes. Additionally, the techniques we will next propose
to address our research sub-questions work jointly to help explaining and interpreting a
projection, and are complementary – first, separating projection elements that are worth
interpreting further from those that carry artifacts of the projection; next, interpreting the
elements selected in the previous step. The projection interpretation pipeline afforded
by these combined techniques is therefore compatible with the well-known information
visualization ‘mantra’ of Shneiderman [168]: ‘Overview first, zoom and filter, then
details-on-demand’.

1.3 Structure of This Thesis

Below we provide a brief overview of the focus of each following chapter in this thesis.
Chapter 2 presents an overview of visualization methods that address the exploration

of multidimensional datasets. As our domain of interest is information visualization, we
naturally focus herein on information visualization and visual analytics methods that deal
with abstract, non-spatial, data. Also, we focus on the visualization of high-dimensional
datasets having hundreds of dimensions. Separately, this chapter provides a survey of
multidimensional projection techniques as well as techniques that aim to explain such
projections and quantify and present projection errors.

Chapter 3 presents our work towards visualizing and explaining distance-preservation
errors that appear in multidimensional projections, as introduced in Sec. 1.1. To this end,
we further refine the global notion of distance-preservation errors into several sub-cases,
such as false neighbors and missing neighbors, and propose ways to measure and visually
explore such errors. We further generalize these error metrics to the coarser-scale of
groups of close points in a projection, which typically represent related observations.
Separately, we show how we can use the proposed error metrics to explain individual
projections, compare different projection techniques, and also explore the parameter
space of projection techniques to find optimal parameters in terms of error minimization.

Chapter 4 shows how we adapt our distance-preservation error metrics and visu-
alization techniques introduced in Chapter 3 to quantify and explore neighborhood-
preservation errors in multidimensional projections. Similarly to the work presented in
Chapter 3, we refine the notion of neighborhood preservation to propose several concrete
metrics to quantify this aspect in a projection, and next propose several visual encodings
to depict these metrics. We next show how visualizing neighborhood-preservation errors
is of practical added value in terms of detecting high-error patterns in a projection
that should be interpreted with care when trying to reach global conclusions about the
similarity of the projected observations.

6



1.3. Structure of This Thesis

Chapter 5 addresses our sub-question related to projection explanation. We focus here
specifically on three-dimensional projections that generate, as output, a 3D scatterplot
of observations. First, we show how the exploration of 3D projections may achieve, in
certain circumstances, a more faithful rendering of high-dimensional structures such as
clusters of similar observations than 2D projections, and thereby build a case for the
added value of 3D projections. We next identify important sources of difficulty and/or
potential errors in terms of 3D projection interpretation, and detail how these relate
to the interpretation errors described for two-dimensional projections. We next adapt
and extend existing techniques for explaining 2D projections, such as biplot axes and
axis legends to the specific context of 3D projections and their interpretation challenges.
Finally, we show how our techniques can be used to explain outliers, correlations, and
trends in 3D projections in terms of the original high-dimensional variables.

Chapter 6 focuses on the visual explanation of 2D projections. For these, we propose
a number of different explanatory techniques than those introduced for 3D projections
in Chapter 5, by exploiting the relatively simpler structure of 2D scatterplots. To this end,
we first propose several metrics that aim to explain, on a local basis and by using the
original high-dimensional attributes, why points in a 2D projection are placed close to
each other. Next, we adapt and extend the visual encodings proposed in Chapter 3 to
depict our local explanations. While both the techniques introduced in this chapter and
Chapter 5 explain projections in terms of the original high-dimensional attributes, our
techniques for 2D projections achieve a high local level-of-detail explanation, while the
techniques proposed for 3D projections work at a more global level.

Chapter 7 turns our focus to the use of multidimensional projections for a specific
concrete application – the study of multivariate networks. We show that we can directly
use unmodified dimensionality reduction methods to address the problem of visually
presenting a multivariate network in terms of its connectivity, its attributes, or both,
solely by adapting its data representation according to the desired goals and feeding it as
input to a DR method. We compare the results of this with more traditional force-based
algorithms and show how they differ and which features of the network are more or less
apparent in each scenario. Finally, we show that, by following this approach, it is then
possible to apply the same visual analysis methods introduced in previous chapters to
evaluate and interpret this new type of dataset, thus reinforcing the claim of adaptability,
applicability and usefulness of the proposed explanatory techniques.

Chapter 8 reflects back on our research questions and the proposed visualization
methods for multidimensional projections introduced in the body of this thesis. We
summarize our findings in terms of types of projection interpretation challenges vs strong
points and limitations of the proposed explanatory methods. This chapter also concludes
this thesis by summarizing our main findings and also identifying future potential
exploration directions for explaining projections, and outline how such methods could
improve the ease of use and effectiveness of projections in practical data visualization
applications.
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Chapter 2

Related Work

I
n this chapter, we present a survey of methods and techniques related to the interactive
visual exploration of multidimensional datasets. Within this survey, we dedicate

particular attention to multidimensional projection techniques, which offer several
important advantages in terms of genericity, visual scalability, and supporting tasks
such as detection of outliers and groups of similar observations. In line with our main
research questions outlined in Chapter 1, we also discuss techniques for the assessment
of projection quality and projection errors, as well as techniques that help explaining
projections. The aim of this chapter is to provide a technical background on techniques
related to our own work described in the next chapter, and also reflect on advantages
and limitations of these techniques in relation to our key research questions outlined in
Chapter 1. In turn, these set the stage for the explanation of our proposed techniques for
explaining and interpreting multidimensional projections.

2.1 Multidimensional Data

Multidimensional data can be described as a representation that associates to each data
point xi, 1 ¤ i ¤M , also called an observation, a set of attribute values xji , 1 ¤ j ¤ N .
The set of all values xji for a given value j, over all M observations, is called an attribute,
dimension, or feature, and is denoted by xj . The number N ¡ 1 of attributes of a data
point is called the dimensionality of the data. Typical multidimensional datasets allow
N to take large values. For example, in image classification, a set of images xi can
be described by a multidimensional feature space, consisting of hundreds of attribute
values xji extracted per observation (image) [190, 47]. Similarly, in text analysis, a
corpus of documents xi is analysed by extracting the frequency of terms (keywords) per
document; these generate N attribute values per document, that is, the frequencies of
the N considered terms. The use of a large dictionary, containing possibly thousands of
terms, can easily generate datasets having thousands of dimensions per observation [13].

Attribute values are associated with types and ranges. In statistical data analysis and
information visualization, one distinguishes between several types of attributes, based
on the properties of the underlying attribute domain. While not unique and unanimously
accepted, the classification presented in the following paragraphs is frequently encoun-
tered [125, 181, 73].

Quantitative, or continuous, attributes are defined over sets that admit the opera-
tions of addition, multiplication with a scalar (real-numbered) value, and ordering of
values. Given the above, quantitative attributes are most usually defined over subsets
of R, as the real axis meets all above properties. In visualization terms, quantitative
attributes give rise to scalar, vector, and tensor attributes [181]. These are sets of
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attributes that, when taken together, describe the variation of a higher-dimensional
quantity. For terminology simplicity and consistency, we will next consider that an
attribute xj is always one-dimensional (has a single value per observation). Of course,
different attributes xj can be semantically grouped together to assign a higher-level
meaning to the resulting set txju, e.g. when grouping three scalar attributes to create a
three-dimensional vector attribute.

A key property of quantitative attributes is that they allow interpolation of values.
Indeed, considering that we have two observations xi and xj , then we can create
interpolated values between xki and xkj , for any attribute k, as αixki �αjx

k
j , where α P R�

represent the weights, or interpolation function values, of the two observations xi and
xj , measured at the location of the interpolated value. When, moreover, observations
are defined over a metric space, which offers us the notion of distance between points,
interpolation can generate values that smoothly vary between the attribute values xki
at any point located between the observations xi. Interpolation is a key property for
supporting operations such as data resampling, smoothing, filtering, and reconstruction,
which in turn support the scalable visualization of large and complex datasets.

Integral, or discrete, attributes are defined over sets that admit addition, subtraction,
ordering and multiplication by an integral scalar. Such sets are typically ranges of Z
or N. Examples of integral attributes are counts of items, such as number of lines of
code measured per software component [107]. Integral attributes typically do not admit
interpolation, since that would require multiplication of data values with real numbers,
which produces non-integral values.

Ordinal attributes are defined over sets that allow the ordering of values, i.e., support
the computation of the relations  , ¡, and �. Ordinal attributes are usually employed
to express relative rankings, e.g. measuring the likelihood that one buys a product over
tdefinitely not, possibly, neutral, probably, definitely yesu, or ranking the satisfaction of
customers of a service over tunacceptable, bad, poor, neutral, good, very good, excellentu.
Ordinal attributes should not be confused with integral attributes. Indeed, while both
admit ordering, it is generally not meaningful to talk about the distance between two
ordinal attributes in the same sense we talk about the difference of two integral attributes.

Categorical, or nominal, attributes are defined over any set, as they support a single
operation – comparing two values to determine if they are equal or different. Categorical
attributes are usually employed to encode the notion of category, type, or kind. Examples
hereof are, as the name also indicates, types of items, such as gender (male or female) or
transportation means (car, plane, train, subway, bicycle). In contrast to ordinal attributes,
categorical attributes do not admit a natural ‘ranking’ of their values – all categories are
equally important.

Text attributes are defined over the set of all possible phrases, or productions, that
can be generated following a given grammar and given dictionary. Examples hereof
are text written in natural language, or source code written following the syntax of a
programming language. While text attributes can be seen as categorical (we can easily
say when two text fragments are identical) or ordinal (we can lexicographically order
strings), they typically come with higher-level semantics. Indeed, not all text fragments
in a text dataset are usually considered to have the same importance, and two lexically
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different text fragments may capture precisely the same semantics; this makes text
different from categorical attributes. Separately, it is hard to imagine how to define
an ordering of text fragments that reflects any useful text semantics; this makes text
different from ordinal attributes.

Relational attributes are defined over sets of observations, and express the fact that
two or more such observations jointly participate in a relation that encodes some useful
application semantics. Such attributes give rise to datasets known as trees, graphs, and
networks. Relational attributes are different from all other attribute types discussed
earlier since they need at least two observations to define an attribute value (whereas
we associate quantitative, integral, ordinal, categorical, and text attribute-values with a
single observation). As such, relational attributes spawn separate families of analysis and
visualization techniques, such as graph drawing [44] and graph visualization [202, 78].

At a higher organization level, attribute values for different observations can be
grouped, or put in relationship with each other, giving birth to the concept of a dataset.
Two main types of grouping of observations are described below: structured and unstruc-
tured.

Structured observations correspond to situations where these are ordered in a
specific way to represent the sampling of a given domain D. The most known instances
hereof are the so-called grids. In grids, observations xi are organized along a system of
so-called structured coordinates that represent the scanning or reading order in which
we have to traverse the domain D to yield increasing values of the observation index i.
The simplest, and most prevalent, examples of grids are 1D, 2D, and 3D uniform grids,
which are represented by 1D, 2D, and respectively 3D arrays of observations. These
usually represent the sampling of corresponding 1D, 2D, and 3D spatial domains D. In
this case, the resulting dataset is also called a field, and its visual exploration falls under
the scope of scientific visualization [73, 181]. However, a grid is not always associated
to an underlying spatial domain – consider, for example, the 1D grids formed by ordered
sequences of rows (observations) in a table, indexed by row ID; and the 2D grids formed
by observations stored in the cells of a matrix.

When structured observations are present, one has to (naturally) use the structure
information in the design of suitable visualizations to explore the data. Indeed, to stay
with our earlier examples: If a table’s rows are to be read in chronological order, and
this order is given by the row ID, then a visualization such as a table lens [151] should
not sort rows differently. A matrix visualization should reflect the positions of the matrix
elements, as this position encodes specific semantics of the elements. Similarly, a field
visualization should not re-arrange the samples (observations) in any order, since the
positions of observations encode essential spatial semantics.

Unstructured observations correspond to cases where these are not stored in any
particular order. As such, the emerging dataset essentially consists of a set (rather than
an ordered sequence) of tuples, each representing an observation. This includes all cases
of multidimensional data where observations are not taken in any particular order, or
where the sampling order has no particular semantics. Examples hereof are population
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studies, where an observation encodes all data (attributes) available over a person, and
there is no semantics associated to which person was recorded (sampled) first or next.
Unstructured observations are harder to visualize than structured observations, as they
are non-spatial by excellence – we have absolutely no information in the dataset on
how to arrange, or embed these observations into the (2D or 3D) visualization space. In
contrast, such information is available for structured observations, in terms of relative
order or even precise spatial location.

Unstructured observations of high dimensionality (tens to hundreds of attributes)
and potentially having all attribute types are one of the key focus areas of multidimen-
sional visualization, and the main focus of this thesis. In this context, several types of
visualization methods have been proposed. We next briefly review these methods, in
order to better place in context the added-value and challenges of multidimensional
projections – our area of interest.

2.2 Multidimensional Visualization Tasks and Methods

Multidimensional visualization methods can be characterized by the types of tasks they
support. In contrast to more generic task characterizations, such data-specific task
characterizations are of added value as they provide a more explicit mapping between
concrete tasks and specific (visualization) tools that address these tasks, and thereby
facilitate coupling tasks with tools when desigining visualization applications [21, 161].
However, while characterizations and taxonomies of multidimensional data visualization
techniques exist, a comprehensive and universally accepted characterization of analysis
tasks for multidmensional data is still not available. This makes it hard to reason about
individual data-analysis tasks, and even harder in the case of sequences of such tasks
(also called workflows) that address multidimensional data [176, 88, 94].

In a recent paper, Brehmer et al. characterized the visual exploration of multidimen-
sional data as a combination of five types of tasks: (1) naming synthesized dimensions,
(2) mapping a synthesized dimension to original dimensions, (3) verifying clusters, (4)
naming clusters, and (5) matching clusters and classes [22]. This categorization is very
interesting in our context of using multidimensional projections to visually analyse such
data. Indeed, tasks (1) and (2) directly map to our first research sub-question (Sec. 1.2)
that refers to explaining patterns present in a projection in terms of the original data
dimensions; task (3) directly maps to our second research question (Sec. 1.2) that refers
to quantifying and displaying projection errors that may influence the interpretation of
patterns present in a projection; and tasks (4) and (5) are essentially a refinement of
our first research sub-question, specialized for cluster patterns in a projection. We shall
further address tasks (1) and (2) by our explanatory visualizations of 3D projections in
Chapter 5; task (3) by our explanatory visualizations for projection errors in terms of
distances (Chapter 3) and neighborhoods (Chapter 4); and tasks (4) and (5) by our local
attribute-based explanatory visualizations in Chapter 6.

A further useful categorization of multidimensional visualization methods splits these
into observation-centric and attribute-centric methods, as follows:
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• Observation-centric methods focus on explicitly depicting observations as easy-to-
recognize, compact, items in the resulting visualization. Such methods are best
for tasks that revolve around the identity of observations, such as finding groups
of similar observations or outlier observations. Conversely, such methods are less
effective for reasoning about attributes, e.g. finding direct or inverse correlations
of attributes or finding how attribute values evolve over the range given by all
observations;

• Attribute-centric methods focus on explicitly depicting the variation of all attributes
in the resulting visualization. Such methods are best for tasks related to the analy-
sis of attributes, such as finding direct or inverse correlations or finding maximum
or minimum values. Conversely, such methods are less effective for reasoning
about observations, e.g. assessing the similarity of two or more observations.

As we shall see below, most (if not all) multidimensional visualization methods pro-
pose different trade-offs between observation-centric and attribute-centric visualizations,
but none offers optimal ease in reasoning about both observations and attributes.

2.2.1 Table Lenses

Tables are probably the oldest, and best-known, technique for visualizing multidimen-
sional data. Consider a multidimensional dataset X � txiu where each observation is
a tuple xi � px1

i , . . . , x
N
i q of N attribute values. A table visualization essentially draws

each observation xi as a horizontal row in which the attribute values xji are explicitly
shown by text in cells. This layout, hence, creates columns for each separate attribute xj .
When the number of observations M or attributes N becomes too large to fit the table’s
visual size, scrolling is used to go to the desired location. Besides rendering attribute
values as plain text, these can be also encoded into bars scaled and colored to reflect
the attribute value. Figure 2.1a shows this for a data table where each row encodes
a stock transaction, having as attributes the name of the traded stock, category of the
stock, trade price, trade moment (day and intraday time), and trade volume [180]. This
color-and-size coding enables one to pre-attentively spot e.g. maxima or other outlier
values when quickly scrolling through a large table.

To address scalability in the number of observations, the table lens technique proposes
next to reduce the size of a row to one pixel size [151]. This effectively renders
each observation as a one-pixel-thick horizontal line, which allows thousands of such
observations to fit on a modern computer screen without scrolling. In this case, using
scaled and/or color-coded bars to convey attribute values is mandatory (Fig. 2.1b). The
table lens supports additional tasks besides making the visualization scalable, such as
detecting trends and correlations. For instance, in Fig. 2.1b, we can easily see that
variable 1 is linearly increasing top-to-bottom, while variables 2, 4, 5, 6, and 7 show a
strongly correlated pattern. Additionally, different color encodings can be used for the
different variables, to e.g. highlight specific aspects. An enhancement atop of the classical
table lens is the possibility to sort and group observations by attribute values [180].
Figure 2.1c shows an example: Here, the observations (stock transactions) are grouped
first by category, next by stock name, and finally by trading date. Same-value blocks of
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a) b) c)

2 3 41 2 3 4 5 6 7

Figure 2.1: Table lens visualization of stock transactions created with the TableVision tool [180].
The images shown the zoomed-in table (a), zoomed-out aggregated table (b), and
zoomed-out table with rows sorted and grouped by stock category, name, and trading
date (c).

contiguous rows are emphasized in the visualization by using shaded cushions [196].
The resulting hierarchy visualization is known also under the name of icicle plots [106].
This type of visualization allows one to focus the analysis on specific attribute value-
ranges, and also to see how the attribute values distribute over the entire observation
set.

Table lenses are quite effective in showing the individual evolution of each attribute
xj and, up to a certain extent, in highlighting correlations between different attributes.
They also scale very well to hundreds of thousands of observations, by using aggregation
techniques that average contiguous rows in the final table [180]. However, obtaining an
insightful and, ultimately, useful table lens visualization strongly depends on finding a
good order of the rows that places observations of interest close to each other. Doing this
may not always be possible, since we cannot sort the table in the same time on multiple
attributes. As such, tasks such as finding groups of strongly similar observations (with
respect to all their attributes) are not directly supported by table lenses. Separately, table
lenses do not readily scale to datasets having hundreds of attributes.

2.2.2 Small multiples

Besides tables, small multiples are another well-known technique for visualizing multi-
dimensional data [187]. The key idea is simple: Consider a multidimensional dataset
X � txiu where each observation is a tuple xi � px1

i , . . . , x
N
i q of N attribute values.

Assume next we have a visualization method for all values, over all observations, of
a given attribute 1 ¤ j ¤ N . Denote by Vj the visual representation of this attribute
xj . A small multiple visualization is, then, a spatial organization of all visualizations
Vj , 1 ¤ j ¤ N , also called multiples, that allows one to compare and correlate values of
different attributes. To enable this, the visualizations Vj should not only have a similar
design, but also use similar visual encodings, e.g. color, line thickness, scaling, shading,
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and texture. However, it is not mandatory that all these encodings be identical. As
long as the task of comparing different visualizations Vj , Vk�j is supported, a few visual
encodings can be used to mark aspects that are different for different attributes j.

Figure 2.2: Small multiple visualization of stock transactions created with the TableVision
tool [180].

Classical examples of small multiple visualizations include timelines and bar charts
organized in grids, which are ubiquitous in business intelligence and infographics in
general. Figure 2.2 shows a slightly more advanced small multiple visualization along
these lines [180]. The input dataset consists of the same type of data table as discussed
earlier in Sec. 2.2.1. The table lens visualization discussed in Sec. 2.2.1 regarded these
data as a multidimensional dataset where an observation is a stock transaction. At a
higher level, we can look at the same data as being a multidimensional dataset where
each stock is an observation, and its attributes are its category, name, and evolution of
trade price and volume over a given time period. Following this model, the data are
first organized into a hierarchy, by grouping observations by category, next by stock, and
finally by trading day, as outlined in Sec. 2.2.1. The resulting structure is visualized using
a cushion treemap [196]. This already shows the appearance of two top-level cushions
or blocks of observations, which represent each one of the two stock categories present
in the input data. Next, a classical timeline graph of the per-day average transaction
price is drawn atop of the treemap cushion of each stock. As the stock cushions are laid
out in lexicographic order (top-to-bottom and left-to-right, in alphabetical order of the
stock name) and using equal sizes when constructing the second treemap level, this
effectively creates a small-multiple layout where we can compare the evolution of daily
stock prices (attributes) across different stocks (observations). Separately, since stocks
(observations) are lexicographically ordered on name, we can create a mental map of
where a given stock is located based on its name.

Small multiples are effective in allowing one to flexibly organize a number of visual-
izations Vj so as to capture a wide range of aspects, e.g. attribute values, attribute names,
or domain-specific conventions. This favors creating visualizations that have a ‘natural’
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reading order. Note that table lenses can be seen as an (extreme) particular case of a
small multiple visualization, where each visualization Vj depicts a different table column
or attribute xj . A limitation of small multiples is that they cannot cope with more than a
few tens of visualizations Vj – therefore the qualification ‘small’. This creates problems
when one maps each attribute of a high-dimensional dataset to a separate multiple.
Separately, the ordering of multiples will favor comparing those that are closely placed
in the visualization, and make it hard(er) to compare those that are far away. A more
subtle effect is that, if multiples are ordered in a 2D grid-like fashion, then this order
should be taken into account in conjunction with the natural reading order of a grid-like
2D infographic, which is largely lexicographic [84]. Finally, just as for table lenses, small
multiples are largely an attribute-centric, rather than an observation-centric, technique
– they allow comparing values of attributes, but do not (typically) show observations
explicitly in the visualization. As such, tasks where observations are central, such as
finding groups of strongly similar observations or finding outlier observations, are not
optimally supported by small multiples.

2.2.3 Scatterplot methods

Scatterplot techniques are, as a visualization means for multidimensional data, on par
with tables and small multiples in terms of popularity. Classical scatterplots are simple
and easy to explain: Given a multidimensional dataset X � txiu with observations
xi � px1

i , . . . , x
N
i q, a two-dimensional scatterplot Sjk plots a 2D point pi � pxji , x

k
i q for

each observation xi, using as 2D Cartesian coordinates the values xji and xki of xi along
two user-selected attributes, or dimensions, xj and xk. The result is a familiar 2D point
cloud whose shape and spread allows one to interpret the data along the two plotted
attributes in various ways: The plot extent, or size, conveys an idea of the range of the
attributes; the plot’s spread conveys the correlation strength of the two attributes; the
plot’s closeness to a line conveys the strength of linear correlation (or inverse correlation,
depending on slope) of the attributes; and isolated points in the plot indicate outlier
observations.

The main strength of 2D scatterplots lies in their simplicity and ease of construction.
Most importantly, the values of the two plotted attributes xj and xk are directly visible
along the plot’s x and y axes respectively. Constructing such plots is straightforward
for quantitative and integral variables that admit a direct mapping to the real-valued
plot axes. For categorical variables, scatterplots can be constructed by using multiple
correspondence analysis techniques [1, 71], which we will discuss in more details in
Sec. 2.3. Clutter can, however, occur in 2D scatterplots, when multiple observations
project atop, or very closely to, each other [49]. In such cases, a classical way to
reduce clutter and convey more insight is to display a 2D density map of the points
pi, computed e.g. by kernel density estimation, and visualized by a color coding [195].
While this does not make all observations distinguishable, it conveys a clear idea of
how many observations one can see in every region of the scatterplot, and thus makes
densely-populated scatterplot regions, which are arguably more interesting, more salient.

The main limitation of 2D scatterplots is related to the fact that they can only
show two attributes at the same time. A third attribute can be added atop a classical

16



2.2. Multidimensional Visualization Tasks and Methods

2D scatterplot, by color-coding the points pi by their value. However, this interferes
with densely-populated point regions and creates clutter that cannot be solved by the
density map solution outlined earlier. Alternatively, three attributes can be visualized
by constructing a 3D scatterplot in analogous ways to 2D scatterplots. This results in
3D point clouds which can be then explored interactively from multiple viewpoints to
find correlations, trends, and outliers. However, interpreting 3D scatterplots is generally
found harder than interpreting 2D scatterplots, due to effects such as occlusion, depth
ambiguity, the difficulty of assessing distances between arbitrary 3D points, and the need
for the user to choose a suitable viewpoint [156]. To ease the interactive exploration of
3D scatterplots, several techniques have been proposed, such as controlled animation
when changing viewpoints [158, 86] and illumination models that highlight the local
point-cloud density distribution (curve, surface, and volumetric) differently to ease
perception of dense scatterplots [157]. However, even with these refinements, visually
exploring 3D scatterplots still remains challenging.

To increase the scalability, in terms of dimensions being shown, of scatterplots,
different techniques have been proposed. Scatterplot matrices (or SPLOMs) create a
small-multiple-type visualization consisting of N � N cells organized in a symmetric
matrix [12]. Each matrix cell pj, kq shows the 2D scatterplot Sjk of variables j and
k. To facilitate the correlation of various attributes of the same observation in all
the matrix cells or multiples, the linked views technique is used – upon brushing or
selecting an observation, or set of observations, in any cell, the same observations are
highlighted and/or selected in all other cells of the SPLOM. While this offers some support
of correlating the different 2D scatterplots, SPLOMs still remain an attribute-centric
technique. In particular, finding groups of strongly related (similar) observations requires
an iterative process of interactively selecting close points in one or several multiples and
checking whether the selected points are close in all other plots. Separately, SPLOMs do
not scale well with the number of attributes, as they essentially require N2

2
cells to show

an N -dimensional dataset.

Several refinements have been proposed to address the limitations of SPLOMs. One
such approach is to exploit interactivity to make the navigation of the user in the high-
dimensional space easier and/or more effective for specific tasks. In this sense, the
‘rolling the dice’ technique allows users to continuously transition between two SPLOM
cells Sjk and Slm, by creating an animation that linearly interpolates the positions of the
plotted points pi between the two plots [50]. Specific interaction tools are provided to
facilitate the navigation between cells that share one attribute axis, e.g. j � l or k � m.
An additional advantage of this technique is that it limits the required visual space –
in the limit, one can use only a single 2D scatterplot view to navigate the entire data
space. The idea of user-controlled animated interaction between two scatterplot-like
views was extended next by Hurter et al. [87, 86], in terms of allowing the user to stop
the animation at any desired stage, and also interactively control the playback speed and
direction. This allows one to locate interesting patterns in the animated scatterplot that
may be visible only at specific animation stages, and also select such patterns to explore
further. Overall, such interactive techniques move a part of the data space to be explored
from a spatial encoding (like in SPLOMs) to a temporal encoding (animation). While
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this effectively increases scalability in terms of dimensions, it also requires additional
learning and temporal-memory efforts from the users.

A separate approach to enhance SPLOMs is proposed by a group of techniques
collectively known as scagnostics [188]. In essence, these techniques pre-analyse the
original high-dimensional data or, alternatively, the 2D scatterplots that a SPLOM would
create, and try to detect a small number of views on the data that best depict a number
of predefined patterns of interest. Next, these views are displayed using e.g. a classical
SPLOM. The two advantages of this approach are reducing the number of views shown
to the user to the most ‘interesting’ ones; and, since views were selected based on some
relevance metric that aims to recover patterns, annotating the views to explain which
types of patterns they depict. Different types of metrics aim to locate different types of
patterns, such as outliers, shapes, trends, density, and coherence of scatterplots [207];
or relevance and coherence of 2D scatterplots [110]. While scagnostic techniques can
clearly reduce the number of views required to depict high-dimensional data, they
are implicitly limited in the power of the underlying analysis techniques to detect
which such views are ‘interesting’. For relatively simple patterns such as outliers and
correlations, this is quite easy to do. However, patterns that have more complex shapes
or, even more challengingly, which require multiple variables to be described, are hard
and/or computationally costly to detect. On a higher level, one can also state that such
approaches are not effective when one needs to explore a dataset without any a priori
idea or expectation on the patterns to be found – in such cases, we want to ‘discover the
unknown’ rather than searching for the known (patterns), so different approaches are
needed.

2.2.4 Parallel Coordinate Plots (PCPs)

Parallel coordinate plots (PCPs) [90] aim to make observations more visible while preserv-
ing the possibility to compare and analyse the data from an attribute-centric perspective.
For a multidimensional dataset X � txiu with observations xi � px1

i , . . . , x
N
i q, a PCP

constructs N parallel axes, one for each variable xj . Next, the values of the variables xji
are plotted on each corresponding axis. Finally, the plotted points that correspond to the
same observation xi are connected by a polyline. The resulting plot contains, thus M
polylines that cross the N axes at locations indicating their attribute values.

Figure 2.3 illustrates the tasks supported by PCPs by showing two visualizations
created with the PCP technique by using the parvis visualization tool [108]. Groups of
similar observations (in all dimensions) appear as thin bands of nearly parallel polylines.
These can be further emphasized by computing a density map by drawing polylines using
alpha blending. Flat distributions of attribute values show up as axis intersection points
spread uniformly along a given axis. In contrast, attribute-value distributions that have
localized peaks show as ‘bundles’ of polylines that intersect the respective attribute axis
at the given attribute value. Outliers appear as isolated polylines that do not visually
group to a band. Correlated values of attributes plotted on adjacent axes appear as
polyline fragments consisting of nearly parallel lines. In contrast, inversely correlated
values (for the same types of axes) appear as polyline fragments that form an X-like
pattern between the axes. Histograms of attribute values can be overlaid on the axes
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to give a more quantitative view of the attribute-value distributions than when looking
at alpha-blended polylines. Finally, interaction such as brushing and selection supports
tasks such as finding all observations that have a given range of attribute values.

swapped axes 
(maximum is below) 

swappeappeped axesped d axped 

histograms 

a)

b)

Figure 2.3: Parallel coordinate plot using the parvis toolkit for a 6-dimensional dataset (images
from [181]).

Several enhancements to the basic PCP design have been proposed. Axes can be
permuted and swapped (in terms of direction) to limit the clutter created by intersecting
polylines, and also to bring axes that one wants to examine in conjunction close to each
other. Axes can also be aligned in a radial, rather than parallel, pattern, leading to
the so-called radial plots [81], star plots [30] and star coordinates [99, 100] (which
can be also seen as a variant of scatterplots). This flexibility of arranging axes is taken
a step further by FLINAPlots, which essentially allow users to draw and arrange axes
interactively as they desire, so as to position axes relatively to each other in ways that
best emphasize the desired patterns.

PCPs and their variations are effective in striking a good balance between the visual
predominance of observations and attributes, allowing users to pursue both observation-
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centric and attribute-centric exploration strategies. However, they also come with
several limitations. First, the clutter created by numerous crossing polylines can lead
to displays where one can hardly see both observations and attribute variations. This
can be explained in terms of the amount of ink being used to draw a given dataset of
M N -dimensional observations and the amount of overlaps present in the respective
drawing: Table lenses have zero overlaps, and use an amount of ink that is proportional
to the product N �M . Small multiples have also zero overlap, while using a similar
amount of ink. SPLOMs have zero overlap and use an amount of ink proportional to
M N2

2
. In contrast, PCPs have significant overlap in general, and use an amount of ink

which, while being also of the order of M �N , is higher than for table lenses and, for low
values of N , also higher than for SPLOMs, since one needs to leave a significant amount
of space between consecutive axes to draw the respective polyline segments with limited
clutter. A second limitation of PCPs regards their linear structure, or axis arrangement.
While this structure favors comparing adjacent axes, it makes it quite hard to compare
axes that are situated far apart from each other in the plot. Permuting axes can bring
different pairs of axes close to each other, but cannot, for instance, generate a design
where three or four axes are equally close to each other. Separately, one needs to know
how to arrange axes beforehand in order to highlight specific patterns – and if such an
arrangement is unknown, otherwise interesting patterns may be missed. Finally, just
as the other multidimensional visualization techniques discussed earlier, PCPs are quite
limited in the maximal number of dimensions they can visualize simultaneously.

2.3 Dimensionality Reduction

As we have outlined in the previous sections, visualizing multidimensional data is
challenging, especially when the number of dimensions is high. In particular, considering
the characterization of such visualization methods into observation-centric and attribute-
centric introduced at the beginning of Sec. 2.2, we see that table lenses, SPLOMs, and
small multiples are all largely attribute-centric methods. Indeed, SPLOMs and small
multiples do not offer a single and compact visual encoding (depiction) of an observation,
but plot it as a set of spatially disjoint elements in the visualization. Table lenses do
plot an observation as a spatially-contiguous row of cells (encoded as colored bars);
however, rows for different observations cannot be easily compared, as they are typically
ordered in the table by the value of a single attribute; also, a row itself is far from being
compact, thus hard to be recognized, and reasoned about, as being an observation. From
all techniques reviewed above, PCPs come closest to being observation-centric, as they
explicitly represent observations as polylines. However, similar to table lenses, the spatial
extent (in the resulting visualization) of an observation is quite large, so it is relatively
hard to reason about the data from an observation-centric perspective.

Dimensionality reduction (DR) methods, also called projections1, propose a diametri-

1We note that the term projection is often used in the literature to refer to both a dimensionality
reduction method (a function) and the results of applying this method to some high-dimensional
dataset (the result of a function). We will, accordingly, use the term projection with the same
semantics, and let the reader disambiguate its two senses from the context.
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cally opposed view on a multidimensional dataset. Here, observations are clearly and
easily identifiable as points in a typical 2D or 3D scatterplot. More formally, given a multi-
dimensional dataset Dn � tpi P Rnu1¤i¤N of N n-dimensional points, a dimensionality
Reduction (DR) method can be seen as a mapping

f : Rn � P Ñ Rm (2.1)

that maps each point pi P Dn to a point qi P Dm. Here, n is typically large (tens up to
thousands of dimensions), and m is typically 2 or 3, corresponding to the generation
of typical 2D or 3D scatterplots respectively, which can be directly drawn for visual
inspection. P denotes the parameter space of f , i.e. the various settings that control the
projection algorithm f and affect its output.

The goal of any DR method is to keep various aspects of the so-called structure of the
multidimensional data as similar as possible in Rn and Rm. By data structure, we mean
here aspects that are relevant for the application at hand, such as the distance between
observations or the k nearest neighbors of an observation (for a user-specified value
of k). If such aspects are kept (nearly) identical in the original high-dimensional data
Dn and in the projection space Dm, or in other words if the projection preserves such
aspects, then one can use the projection space as a ‘proxy’ to reason about the invisible
high-dimensional space. For instance, if we are interested to find groups of very similar
observations, and our projection preserves distances (similarities) between observations,
then we can visually locate such groups in Dm and thereby directly find observations
that are similar in Dn. A crucial aspect that enables this task is the fact that projections
preserve, by construction, the fact that an observation is a point in both Dm and Dn. In
other words, projections are by excellence observation-centric methods.

2.3.1 Multidimensional Scaling (MDS) methods

A particular case of DR methods forms a subset of the wider family of data-analysis
methods known under the name Multidimensional Scaling (MDS) [120, 40]. The key
aspect of these methods is that they do not need access to the original high-dimensional
coordinates of the observations in Dn (the original attribute values of each instance of
the dataset). Rather, all they need is a real-valued distance matrix An � pdnppi,pjqqij ,
where dn is a distance metric over Dn. These methods aim to compute a distance matrix
Am � pdmpqi,qjqqij , where dm is typically Euclidean distance in the projection space
Dm, and qi is the projection of observation pi, so that Amij is proportional to, or a scaled
version of, Anij . Hence, the name multidimensional scaling. If this is achieved, we say
that the DR method under consideration preserves distances, which is, as outlined earlier,
a desirable feature for projections.

Given the distance matrix An, these methods compute the DR function f by minimiz-
ing an aggregate badness-of-fit measure [17, 40] such as the commonly used normalized
stress function

σ �

°
1¤i¤N,1¤j¤N pd

nppi,pjq � dmpqi,qjqq
2°

1¤i¤N,1¤j¤N pd
nppi,pjqq2

(2.2)
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If a distance matrix is not available, it can be straightforwardly computed from the
observations Dn themselves. However, computing (and storing) distances this way
creates additional costs (OpN2q for N points). The PLMP algorithm avoids this by
using distances only for a small set of representative points and using additional infor-
mation present in the nD coordinates to arrange the remaining points around these
representatives [141].

DR methods using an MDS approach can be classified by the techniques used to com-
pute f [141]. Spectral decomposition techniques project points on lower-dimensionality
subspaces computed by considering specific eigenvectors of the point-wise distance ma-
trix [186]. LLE [152] and ISOMAP [184, 170] use efficient numerical methods tailored
to solve sparse eigenproblems to speed up such computations. Landmarks MDS [169]
and Pivot MDS [20] achieve further speed-ups by using classical MDS on a subset of
representative points and projecting remaining points by local interpolation. Fastmap
achieves linear complexity in the input observation count but has a worse stress mini-
mization [55]. MetricMap improves the computational speed of Fastmap by trying to
perform the entire projection in a single step [203]. Fastmap, MetricMap, and Landmark
MDS have been shown to be instances of the same minimization framework [147].

A different approach to compute MDS-based projections is to construct a graph whose
nodes are the original observations and edges connect (ideally) all observation pairs.
Nodes are assigned random positions in Rm. Edges are next assigned weights which
are inversely proportional to the distances dmppi,pjq corresponding to the observation
pair ppi,pjq, and these weights are regarded as elastic spring energies. Next a spring
embedder algorithm is run to diminish the total energy of the graph, much like in
classical graph-drawing algorithms [44]. Heuristics and optimizations are proposed to
increase the convergence speed of this relaxation and to obtain a graph whose mode
positions essentially minimize the stress σ (Eqn. 2.2) [208].

2.3.2 Coordinate-based projections

A different class of projection methods directly uses the coordinates of the observations
pi P D

n rather than their distance matrix. As outlined earlier in Sec. 2.3.1, this has the
advantage, upon MDS methods, of storing only OpN � nq values as opposed to OpN2q

values. For datasets having many more observations than dimensions, this produces
considerable savings. However, the disadvantage of these methods, which we next call
coordinate-based projections, is that they are less general than MDS methods, as they
need to have access to the original observations in Dn, which can be of various attribute
types (Sec. 1.1).

One of the earliest coordinate-based projection methods is based on the Karhunen-
Loèwe transform [60]. For this, the covariance matrix of the observations’ coordinates
in Dn is computed. Next, the m eigenvectors thereof corresponding to the m largest
eigenvalues are found, and the observations in Dn are projected on the hyperplane
defined by these vectors. This yields the point set Dm which captures most of the
variance of the input data [97]. This technique has, however, the main disadvantage
that it assumes that the observations are well captured by a m-dimensional hyperplane.
As such, in cases where the observations are still embedded on an m-dimensional curved
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surface (manifold), which is however not a plane, the projection will loose a significant
amount of the data variance.

Nonlinear optimization methods iteratively search the parameter space P to mini-
mize the stress σ [62, 155]. Besides naive gradient descent, multigrid numerical solvers
can be used to speed searching [25]. Pekalska et al. propose a speed-up that projects a
representative subset (by gradient descent) and fits remaining points by local interpola-
tion [144]. Force-based methods are a special class of nonlinear optimization with many
uses in graph drawing [48]. Chalmers speeds up such methods by using the represen-
tative subset idea outlined earlier [29]. Further speed-ups are achieved by multilevel
solvers and GPU techniques [59, 89], and by recursively selecting representatives via a
multilevel approach [98]. Tejada et al. use a heuristic to embed instances by force-based
relaxation [179]. LSP positions the representative subset by a force-based scheme and
fits the remaining points by Laplacian smoothing [139]. LAMP also uses a representative
subset to locally construct affine projections, and allows users to interactively place these
points to optimize the overall projection layout [95].

Apart from computational speed-up, most representative-based methods (but not
all – LSP [139] is an exception) have the important advantage of being able to locally
define the projection. Assuming that, in the high-dimensional space Dm, data is locally
placed on a quasi-planar manifold, such projections can therefore minimize the stress
σ (Eqn. 2.2) by taking different decisions for each representative. This allows them
to project high-dimensional data that is embedded on curved manifolds much more
accurately, in terms of distance preservation, than global methods such as PCA-based
techniques [95].

Some techniques, on the other hand, use a mix of both coordinates and distances
in order to achieve their results. One recent example is the t-Distributed Stochastic
Neighbor Embedding (t-SNE) [192], an improvement over the Stochastic Neighbor
Embedding (SNE) [80] technique that introduced the idea of converting the pairwise
distances between each pair of points i and j as conditional probabilities, both in the high-
dimensional (pi|j) and the low-dimensional (qi|j) space, then minimizing the divergence
between the two in order to find a faithful low-dimensional representation for the data.
While SNE computes the probabilities in both spaces using Gaussian distributions, t-
SNE uses a heavy-tailed Student t-distribution in the low-dimensional representation
in order to make sure that dissimilar points end up far away from each other, avoiding
the crowding problem and leaving more space for similar points to form well-defined
clusters, while also achieving a cost function that is easier to optimize.

The work presented in this section is a necessarily incomplete review of multidimen-
sional visualization techniques (and implicitly dimensionality reduction techniques), due
to space limitations. However, for the purpose of establishing the working context of
this thesis, the presented material gives a sufficient overview of the relevant space of
methods and techniques. Additional details on specific techniques will be given in the
context of our work presented in the next chapters, as necessary.

The discussion in this section shows that projections are highly interesting tools
for examining multidimensional datasets. Indeed, they are far more visually scalable
than other related techniques such as table lenses, SPLOMs, small multiples, and PCPs.
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In the limit, we can say that projections offer the ultimate scalability in both number
of observations and number of dimensions – an observation is represented by a single
m-dimensional point. They are also fast to compute, and work largely as black boxes,
i.e., require minimal or even no explicit parameter choices from the users. However,
projections also have several drawbacks and challenges, which are intimately related
to their attempt to reduce a high-dimensional observation-set to a low-dimensional
point-set. We next present related work on how projections cope with the two main
challenges outlined in our research questions in Sec. 1.2, i.e., understanding the quality
of a projection (discussed below), and explaining projections in terms of data attributes
(Sec. 2.5).

2.4 Challenge 1: Visualizing Projection Quality

As mentioned earlier in Sec. 2.3, projections attempt to create a low-dimensional dataset
Dm that reflects the structure of the high-dimensional dataset Dn. The key word to
reflect on here is ‘attempt’. Indeed, in many cases, it is very hard, or sometimes even
impossible, to create a low-dimensional embedding Dm whose inter-point distances
are precisely proportional to their high-dimensional counterparts – consider, again, the
example of projecting points located on the surface of a 3D sphere to a 2D plane, a
problem well-known from classical cartography. As such, projection errors, or non-zero
values of the stress σ (Eqn. 2.2), are unavoidable. Such errors should be explicitly
acknowledged and visually represented, to enable users to reason about how they want
to proceed next, e.g., adapt their interpretation of the projection as a ‘proxy’ for the
high-dimensional data, or even discard the projection (and attempt to generate a better
one) if errors are too large and/or too frequently occurring.

Given the huge range of projection techniques and heuristics, it is hard for users to
assess the nature, magnitude, and location of projection errors they introduce, without
supporting tools. Understanding errors is crucial to correctly interpret high-dimensional
data by means of a projection [193, 118, 159, 8], and is done at three levels of detail.

At the coarsest level, error metrics like normalized stress [17], correlation coeffi-
cients [63], and silhouette coefficients [137] capture the overall projection quality by a
single number. This allows globally comparing projection methods [135, 53], but does
not show how errors are distributed over the various points in a given projection. In
other words, global metrics do not show projection problems for any point i vs all points
j � i in the input dataset. For instance, a relatively low aggregated projection error may
be an insignificant signal for further interpretation of the projection: If the error is spread
uniformly over a projection containing many observations, then we locally get a very
low distance distortion, which is arguably negligible for further projection interpretation.
If, however, the error is concentrated in a single location, then one should refrain from
making any judgments on the projection close to and around that location.

On a finer detail level, distance scatterplots show the correlation of distances in Dn

vs Dm for every point-pair [95]. A similar technique is proposed to measure cluster
segregation [164]. Neighborhood-preservation plots (NPPs) show how a projection
preserves neighborhoods, for all possible neighborhood sizes [139, 199, 11, 198]. Of
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these, the trustworthiness-preservation metric [198] stands out as it shows not only
how many neighbors are preserved when projecting, but also if the order of neighbors
changes. However, just as distance scatterplots, NPPs give an aggregated insight, and do
not show how projection errors are spread per projected point qi.

At the finest detail level, several methods aim to show projection errors for each
projected point qi in the projection Dm, and thus give the most insight in how projection
errors are distributed and may affect the interpretation of the resulting visualization.
These methods can be classified into methods that focus on distance-preservation errors
(Sec. 2.4.1) and methods that focus on neighborhood-preservation errors (Sec. 2.4.2).

2.4.1 Distance-preservation errors

Recognizing that DR methods can create distance approximation errors, Van der Maaten
et al. extend the t-SNE technique [192] to output a set tMiu of 2D projections rather
than a single one [193]. All points appear in all projections Mi, with potentially different
weights and at different locations. This allows better modeling non-metric similarities.
Yet, correlating points over the several Mi is done manually by the user, and can be
challenging for large datasets and many projections Mi.

Several quality metrics for continuous DR techniques are proposed by Aupetit [8].
Point-based stretching and compression metrics measure, for each pi P D

n, the aggre-
gated increase, respectively decrease, of the distances of its projection qi P D

2 to all
other projections qj�i vs the distances of pi to all other points pj�i. Segment stretching
and compression measure the variation of distances of close point pairs pi, jq between
Rn and R2. For a selected pi, the proximity metric maps distances in Rn from pi to all
other points pj�i to the corresponding points qi P R2 and thereby helps understanding
how (and where) the projection may have distorted the structure of the data. These
metrics are visualized with piecewise-constant interpolation of the point, respectively
segment, data using Voronoi diagrams.

Still using colored Voronoi cells, Lespinats and Aupetit show, at the same time,
point stretching and compression by using a 2D color-coded map [111]. The proposed
colormap encodes stretching as green, compression as purple, low-error points as white,
and points with high stretching and compression as black, respectively. While this color
map can show local error types (or the absence thereof), it cannot explicitly show the
point-pairs that cause stretching and compression. Besides, as the authors also note,
Voronoi cells can lead to visualization bias due to the cells’ sizes and shapes being heavily
dependent on the D2 point density, and the fact that cells cover the entire R2 space, even
in areas where no projected points exist. A similar remark was made by Broeksema et al.
in the context of their related usage of Voronoi diagrams to color-code categorical data
displayed by projections [24, 23] (see Fig. 2.4 for an example hereof).

To assist the task of navigating projections while also considering distortions, Heulot
et al. present an interactive semantic lens that filters points projected too closely to
a user-selected focus point in R2 [79]. Such points, also called false neighbors, are
pushed towards the lens border, so they do not attract the user’s attention. Separately,
points are colored by the distance in Dn to the focus point, to help users navigate to
the so-called missing neighbors of the focus point. Instead of Voronoi cells of [8, 111],
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points are colored using Shepard interpolation, which yields a smoother, and arguably
less distracting, image. However, in contrast to [8, 111], this method can only show
errors related to a single selected focus point.

2.4.2 Neighborhood-preservation errors

In contrast to distance-preservation metrics, neighborhood-preservation metrics aim
to find how k-nearest neighborhoods are affected by the projection. Neighborhood
preservation analysis must cover two cases [198]: preservation of Dn neighborhoods
(are neighbors in Dn projected to neighbors in Dm?) and trustworthiness of Dm

neighborhoods (are neighbors in Dm also neighbors in Dn?). For this, Schreck et al.
compute, for each p P Dn, a projection precision score (pps) defined as the normalized
distance between two k-dimensional vectors containing the distances between pi and its
k nearest neighbors inDn, respectively qi and its k nearest neighbors inDm [159]. Color
mapping the pps atop the projection shows areas with poorly preserved neighborhoods.
This covers the first neighborhood question outlined above but not the second one,
leaving important errors, e.g. false neighbors in terms of [118], undetected. Motta et al.
propose a neighborhood validation metric that combines precision (how many neighbors
in Dm are also neighbors in Dn) and recall (how many Dn neighbors are also neighbors
in Dm) into an error called the F-measure [124]. While related to our set-difference view
(Sec. 4.1.3), F-measures are computed by using an extended MST graph [123] to define
neighborhoods in Dn and Dm, while we use the simpler to compute, and more intuitive,
k-nearest neighbors.

Neighborhood preservation metrics defined using k-nearest neighbors are, by con-
struction, a function of the number k of considered neighbors. Most such metrics let
k be a free parameter, to be set by the user. However, choosing an appropriate value
for k is not evident, similarly to what happens in other applications in graphics or data
visualization that use similar neighborhoods, such as point cloud reconstruction [32] or
3D shape processing [18]. Indeed, in such graphics applications, k plays the role of a
scale parameter, i.e., monotonically increasing k will continuously enlarge the scale at
which the considered shape is processed, e.g. by ignoring or smoothing out small-scale
details. Contrary to these applications, however, neighborhood preservation does not
necessarily behave in a similar monotonic manner with respect to the parameter k: A
point may have the same neighbors in both Dn and Dm for low k values; separately,
for k � N , where N is the total number of points in our dataset, neighborhoods are
obviously perfectly preserved. However, for intermediate k values, neighborhood preser-
vation may be lower. Since neighborhood preservation is a non-monotonic function
of k, the question arises how should the user choose a meaningful k value to assess
this desirable property of projections. To our knowledge, this question has not been
definitively answered by existing research.

2.5 Challenge 2: Explaining Projections

As outlined several times in this chapter, DR techniques are essentially observation-
centric: They explicitly show observations (as projected points in Dm), but do not show
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attributes. This creates several interpretation challenges. Consider, for instance, one
of the main tasks for which projections are used – finding groups of similar points. It
can be argued that, if a projection has low errors (as discussed in Sec. 2.4), then such
groups can be easily found by visually spotting clusters of close points separated by the
remainder of the projected points by large white space gaps. However, upon having
detected such a group, a key question ensues: Why are these points similar? Which
attributes make them related? Such questions, equally relevant for outliers, need to be
addressed. We discuss next several classes of methods related to this goal.

Interactive approaches explain projections by showing additional information on-
demand on user-selected points or point groups to help one define their meaning. The
simplest such technique shows the attribute values of the point under the mouse in a
tooltip. By brushing a point-group, one can (hopefully) see which dimensions are most
similar and, thus, likely capture the group’s meaning. A second simple and popular
technique lets users color-code all points in Dm by the value of a single attribute. If
this attribute takes very similar values for the points of interest, then it is likely a good
explanation for their similarity. Brushing and color-coding are arguably some of the
best known and most frequently used techniques in data and information visualization
applications, and are present in all major visualization systems. As an example, see the
Projection Explorer tool [140]. However, this technique requires one to cycle through
all attributes of the input dataset to find the one that best explains similarities. Also,
if similarity is explained by several, rather than a single, attribute, this technique is
less suited. A different approach is proposed by the ForceSPICE tool, which uses a
force-directed spring model to lay out a scatterplot of textual elements [51]. The content
similarity of each document can be further inspected and the user can incrementally add
annotations over the layout or highlight specific text words. These actions update the
spring model to change the layout, to better reflect the user’s mental model. Cuadros
et al. [41] use a phylogenetic tree algorithm to project documents by placing similar
ones in close nodes of the tree. Next, users can execute a topic extraction algorithm
that automatically labels selected tree branches to guide exploration. Such approaches
explain an projection on several levels of detail, but require user interaction effort to
specify where to explain the projection.

Clustering can be used to separate the projection Dm into closely-related point
groups. Projecting clusters instead of individual points creates various multi-level
visualizations where each projected cluster can be potentially explained by one or a
few ‘representative elements’ drawn atop of it using glyphs. ImageHIVE [175] applies
this idea by defining clusters from a collection of images. Using representatives of each
cluster, a graph is created based on the nD distances between images, which is next
drawn in 2D using a graph layout technique. A Voronoi diagram is used to show the
representatives’ contents. Multi-level maps are also used to visualize documents [130].
The document corpus is projected and clustered by a hierarchical clustering method.
Cluster representatives are used to create a Voronoi diagram filled with representative
words. Showing representatives, however, does not explain, in terms of attributes or
dimensions, why documents are placed together. Kandogan [101] visually annotate
clusters occurring in scatterplots based on the attribute trends detected in them. Clusters

27



Related Work

are computed by an image-based scatterplot density estimation. Important attributes are
identified based on their statistical relevance. The ProjCloud technique [143] presents an
approach to build word clouds inside general polygons formed by the outline of clusters
from projections, while still preserving the semantic relationship among keywords and
their connection to their underlying document sources. The clusters can be generated
manually – in which case the technique can be considered an Interactive Approach – or
automatically. These approaches work well when the data and projection can be easily
and robustly separated into several clusters, and less well when there is no such clear
separation. The work of Joia et al. [96] improves on previous clustering techniques by
first identifying representative instances of the dataset – with the use of Singular Value
Decomposition (SVD) – then clustering all the remaining instances according to their
nearest representative. This method provides more sensitivity to data variability and
unbalanced data sets (those with clusters of very different sizes). The same mathematical
framework used to identify representative instances can also be adapted to identify the
most representative attributes of each cluster. Concluding, it is important to notice that
clustering-based approaches are inherently sensitive to the type and parameters of the
clustering technique used. As such, users can generate multiple potentially different
explanations of the same dataset Dn, with the ensuing interpretation ambiguities.

Biplots (and their variations) assign a meaning to the m dimensions of the Dm

projection space in relation to the original n attributes [71, 69]. A biplot generalizes
the scatterplot idea of plotting bi-variate observations with respect to two Cartesian
coordinate axes, into many variables being observed and viewed simultaneously. Consider
the N � n matrix D � ppiq1¤i¤N . If D has rank r, it can be rewritten by singular value
decomposition (SVD) as

D � U∆VT (2.3)

where U is a N�r matrix, ∆ is a r�r diagonal matrix of eigenvalues α1 ¡ . . . ¡ αr ¡ 0,
and V is a n � r matrix. Here, UTU � VTV � I, where I is the identity matrix.
Denoting F � U∆, we have D � FVT. The columns of VT define the biplot axes. The
rows of the left matrix F define the projections of our data points pi onto these axes.
If r ¤ 3, we can directly visualize the biplot by drawing projections as a point cloud
and biplot axes as vector glyphs (oriented straight lines) respectively. If r ¡ 3, we can
approximate D by using in Eqn. 2.3 only the first m   r columns of U and V. Then F

gives the m-dimensional projections qi of pi along the eigenvectors corresponding to the
m largest eigenvalues α1, . . . , αm of DDT. Using eigenvectors as biplot axes, however,
does not convey much insight, as eigenvectors usually do not relate one-to-one to the
original variables in Dn. A better solution is to construct n biplot axes by projecting, via
Eqn. 2.3, the nD unit vectors having one for each variable value and zero for all other
n� 1 variables. This overlays our m-dimensional scatterplot with n vectors that show
the direction of maximal variation of our n variables [71, 1].

A different approach is given by Broeksema et al. [24]. Here, a nD categorical
dataset is projected to m � 2 dimensions by SVD. Instead of drawing n biplot axes, the
contributions to the screen x and y axes of all original n dimensions are shown. These
contributions, also called loadings [71, 1], are the projections of the nD unit vectors
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(via Eqn. 2.3) on the two eigenvectors that determine the projection. The x and y

axes are annotated with two n-element bar-charts or axis legends, where the height of
each bar shows the contribution of a given variable to the respective axis (Fig. 2.4). A
third bar chart shows the contributions of all n variables to all eigenvectors not used to
construct the DR projection. This shows the amount of information not captured by the
2D projection. A similar visualization of loadings is shown in [132].

Figure 2.4: Axis legends explaining the loadings of a multidimensional projection on the x and y
axes of the corresponding 2D embedding space. Visualization created with the Decision
Exploration Lab [23].

Incremental explanation approaches address both the quality analysis and the
explanation of a projection jointly. The early VIBE system allowed users to freely place
in 2D space several so-called points of interest (POIs), each representing a sample of
the n-D space under study [134]. Points in this space represent documents along n
dimensions encoding term frequencies. Actual documents are placed in the same 2D
space so as to reflect their relative similarities with the given POIs. Conceptually, this
can be seen as projecting both documents and POIs (variable values) from n-D to 2D.
However, this approach requires the user to manually create relevant POIs (samples of
the n-D space) and also place them suitably in 2D. ForceSPIRE, a document-exploration
system, uses a force-based layout to construct a 2D projection of a set of documents
represented as n-D term vectors [51]. By dragging, pinning, and annotating documents,
users can incrementally assign higher-level semantics to 2D inter-document distances.
The ‘dust & magnets’ (D&M) technique extends the exploration power of ForceSPIRE and
VIBE by allowing users to interactively drag magnets to discover how data points (dust)
are attracted towards them in an animated fashion [210]. However, all these techniques
require a non-negligible amount of interaction effort from their users, and are as such
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less appropriate for automated data visualization construction.

3D projections, i.e., projections where the target space Dm has m � 3 dimensions
rather than the more common m � 2 two-dimensional, classical scatterplot-like, projec-
tions, pose particular interpretation challenges. They typically achieve a better distance
and/or neighborhood preservation than their 2D counterparts. This is not surprising, as
3D projections have one extra dimension in which to embed the high-dimensional data
variation contained in the input dataset. As such, 3D projections are, technically, an inter-
esting alternative to the more common 2D projections for the task of high-dimensional
data exploration. However, 3D projections come with their own challenges, which are
discussed next.

A first aspect to consider is whether 3D projections are more suitable to certain
tasks than their 2D counterparts. This is still an open subject [178]. Several authors
argue that 2D DR plots are better for visualizing text documents [128, 205], and that
2D navigation is easier than its 3D counterpart [205]. For the specific task of cluster
separation, Sedlmair et al. argue that 2D DR plots are found to be as good as (interactive)
3D DR plots [163]. 2D DR plots were also found better for search tasks [206] and for tasks
involving distance assessment and spatial arrangements [54]. On the other hand, Jolliffe
argues that 3D projections are needed to “encode a realistic picture of what the data
look like” when the intrinsic data dimension is 3 or higher [97]. Dang et al. show how
3D glyph stacking can overcome color coding problems in 2D plots [43]. Additional cues
such as illumination and depth are proposed in support of using 3D scatterplots [157].
Sanftmann et al. argue that high-point densities in scatterplots are better handled by
3D scatterplots [158]. Chan et al. argue that 3D projections decrease information loss
by allowing better discrimination between data elements [31]. A discussion of contexts
where 3D DR projections are preferable to 2D ones is given in [156] (Sec 2.3). Poco
et al. compared 2D and 3D DR projections using LSP [139] both quantitatively (by
stress metrics) and qualitatively (by controlled user studies) [148]. The quantitative
comparisons showed a higher accuracy of 3D projections; the user studies showed
that, when augmented by suitable interaction tools, 3D projections were superior to
2D projections in terms of both confidence and satisfaction, and argued for the further
development of 3D interactive exploration tools.

Assuming that 3D projections are, indeed, desirable from a projection-error minimiza-
tion and task-suitability perspective, the next question to address is how to interactively
explore these. One main issue here is how to choose a suitable viewpoint that highlights
specific data aspects or, alternatively, which data aspects are visible from a given view-
point. This issue has been partially addressed by multiple views, such as three 2D views
linked with a 3D scatterplot by interactive selection [146]. While not strictly speaking
a technique to explore 3D projections, ‘Rolling the dice’ comes very close to this goal,
as it adds interactivity to improve navigation, 3D animated transitions to explore the
visual space, and swapping the scatterplot-matrix axes to show variable correlations and
disparities, much like rotating a 3D scatterplot [50]. This idea was extended in [158] by
linking a 3D scatterplot with a 3D scatterplot matrix, improving navigation by using three
axes and using one or two axes during visual transitions. Claessen et al. [34] extend axis
movement for scatterplot navigation, to allow users to interactively draw, place, and link
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axes on a canvas, thereby creating a continuous combination-space of 2D scatterplots,
scatterplot matrices, and parallel coordinates. Although the method is very flexible, it
can create visualizations with redundant (replicated) axes. Also, similar to [50], while
the overall effect is close to what one would obtain by actually rotating a 3D scatterplot,
this technique is inherently two-dimensional. Separately, techniques as biplots [71] and
axis legends [24] have not been extended to handle 3D projections.

It is important to highlight that 3D multidimensional projections and 3D scatterplots
have related, but not identical, understanding challenges. Issues such as occlusion,
difficulty of estimating distances between 3D points, the challenge of selecting a good
viewpoint, and depth ambiguities, mentioned in Sec. 2.2.3 for 3D scatterplots, are also
shared by 3D projections. Consequently, the methods mentioned in the same Sec. 2.2.3
that aid 3D scatterplot exploration are also applicable to 3D projections. However, 3D
projections have additional challenges that are not shared by 3D scatterplots. The main
such challenge is the lack of (simple) semantics for the dimensions of the embedding
3D space – whereas, for a 3D scatterplot, each such dimension maps a given attribute,
a dimension maps a weighted sum of attributes for a 3D projection (for details, see
the discussion on loadings in Sec. 2.5). Secondly, the placement of every point in a 3D
scatterplot is exact with respect to the mapping of its attribute values to embedding
space dimensions. This is not the case for 3D projections that are affected by distance
approximation errors (Sec. 2.4).

2.6 Multivariate Networks

A multivariate network, also called a multivariate graph, is a graph G � pV,E � V � V q

of vertices, or nodes, V , and edges E. Such a graph is called multivariate if nodes n P V
and/or edges e P E have several associated attributes of the types earlier discussed in
Sec. 1.1, i.e., quantitative, integral, ordinal, categorical, or text.

Understanding multivariate networks is particularly challenging, as these combine
data of two fundamentally different natures: relations (which are defined on pairs of
nodes) and scalar attributes (which are defined on individual nodes and/or relations).
In particular, to understand relations, we need suitable ways to depict them. This is
the domain of graph visualization or graph drawing [44, 202, 78]. Many algorithms
have been proposed to depict the structure of graphs. Many such algorithms are able to
cope with specific constraints such as large graphs of millions of nodes [62], reducing
edge-crossing clutter to show the main graph structure [82, 61, 85], and using specific
drawing styles or conventions to highlight specific graph sub-structures [70]. However,
the large majority of graph visualization techniques are severely limited when they have
to consider showing several attributes per node and/or edge together with the graph
structure [46]. Given our interest in multivariate data visualization, such use-cases are
of clear interest. In the following paragraphs, we outline existing methods for visualizing
multivariate graphs, with a particular focus on the visualization of social networks, which
are a prime example of multivariate graphs.

Classical node-link techniques are the most prominent type of visualization of
multivariate graphs, and offer precedence, in terms of the visualization layout construc-
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tion, to the relational information (as opposed to the attribute information). In simple
terms, such techniques construct a graph visualization to display the network structure,
and next propose various mechanisms to add the visualization of node and/or edge
attributes atop of the existing graph layout. For example, Huisman and Duijn describe
several prominent tools for the visual exploration of social networks [83]. These include
NetDraw, able to visualize large social networks; StoCNET, MultiNet, UCINet and Agna,
which perform statistical analysis on social networks; and Blanche and Condor, capable
of simulating the network evolution. This survey also points out that only few techniques
and tools exist that are able to visually depict attributes of vertices and/or nodes; and
that such visualizations are usually limited to classical encodings of a few attributes into
shape, color, and size, similar to well-known techniques in general-purpose multivariate
graph visualization [46, 7]. A tool offering similar capabilities is Vizster which, atop of
classical graph-based visualization of networks and encoding a few attributes into node
and edge visual properties, also offers mechanisms to mine for patterns of interest that
may be present in the network [75].

The challenge of visualizing multivariate networks can be split into two sub-chal-
lenges: the visualization of multiple attributes per node, respectively the visualization
of multiple attributes per edge. Several attributes can be shown for a single node (in a
node-link metaphor) by encoding them to several visual dimensions (shape, size, texture,
size, labels). This approach is relatively scalable, in the sense that one can encode a
large number of attributes per node if the node size, in the visualization, is large enough.
In the limit, for instance, nodes themselves can become full-fledged visualizations of
multivariate data tables [27]. However, this implies a trade off between the number
of nodes and the number of attributes per node that a given visualization can accom-
modate. In the case of edges, the multivariate challenge is far harder: It is much more
difficult to design a visual encoding that represents several attributes for an edge in a
node-link metaphor. Solutions such as encoding attributes into edge thickness, shading,
transparency, and color work reasonably well only for networks having a small number
of edges (to be more precise, edge intersections) [46]. As an alternative, more space can
be allocated to edges in the visualization, by using a table-lens, edge-centric, visualiza-
tion [150]. However, this metaphor is less intuitive than the classical node-link depiction
of networks. As such, visualizing networks with more than two or three attributes per
edge is, to date, an open challenge.

Adjacency matrices are an alternative way to node-link layouts to display relational
data. Given a graph G � pV,E � V � V q, an adjacency matrix is a symmetric square
matrix of }V }�}V } elements, where element pi, jq indicates whether node i is connected
with node j, or whether pi, jq P E. Adjacency matrices have the key advantage that they
can display moderately-sized densely-connected graphs with zero occlusion, something
that node-link layouts usually cannot do [2]. In turn, this is an interesting feature in case
one wants to show multivariate attributes for nodes and/or edges. An example of this
approach is MatrixExplorer, which allows users to view a network as a set of nodes and
edges in coordination with a matrix representation [76]. The tool also creates a view of
connected components, where each component is viewed as a compact rectangle whose
size and color reflect the number of vertices contained in that component. NodeTrix
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represents a network as a mix of adjacency matrices and classical node-link layouts [77].
For this, the input network is separated into several so-called communities (sets of
strongly-connected nodes), which are further linked by edges via nodes that belong to
different communities. Relationships between community members are represented by
adjacency matrices (which are a compact way to depict strongly-connected components
in a graph). Relationships between communities are depicted as node-link edges between
the respective adjacency matrices representing the communities containing the involved
nodes. The visual properties of the vertices and edges can be modified to reflect attributes
of the network.

Multiple linked views offer a different approach to tackle the problem of visualizaing
the high-dimensional space formed by relations and attributes. The basic idea of this
approach is simple: Each such view addresses a subset of the input data, created by
‘slicing’ either in the number of observations (nodes and edges) or in the number of
dimensions (node and/or edge attributes). Interactive linking of the views by brushing
and/or selection allows one next to correlate various data aspects. In this context, Namata
et al. presented a tool, called DualNet, capable of generating coordinated representations
or linked views [127]. The tool treats the network as a set of sub-networks, each of
which can be viewed and manipulated independently in different coordinated views.
The tool also allows the modification of visual properties of the vertices to reflect the
attributes of the network. Shen et al. propose the OntoVis tool, which is designed for the
visualization of heterogeneous networks, i.e., networks in which vertices represent more
than one type of object [166]. From an ontology graph, containing the different types of
objects, users can construct a derived graph by including only nodes whose types are
selected in the ontology graph. Next, node sizes and colors can be modulated to reflect
attributes such as node centrality and node types. Perer and Shneiderman described a
system, called SocialAction, that uses attribute ranking and coordinated (linked) views
to help users examine a number of social network analysis metrics [145]. Users can
iterate through visualizations of metrics, aggregate networks, find cohesive subgroups,
and focus on communities of interest, as well as separate networks by viewing different
link types individually, or find patterns across different link types using a matrix overview.
Aris and Shneiderman [5] developed the Substrate Designer, a tool for users to specify
attributes for grouping nodes into non-overlapping regions, and attributes for placing
them within regions. Users can specify the graph drawing algorithm and decide on how
to encode additional attributes into visual parameters of nodes and/or edges, thereby
facilitating several network analysis tasks. Li and Lin [114] proposed a mechanism for
egocentric information abstraction in heterogeneous social networks. They extract a
set of features from a given ‘ego’ node based on linear combinations of its edges, and
calculate statistical dependency measures between these features and the ego node. After
filtering, they generate a condensed feature graph representation as the abstraction of
the given ego node.

Similarity encoding: Several social network analysis tools attempt to display nodes
according to attributes or similarities. The key idea here is to use the attribute-based
similarity of nodes, computed as in the case of multidimensional projections (Sec. 2.3), to
create visualizations of multivariate networks. At a high level, the paradigm offered here
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reverts the approaches described above, where the network (relational) data is central
in driving the visualization layout, while the attributes are ‘retrofitted’ in a subsequent
pass on the ensuing visualization. Rather than doing this, the approaches discussed
next jointly consider attributes and relations in the creation of the visualization, thereby
obtaining a view that reflects both types of attributes equally well.

In this context, one approach is described by Gloor et al., which aims at visualizing
social networks as a graph where the positioning of vertices is based on the similarity of
the content of the messages exchanged by the actors [68]. Velardi et al. also presented
an approach to grouping nodes based on the content of the messages exchanged by
the actors of the network [197]. The Graphdice tool employs various multidimensional
visualizations in support to visual analysis of social network, including one type of
projection technique [15]. Smith et al. proposed an approach based on attributes to
computing a degree of similarity between actors [171]. For each attribute, a network can
be generated in which the weight of the edges reflects the degree of similarity calculated
for that attribute. Other approaches to representing graphs based on vertex and/or edge
attributes are described by Pretorius and Van Wijk [150] and Archambault et al. [4].
These approaches define a hierarchical structure based on the attributes to view the
network, similar to the grouping of table rows by equal-attribute values presented in
the TableVision tool [180]. The resulting hierarchy is next visualized with a variation
of one-dimensional treemaps, known also as an icicle plot [106]. Wattenberg et al.
propose a scatterplot in which the axes are determined by the dimensions of a query
summarization [204]. All actors who take the same values for both axes are grouped
into a single node, and its size reflects the amount of grouped actors.

However, the realm of creating visualizations that encode both relations and at-
tributes is far from being exhausted. Current approaches, such as the ones outlined
above, take different design decisions with respect to how to encode the similarity
of attributes vs how to encode the relational connectivity patterns; how to weigh the
impact of the attribute vs relation-based similarity, or connectivity, or nodes; and how to
display the final result, which aims to reflect both similarity in attributes and connectivity
of nodes. Different options for combining attributes and relations in determining the
placement and/or rendering of nodes and edges are clearly possible and needed, and
thus worth studying.

2.7 Discussion and Conclusions

The review of related work on multidimensional data visualization presented in this
chapter offers a challenging picture of the state-of-the-art in this field vs desired re-
quirements. Many techniques for visualizing multidimensional data exist, including
table lenses, small multiples (or linked views), scatterplot matrices, parallel coordinate
plots, and dimensionality-reduction techniques. Analysing the behavior of all these
methods, we notice that there is a lack of optimal support for both observation-centric
and attribute-centric analysis tasks.

Multidimensional projections have several important advantages over the other
techniques reviewed in this context. They are by excellence scalable both in the number
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of observations and dimensions, are robust and computationally scalable, utilize a very
simple visualization metaphor (2D or 3D scatterplots), and can be used with minimal
effort from the viewpoint of their end users. However, they also have several important
disadvantages that we believe to limit their widespread deployment in practice.

First, most projections inherently introduce errors in terms of preserving distances
and/or neighborhoods when projecting data from high-dimensional spaces to low-dimen-
sional (2D or 3D) spaces. Unless such errors are clearly quantified and explained to the
end user, interpreting projections may be misleading. We propose, in Chapters 3 and 4, a
set of visual techniques that enhance multidimensional projections to make it easier for
users to analyse their quality in terms of distance- and neighborhood-preservation. They
improve on previous work related to this task by offering, among other contributions: (i)
multiple correlated views (which can be easily switched or used in parallel) of the same
projection/dataset, each showing a different perspective on the projection errors; (ii) new
metrics for computing the errors, both for distance- and neighborhood-preservation, that
address the problem from new points of view; (iii) a new multiscale visual presentation
for projection errors that allows easier visual detection and reasoning about large com-
pact groups of points in a projection than when using scatterplots; (iv) an approach to
showing projection errors related to one-to-many and many-to-many point relationships,
using edge bundling; and (v) the generalization of error-analysis techniques to groups of
points instead of single points.

Secondly, projections create visualizations that show observations (and their simi-
larities) well, but do not show the underlying data attributes. Unless this is done, users
may dismiss multidimensional projections as being too abstract and/or far away from
their original high-dimensional attribute space. The problem is even worse with 3D
projections; while 2D projections may come with a reasonably rich set of explanatory
techniques, the more accurate 3D projections do not offer such techniques. Unless
this is done, users may choose to remain confined to using 2D projections, which may
introduce significantly larger distance and neighborhood-preservation errors. To deal
with these problems, we propose new attribute-based techniques for explaining pro-
jections with low-dimensional representations both in 3D and 2D. For 3D projections
(Chapter 5), the new proposed techniques improve on previous work by offering, among
other contributions: (i) ways of selecting the best viewpoints in the 3D space that can
show combinations of variables of interest; (ii) generalizing biplot axes for nonlinear
projection methods; and (iii) widgets for viewpoint navigation that help users to move
smoothly between combinations of variables of interest. For the 2D projections (Chap-
ter 6), the contributions concern (i) explaining local neighborhoods in a projection
instead of global projection axes; (ii) automatic and implicit partition of the projection
space into regions explained by the same attributes, which handles also projections
without clear separations between points.

Finally, for multivariate datasets containing both scalar and relational attributes,
or multivariate graphs, projections have been only marginally used as a visualization
technique. Exploring projections as a tool for generating visualizations of such datasets
is a potentially effective avenue for creating insightful displays of multivariate networks.
The techniques proposed in Chapter 7 present (i) a framework for using distance-based
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multidimensional projections for the layout of graphs, which opens up the possibility
of using any of the existing MDS techniques on the literature to create graph layouts;
(ii) the creation of layouts based on a weighted mix of the network’s attributes and
distances, depending on the user’s exploratory requirements; and (iii) the application
of the projection-error metrics presented in the earlier chapters into the context of
multivariate networks.

The remainder of this thesis is dedicated to exploring in details the above-mentioned
research directions and improvements, which are centered on making multidimensional
projections effective tools for the exploration of general-purpose multivariate datasets.
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Chapter 3

Visualizing Distance Preservation

A
s outlined in Chapter 2, multidimensional projections are effective tools for exploring
large sets of high-dimensional observations, especially when the questions of interest

regard the detection of groups of similar observations or isolated outlier observations.
However, as the same chapter has explained, projection techniques are challenged by
the inability of faithfully preserving the so-called structure of the high-dimensional data,
such as inter-point distances or point neighbors. If such aspects of the data structure are
not well preserved – or, alternatively, if the lack of preservation is not clearly shown to
the user, the visualization may convey wrong insights in the data.

In this chapter, we address the first part of the above challenge, namely measuring
and displaying distance preservation errors in multidimensional projections. In detail, we
present a set of metrics that aim to address the following questions for 2D projections:

• How is the projection error spread over the 2D space?

• How to find points that are close in 2D but far in nD?

• How to find points that are close in nD but far in 2D?

• How do the choice of projection algorithm and its parameter settings affect the
above quality aspects?

To visualize the proposed metrics, we develop several space-filling techniques that
visually scale to large datasets, offer a multiscale (or level-of-detail) view on the pro-
jection behavior, and do not require users to understand the internal formulation of
dimensionality-reduction algorithm. We next use these visualizations to explore how
five state-of-the-art dimensionality-reduction techniques behave, in terms of distance-
preservation errors, when varying their parameters. Our endeavor of exploring projection
errors is completed, next, by the work presented in Chapter 4, which addresses the re-
lated, but different, task of measuring and analysing neighborhood preservation errors
for multidimensional projections.

3.1 Analysis Goals

Let us first recall the basic notations used to describe multidimensional projections. A
multidimensional projection technique was modeled as a function f : Rn�P Ñ Rm that
takes a dataset Dn � Rn and maps it to a lower dimensional dataset Dm � Rm, m   n

(see Eqn. 2.1 and related text in Sec. 2.3). Here, P indicates the space of parameters
of the projection technique f , which depends on the specific details of the algorithm
underlying f .

A projection f should preserve the structure of the original space Rn. This implies,
as discussed in Chapter 2, a mix of distance and neighborhood preservations at various
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scales and happens at different rates for different datasets, projection algorithms, and
parameter values. One important task for which projections are used is to detect and
reason about groups of close points in Dm. Unless users are sure that such groups of
points are indeed also close in the original high-dimensional dataset Dn, the interpreta-
tion of the projection result can be misleading [8]. Hence, for such tasks, the perceived
precision (or, in other words, quality) of a projection is intrinsically linked to its ability
to preserve distances between points [159].

Our exploration goal can be thus refined as follows: Given any dimensionality-
reduction (DR), or projection, algorithm (Eqn. 2.1), we aim to show how distance
preservation is affected by choices of parameter values in P , highlighting aspects that
can adversely affect the interpretation of the projected point set Dm. To simplify the
discourse, we next consider m � 2, and that projections are drawn as scatterplots – the
most common option for DR visualization. We identify the following aspects of interest
in the exploration of distance preservation in multidimensional projections:

A. False neighbors: Take a point pi P Dn and its 2D projection qi � fppiq. A
necessary condition for distance preservation is that all points qj that are close to
qi (in 2D) should be projections of points pj that are close to pi (in Dnq. If not,
i.e. we have a qj close to qi for which pj is not close to pi, the user wrongly infers
from the projection that pj is close to pi. We call such a point j a false neighbor1

of i.

B. Missing neighbors: The second necessary condition for distance preservation is
that all pj that are close to pi (in Dn) project to points qj that are close to qi (in
2D). If not, i.e. we have a pj close to pi for which qj is not close to qi, the user
will underestimate the set of points similar to point i. We call such a point j a
missing neighbor of i.

C. Groups: A main goal of DR is to help users find groups of similar points, e.g.
topics in a document set [95, 139] or classes of images in a database [55]. False
and missing point neighbors generalize, for groups, to false members and missing
members respectively. Given a group Γ of closely projected points, we aim to find if
all points in Γ truly belong there (no false members), and if all points that belong
to the topic described by Γ do indeed project in Γ (no missing members).

D. Detail: Aggregated local metrics such as [159, 8, 111, 79] can show, up to various
extents, where missing or false neighbors occur. However, they do not directly
show which are all such neighbors, for each projected point. Also, they do not
explicitly address locating false and missing group members. We aim to provide
interactive visual mechanisms to support these tasks on several levels of detail.

1It is important to note that, although our discourse here uses terms such as false neighbors and
missing neighbors, the projection-error visualization techniques discussed in this chapter focus on
showing distance-preservation errors and not neighborhood-preservation errors, the latter being the
subject of Chapter 4. We employ here terms that use the ‘neighbor’ concept simply because this
term is more compact, and arguably more illustrative, than alternative distance-related terms.
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We next propose several visualization methods to address the analysis goals outlined
in this section.

3.2 Visualization Methods

As a running example, we use the Locally Affine Multidimensional Projection (LAMP)
technique as projection method, with the default parameter settings given in [95],
and as input the well-known 19-dimensional Segmentation dataset with 2300 points
from [116, 95, 138, 141]. In this dataset, each point describes a randomly drawn 3x3
pixel-block from a set of 7 manually segmented outdoor images, by means of 19 statistical
image attributes, such as color mean, standard deviation, and horizontal and vertical
contrast. The aim of analysing this multidimensional dataset is to see how well extracted
features group over observations, and thereby derive insights that can further on help
in the construction of automatic classifiers for natural images. For completeness, we
note that the task of classifier construction is outside our scope – our goal is strictly
the exploration of the capability of projection techniques in displaying the similarity of
high-dimensional observations, and errors involved in this display.

3.2.1 Preliminaries

To quantify the distance preservation issues in Sec. 3.1, we first define the projection
error of point i vs a point j � i as

eij �
dmpqi,qjq

maxi,jdmpqi,qjq
�

dnppi,pjq

maxi,jdnppi,pjq
. (3.1)

We see that eij P r�1, 1s. Negative errors indicate points whose projections are too close
(thus, false neighbors). Positive errors indicate points whose projections are too far apart
(thus, missing neighbors). Zero values indicate ‘good’ projections, which approximate
optimally the distances in Dn.

Comparing Eqn. 3.1 with the aggregated normalized stress definition σ (Eqn. 2.2), we
see similarities but also several differences. First, both errors are essentially differences
between the distances in Dm and Dn between data points – the more these distances
are different, the higher is the error. However, our error eij is not a strictly positive value
as the (terms of the) stress function. This allows us to distinguish, on a more refined
level, points that are projected too close from points that are projected too far away.
Secondly, our error is normalized between �1 and 1, which allows us to compare more
easily different projections and/or different points in the same projection. In turn, both
above aspects allow us to easily create several detail visualizations of projection errors.
These are described next.
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3.2.2 The Aggregated Error view

We first provide an overview of how the projection error spreads over an entire dataset,
by computing for each point i the aggregate error

eaggri �
¸
j�i

|eij |. (3.2)

The value of eaggri gives the projection error of point i with respect to all other
points. Low values of eaggr show points whose projections can be reliably compared
with most other projections in terms of assessing similarity. These are good candidates
for representatives in multilevel projection methods [55, 144, 29, 139]. Large values of
eaggr show points that are badly placed with respect to most other points. These are
good candidates for manual projection optimization [142, 138].

Fig. 3.1 (a) shows eaggr by color mapping its value on the 2D projected points,
using a blue-yellow-red diverging colormap [74]. Brushing and zooming this image
allows inspecting eaggr for individual points. However, given our goal of providing an
overview first, we are actually not interested in all individual eaggr values, but rather to
(a) find compact areas in the projection having similar eaggr values, (b) find outlier eaggr

values in these areas (if any), and (c) see how eaggr globally varies across the projection.
For this, we propose an image-based, space-filling visualization, as follows. Denote by
DT px P R2q � minqPDm}q� x} the so-called distance transform of the 2D point cloud
Dm delivering, for any screen pixel x, its distance to the closest point in Dm [39]. We
then compute eaggr at every screen pixel x as

eaggrpxq �

°
qPNεpxq

exp
�
� }x�q}2

ε2

	
eaggr°

qPNεpxq
exp

�
� }x�q}2

ε2

	 (3.3)

with

ε � DT pxq � α. (3.4)

Here, Nεpxq contains all projections in Dm located within a radius ε from x. We next
draw eaggrpxq as a RGBA texture, where the color components encode eaggrpxq mapped
via a suitable color map, and the transparency A is set to

Aaggrpxq �

#
1� DT pxq

α
, if DT pxq   β

0, otherwise
(3.5)

For α � 1, β � 1, we obtain the classical colored scatterplot (Fig. 3.1 (a)). For
α � 1, β ¡ 1, the space between projections is filled, up to a distance β, by the eaggr

value of the closest data point. For α � 1, β � 8, we obtain a Voronoi diagram of
the projections with cells colored by their eaggr values. This does not change the eaggr

data values, but just displays them on larger spatial extents than individual pixels,
making them easier to see, similarly to the use of Voronoi cells to show attributes in
multidimensional projections in [24, 111]. This creates visualizations identical to those
obtained by drawing scatterplots with point radii equal to β, without having the issues
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Figure 3.1: Aggregate error view, several levels of detail: (a) α � 1, β � 1. (b) α � 5, β � 5. (c)
α � 20, β � 20 pixels (see Sec. 3.2.2).

created by overlapping points. For α ¡ 1, β ¡ 1, the result is similar to a smooth Shepard
interpolation where the kernel size ε is given by the local point density. The parameter
α ¥ 0 controls the global level-of-detail at which we visualize eaggr: Small values show
more detail in dense point zones, but also emphasize small-scale signal variations that
are less interesting. Larger α values create a smoother signal where coarse-scale error
patterns are more easily visible.

Figs. 3.1 (b,c) show the aggregate error for the Segmentation dataset for various
values of the parameters α and β. Here, eij P r�0.67, 0.35s. The error range already tells
that we have poorly projected points, but does not tell where these are. In Fig. 3.1 (b),
with low values for both α and β, we see that eaggr is relatively smoothly distributed
over the entire projection. However, we see three small red spots A1..A3. These are
high-error outlier areas, which indicate points that are badly placed with respect to
most other points. We also see a relatively high error area A4 of larger spatial extent.
Increasing both α and β produces a simplified visualization (Fig. 3.1 (c)). Larger β
values fill in the gaps between points. Larger α values eliminate outlier regions whose
spatial extent is smaller than α, such as the three small outlier areas A1..A3, but A4

remains visible, since it is larger than α. We now also notice, better than in Fig. 3.1 (b),
that the bottom and top areas (A5, A6) in the projection have dark blue values, with a
significantly lower error than the rest of the projection.

Our image-based results are slightly reminiscent of the dense projection-precision-
score (pps) maps of Schreck et al. [159]. Differences exist, however. First, our eaggri is a
global metric, that tells how point i is placed with respect to all other points, whereas
the pps metric characterizes local neighborhoods. Interpolation-wise, our technique
(used with α � 1, β � 8) delivers the same Voronoi diagram as Schreck et al., which is
also identical to the space partitioning of the point-based Voronoi diagrams in [8, 111].
The data being mapped is, however, different: Our eaggr shows the sum of distance
compression and stretching, whereas the techniques in [8, 111] treat these two quantities
separately. In the next sections, we show how we split our aggregated insight into
separate insights. Further on, both Schreck et al. and our method use smoothing to
remove small-scale noise from such maps. However, whereas Schreck et al. uses a
constant-radius smoothing kernel, which blurs the image equally strongly everywhere,
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we use, as explained, a variable-radius kernel controlled by local density, which preserves
better detail in non-uniform point clouds (scatterplots).

3.2.3 The False Neighbors view

While it is useful to assess the error distribution and find badly vs well-projected point
groups, the aggregate error view does not tell us if the error is due to false neighbors,
missing neighbors, or both. Let us first consider the false neighbors (case A, Sec. 3.1). To
visualize these, we create a Delaunay triangulation of the projected point cloud that gives
us the closest neighbors of each projected point in all directions, i.e., the most important
false-neighbor candidates for that point. To each edge Ek, 1 ¤ k ¤ 3 of each triangle T
of this triangulation, with vertices being the points qi and qj of Dm, we assign a weight
efalsek � |minpeij , 0q|, i.e., consider only errors created by false neighbors. Next, we
interpolate efalse over all pixels x of T by using

efalsepxq �

°
1¤k¤3

1
dpx,Ekq }Ek}

efalsek°
1¤k¤3

1
dpx,Ekq }Ek}

(3.6)

where dpx, Eq is the distance from x to the edge E and }E} is the length of the edge.
Similarly to the aggregated error, we construct and render an image-based view for
efalse as a RGBA texture. In contrast to the aggregated error, we use here a heated body
colormap [74], with light hues showing low efalse values and dark hues showing high
efalse values. This attracts the attention to the latter values, while pushing the former
ones into the background. The transparency A is given by

Afalsepxq � Aaggrpxq

�
1�

1

2

�
min

�
DTT pxq

DTCpxq
, 1



�

max

�
1�

DTCpxq

DTT pxq
, 0





(3.7)

where DTT pxq � minpdpx, E1q, dpx, E2q, dpx, E3qq is the distance transform of T at x,
DTCpxq is the distance from x to the barycenter of T , and Aaggr is given by Eqn. 3.5.
The same technique is used in a different context to smoothly interpolate between two 2D
nested shapes [153], to which we refer for further (simple) implementation details. The
combined effect of Eqns. 3.6 and 3.7 is to slightly thicken, or smooth out, the rendering
of the Delaunay triangulation. Note that this interpolation does not change the actual
values efalsek rendered on the triangulation edges. The distance-dependent transparency
ensures that data is shown only close to the projection points.

Fig. 3.2 shows the false neighbors for the Segmentation dataset. Several aspects are
apparent here. First, the rendering is similar to a blurred rendering of the Delaunay
triangulation of the 2D projections colored by efalse, showing how each point relates to
its immediate neighbors. Light-colored edges show true neighbors, while dark edges show
false neighbors. Since edges are individually visible, due to the transparency modulation
(Eqn. 3.7), we can see both the true and false neighbors of a point separately. The
smooth transition between opaque points (on the Delaunay edges) and fully transparent
points (at the triangles’ barycenters) ensures that the resulting image is continuous and
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Figure 3.2: False neighbors view (see Sec. 3.2.3).

easier to follow at various screen resolutions than a Delaunay triangulation rendered
with pixel-thin edges, as our edges appear slightly thicker.

In Fig. 3.2, two error-related aspects are visible. First, we see an overall trend from
light to dark colors as we go further from the projection’s border towards the projection
center. This confirms the known observation on DR methods that points projected near
the border tend to be more accurate, since there is more freedom (and space) to place
them. In contrast, projections falling deep inside the resulting point cloud tend to have
more false neighbors, because the DR algorithm has there less space to shift points
around to accommodate all existing distance constraints. Intuitively, we can think of
this phenomenon as a ‘pressure’ which builds up within the projected point set from its
border inwards. We shall see more examples of this phenomenon in Sec. 3.3. Secondly,
we see a few small-scale dark outliers. Zooming in Fig. 3.2, we see that these are points
connected by dark edges to most of their closest neighbors in a star-like pattern. Clearly,
false neighbors exist here. These can be either the star ‘center’ or the tips of its branches.
However, we also see that these tips have only one dark edge. Hence, they are too closely
positioned to the star center only, and not to their other neighbors. Since the tip points
are all positioned well with respect to their neighbors (except the star center), and the
center point is positioned too closely with respect to all its direct neighbors, we can
conclude that too little space was offered in the projection to the center point, or in other
words that the center point is a false neighbor of its surrounding points.

The false neighbors view is related to Aupetit’s segment compression view, where the
shortening of inter-point distances due to projection is visualized [8]. The underlying
metrics, i.e. our eij (Eqn. 3.1) and mdistor

ij ([8], Sec. 3.2) are similar, up to different
normalizations. However, the proposed visualizations are quite different. Aupetit uses so-
called ‘segment Voronoi cells’ (SVCs). SVCs essentially achieve piecewise-constant (C�1)
interpolation of the values efalsek , defined on the edges Ek of each Delaunay triangle T ,
over T ’s area, by splitting T in three sub-triangles using its barycenter. In contrast, our
interpolation (Eqn. 3.6) is C8 over T . Also, our triangles are increasingly transparent
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far away from their edges (Eqn. 3.7). Comparing our results (e.g. Figs. 3.2, 3.9 (a,d,g))
with SVCs (e.g. Figs. 7 (d), 12 (c) in [8]), we observe that SVCs exhibit several spurious
elongated Voronoi cells that do not convey any information. Such cells do not exist in
our visualization due to the transparency blending. Also, we argue that the artificial SVC
edges linking projected points with Delaunay triangulation barycenters do not convey
any information, but only make the visualization more complex. Such edges do not exist
in our visualization due to our continuous interpolation.

3.2.4 The Missing Neighbors view

Besides false neighbors, projection errors (and subsequent misinterpretations) can also
be caused by missing neighbors (case B, Sec. 3.1). Visualizing this by a space-filling
method like for the aggregate error or false neighbors is, however, less easy. Given a
projected point q, its missing neighbors can be anywhere in the projection, and are
actually by definition far away from q. To locate such neighbors, we would need to
visualize a many-to-many relation between far-away projected points.

We first address this goal by restraining the question’s scope: Given a single point qi,
show which of the other points Dmzqi are missing neighbors for qi. For this, we first let
the user select qi by means of direct brushing in the visualization. Next, we compute the
error emissingi � maxj�ipeij , 0q, i.e., the degree to which qj is a missing neighbor for qi,
and visualize emissing by the same technique as for the aggregated error (Sec. 3.2.2).

Fig. 3.3 shows this for the Segmentation dataset, using the same heat colormap as in
Fig. 3.2. In Figs 3.3 (a,b), we selected two points deep inside the central, respectively
the lower-right point groups in the image. Since Figs. 3.3 (a,b) are nearly entirely
light-colored, it means that these points have few missing neighbors. Hence, the 2D
neighbors of the selected points are truly all the neighbors that these points have in
nD. In Figs. 3.3 (c,d), we next select two points located close to the upper border of
the large central group and the left border of the left group respectively. In contrast to
Figs. 3.3 (a,b), we see now an increasingly darker color gradient as we go further from
the selected points. This shows that points far away from these selections are actually
projected too far, as they are actually more similar than the projection suggests. This is a
known (but never visualized as such) issue of many DR methods, which have trouble in
embedding high-dimensional manifolds in 2D: points close to the embedding’s border
are too far away from other points in the projection. Another interesting finding is that
the color-coded Figs. 3.3 (c,d) do not show a smooth color gradient: We see, especially in
Fig. 3.3 (c) that the colors appear grouped in several ‘bands’, separated by discontinuities.
In other words, the projection method suddenly increases the error as we get over a
certain maximal 2D distance.

The missing neighbors view is related to the proximity view of Aupetit [8]. In both
views, a point i is selected and a scalar value, related to this selection, is plotted at all
other points j � i. For Aupetit, this is the distance mprox

j � dnppi � pjq (normalized
by its maximum). For us, it is the error emissingj . Both the distance and emissing have,
in general, the tendency to be small at points j close in 2D to the selected point i, and
increase farther off from point i. However, the two quantities are different and serve
different purposes. Visualizing mprox is useful in finding points located within some
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Figure 3.3: Missing neighbors view for different selected points. Selections are indicated by markers
(see Sec. 3.2.4).

distance to the selection i. Finding projection errors is only implicitly supported, as these
appear as non-monotonic variations in the mprox signal. In contrast, emissing specifically
emphasizes points projected too far, rather than conveying the absolute distance. Thus,
our visualization helps locating projection errors rather than assessing proximity.

3.2.5 The Missing Neighbors Finder

Although providing details for single points, the views in Sec. 3.2.4 cannot show missing
neighbors for an entire dataset. We address this goal by a different method, as follows.
Consider all positive values of eij . By definition, these give all point-pairs which are
projected too far away. We sort these values decreasingly, and select the largest φ percent
of them, where φ is a user-provided value. The selected values give the point pairs
which are worst placed in terms of overestimating their true similarity. We next construct
a graph G � pV,Eq whose nodes V are the projected points qi present in such point
pairs, and edges E indicate the pairs, with eij added as edge weights. Next, we draw
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G using the KDEEB edge bundling technique [85], which provides robust, easy to use,
and real-time bundling of graphs with tens of thousands of edges on a modern GPU. We
color the bundled edges based on their weight using a grayscale colormap (with white
mapping low and black mapping high weights), and draw them sorted back-to-front
on weight and with an opacity proportional to the same weight. The most important
edges thus appear atop and opaque, and the least important ones are at the bottom and
transparent.

Fig. 3.4 shows this visualization, which we call the missing neighbors finder, with
bundles that connect a single selected point with its most important missing neighbors
(bundles connecting multiple points are discussed later on). The background images
show emissing (Sec. 3.2.4). Dark bundle edges attract attention to the most important
missing neighbors. For the selected points in images (a) and (b), we see that there are
only very few and unimportant missing neighbors (few half-transparent edges). For the
selected points in images (c) and (d), the situation is different, as the bundles are thicker
and darker. Bundle fanning shows the spread of missing neighbors for the selected points:
In image (c), these are found mainly in the left point group, with a few also present
in the lower part of the central group. In contrast, all missing neighbors of the point
selected in image (d) are at the top of the central group.

a) b)

c) d)

low emissing

low emissing
Bundles

Background

high emissing

high emissing

selected point

missing neighbors

of selected point

selected point

missing neighbors

of selected point

Figure 3.4: Missing neighbors finder view for four selected points. Selections are indicated by
markers (see Sec. 3.2.5).

The main added value of the missing neighbors finder appears when we visualize the
many-to-many relations given by all projected points. Fig. 3.5 shows this result for three
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values of φ for the Segmentation dataset. The background shows now the aggregated
error (eaggr, Sec. 3.2.2). We color bundles from black for largest error eij to white for
largest error above the user-provided parameter φ. Image (a) shows the φ � 1% worst
missing-neighbor point-pairs. These link the top-right area of the central group with the
left frontier of the left group. Adding more missing neighbor pairs to the view (image (b),
φ � 3%) strengthens this impression. Adding even more missing neighbor pairs (image
(c), φ � 20%) reveals additional missing-neighbor pairs between the two areas indicated
above (light gray parts of thick top bundle), and also brings in a few missing neighbors
between these areas and the lower-right point group (light gray thin bundle going to
this group). Nearly all bundles appear to connect point pairs located on the borders of
the projection. This strengthens our hypothesis that such point pairs are challenging for
the LAMP projection, which we noticed using the interactive missing neighbors view
(Sec. 3.2.4). However, as compared to that view, the bundled view shows all such point
pairs in a single go, without requiring user interaction.

a) φ=1% b) φ=3% c) φ=20%

high emissinglow emissing

high eaggrlow eaggr
Bundles

Background

Figure 3.5: Missing neighbors finder view, all point pairs, for different φ values (see Sec. 3.2.5).

3.2.6 The Group Analysis views

As outlined in Sec. 3.1, the false and missing neighbors issues for individual points
become, at group level, the problems of false and missing group members respectively.
We next propose two visualizations that assist in finding such issues.

First, let us refine the notion of a group. Given the tasks in Sec. 3.1 (C), a group
Γ � Dm is a set of projected points which form a visually well-separated entity. When
users see points in a group, they understand that these share some commonality, but
are different from points in other groups. In the LAMP projection of our Segmentation
dataset, we see three such groups (Figs. 3.1-3.5). Group perception is, obviously,
subject to many factors such as user preferences and level-of-detail at which one focuses.
However, once a user has established which are the groups (s)he sees in a visualization,
the false and missing membership issues become relevant.

We allow users to select groups in a given projection by several mechanisms: direct
interactive selection, mean-shift clustering [36], and upper thresholding of the point
density [52]. Other user-controlled methods can be used if desired, e.g., K-means
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or hierarchical agglomerative clustering, e.g. [92, 91]. The actual group selection
mechanism is further of no importance to our visualization method. We next render each
obtained group Γ � tqiu by the shaded cushion technique in [182] as follows. First, we
compute a density map ρpxq �

°
qPΓ Kpx� yq, where K is an Epanechnikov kernel of

width equal to the average inter-point distance δ in Γ, following [36]. Next, we compute
a threshold-set Γδ of ρ at level δ, and its distance transform DTΓδ . Finally, we render a
RGBA texture over Γδ, where we set the color a fixed hue (light blue in our case) and
the transparency A to

a
DTΓδ (following the approach in [182] which shows that such

a transparency profile creates naturally-looking cushions).
Having now groups both as a data structure and also shown in the visualization, we

adapt the missing neighbors and finder techniques (Secs. 3.2.4, 3.2.5) to show missing
group members. For this, we compute a value

emissingΓ pqiq �

#
minqjPΓpeijq if qi R Γ

0 otherwise
(3.8)

at each projected point qi, and visualize emissingΓ using the same technique as for missing
neighbors.

Fig. 3.6 (a,b) show two missing group members views. The shaded cushions show
the three groups identified in our Segmentation dataset. Several points fall outside of all
groups. This is normal, in general, e.g. when the user cannot decide to which group to
associate a point. In image (a), we select the bottom group Γbottom. The underlying color
map shows now emissingΓbottom

, (Eqn. 3.8). All points appear light yellow. This means that,
with respect to Γbottom seen as a whole, no points are projected too far, so Γbottom has no
missing members. In image (b), we do the same for the left group Γleft. The image now
appears overall light yellow, except for a small dark-red spot in the upper-right corner of
the central group Γcenter. Here are a few points which are placed too far from any point
in Γleft. These are highly likely to be missing members of Γleft. To obtain more insight,
we now use the bundle view in Sec. 3.2.5, with two changes. First, we build only bundles
that have an endpoint in the selected group. Secondly, we consider all edges rather than
showing only the most important ones. Image (c) shows the bundle view for Γbottom.
We see only a few bundled edges, ending at a small subset of the points in Γbottom. This
strengthens our hypothesis that there are no points outside Γbottom which should be
placed closer to all points in Γbottom – or, in other words, that Γbottom has no missing
members. Image (d) shows the bundled view for Γleft. The bundle structure tells us that
the top-right part of Γcenter contains many missing neighbors of Γleft. In particular, we
see dark bundle edges that connect to dark-red points. This is a strong indication that
these points can indeed be missing members of Γleft. For a final assessment, the user
can interactively query the discovered points’ details (attribute values) and, depending
on these, finally decide if these points are missing group members or not.

3.2.7 The Projection Comparison view

Consider running the same DR algorithm with two different parameter sets, or projecting
a dataset by two different DR algorithms. How to compare the results from the viewpoint
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Figure 3.6: Missing members for two point groups. Points in the selected groups are drawn as
marked (see Sec. 3.2.6).

of distance preservation? Subsequent questions are: Which points that were (correctly)
placed close to each other in one projection are now ‘pulled apart’ in the other projection?
Do the two projections deliver the same groups of points? Understanding all these aspects
is crucial to further using the respective projections for interpreting the original high-
dimensional data. Indeed, if we were able to see that specific point-groups are placed at
significantly different locations in the 2D space by different projection techniques and/or
parameter settings, this would mean that great care should be invested in assessing the
respective tools (projection techniques and/or parameter settings) prior to interpreting
the projection results. If, in contrast, the main point-groups in the projection would be
the same with respect to technique and/or parameter settings, this would mean that one
could use the respective projection tools very much like agnostic ‘black boxes’ further on.

To answer such questions, we propose the projection comparison view. The view
reads two projections Dm

1 and Dm
2 of the same input dataset Dn. For each point-pair

49



Visualizing Distance Preservation
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edispi �
}q1
i � q2

i }

maxi }q1
i � q2

i }
. (3.9)

We next build a graph whose nodes are points in Dm
1 YDm

2 . Edges relate point pairs
pq1
i P D

m
1 ,q

2
i P D

m
2 q, and have the values edisp as weights. We visualize this graph via

edge bundling, as for the missing neighbors finder (Sec. 3.2.5).
Fig. 3.7 (a) shows a view where we compare the Segmentation dataset projected

via LAMP (red points, Dm
1 ) and LSP (green points, Dm

2 ). The two projections are quite
similar, since red and green points occur together in most cases. However, this image
does not tell if the two projections create the same groups of points, since we do not
know how red points match the green ones. Fig. 3.7 (b) shows the projection comparison
view for this case. We immediately see a thin dark bundle in the center: This links
corresponding points which differ the most in the two projections. Correlating this
with image (a), we see that LSP decided to place the respective points at the bottom
(ALSP ) of the central group, while LAMP moved and also spread out these points to the
top (ALAMP ). However, points around the locations ALSP and ALAMP do not move
much between the two projections, as we see only light-colored bundles around these
locations, apart from the dark bundle already discussed. Hence, the motion of these
points indicates a neighborhood problem in one or both of the projections. Indeed, if
e.g. the points in A were correctly placed by LAMP (into ALAMP ), then the decision of
LSP to move the point-group A all the way up in the visualization (to ALSP ) should also
have moved the neighbors of ALAMP . Since this does not happen, ALSP cannot be close
to the same points that ALAMP was. A similar reasoning applies if we consider that
ALSP is correct – it then follows that ALAMP cannot be correctly placed with respect to
its neighbors.

a) b)

ALSP ALSP

ALAMPALAMP

BLAMP
BLSP BLAMP

BLSP

Bundles

high edisplow edispPoints in LSP

Points in LAMP

Figure 3.7: Comparison of two projections. (a) LAMP (blue) and LSP (red) points. (b) Bundles
show corresponding point groups in the two projections (see Sec. 3.2.7).

Apart from this salient dark-colored bundle, we see many shorter and light-colored
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bundles. These show smaller-scale displacements between the two projections. For
instance, we see how the red points at the right of the left group (BLAMP ) are moved to
the left (BLSP ) of the same group. As these bundles fan out relatively little, do not have
many crossings, and they are short, it means that BLSP is almost a translation to the
left of BLAMP , so the two projections depict the same structure of the left group. Also,
we do not see any bundle exiting this left group. This means that both LAMP and LSP
keep all points in this group together. Finally, in the bottom-right group we see just a
very few short light-colored bundles. Most points in this group do not have any bundles
connected to them. This means that edisp for these points is very small (yielding thus
very short, nearly transparent, bundles). From this, we infer that LAMP and LSP produce
very similar layouts for this group. If users are interested only to spot the most salient
differences between two projections, and want to ignore such small-scale changes, this
can be easily obtained by mapping edispi to bundle-edge transparency.

3.2.8 Usage scenario

Considering that the user is offered quite a few different views to analyse projection
errors, each with specific features and goals, the next question arises: How to put all
these views together to form a coherent usage scenario for a common analysis task?
Below we propose such a usage scenario. The view names herein refer to the respective
techniques presented earlier in this section.

Step 1: Start with the Aggregated Error view. This shows an overview of the error at all
points, without a distinction between false or missing neighbors. Next, check if (a) there
are regions or groups with substantial errors or (b) the overall error is low. Case (b)
indicates that the projection is quite good and that nothing else needs to be improved.
In case (a), continue with steps 2, 3, and 4.

Step 2: The Missing Neighbors Finder view can be enabled and disabled freely over
the Aggregated Error view to show the most important missing neighbors between all
points. The user should notice now whether this view shows bundles having high error
values (i.e. dark-colored). If so, there are important missing neighbors between the
groups connected by such bundles. These groups must be further analysed with the
Group Analysis Views. If not, i.e. the bundles are colored (light) gray, this tells that the
projection is good and, although there are missing neighbors, they are in a low error
range and should not threaten the projection interpretation.

Step 3: Points, groups or regions found problematic in steps 1 and 2 are now analysed
in more detail using the False Neighbors and Missing Neighbors views. For groups detected
in step 1 the most important thing is to find out exactly what kind of error is present:
Are they (a) wrongly placed with respect to each other and other close points (false
neighbors) or (b) in relation to far away points that should be closer (missing neighbors)?
For groups detected in step 2, the error is already identified from the beginning: They
have a high rate of missing neighbors. In this case, the question to be answered is: Which
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points are exactly the problematic ones inside the detected groups, or where exactly do
the relations (bundle edges) with the highest errors start and end from? By using these
two views, the user should be able to establish exactly which are the more problematic
points (or groups), and what kind of error these have.

Step 4: Knowing now where exactly errors occur, we consider the next questions: (1)
Are such errors really a problem? (2) Do they show unexpected results related to how the
projection should work with the provided data? (3) Are the problematic points important
for the analysis task at hand? If questions (1-3) all answer ‘no’, then we have a good
projection for our data and analysis task, and our analysis stops. If any question (1-3)
answers yes, then the user must improve the projection of problematic points, as follows.
If the user is a projection designer testing the accuracy of a new method, (s)he should
go back to the algorithm and use the new insight gotten from this analysis to improve
that algorithm. If the user has no access to the projection implementation, the solution
is to re-execute the analysis from step 1 with either (i) a new projection algorithm that
might better fit the specific data and task; or (ii) a new set of parameters for the same
algorithm. The new results can be compared with the old ones to determine if the errors
have decreased or if the errors moved into a new region where they are not as important
for the task at hand. For the second task, the Projection Comparison View can be used.

3.3 Applications

We now use our views to study several projections for several parameter settings – thus,
to explore the space P that controls the creation of a DR projection. First, we present
the datasets used (Sec. 3.3.1), the studied projection algorithms (Sec. 3.3.2), and their
parameters (Sec. 3.3.3). Next, we use our views to explore the considered parameter
settings (Secs. 3.3.4, 3.3.5).

3.3.1 Description of datasets

Apart from the Segmentation dataset used so far, we consider the following datasets:

Freephoto: contains 3462 images grouped into 9 unbalanced classes [58]. For each
image, we extract 130 BIC (border-interior pixel classification) features. Such features
are widely used in image classification tasks [173].

Corel: composed of 1000 photographs that cover 10 specific subjects. Similarly to the
Freephoto dataset, we extract for each image a vector of 150 SIFT descriptors [115].

News: contains 1771 RSS news feeds from BBC, CNN, Reuters and Associated Press,
collected between June and July 2011. The 3731 dimensions were created by removing
stopwords, employing stemming and using term-frequency-inverse-document-frequency
counts. We manually classified the data points based on the perceived main topic of the
news feed resulting in 23 labels. Given the imprecision of the manual classification and
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the restriction to have one topic per point, the labels are unbalanced for a number of
points. Also, for other points (with different labels), we can still have a high similarity of
content.

Sourceforge: This publicly available dataset contains 24 software metrics computed
on 6773 open-source C++ software projects from the sourceforge.net website [121].
Metrics include classical objet-oriented quality indicators such as coupling, cohesion,
inheritance depth, size, complexity, and comment density [107], averaged for all source
code files within a project.

3.3.2 Description of projections

We detail next the projection algorithms whose parameter spaces we will next study. We
chose these particular algorithms based on their availability of documented parameters,
scalability, genericity, presence in the literature, and last but not least availability of a
good implementation.

LSP: The Least Squares Projection [139] uses a force-based scheme to first position a
subset of the input points, called control points. The remaining points in the neighbor-
hood of the control points are positioned using a local Laplace-like operator. Overall,
LSP creates a large linear system that is strong in local feature definition. LSP is very
precise in preserving neighborhoods from the nD space to the 2D space.

PLMP: The Part-Linear Multidimensional Projection (PLMP) [141] addresses computa-
tional scalability for large datasets by first constructing a linear mapping of the control
points using the initially force-placed control points. Next, this linear mapping is used
to place the remaining points, by a simple and fast matrix multiplication of the feature
matrix with the linear mapping matrix.

LAMP: Aiming to allow more user control over the final layout, the Local Affine Multidi-
mensional Projection (LAMP) [95] provides a user-controlled redefinition of the mapping
matrix over a first mapping of control points. LAMP also works by defining control
points, which are used to build a family of orthogonal affine mappings, one for each
point to project. LAMP has restrictions regarding the number of dimensions against the
number of points. Also, LAMP cannot directly work with distance relations, i.e., it needs
to access the nD point coordinates. However, LAMP is very fast, without compromising
the precision reached, for instance, by LSP. Both LSP and LAMP can be controlled by a
number of parameters, such as the control point set.

Pekalska: Another class of projection techniques works with optimization strategies.
These are, in general, quite expensive computationally. To improve speed, Pekalska et
al. [144] first embeds a subset of points in 2D by optimizing a stress function. Remaining
points are placed using a global linear mapping, much like LAMP and LSP.
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ISOMAP: The ISOMAP technique [184] is an extension of classical Multidimensional
Scaling (MDS) that aims to capture nonlinear relationships in the dataset. ISOMAP
replaces the input distance between point pairs by an approximation of the geodesic
distance given by the shortest path on a graph created connecting neighbor points in
the original space with the original distance as weight. The final 2D coordinates are
computed via a conventional MDS embedding with calculations of eigenvalues over the
distance relations of the previous step.

3.3.3 Description of parameters to analyse

Most techniques that initially project control points use a simplified iterative force-based
algorithm, such as the one of Tejada et al. [179]. The number of iterations of force-based
placement influences the control points’ positions, and is, thus, a relevant parameter.
LSP control points are typically the centroids of clusters obtained from a clustering of
the input dataset. The number of control points is thus a second relevant parameter for
LSP. To position points in the neighborhood of a given control point, LSP solves a linear
system for that neighborhood. The neighborhood size (number of neighbors) is a third
relevant parameter.

In LAMP, the affine mappings are built from a neighborhood of control points. The
size of the control point set used to build the mapping, expressed as a percentage of the
size of the control point set, is the main parameter here. The choice of control points
and the choice of the initial projection of the control points are also parameterizable,
just as for LSP, PLMP, and Pekalska. However, in LAMP, these parameters are mainly
interactively controlled by the user, and thus of a lesser interest to our analysis.

ISOMAP, just as the previous methods, also requires the expression of neighborhoods.
The main, and frequently only, exposed parameter of ISOMAP is the number of nearest
neighbors that defines a neighborhood.

3.3.4 Overview comparison of algorithms

To form an impression about how the goals outlined in Sec. 3.1 are better, or less well,
satisfied by LAMP, LSP, PLMP, and Pekalska, we start with an overview comparison.

Figure 3.8 shows the false neighbors, aggregated error, and most important φ � 5%

missing neighbors for the Segmentation dataset. To ease comparison, color mapping is
normalized so that the same colors indicate the same absolute values in corresponding
views. The aggregate error (top row) is quite similar in both absolute values and
spread for all projections, i.e., lower at the plot borders and higher inside, with a few
dark (maximum) islands indicating the worse-placed points. Overall, thus, all studied
projections are quite similar in terms of distance preservation quality. The false neighbors
views (middle row) show a similar insight: Border points have few false neighbors (light
colors), and the density of false neighbors increases gradually towards the projections’
centers. Although local variations exist, these are quite small, meaning that all studied
projections are equally good from the perspective of (not) creating false neighbors.

The missing neighbors view (bottom row) is however quite different: By looking at
the size and color of the depicted bundles, we see that LSP and Pekalska have many more
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Visualizing Distance Preservation

important missing neighbors than PLMP, while LAMP has the fewest missing neighbors.
In all cases, we see bundles that connect borders of the projected point-set. This confirms
that all studied projections optimize placement of close points than far-away points. We
also see that the missing neighbors are spread differently over the data: For LAMP, there
are no bundles going to the bottom-right point cluster, showing that this cluster is indeed
well separated in the projection, as it should be in relation to the nD data. In contrast,
LSP, PLMP, and Pekalska all have bundles going to this cluster, indicating that they place
these points too close to the remaining projected points.

3.3.5 Parameter analysis

We next refine our overview analysis by selecting two of the studied algorithms: LAMP
and LSP. We next vary several of their parameters, and evaluate the resulting projections’
quality with respect to this variation.

LAMP – Different control point percentages: Fig. 3.9 shows the results of LAMP for
the Freephoto dataset with three different values for the percentage parameter: 10%,
30% and 50%. The error has been normalized on each view type (column in the figure).

First, we see that the final layout of the point cloud does not change drastically while
varying the percentage parameter, only showing a 90 degree clockwise rotation for the
value of 30%. While analysing the false neighbors view, we also see that, while the light
brown areas are large – meaning that a moderate amount of error can be expected on
the whole layout – the dark-colored spots are found nearer to the center. This suggests
that LAMP positions the most problematic points in the center, surrounded by the rest of
the points. By focusing on the dark spots (points with the largest false neighbor errors)
throughout the parameter variation we can see that the value of the largest errors on
each result remain similar – no view has many more, or much darker-colored, areas.

For the missing neighbors view, we selected a point near the upper border of the
layout, marked by a cross in Figs. 3.9 (b), (e) and (h)), since missing neighbors occur
mainly on the borders of the projection, as we have already observed in Section. 3.2.4.
The dark spot in Fig. 3.9 (h) is where the largest error occurs over these three views.
While in Fig. 3.9 (b) there are a few orange spots showing moderate error, in Fig. 3.9 (e)
the error decreases considerably, and then increases again in Fig. 3.9 (h). This suggests
that using about 30% of neighbors is a good value for avoiding large numbers of missing
neighbors. We confirmed this hypothesis on several other datasets (not shown here
for brevity). Finally, the aggregated error view shows results very similar to the false
neighbors view: More problematic points (dark spots) are pushed to the center, and
moderate error is found spread evenly over the entire layout. This shows that, for LAMP,
most errors come from false neighbors rather than from missing neighbors.

LSP – Different numbers of control points: Figure 3.10 shows the same dataset (Freep-
hoto) projected with LSP. The varying parameter is the number of control points. We
use here the same views as in Fig. 3.9, and normalized the error in each column. By
looking at the false neighbors views, we see a spatial interleaving of light-yellow and
orange-brown colored areas in the projection. This contrasts with LAMP (Fig. 3.9) where
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Figure 3.9: Applications – LAMP algorithm, Freephoto dataset, different neighbor percentages per
row (see also Fig. 3.10).

the larger missing neighbor errors are consistently located away from the projection
border. As the number of control points increases, the large error areas get more com-
pact and closer to the projection center, but we see no increase in error severity (the
amount of the orange and dark-red spots stays the same). In the missing neighbors
views, the dark-colored areas in Fig. 3.10 (b) disappear largely in images (e) and (h),
which means that the missing neighbors severity decreases when our control parameter
increases. Comparing this with LAMP (Fig. 3.9 b,e,h), this shows that LAMP and LSP
behave in opposite ways when dealing with missing neighbors. Finally, like for LAMP,
the aggregate error views show the worst errors (dark spots) located in the center: The
most problematic points are pushed inside by the other points which surround them,
creating a mix of both false neighbors and missing neighbors. The severity of the errors,
however, does not change visibly between the three parameter values.
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Figure 3.10: Applications – LSP technique, Freephoto dataset, different numbers of control points
per row (compare with Fig. 3.9)

LSP – Different numbers of neighbors: We next examine the effect of a second param-
eter of LSP: number of neighbors. For the Freephoto dataset, we fix 250 control points
and vary the number of neighbors to 10, 50 and 100. Fig. 3.11 shows the results with
the missing neighbors finder view. We see that the most significant errors are initially
concentrated between groups A, B and C, with C being essentially too far placed from
both A and B. Increasing our parameter reduces has a positive impact on solving the
missing neighbors problem between groups A and C, bringing them together into the
group marked AC. The main missing neighbors are now concentrated in the relationship
between groups AC and B. The ‘concentration’ of error given by the parameter increase
is, upon further analysis, explainable by the working of LSP: Given a neighborhood N ,
LSP’s Laplace technique positions all points in N close to each other in the final layout.
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However, the position of the neighborhoods Ni themselves is given only by the control
points, which are determined by the initial force-based layout. If this layout suboptimally
places two control points i and j too far away from each other, then all points within
the neighborhoods Ni and Nj end up being too far away from each other. Hence, as
the neighborhood size increases, the likelihood to see fewer thick high-error bundles
increases. This insight we found is interesting since it was not reported in the LSP lit-
erature so far, and it can be explained (once we are aware of it) by the algorithmics of LSP.

a) 10 neighbors b) 50 neighbors c) 100 neighbors

C

B

A

B
B

ACAC

Figure 3.11: Applications – LSP technique, Freephoto dataset, different numbers of neighbors.
Bundles show most important missing neighbors.

LAMP – Different datasets: We next analyse the LAMP technique applied to three
different datasets: Corel (1000 elements), Freephoto (3462 elements), and Sourceforge
(6773 elements). The varying parameter is now the input dataset itself. The aim is to see
whether (and how) errors are affected by the nature of the input data, e.g. distribution
of similarity, number of dimensions, and number of points. Figure 3.12 top row shows
the false neighbors views. We see here that, while for the first two datasets the behavior
of false neighbors is similar to earlier results, for the largest dataset (Sourceforge) there
are much fewer false neighbors. These are located close to the intersection area of the
two apparent groups in the image, and on the borders of these groups. This, and the low
errors (light colors) inside the groups may indicate that both groups have a high degree
of cohesion between their inner elements. The large errors on close to the intersection
areas and borders can indicate elements that could be in either group, respectively very
different from all other elements. Figure 3.12 (a) shows a similar pattern: Most false
neighbors are located at the ‘star’ shape’s center, while the arms of the start contain
elements that are more cohesive. This may indicate that the dataset contains a number
of cohesive groups equal to the number of start arms, and elements in the center belong
equally to all groups.

While analysing the missing neighbors for several points selected on the periphery
of the projections, we see that the errors are smaller for Figs. 3.12 (d) and (e), and
considerably larger for Fig. 3.12 (f). For the last image, we selected a point close to the
intersection area of the perceived groups. Image (f) shows that this point is equally too
far placed from most points in both perceived clusters. The size and speed of increase of
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Figure 3.12: Applications – One algorithm (LAMP), different datasets. Top row: false neighbors.
Bottom row: missing neighbors.

the error (as we get further from this point in the projection space) strongly suggests
that the selected point belongs stronger to both perceived groups than the projection
indicates. This strengthens our initial hypothesis that the area separating the two groups
belongs equally to these groups.

ISOMAP – Different numbers of neighbors: To illustrate a different type of analysis
made possible by our work, Fig. 3.13 shows the effect of changing the number of
neighbors in ISOMAP on missing group members. Our group Γ of interest, shown first
on Fig. 3.13 (a), is highlighted in images (b-d) by a shaded cushion. Besides the fact
that Γ moves from the left of the projection to the right, images (b-d) show how its
missing members behave as we change our parameter. At first, in Fig. 3.13 (b), we
see that the most important missing neighbors are found in two other areas A1 and A2

on the far side of the layout. We also notice many black edges, which means that the
points in A1 and A2 are indeed too far away from all points in the selected group. The
relatively large fan-out of the bundles show that the group misses many members, and
these are scattered widely over the projection. As the parameter increases, we see in
image (c) that the missing members spread out even more, but the severity of the errors
decreases (as shown by the lighter colors of emissingΓ background. The inner fanning of
the edges, inside Γ, is still large, which shows that many group members miss neighbors.
Finally, in Fig. 3.13 (d), issues decrease significantly: We see thinner bundles, which
imply less error; the bundle fanning inside Γ is relatively small, meaning that most of
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Γ’s points do not miss neighbors; and the fan-out of the bundles is smaller, showing
that the missing group members are now more concentrated than for the first two
parameter values. This leads to the conclusion that, for the analysed group, the increase
of the number of neighbors parameter has a positive impact on the final projection quality.

a) b) c) d)

group of 

interest

50 neighbors 100 neighbors 200 neighbors
highlow

emissing
Γ

group Γ

highlow

emissing
Γ

highlow

emissing
Γ

group Γ

group Γ

A1

A2

Figure 3.13: Applications – ISOMAP projection, finding missing group members for different num-
bers of neighbors.

LSP – Different numbers of iterations: The final analysis we present compares two
different LSP projections of the same dataset (News), computed using values of 50,
respectively 100 for the number of iterations parameter of the control-point force-directed
placement.

Figures 3.14 (a) and (b) show the two LSP projections. In each of them, several high-
density groups are visible. These are strongly related news feeds, i.e., which likely share
the same topic (see Sec. 3.3.1). However, without extra help, we cannot relate the two
projections, e.g., find out (a) if points significantly change places due to the parameter
change; (b) which groups in one projection map to groups in the other projection; and
(c) whether points in a group in one projection are also grouped in the second projection.

To answer question (a), we use the projection comparison view (Sec. 3.2.7). The
result (Fig. 3.14 (c)) shows that there are many large point shifts; the bundle criss-
crossing also shows that groups change places in the projection. This is a first indication
that LSP is not visually stable with respect to its number of iterations parameter. Next,
we manually select three of the most apparent point groups in one projection, shown in
Fig. 3.14 (a) by the shaded cushions A,B,C. We examine these in turn. In Fig. 3.14 (d),
we show how points in group A shifted, in the second projection, to a group A1. Virtually
all bundled edges exiting A end in A1, so the parameter change preserves the cohesion
of group A (though, not its position in the layout). The same occurs for group B

(Fig. 3.14 (e)). However, the parameter change spreads B more than A – in image (e),
we see that B maps to three groups, B1..B3. These visualizations thus answer question
(b). Group C behaves differently (Fig. 3.14 (f)): This group is split into two smaller
groups C1 and C2 when we change our parameter. For question (c), thus, the answer
is partially negative: not all groups are preserved in terms of spatial coherence upon
parameter change.
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a) 50 iterations b) 100 iterations c) full di�erence

d) shift of group A e) shift of group B f ) split of group C

A
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B3
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1
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2

Figure 3.14: Applications – Shift between two LSP projections, for different numbers of force-
directed iterations.

3.4 Discussion

We have implemented our visualization techniques in C++ using OpenGL 1.1, and
tested them on Linux, Windows, and Mac OSX. Below we discuss several aspects of our
techniques.

Computational scalability: For Delaunay triangulation and nearest-neighbor searches,
we use the Triangle [167] and ANN [6] libraries. Both can handle over 100K points in
subsecond time on a commodity PC. Further, we accelerate imaging operations using GPU
techniques. For 2D distance transforms, we use the pixel-accurate Euclidean distance
transform algorithm and GPU implementation proposed in [28]. On an Nvidia GT 330M,
this allows us to compute shaded cushions and perform our Shepard interpolation at
interactive frame rates for views of 10242 pixels. For edge bundling, we implemented
KDEEB [85] fully on Nvidia’s CUDA platform. This yields a speed-up of over 30 times
(on average) as compared to the C# implementation in [85] and allows bundling graphs
of tens of thousands of edges in roughly one second. All in all, we achieve interactive
querying and rendering of our views for projections up to 10K points.

Visual scalability: Our image-based approaches scale well to thousands of data points
or more, even when little screen space is available. Moreover, all our techniques have a
multiscale aspect: The parameters α and β (Eqns. 3.4, 3.5) effectively control the visual
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scale at which we want to see false neighbors, missing neighbors, and the aggregate error.
Increasing these values eliminates spatial outliers smaller than a given size, thereby
emphasizing only coarse-scale patterns (see e.g. Fig. 3.1). The bundled views (Sec. 3.2.5)
also naturally scales to large datasets given the inherent property of bundled edge layouts
to emphasize coarse-scale connectivity patterns.

Genericity: Our visualizations are applicable to any DR algorithm, as long as one can
compute an error distance matrix encoding how much 2D distances deviate from their
nD counterparts (Eqn. 2.2). No internal knowledge of, or access to, the DR algorithms is
needed – these can be employed as black boxes. This allows us to easily compare widely
different DR algorithms, e.g. based on representatives, based on distance matrices, or
based on direct use of the nD coordinates.

Ease of use: Our views are controlled by three parameters: α sets the scale of the visual
outliers we want to show; β sets the radius around a point in which we want to display
information, i.e., controls the degree of space-filling of the resulting images; φ sets the
percentage of most important missing neighbors we want to show. These parameters, as
well as the interaction for selecting point groups (Sec. 3.2.6) are freely controllable by
users by means of sliders and point-and-click operations.

Comparison: Similarly to Van der Maaten et al. [193], we use multiple views showing
the same data points to explain a projection, e.g., the false neighbors, missing neighbors
view, missing neighbors finder, and group-related maps. However, the multiple maps
in [193] are used to actually convey the projection, so the same point can have different
locations and/or weights in different maps. In contrast, we use multiple views to convey
different quality metrics atop of the same 2D projection, but keep the position of all
observations the same in all these views. This simplifies the user’s task of correlating
these multiple views, based on spatial positions. Similar to Aupetit [8], our error metrics
encode discrepancies in distances in Rn vs R2. However, our error metrics are different.
More importantly, our visualizations are different: Our false neighbors view does not
show (a) spurious Voronoi cell edges far away from data points or (b) cell subdivision
edges whose locations does not convey any information, since we (a) use distance-based
blending and (b) continuous rather than constant per-cell interpolation (Sec. 3.2.3).
Secondly, our missing neighbors finder (Sec. 3.2.5) can show one-to-many and many-
to-many error relationships, whereas all other methods are constrained to one-to-one
relationships. Finally, we can show errors at group level, whereas the other studied
techniques confine themselves to showing errors at point level only.

Our projection comparison view (Sec. 3.2.7) is technically related to the method of
Turkay et al., which connects two 2D scatterplots to each other by lines linking their
corresponding points [189]. However, Turkay et al. stress that line correspondences
only work for a small number of points. In contrast, we use bundles to (a) show up to
thousands of correspondences, and coloring and blending to encode correspondence
importance.

63



Visualizing Distance Preservation

Findings: It can be argued that our results are limited, as we did not decide, using our
method, which of the studied DR algorithms are best. However, this was not the aim of
our work. Rather, our goal was to present a set of visual techniques that help analyse
the effect of parameters on projection quality for several DR techniques of interest.
Deciding whether a certain degree of quality, e.g. in terms of false neighbors, missing
neighbors, grouping problems, or projection stability is a highly context, dataset, and
application-dependent task. Having such a context, our tools can be then used to assess
(a) which are the quality problems, (b) how parameter settings affect them, and (c)
whether these problems are acceptable for the task at hand. The same observation
applies to the datasets used here. Our analyses involving these should be seen purely as
test cases for assessing the quality problems of DR projections, and not as findings that
affect the underlying problems captured by these datasets.

Distance vs neighborhood preservation: It can be argued that our error metrics,
and corresponding visualizations, measure and respectively present a mix between
the preservation of distances and neighborhoods: The aggregate error view is a ‘pure’
distance-related metric, very close to the well-known aggregated stress metric. The false
neighbors view encodes distance errors into colors, but only for the Delaunay neighbors
of each projected point. The missing neighbors view is also a pure distance-related metric.
The missing neighbors finder highlights, indeed, the most important missing neighbors
of a projected point, but uses a distance metric to define the notion of missing neighbors.
The group analysis views lift the above interpretations at the level of a user-chosen group
of projected points.

Obviously, distance preservation and neighborhood preservation are related notions:
Perfect distance preservation implies perfect neighborhood preservation, as nearest neigh-
bors are defined by distances. However, the converse is not true – neighborhoods are
defined in terms of the order of points as given by their sorted set of distances, and not by
the absolute value of distances. As such, very high distance-preservation errors are quite
likely to cause also significant errors in neighborhood preservation, but the two types of
errors are not reducible to each other. As all our error metrics proposed in this chapter are
essentially distance-based, we refer to them as distance-preservation errors. In contrast,
errors that use sets of nearest neighbors in their formulation, rather than distances, will
be called neighborhood-preservation errors, and will be analysed separately in Chapter 4.

Limitations: A few limitations can be identified for the techniques presented in this
chapter. The error metric described by Equation 3.1 can be quite sensitive to outliers. If
there is an outlier in the original space (Dn) then maxi,jdnppi,pjq will be much larger
than most other pairwise distances dn. Hence, after naive linear normalization, the
distances between all non-outlier points will be squeezed into a small portion of the
output (normalized) space. Unless this outlier behavior is very well-represented in the
projection (Dm), this will make the rightmost term of Equation 3.1 be quite different
than the leftmost term even when they should be similar, so well-positioned points may
still show errors. Considering also the phenomenon of ‘curse of dimensionality’, it can be
very hard for projections to represent outliers well without crowding non-outlier points
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in a very small area in the output space. The neighborhood-preservation error metrics
proposed in the next chapter deal with this by considering, for each point i, only the
ranks of neighbors of i, i.e., their discrete position in the sorted list of nearest-neighbors
of i, and not their actual distances.

Regarding our visualizations, as outlined by the examples, they can show (a) which
projection areas suffer from low quality; and (b) how two projections differ in terms of
neighborhood preservation. However, we cannot directly explain (c) why a certain DR
algorithm decided to place a certain point in some position; and (d) how the user should
tune (if possible) the algorithm’s parameters to avoid errors in a given area. In other
words, we can explain the function f : P (Eqn. 2.1) and its first derivatives over P , but
not the inverse f�1. This is a much more challenging task – currently not solved by any
technique we know of. Further explaining such second-order effects to help users locally
fine-tune a projection is subject to future work. Secondly, the parameter space P of some
DR algorithms can be high-dimensional. So far, we can only analyse the variation of one
or two parameters at a time. Extending this to several parameters is a second challenging
next topic.

3.5 Conclusions

We have presented a set of visualization methods for the analysis of the quality of
dimensionality-reduction (DR) algorithms in terms of their ability to preserve distances.
We generically model such algorithms as functions from nD to 2D, parameterized in
terms of the various settings of the respective projection algorithm. Next, we classify
distance-related projection errors into false neighbors, missing neighbors, and aggregated
projection error at both individual point and point-group level, and propose metrics to
quantify these errors. We next propose several dense-pixel, visually scalable, techniques
such as multi-scale scattered point interpolation and bundled edges to display out error
metrics in ways that are visually and computationally scalable to large datasets and also
work in a multiscale mode. We demonstrate our techniques by analysing the parameters
of five state-of-the-art DR techniques.

In contrast to existing assessments of DR projections by aggregate figures, that can
only infer overall precision, we offer more local tools to examine how neighborhoods
and groups are mapped in the final projection. The usage of our techniques is simple and,
most importantly, allows users of DR techniques to study their quality without needing
to understand complex internal processes or the exact role of each parameter in the
projections.

As noted in the introduction of this chapter, the techniques presented here only deal
with distance errors in projections. While these are, naturally, important to quantify
and see, they are not the only sources of problems in interpreting projections. As such,
in Chapter 4, we will detail the issue of quantifying and visualizing neighborhood-
preservation errors, the second most-important source of projection interpretation errors
identified in Chapter 2. Separately, Chapter 5 will show how projection errors can be
computed and used to assess distance preservation for 3D projections, and also compare
the quality of 2D and 3D projections generated by the same projection technique.
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After identifying the nature, distribution, and magnitude of errors in a given projec-
tion, a natural question for users is to assess which points get affected by such errors.
This requires explaining groups of points in a projection in terms of the underlying
high-dimensional variables. A related task of interest is to understand why errors appear
for a given subset of points of a given dataset projected by a given algorithm. Both above
tasks can be addressed by depicting the most important high-dimensional variables that
cause a projection to place points close to, or far away from, each other. Techniques that
address these tasks will be discussed in Chapter 6.

Contributions

The text of this chapter is based on the article “Visual analysis of dimensionality reduction
quality for parameterized projections” (R. Martins, D. Coimbra, R. Minghim, A. Telea),
Computers & Graphics, vol. 41, pp 26-42, 2014. The two first co-authors have had equal
major contributions to this publications, and should be seen as joint first authors. Specific
contributions of R. Martins involve: the proposal of dense image-based techniques to
encode and visualize various forms of projection errors, based on smooth interpolation,
and the design of the various error metrics (Sec. 3.2.2 and following); the adaptation
and usage of edge bundles to visualize various types of errors (Secs. 3.2.5 and 3.2.6);
and the selection, usage, and interpretation of projections constructed by the PLMP,
Pekalska, and ISOMAP techniques (Sec. 3.3.2 and following).
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Chapter 4

Visualizing Neighborhood Preservation

The visual analysis of projection errors introduced in Chapter 3 highlighted the
importance of making it clear, for the user of a projection, where and how much

the chosen projection method maintains aspects of the original structure of the data
under investigation. We showed that errors are not always equally distributed over all
points, especially when considering nonlinear projection techniques. As such, having
a local insight into the quality of the projection provides the user with good advice
for the decision of which regions should or should not be trusted. Interactive tools for
fine-grained investigation are also crucial in the process of analysing errors, allowing the
user to confirm or deny hypothesis that come from more general views.1

Chapter 3 also highlighted that the preservation of the structure of the data, in the
context of a projection, can be further quantified in terms of several metrics. One of these,
the preservation of Euclidean distances between point pairs, can be used to detect and
analyse various quality aspects related to projections, such as missing and false neighbors,
defined both at the level of individual observations and groups of observations.

However, distance-based quality metrics are not always the way to capture the
desired quality aspects of a projection. One such situation is the widespread analysis
task involving finding and reasoning about point groups and outliers. For such tasks,
actual distances between points are less important than the neighbors of points. Indeed,
we visually decide that a point-set in a projection forms a cluster by typically using the
fact that inter-point distances over the cluster are much smaller than distances between
the cluster and other points. Similarly, we visually decide that a point is an outlier if
it is located at a distance from all other points which is considerably larger than other
inter-point distances in the same projection. In both above cases, groups and outliers can
be reliably identified even if distances are not faithfully preserved by the used projection
technique. The element that plays a key role here is the preservation of neighborhoods by
the projection technique – or, in other words, the fact that the k nearest neighbors for
a point in the projection are the same as the k nearest neighbors of the same point in
the original high-dimensional space. As such, understanding neighborhood preservation
errors is of a similar importance to understanding distance-preservation errors.

In this chapter we address the task of interpreting projections by making explicit
where neighborhood-related errors appear. For this, we propose several metrics to
quantify the appearance of such errors in projections. We introduce several visualizations
that allow selecting suitable scales or levels-of-detail to examine such errors, and next
show these errors and support users in understanding and using the projection in their
presence. Our explanatory methods are simple to implement, computationally scalable,

1The content of this chapter is based on the paper Explaining Neighborhood Preservation for
Multidimensional Projections (R. Martins, R. Minghim, A. Telea), Proc. Computer Graphics and
Visual Computing (CGVC), eds. R. Borgo and C. Turkay, Eurographics, 2015.
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apply to any projection technique, and can be easily integrated in classical scatterplot
views of projections.

In this context, our main contributions are (1) three neighborhood preservation
metrics that adapt [118, 198] to find and interpret false and missing neighbors for
different neighborhood sizes given by k-nearest neighbors; (2) three corresponding
multiscale views that allow exploring neighborhood preservation errors at the desired
(local) level of detail, based on the projection’s visual topology. These are presented next.

4.1 Measuring and Visualizing Neighborhood Preservation

4.1.1 Preliminaries

Let Dn � tpiu be a set of n-dimensional points, and let Dm � tqiu the projection of Dn

into a space having m dimensions. In this context, each high-dimensional point pi has a
unique corresponding low-dimensional point qi. For simplicity of notation, and when
we need to refer solely to the identity of such a point, without specifying which of its
two ‘versions’ pi or qi we consider, we will denote it simply by point i.

With the above convention, we define a k-neighborhood of a point i as the set

νkpiq � t1, . . . , Nu (4.1)

of the k-nearest neighbors of i (for a user-given k), sorted increasingly by Euclidean
distance to i.

When a high-dimensional dataset Dn is projected into m dimensions, each point
i has two k-neighborhoods: one in Dn, denoted by νnk piq, and other in Dm, denoted
by νmk piq. All the examples in this chapter use 2D projections pm � 2) and Euclidean
distances, for illustration simplicity. However, the presented techniques can be equally
easily applied to 3D projections and/or other distance metrics.

Based on from these two k-neighborhoods, four types of points can be identified as
important for the neighborhood preservation analysis of any point i, as illustrated by the
Venn diagram in Fig. 4.1:

• missing neighbors � tpj P ν
n
k piq ^ qj R ν

2
kpiqu

These are points that, while present in νnk piq, are considered not very important by
the projection method, and therefore are pushed outside ν2

kpiq. Missing neighbors
are, thus, not found when visually examining the projection around qi.

• false neighbors � tpj R ν
n
k piq ^ qj P ν

2
kpiqu

These points are originally far away from pi (outside νnk piq), but are brought close
to qi in the resulting projection. False neighbors are, thus, points we visually see
as being close to point qi in the projection, but which are in reality far from point
pi in the high-dimensional space Dn.

• true neighbors � tpj P ν
n
k piq ^ qj P ν

2
kpiqu

These are points which are close to both qi and pi, so their visual representations
are accurate regarding the k-neighborhood of i.

68



4.1. Measuring and Visualizing Neighborhood Preservation

• not neighbors � tpj R ν
n
k piq ^ qj R ν

2
kpiqu

These are points which are not near i in either Dn or Dm for a given value of k.

not neighbors

false

neighbors

missing

neighbors

true

neighbors

ν
k
(i)
2 ν

k
(i)
n

Figure 4.1: The four types of points that can be derived from the two k-neighborhoods νnk piq and
ν2
kpiq of a point i when analysing neighborhood preservation.

Considering that projections are used to reason about point neighborhoods in Dn

by using point neighborhoods in D2, we do not want a projection to create any false
or missing neighbors, as these would mislead users when visually interpreting the data.
Ideally, a projection should only create true neighbors, i.e. νnk piq � ν2

kpiq, for all points
i and neighborhood sizes k. However, as we will see, even state-of-the-art projection
techniques are far from this ideal.

To explore how much, where, and why projections deviate from ideal neighborhood
preservation, we next propose several views to analyse different neighborhood preser-
vation aspects. As a running example, we use the well-known segmentation dataset
(2100 points, 18 dimensions) from the UCI Machine Learning Repository [116]. Each
point represents a small pixel-block extracted from 7 hand-segmented outdoor images.
Dimensions encode various image descriptors, such as color and contrast histograms
and edge detectors. This dataset is frequently used in infovis papers to assess the
quality of projection techniques in terms of being able to cluster similar image struc-
tures [95, 139, 118]. For the projection technique we use the well-known high-quality
nonlinear LAMP technique [95]. As for the investigation of distance-based projection
errors discussed in Chapter 3, other datasets and projection techniques can be directly
used.

4.1.2 The Centrality Preservation view

Since our neighborhood preservation analysis method uses a fixed k to compute neigh-
borhoods, one initial challenge is to understand, for the projection at hand, what is the
effect of the value of k on the neighborhoods being analysed, or, in other words, to
comprehend what would be a good value for k taking into account both the distribution
of points and the specific goals of the analysis. Indeed, without having such a value, one
would need to porentially analyse neighborhood preservation for all values 1   k ¤ N
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allowed by a dataset of N points. This is clearly prohibitive, both in computational costs
and in user-effort terms.

Considering this problem, we introduce the centrality preservation metric

CPkpjq �
¸

1¤i¤N,jPνkpiq

k � ρipjq � 1, (4.2)

for a set D of N points, where ρipjq is the rank of a k-neighbor j in νkpiq when sorted
in ascending order by distance to i, so the nearest neighbor has ρi � 1 and the farthest
neighbor has ρi � k.

The expected behavior of CPk is that points j that are near neighbors to many other
points i of D should be assigned high CPk values, such as points which are central with
respect to the structure of the set D, while points close to the periphery of D, which
are not near neighbors to many other points, should be assigned low CPk values. We
visualize CPk by color-coding its values over the 2D projection point-cloud using Shepard
interpolation to fill in gaps between close points and thereby generate a continuous,
easier to visually follow, color image. For the detailed description of these techniques,
we refer to Sec. 3.2.2, where we introduced them first for the visualization of distance
preservation errors. A first example of the result is shown in Fig. 4.2, for CPk computed
in both D2 and Dn.

Let us first consider CP 2
k , i.e. the centrality preservation computed over the D2

projection space (Figs. 4.2a-c). As expected, in the D2 space, points located near central
areas have higher values (closer to red) than points located near peripheral areas, which
have lower values (closer to blue). However, the exact distribution of these values
throughout the projection varies considerably as the k parameter changes. Fig. 4.2a
shows that with too low k values CPk highlights very small changes in local point
density. Assessing neighborhood preservation at such scales might not be interesting
for most real-world scenarios – even a tiny shift in the points’ positions would create
different CP 2

k values. Conversely, setting too large k values (Fig. 4.2c) highlights too
coarse-scale patterns that do not match the shape of the projection, since points j are
being considered as k-neighbors even when they are very far from the reference point
i. In the limit case k � N , CP 2

k will show a single circular gradient covering the entire
projection. This highlights the fact that, for this extreme k value, all points j � i are
considered to be neighbors of any reference point i – a configuration which is arguably
not useful for any practical analysis of neighborhood preservation. In-between values,
e.g. k � 180 for our running example (Fig. 4.2b), highlight centrality patterns which
match well the perceived shape of the projection — we see how red bumps nicely match
the main point-groups visible in the projection.

Hence, visualizing CP 2
k helps finding a good scale at which to assess neighborhoods,

and the D2 centrality view can be used to select a k which best matches the desired
level-of-detail to explore the projection, based on the match between the shapes we see
in the projection and the CP 2

k peaks. In detail, we aim to set k to obtain roughly one
such peak per individual set of points in the projection which the user regards as forming
a separate group. Note that this is not always possible: For the dataset in Fig. 4.2, the
closest we can come to this configuration is given by setting k � 180, yielding the image
in Fig. 4.2b. We see here how the left and bottom-right groups of points in the projection
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Figure 4.2: Centrality preservation view, segmentation dataset, LAMP projection. (a-c) Centrality
CP 2

k , for three neighborhood sizes k. (d) Centrality CPnk , for k � 180 neighbors.

are each nicely matched by a single red peak. However, the large central point group is
covered by several such peaks.

Once the k value is set, the analysis can now turn to the original Dn neighborhoods
by changing the values drawn over the projected points D2 to CPnk . To explain this
design, consider a projection that perfectly preserves neighbors: In such a case, CPnk piq �
CP 2

k piq,@i P t1, . . . , Nu,@k P t1, . . . , Nu, and the visualization of CPnk should match
the already-understood color gradient shown earlier by CP 2

k . Conversely, in areas where
neighborhoods are not preserved, CPnk will show perturbations to this pattern: If points
which were peripheral in Dn become central in D2, then we will see blue points in
central areas in D2, where we expect red points; and if points which were central in Dn

become peripheral in D2, then we will see red points on the periphery of D2, where we
expect blue points.

Fig. 4.2d shows CPnk for k � 180, the same value of k as Fig. 4.2b (for CP 2
k ).

While the trend of red central points and blue peripheral points is somewhat similar
in Figs. 4.2b and 4.2d, the smooth red-to-blue gradient in Fig. 4.2b is partially lost in
most areas of the image. This is an indication that there are neighborhood preservation
errors and that they are spread out all over the projection. By itself, however, this view
is not detailed enough to clearly point to the user where the errors are occurring, what
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kinds of errors these are, and why they are happening. To answer these questions,
we refine the exploration of neighborhood preservation with the set-difference and
sequence-difference views presented next in Sections 4.1.3 and 4.1.4 respectively.

4.1.3 The Set Difference view

The second proposed view, called the set difference view, compares the neighborhoods
νnk piq and ν2

kpiq of each data point i using the Jaccard set-distance [112], by computing

JDkpiq � 1�
ν2
kpiq X νnk piq

ν2
kpiq Y νnk piq

. (4.3)

This value represents the neighborhood preservation error of each point i. Its interpreta-
tion is simple: JDkpiq � 1 means that the Dn neighborhood of point i was completely
lost by the projection, while JDkpiq � 0 means that the projection preserved the k
neighbors of i perfectly. However, the neighbors’ ranks, positions, and distances relative
to point i are not considered by this error metric.

Fig. 4.3 shows three set-difference views for the same k values as in Fig. 4.2, for ease
of comparison. According to the interpretation of JDk, high values (warm colors) show
poor neighborhood preservation while low values (cold colors) show areas where neigh-
bors are well preserved. With these new images it is now possible to get extra insights
into the neighborhood preservation of the projection, in addition to the information
provided previously by the centrality preservation view (Fig. 4.2).

First, for the fine-grained scale k � 30 (Fig. 4.3a), we see a relatively low neighbor-
hood preservation (high JDk values) for most points, except the ones in the low-right
group B1. For our reference scale k � 180 (Fig. 4.3b), determined in Sec. 4.1.2 to be a
good level-of-detail to examine this dataset, we see that both smaller point-groups B1

and B2 have very good neighborhood preservation (low JDk values). This confirms that
the LAMP method was right to separate them from the central group A.

At the same scale (k � 180), an isthmus (Fig. 4.3b, marker C) can be identified
connecting group B2 with the large group A, with very high neighborhood preservation
errors. Interestingly, once we look left past this isthmus, group B2 shows a very good
neighborhood preservation (dark blue colors). This indicates that groups B2 and A

may, actually, not be close in the high-dimensional space, or, in other words, that we are
looking at a projection artifact here. We will explore this hypothesis next with our other
views (Sec. 4.1.4).

Several red islands can also be found in the central group A (Fig. 4.3b, zones D).
Increasing k to 500, these islands are reduced to a few outliers (Fig. 4.3c, zones D),
which suggests that, on a coarse scale (a scale that would better match its size, since it is
a larger group than the others), group A has little neighborhood preservation issues, so
it is indeed a large group in Dn space. However, the relatively isolated group F remains
red even at a coarse scale; this indicates that, no matter the value of k, these points are
wrongly projected close to group A’s right border.

Finally, a more subtle observation can be done. Looking at group A in the projection,
without the insight shown by the metric in the set difference view, a user may think of it
as simply a compact large cluster of very similar points. Yet, in the set difference view,
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Figure 4.3: Set difference view, segmentation dataset, LAMP projection. The figure uses the same k
values as in Figs. 4.2a-c.

we see a Z-shaped corridor of points of medium error (Fig. 4.3b, marker E) that winds
through the high-error red islands inside group A. This suggests that group A may not be
that homogeneous in Dn space. We will explore this finding next using our subsequent
views.

4.1.4 The Sequence Difference view

While the JDk metric (Eq. 4.3) comes naturally from the problem of comparing two
possibly-overlapping sets of points, and its accompanying set difference view (Sec. 4.1.3)
shows an easy-to-interpret picture of how many true neighbors a projected point has, it
has limitations that are worth noticing. As can be observed in Fig. 4.3, for example, the
results are quite sensitive to the setting of k. The three pictures generated by increasing
the neighborhood size are considerably different from each other; areas where high-
errors were abundant in one picture can be seen with very low errors in the others, and
high-error outliers are also not constant. Since, as outlined earlier, k is a free parameter
that different users may set differently for the same projection, having a view that is
strongly affected by the setting of k can be a threat to the consistency of the results
obtained from the analysis process.
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We argue that this perceived limitation is related to two properties of JDk: (a) it
ignores changes in the structure of the k-neighborhoods other than the inclusion or
exclusion of neighbors, such as whether and how much a k-neighbor j changes ranks (in
the sense introduced in Eqn. 4.2) when comparing both k-neighborhoods; and (b) how
important this k-neighbor j is, in terms of how much it is near the reference point i.

The work of Pagliosa et al. [135] proposes a Smooth Neighborhood Preservation metric
that deals with these problems by using the distances between neighbors as weights
for the error, so that the more distant a neighbor is, the less impact it has on the error.
Alternatively, to decrease the analysis sensitiveness to the setting of k and also to account
for the importance of neighbors, using their ranks instead of distances, we propose next
a sequence difference metric to compare ν2

kpiq and νnk piq as

SDkpiq �
¸

jPν2
k
piq

pk � ρ2
i pjq � 1q � |ρ2

i pjq � ρni pjq|

�
¸

jPνn
k
piq

pk � ρni pjq � 1q � |ρ2
i pjq � ρni pjq|, (4.4)

where ρipjq is the rank of a k-neighbor j in νkpiq, as defined in Eqn. 4.2. The first term in
each sum in Eqn. 4.4 assigns a higher weight to the displacement of nearer (lower-rank)
neighbors, capturing the assumption that not preserving the rank of a near neighbor
is worse, in terms of interpretation of the resulting projection, than not preserving the
rank of a distant neighbor. This is based on the way users typically interpret a projection
visually, i.e. by locally scanning and querying small point neighborhoods to find what
is most similar to a given point, before they scan further points. The metric’s second
term in each sum penalizes neighbors j which do not keep ranks after projection, i.e.
ρ2
i pjq � ρni pjq, by how much their rank is changed.

Figure 4.4 shows the sequence difference view for our running example. The four
pictures, generated for increasing scales of k, show much less differences and are more
stable when compared to the earlier views (Figs. 4.2 and 4.3), as expected. All medium
and high-error areas exposed by the set difference view (Fig. 4.3b) can still be seen, and
high-error outliers (small red dots marked in Fig. 4.4) are now much better visible at all
scales.

To explain this effect, one might think of SDk (Eqn. 4.4) as a rank-weighted version
of JDk (Eqn. 4.3). Consider a neighborhood νnk piq and its 2D counterpart ν2

kpiq which
are identical, except that the farthest two neighbors are swapped. The resulting value
SDkpiq will be equal to 2. If we take a slightly smaller neighborhood of k � 2 elements,
SDk�2piq equals zero, since the first k� 2 elements in both νnk piq and ν2

kpiq are identical.
Now, consider that νnk piq differs from ν2

kpiq in terms of the first two elements being
swapped. The resulting value SDkpiq will equal 2k, a value much larger than 2. Hence,
small changes at the border of neighborhoods, where new points are considered as k
increases, have small impacts, which yields a smooth variation of SDk as function of k.

One final observation about the definition of SDk relates to how it handles missing
and false neighbors (as defined in Sec. 4.1.1). A missing neighbor j that was originally
part of νnk piq but was pushed outside of ν2

kpiq has a ρ2
i that is greater than k. The

absolute-difference terms |ρ2
i pjq � ρ

n
i pjq| of each sum in the definition of SDk (Eqn. 4.4)
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Figure 4.4: Sequence difference view, segmentation dataset, LAMP projection, for four increasing
scales (k values).

always represent how much the rank of a point changed between both spaces, no matter
the k. The same happens to false neighbors. In a way, this approach can be considered to
join the analysis of neighborhood preservation with the analysis of distance preservation,
since SDk is able to ‘see’ beyond the fixed k value. However, it must be noted that (a)
the metric considers only neighbors (whether true, false or missing), so the analysis is
still restricted by the value of k; and (b) our metric only considers ranks and not actual
Euclidean distances between points. This last property is important because it allows
using this metric for the analysis of datasets for which the original distances are not
directly comparable to distances in the low-dimensional projection space D2. This topic
is further detailed in Chapter 7.

4.1.5 Refining the exploration

Using the set and sequence difference views, we are able to notice a few different areas
of the projection from our running example that show different levels of neighborhood-
preservation errors. This is by itself an important insight into the overall quality of the
projection, but not a fully detailed one: By using these views, a user cannot distinguish
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between errors that are due to false neighbors and errors that are due to missing
neighbors. Additionally, it is not only important to know the types of occurring errors,
but also where do these errors come from. For instance, if we have a case of false or
missing neighbors, important questions to address are which are these false neighbors,
and where are the missing neighbors, respectively. To address these tasks, we next
propose visual representations of νnk piq and ν2

kpiq for specific selected qi’s, similar to the
techniques used in Sec. 3.2.4 for the detailed analysis of distance-preservation errors.

The first scenario of local analysis is shown in Fig. 4.5 for our running example.
The proposed visual encoding works as follows: For any selected point qi, its true
k-neighbors are colored according to their proximity to i in Dn, i.e. k � ρni � 1, so
that higher values mean nearer k-neighbors. The colormap for this analysis, while very
similar to the ones used in previous figures in this chapter, has one distinct feature:
Transparency is assigned to points according to their values, increasing linearly with
the proximity to i (the same value mapped to color). Hence, nearer k-neighbors are
more opaque, while farther k-neighbors are slightly less apparent. All points that are
not k-neighbors – they are neither in νnk piq nor in ν2

kpiq, so they are not relevant to this
analysis – are assigned ρni � k � 1, as if they were all just outside the k-neighborhood.
This means that in the view they are assigned the value 0 and, thus, get the maximum
assigned transparency. This design is useful for a better visibility of missing neighbors.
These are visualized by connecting them with lines to the reference point i, and next
bundling these lines to reduce clutter caused by many crossing lines and also emphasize
the main groups of missing neighbors, similarly to the missing neighbors finder technique
proposed in Sec. 3.2.5 for distance-based errors. The bundled lines are colored using a
gray scale where closer k-neighbors are darker than farther ones.

a) b)

left group

central group

border

q

q’

missing neighbors
of q

closefar

true neighbors

not neigh.

Figure 4.5: Local analysis of the connection between the left and central groups. The visual border,
seen also in Figs. 4.3b and 4.4, is marked by a dotted curve.

The set difference view (Fig. 4.3b) shows a salient border, or color gradient, that
seems to separate the highly-coherent group of points in the left of the projection from
the large central group via an isthmus of in-between points (see Fig. 4.3b, marker C).
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This finding suggests the hypothesis that the left point-group is actually well separated
from the central group in high-dimensional space, and that the linking isthmus is mainly
an artifact of the projection.

To verify this hypothesis, we first select the point q (Fig. 4.5a), to the right of the
border and inside the high-error area of the isthmus. Warm colors spread only to the
right of the border, which means the nearest true k-neighbors of q are all placed to
the right of the border and towards the large cluster. With the missing k-neighbors
(bundled edges) it is exactly the same: dark edges all point to the inside of the central
group, which means that k-neighbors that were originally close to q in Dn are located
in the inner parts of the central group. In other words, we conclude that the points on
the isthmus form indeed a tight k-neighborhood in Dn, as suggested by the previous
views, but while that k-neighborhood is visually close to the left group in D2, there are
no strong indicators that it is also the case in Dn.

Neighborhood relationships are not commutative, however: If a point A is one of the
nearest k-neighbors of a point B, that does not necessarily mean that B is also one of
the nearest k-neighbors of A (and vice-versa, for far neighbors). Therefore, to conclude
the investigation of our hypothesis, it is also important to analyse the points outside of
the isthmus and in the left group. Repeating the same operations for a point q1 located
to the left of the border (and outside the high-error area of the isthmus), we can see
a nearly exactly complementary picture (Fig. 4.5b): All true and missing k-neighbors
of q1 are located inside the left group. The only difference is that q1 has fewer missing
k-neighbors, and the ones which are there are not important – light-gray edges mean
that these k-neighbors were originally already far from pi in Dn, and they do not reach
far into the left group, but stop at the border of the colored true k-neighbors.

Together, the above two findings lead to the conclusion that the border we discovered
by our views, highlighted in Fig. 4.5 as a dotted curve, is indeed an important and
well-defined division between the multidimensional data points from the left and the
central groups. Without the tools and views presented in this section, starting all the way
from the general detection of a potentially problematic region and ending in the specific
and detailed analysis of the k-neighborhoods of the points around the area, this insight
might not be easily obtained by a user of this projection. Further on, without this insight,
the visual analysis of this complex area in the projection might mislead and erroneously
drive the exploration of the data.

4.1.6 Ground truth analysis and comparison

The segmentation dataset we used as a running example is a collection of 2100 3x3 pixel
regions, also called instances, drawn randomly from a database of 7 outdoor images and
represented by attributes related mainly to the positions and colors of the pixels. The
information of which image each instance comes from is available as a class attribute and
can be used to separate the instances in 7 different groups. However, this information
is not used by the projection method, in line with typical machine learning procedures
where one wants to (a) automatically extract features from a dataset and next (b)
validate the usage of these features by correlating them with manual annotations, or
ground truth, information. In our context, assessing the projection in terms of finding
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correlations of the neighborhood-preservation error and mix of class attributes is a
potentially useful way to reason about the causes of the appearance of these errors.

Following this idea, we show our running example dataset in Fig. 4.6 colored by
the ground truth (class attribute). Next, we analyse how much of the patterns and
visual features related to neighborhood preservation, which we identified earlier with
our proposed views, match the distribution and position of patterns implied by the class
attribute. For clasity, we show the color-coded projection image twice, once without
and next with superimposed annotations. We also note that the Shepard attribute
interpolation used earlier is now not employed, since the class attribute is a categorical,
rathern than quantitative, one.
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Figure 4.6: Original classification (ground truth) for the segmentation dataset.

Comparing Figure 4.6 with our earlier images showing neighborhood-preservation
errors (Figs. 4.3 and 4.4), several observations can be made: Classes 1 and 6 are very well
separated in the projection, and their respective areas coincide with high neighborhood-
preservation areas in the projection. High-error zones detected earlier inside the large
central group are also apparent when comparing the mixing of classes; one point (outlier
a), part of the highly-cohesive class 1, can be found in the middle of points from classes
3 and 5, while a few points from class 5 (outliers b and c) are far away from the main
zone covered by their class, in the upper part of the projection, so most of their nearer
neighbors are from other classes. The Z-pattern inside the large central group, found
in our previous views to show less errors than its surroundings, can now be traced
roughly to the layout of points from classes 2 and 7 along the large cluster. Points in
this Z-pattern, while still considerably mixed with points from other classes, have less
error because their classes are relatively well-grouped among the clutter (so their near
neighbors are mixed, instead of mostly good or mostly bad). Finally, our main focus area
in Sec. 4.1.5, the isthmus connecting group B2 to group A, can also be explained by
observing the distribution of points from class 3, starting from the border of group B2

and moving towards the inner area of group A.
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In Section 2.4.2, a few existing techniques for the visual analysis of neighborhood
preservation in projections were presented. These techniques share some of the goals
of the views proposed in this chapter, but propose different approaches to reach them.
To better illustrate the differences and added-value of our proposed views, we selected
the work of Schreck et al. [159] for comparison, and computed the herein proposed
projection precision score (pps) for the same example and k values as in Fig. 4.4.

a) k=30 b) k=180

c) k=500 d) k=1000

low high
pps

Figure 4.7: Projection precision score (pps) [159], segmentation dataset, LAMP projection, for four
scales (k values).

The resulting visualization of the pps score is shown in Fig. 4.7. For the first two k
values (30 and 180), it is hard to see any quality difference between different projection
regions. For the last two k values (500,1000), some of the patterns we obtained with
our proposed views show up a bit better, such as the isthmus between the left and
central groups, a few high-error outliers, and the overall lower error of the bottom-right
group. However, these views are much more sensitive to the chosen scale (k value)
than ours, and the salience and separation of interesting patterns from noise is harder.
Also, patterns such as the Z-shaped zone of low errors separated by high-error islands
in the central point-group (Fig. 4.3) are not visible. Last but not least, the technique
proposed in [159] only proposes the visualization of the pps score, but does not introduce
additional explanatory tools to refine the exploration by e.g. explaining the causes of
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identified high-error patterns.

4.1.7 Additional examples

To expand on the initial examples from previous sections, we next offer additional insight
into the way that our proposed neighborhood-preservation exploration tools work by
showing how they can be useful in the analysis of different datasets and projections.

The first example discussed next uses the Corel dataset, consisting of 1000 instances
where each represents a photograph described by 150 SIFT features, common in image
analysis [115]. We constructed the projection of the data using LAMP [95] and obtained
the star-shaped image in Fig. 4.8a. By observing the distribution of points in this
projection, it can be hypothesized that there are several well-separated image clusters
in the dataset, one for each branch, while a group of “average” images which have no
separate group identity and/or which are similar to instances from many different groups
populate the center of the projection.

We start by checking the centrality preservation for both Dn and D2 (Fig. 4.8b–c).
The selected value of k � 75 roughly captures the two-dimensional layout of the points
into branches (Fig. 4.8b). The picture for the centrality in Dn is completely different
(Fig. 4.8c): Most of the centrality seems to have been ‘lost in the translation’. This
does not mean (yet) that the projection is wrong in any specific way; it may be the
case that the Dn space is so sparse that, for the selected scale k, no points stand out as
being particularly central. However, this image does indicate that the projection layout
differs from the original in terms of centrality. As such, it is interesting to investigate the
neighborhood preservation to get more insight into why this loss of centrality happened.

min maxa) b) c)CPk CPk 
2 n

Figure 4.8: Corel dataset, LAMP projection, k � 75 neighbors. (a) Projection without error metrics.
(b) Projection colored by CP 2

k . (c) Projection colored by CPnk .

We next inspect the set and sequence difference views (Fig. 4.8a,b). Similar to our
previous running example, the set difference view shows a medium-to-high neighborhood
preservation error spread rather uniformly over the projection (Fig. 4.8a), with a hint
of some branches having better preservation than others. This difference between
the branches is confirmed by the sequence difference view, which allows us to better
distinguish the high-error and the low-error branches (Fig. 4.8b). Another advantage
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4.1. Measuring and Visualizing Neighborhood Preservation

of the sequence over the set difference view, in this case, is that it allows us to better
comprehend the distribution of errors in the central area: While these errors are quite
similar for the set difference view (Fig. 4.9a), the sequence difference view shows us
more clearly the outliers with the largest errors (Fig. 4.8b). These insights indicate that
some branches represent more cohesive groups, i.e. groups having more similar images,
than other branches.

a) b)min maxJDk SDk 

low error

branch

high error

branch

high error

center

Figure 4.9: Corel dataset, LAMP projection, k � 75 neighbors. (a) Set difference view. (b) Sequence
difference view.

Considering this difference of behavior in each branch, we move into investigating
what are the relationships between branches or, in other words, whether D2 neighbors
between star branches represent the Dn neighborhood as well as D2 neighbors along star
branches. To highlight specifically the neighborhood preservation errors of a selected
point qi, we slightly change the visual encoding used in previous figures of local analysis,
to obtain the result showin in Fig. 4.10: Here, color encodes the false k-neighbors of qi
inversely by their rank, with values computed by k � ρ2

i � 1, so nearer false k-neighbors
are shown with warmer colors while distance false neighbors have cold colors. This
design is chosen to better highlight the more important problems – false k-neighbors that
are nearer to qi are worse than those which are farther. Points which are not k-neighbors
are half-transparent blue, to make them less salient in the analysis. The encoding of the
edges connecting a selected point with its neighbors is also slightly changed: Instead
of showing missing k-neighbors only, edges in Fig. 4.10 show the entire neighborhood
νnk piq of the selected point i.

With this visual encoding, we first select a point qi on a star branch having low
neighborhood preservation error (Fig. 4.10a). Seeing warm colors all around the point
qi, especially in nearby branches, is an indication that this point is surrounded by
false k-neighbors. These points, although near qi in D2, are actually ‘intruders’ in the
projected neighborhood, since they are not part of νnk piq. Edges emerging from qi
precisely follow the star branch that point i is located into and do not bifurcate to nearby
branches to the right or left. This confirms our observation that points along the branch
are nearer to pi in Dn, and points across the branch (which are not present in the edge
bundles) are not. However, these edges continue to reach for k-neighbors that are very
far from the selected point, going all the way to a branch on the opposite side of the
projection. This not only helps to explain the high errors detected in this area, but also
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Figure 4.10: Local neighborhood analysis for the Corel dataset, LAMP projection, k � 75 neighbors.

show where these points should have been positioned to be nearer their Dn k-neighbors.
We next select a different point q1i in another star branch. The resulting visualization

shows a completely different situation (Fig. 4.10b). Not only are the false k-neighbors
few and having cold colors, but the edges linking the selected point to its neighbors
are all limited to its own branch, explaining why it presented such low errors values.
Hence, we conclude that points in this star branch are indeed much more similar to each
other than points located in nearby branches. As such, we argue that the interpretation
of this projection should be done differently than the intuitive paradigm of closer is
better, common when there are no insights into the projection’s error: points should be
considered closer not based only on their D2 distance between each other, but specially
based on their distance following the star branches, as if there were walls separating the
branches.

Finally, we select a point q2i in the star center (Fig. 4.10c). The edge bundles end up
reaching both very close but also very far from q2i , into two opposite star branches. This
confirms to us that, indeed, a point in the central region has a confusing k-neighborhood,
with its Dn k-neighbors spread over large extents of the projection. Moreover, all its
nearest k-neighbors in the projection, shown by the color coding, are actually false,
which contributes even more to the high error values observed in this area.

The second application uses the Github dataset, a collection of 725 observations,
each describing one among the highest-ranked open source software projects hosted at
GitHub [65]. For each project, 30 software metrics were extracted describing various
aspects of its development, such as size (lines of code, file count), average coupling
and cohesion of modules, complexity, and number of forks and open issues [107]. We
then create a visual representation of this 30-dimensional dataset using the LSP projec-
tion [139], with the goal of finding clusters of projects with similar quality attributes
or trends in the spatial distribution that could indicate how these metrics behave in
real projects. The result, presented in Fig. 4.11, shows mainly a large central cluster,
surrounded by a few outliers. By looking at this projection without any of the visual
helpers we introduced, a first question is raised: Are all projects indeed simply grouped
into one similar set, or is the lack of separated clusters an artifact of the LSP technique?

To answer this, we first select a suitable neighborhood size (k value), as explained
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Figure 4.11: Neighborhood-preservation analysis for the Github dataset, LSP projection, k � 72

neighbors.

in Sec. 4.1.2, and obtain a value of k � 72. We start by inspecting the set difference
view (Fig. 4.11a). While a quite poor neighborhood preservation can be observed for
most points – which would suggest that LSP does not work optimally for this dataset
– two groups of points seem to stand out for opposite reasons: G1 stands out for its
especially large errors, and G2 stands out for showing lower errors than the remainder
of the projection. The sequence difference view (Fig. 4.11b) confirms that G1 has indeed
the largest neighborhood preservation error in the projection, while G2 still maintains
very low errors. We have now two indicators of special point groups that, for different
reasons, stand out from the initially roughly plain visualization.

We next examine these groups in detail by selecting a point of interest. The visual
encoding is the same used in Sec. 4.1.5: Colors represent the selected point’s true
k-neighbors and the missing neighbors are shown with bundled edges. When we
select a point q1 P G1 (Fig. 4.11c), we quickly see that q1 is surrounded by false
k-neighbors – there is only a very small hotspot around the selected point that represents
its true k-neighbors. Another interesting observation is that not only most of the missing
k-neighbors are far away from the selected point, but all edges are high-valued (dark),
which means that these neighbors were actually very close to p1 in Dn. These missing
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neighbors are all grouped into a small area on top of the projection, which by all
indications seems to be the right neighborhood for q1. The reason why these neighbors
were placed so far away from q1 is, however, not something our techniques can explain –
possible causes can range from the limitations of the LSP technique to the inappropriate
tuning of the technique’s parameters and to the similarity of these missing neighbors to
other points located in the top area of the projection. In contrast, when selecting a point
q2 P G2, we see almost no edges reaching out (the only out-reaching edge is light-gray
and going to a nearby point), and the points around q2 are warm-colored, so most points
in the projection around q2 are indeed its true neighbors (Fig. 4.11d). Hence, there are
strong indications that G2 is indeed a cohesive group in Dn and, since it is relatively
well separated from the central group, we conclude that it represents a set of software
projects that are highly-similar between themselves and quite different from the rest of
the analysed set.

4.2 Discussion

We next discuss several technical aspects of our proposed views for analysing neighbor-
hood-preservation.

Workflow: Key to the success of a visual analytics application is proposing a workflow
that users should follow to obtain desired insights. In our case, this workflow has the
following four steps: (1) Use the centrality view to determine a suitable value for k
at which the neighborhood size matches well the size of the patterns of interest in the
projection; (2) Use the set-difference view to find out how errors are spread over the
projection and what is the average error size; (3) Use the sequence-difference view to
locate outliers, i.e. zones having the largest (or smallest) errors; (4) Select points of
interest in the projection, either in areas describing observations relevant for application-
dependent tasks, or else in high-error areas, and use edge bundles to find where their
true neighbors are located; (5) Use insights from (2-4) to determine where the true
boundaries of strongly-related point groups in the projection are; (6) Decide, based
on (2-5), whether the projection supports the tasks at hand in presence of all found
errors, and how to interpret the projection; or whether these errors are too large and/or
numerous, which means that a different projection is required.

Generality: Our techniques can be applied for any projection technique, including lin-
ear [186, 24] and non-linear ones [139, 192, 179, 141], in a black box fashion. That is,
we only need to access the input high-dimensional points and the output low-dimensional
projections thereof, and need no details of, or access to, the projection internals. This
makes adding our techniques easy to any projection-based application.

Scalability: Our projection metrics require the computation of k neighborhoods for N
points in Dn and D2. We do this efficiently by using the fast nearest-neighbor search
provided by [6], which is Opkn logNq, and can handle any number of dimensions n and
many types of distance metrics. Practically, this means that we can compute our metrics,
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and generate our views, in real time on a typical PC computer for tens of thousands of
points having tens of dimensions.

Evaluation: Analysing neighborhood-preservation of projections is certainly not a prob-
lem with a single simple solution, given the variability and wide range of projection
techniques, parameter settings, and datasets. The results presented in this chapter
show how our proposed techniques work with a few representative and well-understood
combinations of projections, parameter settings and datasets, which were selected to
illustrate how our techniques behave in a few different key scenarios. However, we
acknowledge that the presented experiments could not cover the entire aforementioned
space of possibilities. As such, more strict and more thorough evaluations and validations
are required. One important example of future work in this direction is the evaluation of
the proposed metrics with the use of artificial datasets specifically crafted to evaluate
possible limitations, such as their sensitivity to outliers.

Neighborhood vs Distance Preservation: As discussed in Sec. 3.4, distance-preser-
vation and neighborhood-preservation are related, yet different, quality aspects of a
multidimensional projection. Ideally, a projection should preserve both distances and
neighborhoods. However, as seen in the many examples presented both in this chapter
and Chapter 3, even state-of-the-art projections have challenges in meeting both these
aspects. In such situations, we believe that selecting between using distance-preservation
and neighborhood-preservation exploratory tools should be based mainly on the tasks
implied by the application at hand: When these tasks involve comparing distances be-
tween points, then distance-preservation errors are clearly to be considered and explored.
In contrast, when tasks involve reasoning about apparent groups of close points in the
projection, then neighborhood-preservation errors should be explored first and foremost.

4.3 Conclusions

We have presented a visual exploration method for finding and explaining neighborhood
preservation errors in multidimensional projections. Our method supports assessing
the usefulness of a projection in terms of determining its overall quality, local errors,
and how these errors should be considered when interpreting the projection to reason
about the underlying high-dimensional data. Our techniques complement and extend the
set of existing tools for projection exploration including aggregate error metrics, neigh-
borhood preservation plots, and distance-error views, thereby offering users additional
ways to reason about the usefulness and usability of multidimensional projections for
data analysis tasks. In particular, our neighborhood-preservation exploratory tools add
themselves to the distance-preservation exploratory tools presented in Chapter 3: They
propose a similar top-down analysis of the distribution and magnitude of errors, and
employ similar visual interactive techniques to depict the measured errors. The two sets
of exploratory tools complement each other, in the sense of offering the user detailed
insight in projection errors that affect different types of exploratory tasks.

At a global level, both distance-preservation and neighborhood-preservation ex-
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ploratory tools serve a number of different tasks, such as assessing the suitability of a
given projection result for a given analysis goal; finding potential interpretation problems
in a projection; and comparing several projections or projection techniques to decide
which is more suitable, in terms of error, for a given analysis. The last point involves not
only comparing different projection techniques against each other, but also comparing
projections that create results of different dimensionalities, such as 2D or 3D scatterplots.
The topic of comparing 2D and 3D projections from the perspective of produced errors,
and next augmenting 3D projections with suitable explanatory mechanisms to bring
them to a level of ease-of-use comparative to 2D projections, is explored in the next
chapter.
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Chapter 5

Explaining 3D Multidimensional Projections

The previous two chapters have presented several examples showing how multidi-
mensional projections can help in understanding the structure of high-dimensional

datasets by creating two-dimensional (2D) representations thereof. Such representations
can, next, be used to reason about data features such as groups of observations, outliers,
and trends. Separately, we have shown how to augment 2D projections to show where
errors occur in the projection process with respect to the lack of preservation of distances
and/or neighborhoods of observations. Showing such errors is essential to gauge the
degree of trust one can assign to the discovered structures in the 2D projection, in
terms of knowing how much these structures reflect actual structures present in the
high-dimensional data or, alternatively, whether these structures are projection artifacts.

Our results shown in Chapters 3 and 4 show that projection errors, in terms of
distance and/or neighborhood preservation, occur up to various degrees for all the
studied projection techniques and datasets that we have analysed. As outlined in the
respective chapters, this result is not surprising, and it is caused by the large difference
in dimensionality between the input high-dimensional space and the output 2D space
where the projection resides.

Given the above, three-dimensional (3D) projections are an interesting alternative to
two-dimensional projections in terms of reducing projection errors. Indeed, the extra
dimension offered by 3D projection diminishes the dimensionality difference outlined
above and, as such, reduces projection errors [97, 139, 148]. Additionally, for state-of-
the-art projection techniques, the computational and end-user effort required to generate
3D projections is practically identical to the one required to generate corresponding 2D
projections. As such, 3D projections represent an interesting alternative to 2D projections
when exploring high-dimensional datasets.

However, multidimensional 3D projections come with additional challenges, as
follows:

• Accuracy: While, in general, 3D projections have a lower projection error as
compared to their 2D counterparts, the assessment of such projection errors has
been done so far using mainly aggregated projection errors [97, 139, 148]. For a
fair comparison of 2D and 3D projections, a more fine-grained error assessment
is required, in line with the techniques we proposed for 2D projection error
assessment in Chapters 3 and 4.

• Usability: 3D projections output a 3D point cloud, which is next visualized usually
as a scatterplot. However, in contrast to classical 3D scatterplots whose axes have
clear meanings (they map data variables one-to-one), the axes of a 3D projection
do not carry any particular meaning. As such, interpreting such scatterplots is
challenging in an absolute sense [50], but also in a relative sense, if we compare
them with the easier to interpret 2D scatterplots created by projections [128,
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205, 163]. As users rotate the 3D scatterplot to find a suitable viewpoint, several
questions arise, such as: How much of the original data structure has the projection
preserved? What is the meaning of the 3D directions along which scatterplot points
are spread, in terms of original variables? How can we see values of these variables
in the scatterplot? What are good viewpoints to look at the scatterplot from, given
a set of questions on these variables?

To support the claim that 3D projections are effective tools for exploring multidimen-
sional datasets, we have to study both above points in detail. Indeed, for a 3D projection
to be indeed effective, it has to (1) provide measurable added-value in terms of reduced
errors, as compared, again, to a 2D projection; and (2) be easy to use, at least up to a
similar level as compared to a 2D projection.

In this chapter, we address the above two aspects concerning the explanation and
error-assessment of 3D dimensionality reduction (DR) projections, as follows. First, to
address point (1) outlined above, we extend our error metrics proposed in Chapter 3 to
handle 3D projections (Sec. 5.1.1). Separately, we use these error metrics to compare 3D
projections with their 2D counterparts, for a given projection technique and dataset. This
provides a way to compare the added-value of 3D projections vs their 2D counterparts in
a quantitative and detailed way, and thereby supports the general argument made for
the added-value of 3D projections. Secondly, we propose a set of interactive explanatory
visualization techniques to help users answer the questions listed under point (2) above
for 3D DR projections (Sec. 5.1.2 and following). Our techniques work as add-ons to
any DR technique, i.e., do not depend on technical aspects of the DR algorithm being
used. We keep their visual design simple, so that learning to use them requires limited
effort. While we also use interaction to explain a projection, like [51, 210, 134], our
focus is to explain projection-space distances in terms of the original n-D variables, rather
than showing similarities of projected points with a user-selected set of variable values
or extracting higher-level semantics from variable values. As such, we do not modify
our projection, as we consider it to be our ‘ground truth’, and also give a key role to
the n-D variables in our explanation. We integrate our techniques with classical 3D
scatterplot views, so that they can be readily used to assist typical projection-exploration
scenarios, or in other words, explain the projection. We illustrate our visualization
techniques by applying them to several data exploration scenarios involving real-world
multidimensional datasets and a set of recent DR projection algorithms.

The structure of this chapter is as follows. Section 5.1 introduces our explanatory
visualizations for 3D projections, both in terms of understanding the projection errors
and in terms of understanding which variables are best explained by a given viewpoint
of the corresponding 3D projection, via a simple dataset. Section 5.2 illustrate how our
visualizations can answer several questions on 3D scatterplots created by several DR
techniques from real-world datasets, thereby showing how these techniques augment
the usability of 3D projections. Section 5.3 discusses our techniques. Finally, Section 5.4
concludes this chapter.
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5.1 Explanatory Visualizations

To illustrate our proposal next, we choose a simple sample dataset. This dataset has 2814
points, each having 9 attributes (dataset ALL in [136]). The points represent scientific
papers. The dimensions were created by using stemming and stop-word elimination on
the text of the scientific abstracts of the respective papers, followed by calculating the
term-frequency-inverse-document-frequency count [154], well known in text mining.

Classes

Figure 5.1: Three different viewpoints of the 3D LAMP projection of the ALL dataset [136].

Our first visual exploration of this dataset, shown in Fig. 5.1, depicts the data using
a 3D projection, computed by the LAMP technique LAMP [95]. Projected points are
color-coded by an additional categorical class attribute – not used in the projection –
using the categorical colormap indicated in the figure. This attribute describes the topic
of the respective documents, and was assigned manually to the dataset, after inspection
of the abstracts. Three 3D viewpoints of this visualization are shown in Fig. 5.1.

Looking at the images in Fig. 5.1, the only (relatively) salient aspect one can find,
is the presence of a number of relatively compact same-color points in the scatterplot.
Assuming the LAMP projection indeed preserves distances, this would indicate that
documents whose topics (as found by humans) are similar, also have similar high-
dimensional attributes. If so, this would be an interesting finding, further justifying the
use of the respective attributes for e.g. automatic topic mining or similar tasks [136].

However, the insight provided by our 3D projection stops here. Besides seeing the
above-mentioned color-coherent point groups, there is little other insight we can directly
get from the image. For instance, we cannot see how the nine dimensions of the dataset
correlate (or not) along the projected points, or along specific point clusters; we do not
know which specific variables (dimensions) or value-ranges thereof define a specific
cluster; we do not know how are the distances and/or neighborhoods of the original
space preserved, by this specific technique, in three dimensions (thus, how much we
should trust what the 3D projection shows); and finally, we have no guidance in choosing
suitable viewpoints that best support a given question concerning the data.

As such, this ‘raw’ 3D projection is not very useful: It tells us that the nine attributes
extracted from the document dataset seem to correlate relatively well with the ground
truth captured by the class attribute, which is a desirable situation for e.g. further

89



Explaining 3D Multidimensional Projections

building automatic classification systems for such documents. However, this image
does not tell us how attributes correlate with document classes or how well the final
layout represents the original data. The remainder of this chapter presents methods and
techniques to address the above two points.

5.1.1 Accuracy of 3D projections

We start our exploration of 3D projections with an analysis of how the errors are
distributed in such projections. In turn, this will help us to gauge the added value of
3D representations over 2D ones in terms of the accuracy of the representation of the
multidimensional data space. To do the above error assessmebt, we adapt one of the
techniques we introduced in Chapter 3: the aggregated distance-based error. While this
method was initially used only for 2D scatterplots created by 2D projections, it can be
readily applied to 3D with minimal adaptation. Recall that, as defined in Section 3.2.1,
the aggregate normalized projection error emi P r0, 1s is

emi �
¸
j�i

���� dmpqi,qjq

maxi,j dmpqi,qjq
�

dnppi,pjq

maxi,j dnppi,pjq

���� . (5.1)

Here, dn, dm, p, and q are identical to the respective terms introduced earlier in Eqn. 2.2.
Note also that emi is essentially a different way to scale the aggregated normalized
projection error eaggri (Eqn. 3.2) introduced in Sec. 3.2.2. The error emi , m P t2, 3u,
briefly put, measures how well the distances between a projected point i in mD, to all
other points j � i, reflect the same distance-pairs between points pi, jq in the original
n-dimensional space. For details, we refer to Section 3.2.2, where we have introduced
the aggregate normalized projection error.

To compute and compare the error of a 3D projection with the similar error of a 2D
projection, we propose three different formulations, as follows.

2D projection error: For the studied ALL dataset, we start by computing its projection
error as given by projecting the 9-dimensional dataset to two dimensions, using the
LAMP technique. Figure 5.2a shows this error, which was computed in the exact same
way as described in Chapter 5.1 – that is, by comparing the original 9-dimensional
inter-point distances with the distances between the same points in the 2D projection
space. The result is a layout with a dense grouping of points in the center and some
outstretching spearated clusters that spread away towards the borders of the image, in
different directions. Distances are well-preserved in the center of the projection, despite
the cluttering, with some high-error outliers on the periphery and a tendency of mid-level
errors towards the tips of the outstretching clusters.

3D projection error: A second way to compute the projection error is to use a 3D
projection rather than a 2D one. In this case, the final projection space has m � 3

dimensions rather than m � 2, as used earlier in Fig. 5.2a. Figures 5.2b–c show the
error emi computed for m � 3 dimensions, by directly applying Eqn. 5.1 with m � 3

instead of m � 2. Given that the error formulation is view-independent, its values will
be the same (for the same 3D points) in any different viewpoints for the same projection.
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Figure 5.2: Analysis of aggregated distance-based errors of different LAMP projections of the ALL
dataset: (a) 2D projection errors; (b,c) 3D projection errors for two different viewpoints;
(d,e) 3D viewpoint-dependent projection errors, for the same viewpoints shown in
images (b,c) respectively. See Section 5.1.1.
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We can see then, by looking at Figs. 5.2b–c, that for this specific combination of dataset
and projection (our running example – ALL and LAMP), the errors of the 3D projection
behave in a very similar way to the errors of the 2D projection earlier shown in Fig. 5.2a:
We see a very good distance preservation (low error) in the center of the projection;
some high-error outliers in the periphery; and mid-level errors towards the tips of the
point clusters visible in the projection.

3D viewpoint-dependent projection error: Given the above observation, what is, then,
the added-value of using a 3D projection in this case, as compared to a 2D projection?
To answer this question, let us consider the key factor that a 3D projection is not a static
image, but a potentially infinite set of 2D images, where each image is generated by
drawing the computed (fixed) 3D projection from a user-specified viewpoint. As such,
the actual projection error, in the sense of the discrepancy perceived by an end user
between the (invisible) inter-point distances in the original high-dimensional space and
the visible inter-point distances shown on the computer screen, is a function of both the
3D projection and the viewpoint from which this projection is further viewed. To capture
this ‘composition’ of the nD-to-3D and 3D-to-2D projections involved in generating the
final image, we introduce a different way of calculating emi for a specific viewpoint of a
3D projection: Instead of using the 3D inter-point distances to compute the projection
error, we first project, for a given viewpoint, the 3D points in the 2D screen plane, and
next use the points’ 2D positions to compute the projection errors. In other words, our
projection error applies Eqn. 5.1 with m � 2, and with the 2D point positions given
by the concatenation of the nD-to-3D projection (LAMP) and the 3D-to-2D viewpoint-
dependent projection. The effect of this new type of error computation is that the error
of each point changes interactively with the chosen viewpoint. As such, the errors we
see, at any moment, are the actual errors of the picture that is being shown on the screen
as compared to the high-dimensional data.

Figures 5.2d–e show the errors computed with this new method (3D viewpoint-
dependent errors) for the same viewpoints as shown in Figs. 5.2b–c. The obtained
error plots shown in Figs. 5.2d–e are quite different from the 3D errors shown in
Figs. 5.2b–c and also from the 2D projection errors shown in Fig. 5.2a. For instance,
the error shown for the viewpoint corresponding to Fig. 5.2d is considerably lower than
all other errors shown in Fig. 5.2. In other words, this specific view of a 3D projection
of the analysed dataset reflects the high-dimensional inter-point distances best from all
considered projections. For instance, the viewpoint shown in Fig. 5.2e shows that the
displayed errors are worse than any other shown in the other considered projections
and/or viewpoints thereof – we see high-error outliers mixed in the central area, and
mid-to-high-error points all around the periphery.

From the insights presented in Fig. 5.2, several conclusions can be drawn. First
and foremost, we see that 3D projections have a measurable added-value as opposed to
the classical 2D projections studied in Chapter 3: If viewed from a suitable viewpoint,
such 3D projections show lower errors than corresponding 2D projections using the
same projection technique and executed for the same dataset. In other words, it can be
better (error-wise) to use an nD-to-3D projection, followed by the choice of a suitable 2D
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viewpoint, than to use a direct nD-to-2D projection. However, a direct consequence of
this is that the choice of viewpoint can also negatively influence the result, in terms of both
its error and the insight it can convey: Depending on the choice of such viewpoints, one
can achieve lower, but also higher, errors as compared to a ‘static’ viewpoint-independent
2D projection. Thirdly, we see that 3D projections clearly suffer from a given amount
of occlusion – that is, not all observations will be equally well visible from any chosen
viewpoint. Therefore, depending on the analysis task at hand, certain viewpoints of the
same 3D projection may be better (or worse) than other viewpoints. The main conclusion
of this error analysis of 3D projections is, thus, that 3D projections do have the potential
of showing better insights into the original high-dimensional dataset than static 2D
projections, but such insights are dependent on the choice of a suitable viewpoint. As
such, we will next explore the design of explanatory mechanisms that show how users
can choose good viewpoints of 3D projections for exploring specific aspects of the data
at hand.

We next show how such raw 3D scatterplots can be enhanced with visual explanatory
tools to address the above-mentioned questions regarding the connection of the visible
structures in the scatterplot with the original high-dimensional attributes. These tools
include enhanced biplot axes (Sec. 5.1.3), enhanced axis legends (Sec. 5.1.4), and a
viewpoint legend (Sec. 5.1.6). Following a brief overview of the explanatory goals we
aim to address (Sec. 5.1.2), these tools are explained next.

5.1.2 Attribute exploration in 3D projections

Refining the explanatory goals outlined at the beginning of this chapter, we identify
the following aspects which we aim to address for a 3D projection (for details, see our
original publication [35]):

1. explain the dimensions of the 3D projection space based on the original n high-
dimensional attributes;

2. explain the distances between projected 3D points based on the corresponding
distances between the same points, in the original nD space;

3. support users in choosing viewpoints that are good for addressing given data-
exploration tasks;

4. compare how good 2D and 3D projections are, relative to each other, in supporting
specific data-exploration tasks;

As introduced in Sec. 2.5, these aspects are currently addressed by a number of visu-
alization techniques. We briefly overview these techniques and their limitations in the
context of, and with a focus on, explaining 3D multidimensional projections.

Aspect 1 is a well-known, and much, studied, problem in visualizing multidimensional
data by means of dimensionality-reduction methods. Arguably the earliest methods to
address this aspect are biplots [71, 69]. Biplots can be best understood by comparing
them with classical scatterplots: In a classical scatterplot, data (having two or three
dimensions) is projected along two, or three, perpendicular axes, respectively. This
way, one can directly read the values of the original variables along the respective axes,
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much like in a Cartesian plot. In contrast, biplots achieve the same goal (linking the
positions of the projected observations with values of their variables) by adding, to
the plot, depictions of the values of the variables of the projected dataset. As Gower
mentions [69], this allows correlating observations with each other, and also correlating
observations with values of their variables. The distribution of the projected variable
values are called biplot axes, by analogy to the (Cartesian) axes of a classical scatterplot.
In this model, there are, thus, as many biplot axes as original high-dimensional variables.
However, in contrast to Cartesian scatterplots, these biplot axes need not be, and they
usually are not, orthogonal to each other – indeed, the original variables need not be
(fully) independent. When shown in a visualization, biplot axes help seeing the way the
original high-dimensional variables change in the projection space, in the same way that
Cartesian scatterplot axes do.

Biplot axes have been proposed for linear projections, in which case these axes
become straight lines in the projection space [71, 1]. While useful, this case does not
cover the more general nonlinear projections, which, as we have outlined earlier, have in
general lower projection errors than their linear counterparts, e.g. [95, 141]. Additionally,
the construction of biplot axes currently known in the literature assumes that one
knows the internals of the projection technique, e.g. singular value decomposition [71].
Constructing biplot axes for any type of projection is, thus, not handled by this approach.

Besides biplots, aspect 1 can be approached by the techniques proposed by Broeksema
et al. [24] and Oeltze et al. [132]. Instead of showing the directions of maximal variation
of the m high-dimensional variables in the projection space, this alternative approach
shows the amount of variation of these m variables along the x and y axes of the 2D
projection space. These amounts, also called loadings [71, 1], are essentially equal to
the projections of the m (straight-line) biplot axes on the two largest eigenvectors of the
observation covariance matrix that determine the x and y axes of a 2D projection [24].
Loadings are visualized by two bar charts, or legends, having, each, m bars, each bar
indicating the loading of a variable on the corresponding screen axis. A third bar chart
indicates the amount of variance of the n variables which is not captured by the two
eigenvectors that determine the 2D projection. By identifying the largest bars in the
legends for the x and y axes, one can therefore determine which variables mainly explain
the spread of the points in the 2D projection. However, this technique has not been
extended for 3D projections, whose x and y screen axes are determined by the chosen
viewpoint. Separately, and similarly to biplot axes, the aforementioned axis legends have
been so far only used in the context of linear projections.

Aspect 2, i.e., explaining the distances between projected points in terms of the corre-
sponding distances between high-dimensional points, is covered by various techniques
that include error metrics (such as stress (Eqn. 2.2), correlation [63], neighborhood-
preservation plots [139]); and, separately, user studies aiming to show how users can
reason about the original high-dimensional distances when seeing only the low-dimen-
sional distances in the projection space [113]. Global aggregate error metrics are good in
comparing different projections on a high level, e.g., to determine whether a projection
technique generates more accurate results than another projection technique. However,
such global metrics cannot show how errors are distributed in a projection, i.e., which

94



5.1. Explanatory Visualizations

parts thereof are the most severely affected by distance distortions. As such, they are less
useful for exploratory visualization. A more fine-grained explanation of distance preser-
vation is offered by distance scatterplots, which plot all distances between point-pairs in
nD vs the corresponding distances in mD [95]. The deviation of such plots from a straight
diagonal line (the ideal case) show how distances are increased, respectively decreased,
by the projection technique. However, distance scatterplots do not link distance errors
with observations, i.e., cannot show for which subsets of points in a projection large (or
small) errors occur. On an even finer level of detail, errors can be explainer by local
metrics which show how (small) neighborhoods around projected points are affected
by the projection technique. Such local explanation methods include the projection
precision score (pps) [159], distance stretching and compression metrics [8], the dis-
tance error metrics introduced by us in Chapter 3), and the neighborhood-preservation
metrics (Chapter 4). Such metrics are discussed in more detail in [14]. However, to
our knowledge, all these error metrics have been so far only constructed and applied
for 2D projections. In Section 5.1.1, we showed how such metrics can be generalized
for 3D projections. Apart from this, it is important to note that projection errors are
useful to show where in a projection problems appear; however, they do not explain why
points are projected the way they are. As such, projection error metrics are indeed useful
to show whether a projection is accurate or not – but, for an accurate projection, they
cannot further explain the meaning of the resulting point-distribution patterns.

Aspect 3, i.e. choosing one or several viewpoints (in the case we have a 3D projection
or scatterplot) so that specific questions are answered by these, can be addressed in
different ways, as follows. First, 3D scatterplots can be further explained by adding three
supplementary 2D views (following a linked-view metaphor). Selecting and/or brushing
points between the linked views allows explaining complex patterns in the 3D projection
by using the relatively simpler 2D views [146]. The same aspect is also addressed by
offering users enhanced mechanisms to manipulate the projection in terms of changing
the viewpoint [50, 158], smoothly navigating between different viewpoints [87, 86],
and allowing the user to interactively arrange the variable axes in the projection [34].
However,while simplifying the exploration, such mechanisms are not tuned to tell the
user which aspects related to the original high-dimensional variables one can see in a
given viewpoint, nor do they give a compact overview of all such aspects that all possible
viewpoints of a 3D projection can provide.

Aspect 4, i.e. choosing between the use of 2D vs 3D projections for a given application
or end-to-end task, is arguably one of the hardest problems involving the estimation
of usability of 3D projections. Given the very high level of this question, it is not
surprising that the instruments employed to address it center, most often, on user studies
and evaluations (see further Sec. 2.5). While the insights provided by such studies
are of clear added value in terms of understanding the general pro’s and con’s of 2D
vs 3D projections, they are generally limited to high level, qualitative, explanations.
Quantitative and detailed insights, showing e.g. why, where, and how much do errors in
a 2D projection differ from those in a 3D projection, are lacking. Providing such detailed
insights can arguably help both users and designers of projection-based visualization
tools in selecting the best technique for a specific exploration task.

95



Explaining 3D Multidimensional Projections

From the above, we conclude that there is still significant open space for improvement
in the context of explaining 3D projections of multidimensional data, in order to make
these more useful and usable. Separately, as outlined in Sec. 5.1.1, and in line with
earlier evidence discussed above, 3D projections do have the potential of showing data
with fewer errors, if suitable viewpoints are chosen. In the remainder of this chapter, we
present several mechanisms that aid the above-mentioned explanatory goal.

5.1.3 Generalizing biplot axes

As explained in Sec. 2.5, and also outlined above, biplot axes are typically constructed
by applying singular value decomposition (SVD) to the high-dimensional observations
(Eqn. 2.3). The eigenvectors of this decomposition represent the biplot axes, which
are next drawn (using e.g. vector glyphs) atop of the projected points [1]. While
this technique is extremely simple, it has several limitations. Conceptually speaking,
constructing (and drawing) biplots by applying SVD to all the points only makes sense
if we use the same technique (SVD) to also project the points. In other words, this way
of constructing biplot axes is only applicable if the projection technique used is a linear
one. This, obviously, precludes all non-linear projection techniques from using such
biplot axes – indeed, if we were to e.g. superimpose SVD biplot axes atop of a LAMP
projection [95], or any other non-linear technique discussed in Sec. 2.3.2, the result
would make no sense, since the axes, respectively the projected observations, would not
match each other. A separate problem is that the SVD-based construction of biplot axes
assumes that a single global transformation is used to project all observations. If this is
not the case, e.g., if different transformations are used to project subsets of points, such
as in PLMP [141], then we cannot use a global computation of biplot axes, for the same
reasons as those explained above for non-linear projections.

If we were to generalize biplot axes from the classical SVD ones to any projection
technique, a second problem appears. For SVD, such axes are simple to compute since
we, obviously, have access to the exact details of how the projection is done (specifically,
the matrices U, ∆, and V discussed in Sec. 2.3). If we were to generalize this to
other techniques, we would need, by analogy, to ‘open up’ the implementation of the
respective techniques, and extract the required information needed to compute the
biplot axes. While this can be done, it would imply that one would need to have a
separate implementation of biplot axis construction for each projection technique out
there. Clearly, this is not a desirable situation, given the large (and increasing) number
of projection techniques that exist, and are added to, the literature.

Given the above, we propose to generalize the construction of biplot axes by taking a
different approach than the one proposed for linear projections. Specifically, we consider
the ability of the projection function f (see Sec. 2.3 to project any nD point to mD. Given
such a function, chosen to project the regular observations, we reuse it to create the
biplot axes. For this, we create a number of S artificial observations pi1¤j¤S , for each
high-dimensional variable i of our dataset. These observations are created as follows:
The values for dimension i of the points pij are uniformly distributed over the range
of variable i, with equal steps; the values of all other dimensions k � i are set to the
average of the values that dimension k takes in our dataset. In other words, we augment
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the set of observations that is taken as input by f by a number of S � n points, which are
basically uniformly sampling the n high-dimensional axes, clipped by the n-dimensional
bounding-box determined by the variables’ ranges, and constructed so as to pass through
the centroid of this bounding-box. Next, we project all these additional points pij to 3D,
yielding a set of three-dimensional projections qij . Finally, for all points qij belonging to
the same axis i, we draw a polyline ci that connects them. This polyline represents the
generalized biplot axis for dimension i. In practice, we use a value of S � 100 sample
points.

The resulting generalized biplot axes are shown in Fig. 5.3 a for the same ALL dataset,
projected by LAMP in 3D, which was discussed earlier in this chapter. Several aspects
are visible here. First, we see how the generalized biplot axes intersect in (or close to)
the projection’s centroid, and span the extent of the projected points, as expected. In
this sense, the axes resemble typical Cartesian axes used in, e.g., classical scatterplots.
Following this analogy, we can use the lengths of the generalized axes to reason about the
spread of data values along specific dimensions – short axes indicate variables which have
a smaller range, and long axes indicate variables having a larger range. The directions of
variation of variables along their respective axes is indicated by colored labels placed at
the axes’ ends, with green indicating the maximum, and red indicating the minimum, of
a variable, respectively.

a) LAMP Projection

axis 2

axis 4

axis 1

axis 7

axis 8

aaaaaaaaaaaaxxxxxxxxis 0

axis 5

axis 6s 6

axis 3

axis 2

axis 1axis 7 axis 4

axis 6

axis 6axis 6

axiiiiisssss 6

axis 2axis

axis 2

axis 0 axis 7axi

axis 4

axis 5

axis 8

axis 1

axis 4axi

axxxxxis 00000axis  7

axxxxxxxxxxxxxxxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssss      11111111111111111111

b) FBDR Projection

Figure 5.3: Generalized biplot axes for the ALL dataset projected by LAMP (see Fig. 5.1).

The curvature of the generalized axes indicates the local spatial deformations that
the projection technique achieves – simply put, deviations from a straight line indicate
that the projection is non-linear in the respective areas. More interestingly, the angles
formed by axes indicate correlations between variables: Axes which form close angles
indicate strongly correlated variables. Direct or inverse correlation is easily read by
looking at how the orientations of the respective axes matches (or not). Similarly, axes
that form large angles (with a maximum of 90 degrees) indicate highly uncorrelated, or
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independent, variables.
As an additional example, Figure 5.3 b shows a different projection of the ALL dataset.

Here, in contrast to LAMP, we use the Force-Based Dimensionality Reduction (FBDR)
technique [179]. We selected FBDR as a projection technique on purpose, as we were
aware of its high nonlinear nature, and wanted to confirm this insight. Visualizing the
generalized biplot axes in Fig. 5.3 b confirms our impressions. Indeed, the biplot axes
look now significantly more curved than in the LAMP projection. This is an useful insight
that would tell a user that using FBDR to reason about the correlation of variables is not
the optimal choice, LAMP being much better for this task. However, this does not imply
that FBDR cannot generate useful projections. For instance, it could be so that FBDR
minimizes the various projection errors discussed in Chapter 3 better than LAMP, in
which case the FBDR projection would be better than the LAMP one for tasks that center
on finding groups of similar points. Checking this can be easily done by visualizing the
projection errors, as explained in Sec. 5.1.1 (omitted here for brevity).

5.1.4 Explanatory axis legends

To explore 3D projections, we provide standard viewing-control tools, in our case a
so-called virtual trackball widget (controlled by the mouse) to rotate the viewpoint,
zoom in and out of the data, and translate the viewpoint in the view plane (pan the
view).

One key difficulty that arises for both 2D and 3D projections of multidimensional
data, is to convey a (simple) understanding of the meaning of the screen axes. Indeed,
typical end users are accustomed with Cartesian plots, where these axes have a clear
meaning: In the case of 2D plots, these axes map two data variables; in the case of 3D
plots, the screen axes do not directly map three data variables (given that the user can
choose any viewpoint). However, axis legends embedded in the visualization give this
insight. In our case of viewing 3D projections of high-dimensional data, we have both
difficulties.

To address this, we extend an earlier technique proposed to explain the meaning of
the screen axes for 2D projections [24]. In this technique, the two screen axes x and
y, which we further denote by x1 and x2 respectively, are annotated by two barchart
legends. Each legend has as many bars as original high dimensions. The length of a bar
j in the legend for xi indicates, intuitively put, how well can one see the variation of
variable j along screen axis xi. A third legend is added to show which variables can be
worst seen along both screen axes x1 and x2, as they are not captured well by the used
2D projection. For full details, we refer to [24].

By analogy, our 3D projection case has the same problems as the 2D projection case
in [24]. Specifically, given a viewpoint defined by screen axes x1 and x2, and also by a
viewing direction x3, our users’ questions are essentially identical to those treated in [24]:
What is the meaning of the screen axes x1 and x2 in terms of the original variables?
Which original variables are hard to explore from the given viewpoint? Summarizing the
above, we aim to provide additional visual details that explain what a given viewpoint
can show.

Following our analogy, we approach the explanatory problem by using three barcharts,
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or axis legends (Fig. 5.4). Each legend corresponds to one of the axes xi, 1 ¤ i ¤ 3,
and has as many bars as high-dimensional variables in our dataset. The length of the
ith bar in the barchart for axis j indicates how well the axis xj aligns with the variation
of variable i. Conceptually speaking, this is the same metric as the one used by [24] in
their 2D barchart legends. However, our actual metric used to scale bars is different, for
a number of reasons. First and foremost, we use the underlying projection technique as
a black box, and as such, do not have access to quantities such as loadings, which were
used in [24] to compute the bar lengths. Moreover, it is not clear if such quantities can
be computed in general for any (non-linear) projection technique. Secondly, we have a
3D projection, and as such, we can (and should) treat the construction of legends for all
three axes xj similarly. This was not the case in [24], where a 2D projection was used.
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Figure 5.4: Axis barcharts for the ALL dataset projected using LAMP. Left view: arbitrary viewpoint,
obtained by free rotation. Right view: aligned configuration obtained from the left one
by aligning variable 0 with the x axis, followed by aligning variable 6 with the y axis.

Given the above, we chose to compute the above-mentioned legend-bar lengths by
following a simple intuition, i.e., by measuring how well a generalized biplot axis ci
aligns well with a screen axis xj . This measure yields the length of bar j in the barchart
of axis xj . Formally, the above measure is given by the absolute value of

hji �
�
pqiS � qi1q � xj

	�
1�

|}ci} � }qiS � qi1}|

}ci}



(5.2)

where ci is the biplot axis for variable i (see Sec. 5.1.3) and }ci} �
°S�1
j�1 }q

i
j � qij�1}

denotes the length of the curve ci. The explanation of Eqn. 5.2 is as follows: The term
pqiS � qi1q � xj gives the length of ci along xj . If this value is high, it means that we can
easily see how variable i spreads (varies) along xj , and we thus indicate this by a long
bar i in the legend of xj . Note that, if this value is low, it implies that either biplot axis
i is far from being aligned with screen axis xj (in which case, we can try to obtain a
better view by choosing a different viewpoint); or that the range of variable i is very
small, as compared to the other variables in the dataset (in which case, we cannot obtain
a better ‘view’ of this variable; and it can also be argued that this is not useful, since the

variable’s range is very small). The term 1�
|}ci}�}q

i
S�qi1}|

}ci}
in Eqn. 5.2 is a measure of
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how straight the generalized biplot axis ci is, obtained by comparing the actual length
}ci} of the curved axis with that of the straight-line segment qiS � qi1 that connects its
endpoints. The intuition behind adding this term to the computation of hjj is that reading
a variable that is projected along a straight biplot axis, by using a straight screen axis xj
is, arguably, much easier than using a straight screen axis to read a variable projected
along a curved biplot axis.

The interpretation of bar lengths in our three legends is identical to those in [24]:
Long bars in the legends of the x and y screen axes are good, as the indicate we can read
the respective variables easily along these axes. In contrast, long bars in the legend for
the view-direction axis x3 are to be avoided, as they show that important data variations
in our dataset are not visible, or not observable, from the current viewing direction.
As such, the barchart for x3 is next called the observability legend. In contrast to the
original barchart design in [24], where all bars were growing upwards in their respective
charts, we choose to let bars in the observability legend grow downwards (see Fig. 5.4).
This makes reading the three legends more uniform: The upward direction represents a
desirable situation (good observability); the downward direction represents an undesired
situation (bad observability).

The axis barcharts presented above, i.e., the values of |hji |, show how well a variable
i aligns to a screen axis xj . However, they do not show how to read the values of variable
i along xj , i.e., if variable i increases in the same sense, or in the opposite sense, of
xj . This insight can be obtained by looking at the colored text labels attached to the
endpoints of the biplot axis ci. However, often, such labels can be easily occluded in a
3D plot. Hence, we add a supplementary cue, in terms of a small icon placed under each
bar. The icon is colored green if variable i increases along the vector xj (i.e., if hji ¡ 0);
red if variable i decreases along xj (i.e., if hji   0), and gray if variable i varies in a
direction orthogonal to that axis (i.e., if hji � 0). Icons are not used for the observability
legend, since this legend shows data variations which are not observable from the current
viewing direction. A variation of the above technique is to color the icons on the actual
value of |hji |, as follows: Icons where hji ¡ 0 are colored by interpolating between
gray (hji � 0) and saturated green (hji � 1); and icons where hji   0 are colored by
interpolating between gray (hji � 0) and saturated red (hji � �1). While this gives a
more continuous, and nuanced, view of how easy is to read a variable’s variation in
the positive, respectively negative, sense of a screen axis, it also creates, we believe,
more interpretation difficulties. As such, we chose for the simple three-color categorical
mapping described above.

Finally, to make the interpretation of the barcharts easier, we label them by the
variable names, and color them by using a categorical colormap generated using the
well-known ColorBrewer tool [74].

A subsequent degree of freedom relates to how bars are sorted in a legend. We
explored two designs here. In the first designs, all bars are sorted based on the same
criterion in all legends, e.g., alphabetically on their variable names. This places the
bar for a given variable at the same positions in all three legends. This is desirable
when, in the current exploration scenario, we already have a few important variables
which we know, a priori, we want to explore. As bars have fixed positions in the three
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legends, we can then easily visually correlate their lengths. This is the same design
as originally proposed by [24]. However, a more interesting (and we believe, useful)
scenario is the situation when all variables are, a priori, of equal interest. In that case, it
is natural to (want to) focus on the variables which are best visible from a given viewing
direction. To emphasize these, we sort all three legends in decreasing order of their
respective bar lengths. This is the mode shown in Fig. 5.4 and all subsequent figures
in this chapter. Finding which variables are best observable from the current viewpoint
is now easy – one simply looks at the longest (i.e., leftmost) bars in the legends for
the x and y screen axes. Conversely, seeing which variables one should not attempt
to analyze from the current viewpoint is equally easy – one looks at the longest (i.e.,
leftmost) bars in the observability legend. The sorted mode has the extra added-value
that it lets our visualization scale to handle datasets with tens of dimensions or more:
To make bars and their annotations visible, we limit ourselves to displaying only the
nmax � 20 longest bars in any legend. Arguably, this is the best one can do given this
visual design, in the sense that we explain to the user the most salient (observable) nmax
dimensions. As a subsequent design element for the barcharts, we adopt the linking
mechanisms introduced in [24]: Brushing a bar highlights the corresponding dimension
(if present in the nmax displayed ones) in all three legends. As a final design element,
we use the observability values (|h3

i |) to control the transparency of the biplot axes. This
way, axes which are poorly observable from the current viewpoint (large |h3

i | values)
become more transparent, and thus also clutter the visualization less (see e.g. 7,6,2 in
Fig. 5.3a). Conversely, axes which are well observable from the current viewpoint (small
|h3
i | values) become more opaque, and thus attract the attention of the user (see e.g. axis

5 in Fig. 5.3b).
Arguably the largest design difference between our barcharts and those proposed

in [24] relates to interactivity. In our case, changing the viewpoint by manipulating the
virtual trackball changes the values of the three axes xj . This invokes a recomputation
and redisplay of all barcharts (using Eqn. 5.2). This way, one can dynamically monitor
how specific variables map to the screen axes while one changes the viewpoint, and thus,
decide whether the current viewpoint is a good or interesting one, or if one, for instance,
wants to go to a previous viewpoint. This feature showed up to be especially useful when
fine-tuning a viewpoint to show specific variables of interest.

5.1.5 Aligning axes

As noted several times so far, an important task in the exploration of 3D projections is to
study how specific variables correlate (or not) with each other. Doing this by interactively
manipulating the viewpoint legend, as outlined at the end of the previous section, is
possible, but can be time-consuming. Indeed, it can be hard to manually select the
precise viewpoints that best show the variation of a specific subset of axes.

To help this, we provide an automatic alignment mode, as follows. To align a variable
i with any of the xj , j P t1, 2u screen axes, we click the respective bar for that variable
in the respective barchart. This initiates a smooth rotation that sets the viewing direction
to one where hji is maximal. This leaves us an additional degree of freedom, namely, the
rotation of the viewpoint around xj . We exploit this to allow the alignment of a second
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variable with the remaining screen axis, by shift-clicking another bar in the barchart
of this screen axis. Two such clicks, thus, allow one to smoothly change the viewpoint
from its current setting to the one where two user-chosen variables are best aligned
with the two screen axes x1 and x2. This way, we can interactively create scatterplots
of arbitrary pairs of such variables with only two clicks. It should be noted, however,
that such scatterplots are not identical to the traditional (Cartesian) ones that one would
create by simply considering two variables from a multidimensional dataset. Indeed, our
two-variable scatterplots are limited, in terms of accuracy, by the underlying fixed 3D
projection. While this accuracy is, in general, lower than when considering two-variable
Cartesian scatterplots, the added value of constructing them from projections is that
we can smoothly navigate between any pair of such scatterplots, simply by performing
a viewpoint rotation. Doing this navigation for Cartesian scatterplots is possible, but
involves more complex deformations, which make it harder for users to maintain their
mental map during the navigation [50].

Figure 5.4 shows our mechanism for scatterplot construction by iterative axis align-
ment. Starting from an arbitrary viewpoint (Fig. 5.4a), we next click on the bar of
variable 0 in the x axis legend and next shift-click on the bar of variable 6 in the y axis
legend to obtain the aligned view in Fig. 5.4b. Looking now at the longest bars in the
two legends, we see that the spread of points along the y screen axis is mainly due to
variable 6; in contrast, the spread along the x screen axis is due to the combined effect of
variables 0, 2, and 7. Since the lengths of the bars for these three variables are roughly
similar in the x legend, it follows that the respective three variables are also strongly
correlated. Looking at the colors of the icons below these bars in the x legend, we
discover that variables 0 and 7 are directly correlated, and both are inversely correlated
with variable 2.

5.1.6 Viewpoint legend

As outlined above, the interactive manipulation of the viewpoint allows us to freely
explore the space of possible views of our 3D projection. Interesting viewpoints being
discovered are highlighted by specific distributions of the bar lengths in the three axis
barcharts. At the other end of the exploration spectrum, going to a targeted viewpoint
which allows optimal exploration of two given variables, is provided by the mechanism
outlined in Sec. 5.1.5.

However flexible, the above two exploration mechanisms do not cover the full
spectrum of possible use-cases. Indeed: The axis-alignment tool is good for targeted
navigations, when we know the variable-pair we are interested in, but not for additional
explorations. In contrast, free-mode rotation is good to discover new insights, but
navigating through all such possible viewpoints is clearly prohibitive.

We next describe a mechanism, called the viewpoint legend, that aims to bridge
the preciseness (but narrow focus) of the axis-alignment tool with the freedom (but
vagueness) of free navigation. Specifically, we aim to provide a compact summary of
all variable-pair relations that one could discover, using free navigation, if one had the
time to explore all possible viewpoints. The viewpoint legend consists of two elements.
The first one is a sphere S of center c (Fig. 5.5a) whose points v P S describe all view
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directions c�v that one can look at a given 3D projection, modulo zooming and panning.
The current viewpoint is indicated on the sphere by a cross and is, by construction, always
located in the center of the sphere’s image. For each viewpoint v P S we define its ability
of showing the variable-pair pi, j � iq as

qpv, i, jq � }ph1
i , h

2
i q � ph1

j , h
2
j q

T}. (5.3)

More formally, q measures how well a 3D projection, viewed from v, shows the
variation of variable i vs j, modulo rigid transformations such as scaling (zooming),
translation (panning), and rotation of the view around the viewing direction c � v.
Large values of qpv, i, jq indicate that the biplot axes for variables i and j have long
projections onto the view plane and that these projections form a large angle (maximally,
90�). In other words, large values of q tell the existence of viewpoints from which we can
construct good two-dimensional-like scatterplots showing pairs of (largely) independent
variables which also have significant variations.
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Figure 5.5: Viewpoint legend for the configuration shown in Fig. 5.4 b.

As indicated by Eqn. 5.3, several variable-pairs may be well visible from a given
viewpoint v. Showing all this information to the user may be possible, but overwhelming.
Instead, we choose to show the best visible such variable pair. To find this, we compute

Qpvq � max
1¤i¤n,1¤j�i¤n

qpv, i, jq, (5.4)

and, further, normalize this value over all viewpoints to yield

Q̄pvq P r0, 1s � Qpvq{max
uPS

Qpuq. (5.5)

When computing Qpvq (Eqn. 5.4), we also compute the pair of variables ppvq � pi, jq

that yields this maximum value, i.e. ppvq � arg max1¤i¤n,1¤j�i¤n qpv, i, jq. Having this
information, we compute the set P � tppvqu containing the C variable pairs that have
maximal values Q̄pvq for all viewpoints v P S. In other words, P tells us which are the
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C best-visible variable-pairs from all possible viewpoints. In practice, we limit C to a
maximal value of 8, which yields thus maximally 8 such variable-pairs. Hence, we can
visualize these pairs over S by categorical color mapping, i.e. by assigning to each p P P
a distinct color.

The above procedure does not, however, cover all points v P S, but only those
from which one of the C best visible variable-pairs shows up. For all other points of
S, we color them gray, to indicate that none of the overall-best-visible variable-pairs is
visible from there. As a final design, we set the saturation S and luminance V of each
sphere’s colored point by Q̄pvq, via the transfer functions depicted in Fig. 5.5c. By this,
we effectively encode two information elements at each (view)point – the identity of
the best-visible variable-pair from there (hue), and how well this variable-pair is visible
from there, as compared to how well the same or other variable-pairs are visible from
other points (luminance and saturation). The global result, shown in Fig. 5.5 b, is to
create a pseudo-shading effect, where viewpoints for highly-visible variable-pairs appear
as highlights; and points which cannot show a globally-best-visible variable-pair appear
dark, respectively. Note that, although highlights do not carry a hue, finding out which
variable-pair they can best show is easy – we simply look at the darker, saturated, colored
points surrounding such a highlight. We implement Eqns. 5.3-5.5 by sampling S with
about 50� 50 points, uniformly distributed in polar coordinates. The resulting polygonal
representation is rendered with standard bilinear color interpolation.

To make the above best-visible variable-pair scheme complete, we need to add a
(categorical) color legend. We achieve this by the matrix shown in Fig. 5.5b. Matrix cells
map all variable-pairs p � pi, jq, whose hues are set exactly as for the sphere points, i.e.,
if p P P , we use cppq, else we use gray. The brightness of a cell p is set to linearly vary
between the default brightness of its color cppq (at the cell border) and maxvPS qpv, i, jq

(at the cell center). This way, the matrix shows two information elements at each cell or
variable-pair – first, the color that that variable-pair is mapped to (cell hue, visible at the
border); and secondly, the relative visibility of this variable-pair over all viewpoints, as
compared to other variable-pairs (cell luminance, visible at the center).

Figure 5.6 shows the working of the viewpoint legend for our ALL dataset. Turning
the virtual trackball in the main (scatterplot) view rotates the viewpoint sphere, and
conversely – turning the viewpoint legend changes the current viewpoint. As such, the
viewpoint legend acts both as an output device (showing what can be seen from basically
50% of all possible viewpoints at once) and input device (allowing users to change the
viewpoint to go to one where a specific variable-pair is best-visible from). The viewpoint
sphere and matrix legend are also linked – the matrix legend highlights the cell for
the current viewpoint (so one immediately knows to which variable-pair pi, jq the color
under the central cross cursor belongs); and clicking in a matrix cell pi, jq rotates the
viewing direction to the viewpoint from which the pair pi, jq is best visible (so one can
construct the best-possible two-variable scatterplots pi, jq,@i � j by a single click).

Several use-cases can be described where the viewpoint legend brings in effective
exploratory help, as follows:

What is a good viewpoint to examine pi, jq from? To find this, one (1) finds the
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Figure 5.6: Viewpoint widget set to highlight a viewing direction that best shows variables 2 vs 6.

cell pi, jq in the matrix legend, memorizes its hue, (2) turns the sphere to see bright
highlights surrounded by the memorized hue, and (3) turns the sphere so the cross
enters such a highlight. Alternatively, one can directly click on the cell, to go to the best
such viewpoint. If the luminance of cell pi, jq is low, however, it means there is no such
really good viewpoint available.

Can I easily study variable i vs j? To find this, one (1) finds the cell pi, jq in the
matrix legend, memorizes its hue, (2) turns the sphere to see how large (and brightly
highlighted) areas colored in that hue are on the sphere. The size and distribution
of such areas tells how easy is to create a scatterplot showing variable i vs j. Intu-
tively put, if it’s easy to rotate the sphere so as to get the cross in such a bright area,
then creating the respective scatterplot is easy. Moreover, the larger the respective area
highlight is, the less accurate does one need to fine-tune the viewpoint to get good results.

Is there any good viewpoint for examining i vs j? To find this, one can examine the
brightness of the cell pi, jq in the matrix legend. A bright cell will tell that there exists at
least one suitable examination viewpoint – and clicking the cell goes to it. Separately,
examining the entire sphere for the occurrence of areas colored like cell pi, jq tells how
easy is to find such a good viewpoint. If the desired cell pi, jq is dark, then no suitable
viewpoint for the task exists. This may indicate either a projection problem, or the simple
fact that the variables i and j have very small ranges.

What should I expect to see from a given viewpoint? To find this, one should (1) look
at the highlighted matrix legend cell and (2) infer the row i and column j of that cell
to get the best-visible variable-pair from there. Additionally, one should (2) look at the
brightness under the cross cursor on the sphere. A large value indicates that, indeed,
pair pi, jq outlined above is well visible from there; a dark value indicates that, although
pair pi, jq is the best visible from the given viewpoint, its overall visibility is very poor. As
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such, one should not expect to see anything interesting in the sense of a variable-pair
correlation from that viewpoint.

How to study the relation of more than two variables? A single-hue zone, on the
viewpoint sphere, shows a ‘field of view’ from which the same variable-pair pi, jq is best
visible; therefore, when the viewpoint crosses the border between two such zones, one
goes from best-viewing a pair pi, jq to best-viewing another pair pk, lq. Often, as we will
see in Sec. 5.2.2, pairs pi, jq and pk, lq share a variable (e.g., j � k), which makes such
border-zones be good viewpoints from where one can examine the interaction of three
variables.

5.2 Example applications

To illustrate and text the power of the explanatory techniques presented above in the
context of understanding 3D projections in terms of their underlying variables, we studied
four different multidimensional datasets. These come from four different domains
(agriculture, scientific simulations, image analysis, and software quality assessment.
The datasets range between 2300 and 200000 observations, and have between 10
and 19 dimensions. All observation values are quantitative. The covered exploration
tasks involve a variety of typical cases frequent in multidimensional (projection) data
exploration, such as finding correlated and/or independent variables, explaining point
clusters and outliers, assessing projection quality, and comparing the suitability of using
a 2D vs a 3D projection technique. In terms of the latter, we used in total four projection
techniques.

5.2.1 The Wine dataset: Finding good projection techniques

This dataset has 6497 12-dimensional points. Each point describes a type of vinho verde
wine [38] by means of 11 physicochemical properties, such as density, concentration
of chloride, concentration of sulfur, pH, and alcohol percentage. The 12th variable is a
(subjective) human-specified level of quality. The underlying use-case for this dataset
is finding how the 11 measured variables correlate with the perceived quality, as a first
step into designing automatic classifiers for wine [38].

To use dimensionality reduction, we must fist decide which projection technique
is best suited. We consider here three DR methods: FBDR [179], ISOMAP [184], and
LAMP [95] to project our dataset to 3D (other DR methods can be equally easily used,
if desired). Figure 5.7(left) shows the resulting three projections, aligned to be viewed
from (roughly) the same viewpoint. The right column in the same figure shows the
projections colored by their 3D aggregated distance errors. One way to choose a good
projection to work with further would be to select the method that minimizes the errors
(Eqn. 5.1). However, as shown by Fig. 5.7(right), these three state-of-the-art projection
techniques yield quite similar distributions of error values, so such aggregate errors are
not discriminatory enough in this specific case.

In contrast to several of the datasets discussed in Chapter 3, projection errors do not
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Figure 5.7: Comparing three projection techniques (FBDR, ISOMAP, LAMP) using biplot axes and
axis legends (left) and projection errors (right). The selected viewpoint best emphasizes
the correlation of the alcohol and acidity axes. See Sec. 5.2.1.

help us much here in deciding which is the best projection. To further discriminate them,
we use the biplot axes (Fig. 5.7(left)). We see here that LAMP creates much straighter
axes than FBDR and ISOMAP. Reading data values along such axes is considerably easier
than along highly curved axes, as discussed earlier in Sec. 5.1.3. This is an argument in
favor of further using LAMP, if we are interested in exploring such our values along axes,
much like in classical scatterplots.

However, there are other tasks we would like to accomplish using the selected
projection, such as studying correlations of two variables. As a test, we consider the
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variables alcohol and acidity (10 and 1, respectively, in Fig 5.7). To best view the
correlation of these two variables, we align all projections by clicking on the two bars in
the x and y legends, respectively (see Sec. 5.1.5). Additionally, we color all points by
their acidity values, using a three-color divergent colormap (see Fig. 5.7(bottom left)).

This viewpoint allows us to make several interesting observations. The x axis barchart
for FBDR shows several bars of similar length to the longest bar (acidity). This means
either that all these variables are strongly correlated, or that FBDR has problems in
projecting these variables into separate areas of the 3D target space. If we, however,
look at the LAMP projection’s x barchart, we see that variable 1 (acidity) is not strongly
correlated with any of the other variables (the barchart shows a rapid decrease in bar
lengths from variable 1 onwards). As we have seen that the projection errors are roughly
equal in the three cases, it means that LAMP achieves a (much) better separation of
unrelated variables, and the fact that these look correlated in FBDR is just an artifact of
FBDR. As such, we can conclude that LAMP is a better projection than FBDR. Comparing
ISOMAP with LAMP, using a similar reasoning, yields a similar conclusion – in particular,
LAMP is better than ISOMAP since it has a similar error and it creates straight axes,
whereas ISOMAP creates a curved alcohol axis. All in all, we conclude that, for this
dataset and related questions, LAMP is a better projection to further use than FBDR or
ISOMAP.

5.2.2 The Multifield dataset: Explaining projection shapes

This dataset, part of the IEEE Vis 2008 contest, represents the results of a multifield
simulation that aims to model the formation and evolution of the early Universe [131].
The dataset contains 200K points, representing various locations in space, and attributed
with 10 variables, that describe the points’ matter density, temperature, and concen-
trations of 8 chemical species. While the full dataset is time-dependent, we chose to
examine a single frame or time-step, due to the fact that the projection techniques we
are aware of cannot readily handle time-dependent data.

Figure 5.8 shows various viewpoints of the dataset, projected into 3D using LAMP
(which, as we have seen in Chapter 3 and earlier in this chapter, has overall good
qualities). The first observation we can make, is that the projection appears to look like
a saddle-shaped manifold. This is an interesting finding, as it means that the involved 10
dimensions strongly constrain each other in some way.

To understand the above saddle shape, and also how variables relate to each other
to create it, we examine next the biplot axes. By freely rotating the projection in 3D,
we find out that the spread of variable 7 is the largest of the 10 variables. As such, this
variable is, arguably, important in explaining the resulting shape. To better view this
relation, we align axis 7 with the y screen axis (Fig. 5.8a). This shows us, quite clearly,
that the concavity in the saddle-shape is explained almost entirely by variable 7, since
its axis is perpendicular to it, and since all other 9 biplot axes appear to be located in a
plane orthogonal to axis 7. This finding is confirmed by the y axis legend, where we see
that all variables show very little correlation with variable 7.

To further explain the saddle-shape, we should, thus, study its variation in directions
orthogonal to variable 7. Looking at the x axis legend, we see that variable 5 has a high
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bar. Further aligning variable 5 with the x axis, by shift-clicking its bar in the x legend,
yields the image in Fig. 5.8) a. We see here, indeed, that the points’ spread orthogonal
to variable 7 is caused mainly by variable 5. Further on, we see that the icon below
variable 5 is red, indicating that it is large to the left, and small to the right, of the image.
Color-coding the projection by variable 5 confirms this finding – in other words, the
horizontal spread of the saddle is mainly caused by variable 5.

Besides the overall saddle-shape, we also see a ‘spike’-like feature in the projection
(Fig. 5.8)a, top-left). By slightly turning the viewpoint around its current position, we
see that this spike aligns well with both axes 5 and 6. To see which of these two best
explains the spike, we align the x axis, in turn, with variables 5 and 6. Comparing the
plots, we see that the spike aligns better with variable 6. The plot for this configuration
is shown in Fig. 5.8b. To validate the finding, we color points now by variable 6. The
result now nicely shows that the spike can be (almost perfectly) explained as containing
points having medium-to-large values of variable 6, while the remainder of the projection
contains low values for this variable.

The findings so far indicate that variables 6 and 7 are very important in explaining
the projection shape. These variables are also quite independent on each other, as shown
by both the orthogonality of their biplot axes, but also by the large brown zone on the
viewpoint sphere in Fig. 5.8b, which corresponds to the highlighted cell p6.7q in the
matrix legend. To study the remaining variables, we choose to align the already studied
variables 6 and 7 with the x and y screen axes, respectively. We now get a good view
of both the saddle shape and the spike feature (Fig. 5.8c). Additionally, we see here
that biplot axes 6 and 6 are almost parallel, so the corresponding variables are strongly
correlated. Note that the same finding can be got (albeit with more effort) using the
viewpoint legend in this figure: The current viewpoint (cross cursor) best shows, by
construction, variables 6 and 7, and is located inside a brown zone on the sphere but
very close to the border with a green zone. Examining the green cell in the matrix legend,
we find that it maps variables 5 and 7. We also see that the green-brown border area
is quite bright. All in all, this means that there are many viewpoints which best show
a scatterplot of variables 5 and 7 and these are very close to viewpoints which show a
good scatterplot of variables 6 and 7. Putting it all together, it follows that variables 5
and 6 are strongly correlated.

To further explore the saddle shape, we align variable 6 aligned with the y axis, and
align variable 2 with the x axis, yielding the result in Fig. 5.8d. The x and y axis legends
tell us now that variables 5 and 6, respectively 2 and 3, are highly correlated, since they
have nearly equal and almost maximal bars. Coloring this view by the value of variable 2
shows that the rightmost upwards-twisted tip of the projection (red) is explained very
well by extremal values of variable 2.

All in all, the above exploratory scenario let us discover that the projection has a
2D-manifold-like saddle shape; that a spike outlier is present; and explain both the
saddle shape and spike by the variations and/or values of a few variables. These
findings are interesting by themselves, so we may claim that our proposed explanatory
mechanisms were effective with respect to their supporting aims. A separate aspect
regards the efficiency of these mechanisms. To perform our exploration, we required
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about 30 seconds of free rotation (to familiarize ourselves with the overall projection
shape), followed by several short sequences of a few clicks each (to align the viewpoint
with desired axes pairs) and, optionally, to color-code the projection by the values of one
of the variables we aligned with. In contrast, a classical 3D projection exploration tool,
consisting of a raw point cloud, virtual trackball, and the ability to color-code points
by any of the 10 dimensions, would take much more time to arrive at the same results.
While we did not perform a formal measurements here, freely rotating the viewpoint
with the trackball so as to best see the spike outlier, takes about 2 to 3 minutes. As
explained earlier, this takes just two clicks with our method. Once the alignment is
achieved, finding which variable best explains the spike would take cycling through
color-coding of the projection by the values of all 10 variables, and memorizing the one
which produces the strong color gradient visible in Fig. 5.8b, i.e., variable 6. In our case,
this iterative color-coding is not needed – the axis alignment in Fig. 5.8b already tells
us that the spike is best explained by variable 6; we next use color coding mainly as a
check, and to get a more precise understanding of the values of variable 6 that explain
the spike.

5.2.3 The Segmentation dataset: Comparing 2D and 3D projections

The third dataset we use consists of 2300 19-dimensional points. Each point encodes
information about a 3 � 3 pixel-block which is randomly-selected from 7 manually
segmented outdoor images of various types. The pixel block is described in terms of
classical image descriptors, or features, used in pattern recognition and image classi-
fication. These include various color and luminance statistical metrics, such as mean
and standard deviation, horizontal and vertical contrasts (edges), and gradients [116].
The 19th attribute describes the label, or class, of the image, and has 7 distinct values,
corresponding to the 7 image examples. This dataset is frequently used in applications
involving the construction of automated image classifiers that aim to learn the 7 classes
from the values of the 18 measured image attributes [95, 141, 138].

To explore this dataset, we project it to three dimensions using LAMP (Fig. 5.9). Next,
we color points by the value of the categorical label attribute (which is not used in the
projection). Our aim is to see, on the one hand, how the measured variables correlate
(or not) with each other, and how they correlate with the class attribute – similarly to
the use-case described in Sec. 5.2.1. We start by freely rotating the 3D projection to
get an overall impression, as for the example discussed in Sec. 5.2.2, and see that the
longest biplot axis corresponds to variable 0 (region-centroid-col). As such, we align
this variable with the y screen axis, to ‘factor it out’ from the projection, and see which
other variables explain the projection’s shape. After alignment, we see that the current
viewpoint corresponds to a red cell in the matrix legend (Fig. 5.9a), which maps the
variable-pair p0, 3). The large red zone on the viewpoint sphere means that, if we turn
the viewpoint even with large amounts from the current position, we still can best see
variables 0 and 3. This is not too surprising, given the very large length of axis 0 as
compared to all other axes. Aside from this, we are next interested to explore variable 3
(short-line-density), so we click this cell and obtain the viewpoint which best explains
these two variables (0 and 3).
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Figure 5.9: Visualization of 19-variate image dataset using 3D projections (a,b). See Sec. 5.2.3.

From the current viewpoint, two useful insights can be drawn. First and foremost,
the vertical same-color ‘bands’ present in the figure show that there is no correlation
of specific values of variable 0 with the label values – in other words, any label value
occurs equally frequently for any value of variable 0. Secondly, we see that all biplot
axes 1-8 are located in a plane roughly perpendicular to axis 0. This plane also contains
the directions along which the colors mapping the labels mostly vary. Taken together,
all facts above tell us that variable 0 is (a) independent on all other variables, and (b)
not correlated with the label values. As such, we can, and actually we should, eliminate
variable 0 from the dataset, as it brings no added value for classification.

Given the above, one can proceed further in various ways. Among other options, we
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consider the following:

1. Construct a new dataset where variable 0 is removed, and repeat the entire
exploratory procedure;

2. Use the current 3D projection in such a way that the (uninteresting) effect of
variable 0 is removed;

3. Use a 2D projection of the dataset.

While option (1) above is interesting, we decided not to study it further, since
removing an actual dimension from the input dataset may, after all, cause unexpected
and undesired effects. Also, comparing our results with other techniques which use this
same dataset would become more difficult in this case.

To study option (2), we align biplot axis 0, which corresponds to the dimension we
found to be uninteresting, with the viewing direction. Further on, we align biplot axis 3,
which we already have found as being important, with the screen y axis. The result is
shown in Fig. 5.9b. In this figure same-color point clusters emerge more visibly than in
Fig. 5.9a, which suggests that it is, indeed, possible to compute the label (class) values
based on the 17 remaining dimensions. To refine this insight, we study the biplot axes
in Fig. 5.9b. As a first observation, we see several variable correlations, e.g. the vertical
downward-pointing axes for short-line-density-2, hedge-sd, hedge-mean, and vedge-mean).
These correlations may not be too surprising, as all these variables describe essentially
image edges. Similarly, we see a group of correlated axes pointing horizontally to the
left (raw-red-mean raw-green-mean, value-mean, and intensity-mean). As for the former
group, these correlations are not that surprising, as all these variables essentially describe
color averages.

The above correlations, although explainable once we have found them, indicate
that there are a number of possibly redundant variables, or features, in our dataset. This
is a quite well known phenomenon in feature extraction for image classification – adding
several types of edge-detector, gradient, or statistical features to a multidimensional
dataset does not necessarily increase the true dimensionality of the data, and thus of the
performance of classifiers built atop of it, as such features are often strongly correlated.
However, in the same time we see that certain clusters can be easily explained by the
existing variables. For instance, the isolated orange cluster left in Fig. 5.9b can be easily
explained in terms of highly-saturated colors. This can be a first step into building a
(simple but robust) classifier that first isolates images corresponding to the ‘orange’ class
from all others.

To study option (3), we project the data into 2D, using LAMP, and color points by
label values (Fig. 5.10a). Interestingly, the obtained pattern of same-color point clusters
is relatively similar to those obtained in the specific 2D view of our 3D projection shown
in Fig. 5.9b. This raises the question of which, of these two techniques (selecting a
suitable view of a 3D projection vs projecting the dataset directly to 2D) is the best one.

To study this, we compute and display the the aggregated normalized projection
errors emi defined earlier in Eqn. 5.1. Figures 5.10b and 5.10c show the errors e3

i and
e2
i for the 3D and 2D projections in Figs. 5.9b and 5.10a respectively. In both cases, we

color map errors using a blue-yellow-red divergent colormap. By comparing the two
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a)
color: label (2D projection)

b)
color: aggregate error (3D)

c)
color: aggregate error (2D)

Figure 5.10: 2D LAMP projection of a 19-dimensional dataset showing point labels (a) and errors
(c). 3D LAMP projection of the same dataset showing errors (b). See Sec. 5.2.3.

images, we immediately see that e3
i is overall lower than e2

i . This was not unexpected –
as discussed earlier, it is easier to preserve distances when mapping to a higher target
dimension. Separately, we see that the distribution of errors over points is quite similar
in the two projections – that is, there are overall just a few very high-error points, and
there is a limited spatial variation in error magnitude between neighboring points. From
the above, we can conclude that using a suitable viewpoint of our 3D LAMP projection
is, error-wise, better than using a direct LAMP projection to 2D. This conclusion can be
explained, among others, by the fact that the 2D view of the 3D projection in Fig. 5.10b
places the large variation of variable 0 along a dimension which is orthogonal to the view
plane. In contrast, in the 2D projection case (Fig. 5.10c), this large variation has to share
the same (limited) 2D projection space which is used by the other 17 variables. All in all,
visualizing the 3D LAMP projection from the viewing direction that cancels out the effect
of variable 0 is conceptually identical to creating a 2D projection that uses only variables
1 . . . 18, i.e., identical to our option (1) outlined above. As this does not explicitly alter
the dataset by removing a dimension, and also creates a projection having lower error
than directly projecting all data to 2D, we conclude that option (2) – visualizing a 3D
projection from a suitably chosen viewpoint – is the optimal one in this case.
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5.2.4 The Software dataset: Finding meaningful clusters

For our fourth example, we consider a dataset describing a corpus of open-source
software projects written in C [121]. For each project, 11 software quality metrics were
computed, by statically analyzing their source code files, and averaging the results for the
entire project. The provided database contains 6733 projects (observations), each having
11 attributes (code quality metrics). A separate 12th attribute measures the number
of times each project was downloaded. Similar to [121], we are interested in finding
correlations between the metrics themselves and/or the metrics and the download count
values.

As in the previous examples, we start by freely examining a 3D projection of our
data, computed using LAMP (Fig. 5.11). Here, in contrast to the previous examples, we
continue our exploration by using the matrix legend, rather than the biplot axes and
axis legends. We note that this is not a mandatory choice, but just a means to show
alternative investigation paths that our interactive tools support.

In this matrix legend, we notice an outstanding bright green cell, indicating that
there is a pair of variables that admits to be very well examined from certain viewpoints.
We select this variable-pair, i.e. variable 2 (ln-cof, or average coupling-factor, i.e. the
number of inter-file function-calls [107]) and variable 7 (ln-sum-tloc, or total number of
lines-of-code), and its best viewpoint by clicking on this green cell, and obtain the view
in Fig. 5.11a. We next refine this view by aligning biplot axis 2 with screen x axis. In
the resulting image (Fig. 5.11a), two large point clusters A and B emerge. The spread
in both clusters appears to be perpendicular to axis 2 (ln-cof). In other words, points
in A and B seem to be distinguishable by the values of ln-cof. To further see this, we
color-code all points by this variable, and see, indeed, that points in A contain low ln-cof
values. Upon examination by brushing, we found out that these low-coupling systems
are mainly libraries. In contrast, points in B contain average-coupling systems, such
as standalone programs (applications). In the same view, we notice a third, separated,
cluster C that mainly corresponds to very high coupling systems. However, to better
characterize C, we now see that its shape is orthogonal to axis 7 (ln-sum-tloc), and it is
positioned close to one end of this axis. Hence, variable 7 can be useful (aside of variable
2) in explaining cluster C. To get more insight, we color next all points by variable 7
(Fig. 5.11c): As observed earlier, we confirm the fact that points in C have similar and
extremal values of variable 7 – specifically, they have very low values of this variable,
whereas both clusters A and B have relatively high values for variable 7. Since variable
7 denotes the total size of a system (ln-sum-tloc), it means that C can be explained
as containing small systems, whereas A and B contain large systems. Putting it all
together with the earlier observations, we explain C as containing small applications; A
as containing large libraries; and B as containing large applications, respectively.

Let us now consider the same question here as for the imaging dataset discussed
in Sec. 5.2.3: Would we obtain the same insight (splitting of the software corpus into
three types of systems) if we used a 2D projection? We start exploring this question
in the same way as in Sec. 5.2.3 – namely, we compute a 2D LAMP projection of the
same dataset, and next compare the aggregated projection errors e3

i (Fig. 5.12a) and
e2
i (Fig. 5.12b). We see that both e3

i and e2
i are uniformly distributed over their 3D,
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2: ln-cof
7: ln-sum-tloc

a)
color: ln-cof

cluster A
(low-coupling)

cluster B
(medium-coupling)

2: ln-cof

7: ln-sum-tloc

cell (2,7)

cluster C
(high-coupling)

2: ln-cof

b)
color: ln-sum-tloc

2: ln-cofcell (2,7)

7: ln-sum-tloc

7: ln-sum-tloc

cluster C
(small systems)

clusters A+B
(large systems)

Figure 5.11: Visualization of 12-variate software metrics dataset using 3D LAMP. See Sec. 5.2.4.

respectively 2D, projections, and that e3
i is in general smaller than e2

i . These insights are
very similar to the ones obtained for our imaging dataset.

A main difference with the earlier imaging dataset use-case is that the shapes of
the 2D and 3D projections are quite different for our software dataset. Indeed, the 3D
projection, viewed from the viewpoint discussed earlier on, shows three clusters, which,
as we have seen, can be explained mainly by two variables (ln-cof and ln-sum-tloc, as
discussed). In contrast, the 2D projection shown in (Fig. 5.12b) depicts only two clearly
separated clusters A1 and B1. To explain these, we brush their points and iteratively
color the 2D projection by the values of the variables (since we use a standard 2D LAMP
implementation which does not feature any explanatory tools). This way, we found that
A1 contains a mix of large libraries and applications (thus, an union of A and B); and B1

contains small systems (thus, roughly corresponds to C). As such, our software dataset
studied here is, in contrast to the imaging dataset, an example where a 3D projection is
truly needed to let us discover the separation of the point-set into three distinct classes
(using just a 2D projection would only elicit two such classes, thus, a coarser-grained
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explanation of the data).
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Figure 5.12: Software dataset: Comparing a selected view of a 3D LAMP projection, and its ag-
gregated error (a), with a 2D LAMP projection and its corresponding error (b). See
Sec. 5.2.4.

5.3 Discussion

Our proposed explanatory techniques for 3D projections raise several discussion points,
as follows.

Added value: The explanatory techniques proposed in this chapter are effective to show
the presence of strongly (inversely) correlated dimensions, independent dimensions, and
to explain groups of closely-projected points (clusters) in terms of specific value ranges
of specific dimensions. However, it should be noted that the last feature is only effective
if such clusters are already present in the underlying 3D projection. If the projection
fails to identify such clusters, or if such clusters actually do not exist in the original
high-dimensional space, the added-value of our techniques will be limited to the former
use-cases listed above. To a larger extent, this limitation also applies to finding correla-
tions (or the lack thereof) between variables. One way to test the effectiveness of using
our techniques is to study the projection errors (Chapter 3) prior to their application: If
such errors are small, we believe that it is very likely that our techniques will next help
with the above-mentioned explanatory tasks. If the projection exhibits large errors, the
exploring its parameter space to improve it (see also Chapter 3) should be done prior to
exploring the projection.

3D vs 2D context: As outlined by our examples presented in Sec. 5.2, our techniques
focus on explaining 3D projections. In contrast to 2D projections, the user’s choice of
viewpoint for 3D projections is crucial with respect to the obtained insights [139, 163].
To explain this further, we can consider a view of a 3D projection as being the composi-
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tion of a nD-to-3D projection (Pn3) with a 3D-to-2D typical orthographic or perspective
projection (P32). Denote the projection of the same dataset from nD to 2D by Pn2. As
discussed at various points, the error of Pn3 is in general lower than the error of the
corresponding Pn2 (all other factors such as projection method, parameters, and input
dataset being kept the same). However, the total error that our 3D pipeline creates, also
contains the error introduced by P32. Hence, to minimize this total error, we aim to
minimize the error of P32. Our exploratory and explanatory tools attempt to do this
selectively – that is, to minimize the error of P32 for specific sets of points, or sets of
dimensions. This allows one to obtain a view in which such specific subsets of interest
of the input data are projected well to the final 2D image, whereas other subsets of the
data may (still) contain large errors. The key added value of our interactive techniques
resides precisely in being able to easily specify on-the-fly which these subsets are. For
instance, we can change the viewpoint to optimize the comparison of a selected pair (or
set) of variables. The same can be said concerning occlusion, a factor which is known
to adversely affect the exploration of 3D scatterplots: It is true that 3D projections are
liable to occlusion. However, one has still the chance of changing the viewpoint so as
to decrease occlusion selectively for given subsets of points of interest. In contrast, the
same is not true for 2D projections: Overlaps also occur in such projections, and reducing
them cannot be done by other means than re-computing the entire projection.

Generality: The proposed mechanisms can directly handle any dimensionality-reduction
technique, whether linear or not, global or local, white-box or black-box, and using the
actual high-dimensional point coordinates, or alternatively a distance matrix (MDS-like
methods). In all cases, we do not need any access to, or information about, the pro-
jection algorithm’s internals. This cannot be said about other explanatory mechanisms
for projections [71, 1, 132, 24], which make explicit use of the projection algorithm’s
internals (typically, SVD or PCA). As such, we were able to easily use our explanatory
tools with projections as diverse as LAMP, ISOMAP, and FBDR (demonstrated here) and
also LSP [139] and PLMP [141] (omitted here for brevity). Applying our techniques to
additional projection methods, such as e.g. the very popular t-SNE method [192, 194]
can be immediately done.

Scalability: Computationally speaking, our techniques scale linearly with the number
of dimensions, which makes them applicable to real-time data exploration of very large
projections. Visually speaking, our same techniques scale quite well up to roughly
nmax � 20 variables, which is in line with the observed behavior of other multivariate
visualization techniques [132, 50, 24, 31]. For datasets having many more dimensions,
we choose to limit insights to the most important (salient) dimensions that can be
explored from a given viewpoint (axis biplots, axis legends) and also the globally most
salient dimension-pairs (viewpoint legend). While this can be seen as a limitation in
the view of existence of datasets having hundreds up to thousands of dimensions, we
believe that aiming to display (information about) all these dimensions can be a too
ambitious, and possibly even impractical, endeavor. For such datasets, the typical way
to handle them is to first automatically aggregate or cluster dimensions by data mining
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and machine learning techniques, and visually explore the reduced-dimensionality result.

Comparison: Our techniques bear several similarities with existing work in exploring
multidimensional datasets. Apart from the already explained similarities with biplot
axes and axis legends [1, 24], we note here also ‘rolling the dice’ (RTD) [50]. Our
axis-alignment (Sec. 5.1.3) and viewpoint-selection mechanisms (Sec. 5.1.6) are con-
ceptually similar, in purpose, to the cells of a scatterplot matrix, in the sense that they
display selected ‘interesting’ variable-pairs. This also bears a resemblance to scagnostics
techniques which aim at pre-selecting interesting variables to display next [207]. Yet,
differences exist. Most existing techniques display such interesting variable-pairs as
classical Cartesian scatterplots, whereas we define them as viewpoints on a given 3D
projection. One disadvantage of our approach is that, unlike Cartesian scatterplots, we
are limited, in terms of quality and accuracy, by the configurations encoded by the 3D
projection. In contrast, one advantage is that any of our viewpoints displays information
about more than two (in theory, all) dimensions, while classical scatterplots are limited
to two up to three dimensions.

Technical details: Several of our design decisions, such as the precise choices made
for colormaps and color transfer functions are, of course, open to customization and/or
improvement. For instance, one can customize the categorical colormap used in the axis
legends to mark specific variables of interest, which one needs to pay particular attention
during the analysis, with salient colors or colors having an application-specific semantics.
Alternatively, one could select an axis legend, color map its bars using a sequential
or ordinal colormap, and next compare this legend color-wise with the other two axis
legends to reason about variable correlation or orthogonality. Yet other alternatives may
exist for specific user groups and work domains.

Limitations: From a technical perspective, our visualizations are limited in terms of
number of observations they can display without causing excessive occlusion (a limitation
shared by any 3D scatterplot technique) and the number of dimensions that can be
simultaneously explained. Separately, it can be argued that the proposed tools only
address a limited subset of the questions and tasks related to multidimensional data
exploration. For instance, we do not support the explicit identification of well-defined
point clusters and the explanation of such clusters in terms of dimension values and/or
dimension correlations, but only provide a global explanation of the entire dataset.
Separately, the viewpoint legend focuses mainly on showing the best-visible pairs of
independent variables. It can be argued that extending this legend to show (viewpoints
from which we can analyze) pairs of strongly correlated variables, or extending both
above scenarios to sets of more than two variables, is an useful addition.

In terms of user effort, our techniques cannot, and do not aim to, fully replace
interactive trial-and-error exploration, as compared e.g. to certain scagnostics-based
techniques. Rather, our aim is to support interactive exploration and make it reach a
given goal more efficiently. Examples hereof include quickly finding suitable viewpoints
for certain tasks, understanding what a viewpoint tells, but also providing visual feedback
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as one freely rotates the projection so as to pre-attentively guide the user towards specific
navigation paths.

Separately, we note that the discussion of certain advantages of 3D projections with
respect to their 2D counterparts (Sec. 5.2) should not be generalized to imply that 3D
projections are always better, for all exploration tasks and datasets, than 2D projections.
Rather, the aim of the respective discussion is to show that there are situations in
which 3D projections can be more effective than 2D projections, when complemented by
suitable exploratory tools.

5.4 Conclusion

In this chapter, we have presented several interactive visualization techniques aimed at
assisting users when exploring three-dimensional projections of high-dimensional data.
The core aim of these techniques is to add back to a 3D projection information in terms
of the identities, ranges, values, and (cor)relations of the original high-dimensional
variables, specifically when such information has been lost during the projection itself.
The added information helps in understanding patterns and shapes created by point
groups in the 3D projection in terms of the original variables; identify groups of strongly
correlated, or independent, variables; identify limitations of the projection; and, last
but not least, help the user in understanding what a given viewpoint of a 3D projection
does show, and how to suitably choose such viewpoints for specific tasks. Our techniques
are computationally scalable, simple to implement, and can be directly added to any
type of dimensionality-reduction method, without any specific constraints. From a
user perspective, our methods complement, rather than replace, classical exploratory
techniques such as brushing, selection, and color mapping.

As a consequence of having these techniques, we have shown that 3D projections can
be used to obtain more precise, and sometimes more detailed, insights as compared to
their 2D counterparts. For these cases, we have also shown that 3D projections minimize
the distance-related errors implied by reducing dimensionality, as compared to the same
2D counterparts; and that exploring these 3D projections does not bring considerable
additional costs as compared to exploring 2D projections. Taken together, the above
insights indicate to us that 3D projections should not be dismissed as an alternative to
2D projections for the task of high-dimensional data exploration.

The first contribution of this chapter – explaining 3D projections in terms of biplot
axes and axis legends – is a first step towards making scatterplots produced by projection
techniques interpretable in a more intuitive way by a wide range of users. In the next
chapter, we refine this idea of explaining projections by proposing a set of alternative
visual techniques that complement the work presented here.

Contributions

The work presented in this chapter is based on the article Explaining Three-dimensional
Dimensionality Reduction Plots (D. Coimbra, R. Martins, T. A. T. Neves, A. C. Telea, F.
V. Paulovich), Information Visualization Journal, SAGE Publications, September 2015
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(DOI:10.1177/1473871615600010). The first two co-authors have had equal major
contributions to the publication, and should be seen as joint first authors. Furthermore,
specific parts of the work can be assigned to R. Martins, as follows: the analysis of
three-dimensional projection errors and the extension thereof to viewpoint-dependent
errors (Sec. 5.1); the elicitation and testing of the specific use-cases for the viewpoint
legend widget (Sec. 5.1.6); the analysis of the wine dataset and usage of projection errors
to derive additional insight in comparing projections (Sec. 5.2.1); and the selection,
analysis, and interpretation of the software dataset (Sec. 5.2.4).
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Chapter 6

Local Explanation of Multidimensional Projections

I
n the previous chapters, we have explored several ways for explaining multidimen-
sional projections. Chapters 3 and 4 show how projection errors related to the

preservation of inter-point distances, respectively point neighborhoods, can be visually
encoded so that users get a detailed insight into where, how large, and which types of
errors occur in such projections. Chapter 5 shows how the 3D low-dimensional projection
space can be annotated with axis legends to explain the directions of variation of the
original high-dimensional attributes, by adapting and extending existing explanatory
techniques for 2D projections.

While contributing in different ways to explaining projections, the above techniques
fall short of explaining the reason why observations are placed close to each other in
projections: The techniques presented in Chapters 3 and 4, while providing local insights
in a projection, focus only on showing the errors caused by the underlying projection
method. As such, these techniques are mainly useful to decide which projection areas
are reliable in the sense of faithfully encoding the high-dimensional data structure, and
which areas contain significant errors. As explained in Chapter 3, a typical workflow
involving error analysis focuses mainly on limiting the subsequent data analysis to
low-projection areas. For such areas, we can next use the explanatory techniques
presented in Chapter 5, i.e. biplot axes and axis legends, to get an overall impression
of how the high-dimensional variables spread across the projection space (which can
be two- or three-dimensional). These techniques are useful in understanding global
projection features, such as correlations or orthogonality relations between variables; or
explaining outliers which are well aligned along high-dimensional variables. However,
these techniques fall short in understanding local projection features, such as small
groups of closely-placed observations.

In this chapter, we address the goal of explaining multidimensional projections from
the perspective of local structures apparent in the projection. In detail, we enrich 2D
scatterplots created by multidimensional projection techniques, by visually highlighting
the key dimensions, or attributes, that make closely-projected points similar. These
explanations are different from those proposed in Chapter 5: While the biplot axes and
axis legends show the directions of maximal variation of high-dimensional attributes,
the explanations proposed in this chapter show the attributes which determine the
appearance of each local neighborhood of points in the projection – hence, the name
‘local explanation’ used for these techniques. We compute such explanatory visuals
over all point neighborhoods of a 2D projection and render them next by image-based
techniques, similar to the ones presented in Chapters 3 and 4. Our technique implicitly
partitions the projection space into compact areas that are next provided with simple
explanations in terms of variables. The technique is simple to implement and independent
on the (2D) projection technique being used.



Local Explanation of Multidimensional Projections

The structure of this chapter is as follows. Section 6.1 summarizes related work tar-
geting the explanation of multidimensional projections in terms of attributes. Section 6.2
introduces the proposed visual explanatory techniques. Section 6.3 presents applica-
tions of our techniques on several real-world multidimensional datasets. Section 6.4
relates our technique to all other visual explanation techniques proposed in this thesis.
Section 6.5 concludes the chapter.

6.1 Related Work

Multidimensional projections are effective tools in showing groups of similar observations
present in large datasets where each observation is described by many dimensions or
attributes. However, in practice, such projections are very challenging to interpret: While
standard projections show, indeed, which observations are similar, they fail to explain
why observations are similar. This type of information is crucial in further using the
insight regarding the similarity of groups of observations.

The need to explain projections has been long recognized in information visualization
and visual analytics. The most natural way to explain such projections is in terms
of the original high-dimensional variables, which encode domain-specific knowledge,
and are arguably the most intuitive way for users to understand them. To this end,
several explanatory mechanisms have been proposed. As outlined in Section 2.5, such
mechanisms can be classified into several types, as follows.

Interactive approaches show information on-demand atop the projected observations,
such as color-coded values of a user-selected attribute or user-selected values of attributes
mapped to additional points in the projection [51]. More advanced methods target the
finding of interesting feature subspaces to display the data within, in a scagnostics-
like fashion [177]; feature selection for exploration via the visualization of aggregated
feature relevance data [105]; and the interactive selection of feature subspaces by
the visual analysis of plots combining observations and attributes [211]. However,
such interactive methods require a significant effort from their end users. Biplots
and biplot axes show the directions of variation of all attributes atop the projected
observations [1, 71, 69, 189]. However, such methods still keep a certain separation
between observations and attributes, in the sense that they do not explicitly show why
observations are placed at their respective positions in the projection. Axis legends show
the attributes that have the highest variance along the projection-space axes, and are
applicable both for 2D projections [24, 132] and 3D projections (as shown by our work
presented in Chapter 5). However, such methods only explain the projection-space axes,
and do not explicitly mark each point cluster in the projection with the attributes that
determined its appearance.

A different way to explain multidimensional projections is offered by clustering
methods. Such methods explicitly partition the projection into clusters of close points.
Assuming, next, that the technique used to generate the projection places indeed points
which are similar in the input high-dimensional space close to each other, an explanation
is synthesized for each such cluster, e.g. in terms of one or a few representative samples
that best characterize the data variation within a cluster, or in terms of the dimensions
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that have the lowest variance over the samples in a cluster [175, 130, 101]. This
provides an effective and visually scalable summarization of the projection in terms of a
few representatives or attribute names. However, clustering methods are challenged by
the need to explicitly decide where to draw borders between sets of observations. If such
borders are not constructed appropriately, the resulting visualization may convey wrong
insights. Additionally, clustering implies a hard partition of the projection into distinct
regions which are next separately explained. This works well for projections consisting
of several compact groups of points separated by large amounts of white space, but has
problems for projections which exhibit a fuzzier, more subtle, variation between close
points.

In machine learning applications, scoring metrics are proposed to determine which
attributes, also called features, determine a user-selected number of high-dimensional
observations to be close together (so called compactness metrics) or, alternatively, which
attributes make two or more groups of observations be far away from each other (so
called segregation metrics) [72, 64]. In spirit, such methods are close to the aim of the
work presented next in this chapter – that is, determine, or rank, the dimensions which
are mainly responsible for the appearance of groups of close observations in projections.
Yet, a key difference exists between the typical use of dimension-scoring metrics in
machine learning and the use of dimension-ranking metrics in our own work:

• Dimension-scoring (in the first context) is typically done to explain why an explicitly
selected group of observations is different than another group of observations.
Explicit selection is done either by the user, or by using the value of a so-called
class attribute, in typical classifier design;

• Dimension-ranking (in our own context) will be done to explain why an implicitly
determined group of close observations is different from all other observations in
the dataset. There is no user-based or attribute-based explicit delimitation of such
groups. Rather, they are formed implicitly by the fact that our method yields the
same explanation for neighboring points.

Moreover, feature scoring techniques, while popular in machine learning, have been
quite sparsely used for the visual explanation of multidimensional projections.

6.2 Method

6.2.1 Concept

Consider a high-dimensional dataset Dn � Rn, and a projection function, or method,
P : PpRnq Ñ PpRmq, where m ! n, and P denotes the power set operator. In our
work next, we shall fix m � 2, i.e., use two-dimensional projections. We call the value
Dm � P pDnq the projection of Dn into a low-dimensional dataset Dm � Rm, At the
core of our proposal is the attempt to answer the following question:

Given a group of close neighbor-points νm � Dm, which dimensions V � t1, . . . ,mu

of the original high-dimensional data are the most responsible ones for the fact that the
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points in νm are close to each other?

Let us further refine this question. Assuming the projection function P is a ‘well
behaved’ one, it will aim to preserve distances (like e.g. most multidimensional scaling
techniques), or alternatively preserving neighborhoods (like e.g. t-SNE [194]) when
projecting points from Rn to Rm. Consider now a small point-neighborhood νm � Dm,
and denote by νn the high-dimensional points that project there, i.e., P pνnq � νm. If,
indeed, P preserves distances and/or neighborhoods, as it is expected from a good-
quality projection, then the points νm also form a (close) neighborhood.

The key question next is: Can we determine some particular statistical aspect of the
data values of the points in νn which explains why those points are close to each other
in Dn, i.e., form a neighborhood? If so, then the respective aspect is also the reason why
P has created νm in Dm. Hence, by annotating νm with the respective aspect, when
visualizing the projection Dm, we explain to users why the respective neighborhood νm

has been formed by the projection.
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Figure 6.1: Annotating point-neighborhoods by the dimensions that best explain their existence in
the low-dimensional projection space (right). For the high-dimensional neighborhoods
(left), their bounding-boxes are outlined.

Figure 6.1 illustrates the idea. In this example, we consider a dataset Dn which
consists of two well-separated point clusters νn1 and νn2 . Furthermore, let us assume, for
the sake of explanation, that the points in νn1 are close because of their strong similarity
with respect to some dimension i of the n dimensions of Dn; and points in νn2 are close
because of their strong similarity with respect to some other dimension j. This is shown
in the figure by the depiction of the axis-aligned bounding boxes of νn1 and νn2 . Assuming
that our projection P preserves distances well, the corresponding 2D neighborhoods ν1

2

and ν2
2 will also show up as well-separated groups of points in D2. If we can detect this

fact, i.e., we can find the identities of the dimensions i and j, we can next annotate the
corresponding neighborhoods ν2

1 and ν2
2 with the explanations V1 � tiu and V2 � tju,

126



6.2. Method

respectively. For example, we can color-code the set V , using e.g. red to map dimension
i and green to map dimension j, and color map the projected points D2 by this color
coding. The resulting visualization (Fig. 6.1 right) then easily explains to the user that
the point-cluster ν2

1 is mainly formed because the respective high-dimensional points
(νn1 ) are close because of dimension i, whereas the point-cluster ν2

2 is mainly formed
because the respective high-dimensional points (νn2 ) are close because of dimension j,
respectively.

6.2.2 Ranking the dimensions

Let us now refine the above idea. We start by defining our two-dimensional neighbor-
hoods ν2

i so as to be centered at each projected point qi P D2, as ν2
i � tq P D2|}q�qi} ¤

ρu, where ρ is a (small) radius, or neighborhood size. Given such any neighborhood ν2
i ,

we immediately find the neighborhood νni of the n-dimensional point pi that maps, by
projection, to qi, simply by point correspondence. Next, as indicated above, we analyze
the distribution of points in νni to compute a so-called ranking, or ordering, of the n
dimensions of our dataset. We denote this ranking by the tuple, µi � pµ1

i , . . . µ
n
i q P Rn.

Here, µji P t1, . . . , nu, 1 ¤ j ¤ n, denotes the fact that dimension µji has rank j for
the neighborhood centered at point i. In other words, mui is a permutation of the
set t1, . . . , nu. Additionally, a low-rank dimension, i.e. a value µji for a low j, is more
important in the explanation of ν2

i than a high-rank dimension. The remainder of this
section introduces two ways to compute such rankings.
Euclidean ranking: The intuition behind this ranking method can be found if we
consider the squared Euclidean distance between two points p and r

}p� q}2 �
ņ

j�1

|pj � rj |2, (6.1)

where xj denotes the jth dimension of a point x. This distance essentially explains
the similarity of the two high-dimensional observations, and is composed out of n
contributions of the n dimensions. As such, we can say that a dimension j is contributing
the normalized amount

lcjp,r �
|pj � rj |2

}p� r}2
. (6.2)

to the (dis)similarity of two high-dimensional points.
We can extend the above idea of dimension-contribution from a point pi to the

entire neighborhood νni centered around it. We define this per-neighborhood dimension-
contribution by averaging the per-point dimension-contributions of all the neighborhood’s
points as

lcji �

°
rPνni

lcjpi,r

}νni }
, (6.3)

where } � } is the set size operator. Intuitively, if lcji is low for a dimension j, it means
that the respective dimension contributes little to the dissimilarity of points in the
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neighborhood νni , and hence it is a strong factor in explaining why these points are
similar. Put in other words, a low lcji value indicates that the axis-aligned bounding-box
surrounding νni is much narrower along axis j than along the other axes.

To use the above metric to compare dimensions against each other for the same
neighborhood and also across neighborhoods, we need to ensure proper normalization.
For this, we use compute next the so-called global contributions gcj of all dimensions
j, simply by applying Eqn. 6.3 to the centroid of Dn and considering, as neighborhood,
the entire Dn. Having these values, we define the (normalized) Euclidean ranking
contributions of dimensions j at each point i as

µji �
lcji {gc

j°n
j�1

�
lcji {gc

j
	 P r0, 1s. (6.4)

Intuitively, the above normalization will give more important (that is, low-valued)
contributions to dimensions which are very significant to describe the local similarity of
points, but which are less important for describing the overall dataset shape.
Variance ranking: An alternative to the above ranking is to use a variance-based
solution rather than one using Euclidean distances. For this, we proceed analogously
to the previous case. First, we compute the local variance LV ji of the j dimensions of
all points contained in the neighborhood νni . Secondly, we normalize these values by
the global variance GV j � varppjq of all values of dimension j over all points p P Dn.
Finally, we compute the variance ranking of dimension j for neighborhood νni as

µji �
LV ji {GV

j°n
j�1pLV

j
i {GV

jq
P r0, 1s. (6.5)

Analogously to the Euclidean ranking, low values of the variance ranking indicate
dimensions which contribute little to the variance of points in a neighborhood, thus
dimensions which are good to explain the similarity of these points.

6.2.3 Visualizing single top-ranked dimensions

Using either Euclidean or variance ranking, we can produce a set Ri � tpj, µji qu,
1 ¤ j ¤ n of dimensions and their ranking values for each point j. As explained
above, we are interested in low ranking values, as these show dimensions which can
explain best why points in a neighborhood are similar. As such, we next sort Ri increas-
ingly on the values of µji . The order in which the dimensions j get permuted due to this
sorting give us the final ranks of the dimensions, from high (important ones, having low
µji values) to how (unimportant ones, having high µji values).

Color coding: A first option to get insight in this information is to visualize the top-
ranked dimensions di P t1, . . . , nu of each set Ri – in other words, to show, for every
single point pi P D2, the most important dimension di that explains it similarity with
its neighbors. This amounts to visualizing a categorical value (dimension ID) per point.
Given the little space available in a (dense) 2D projection displayed as a point cloud, we
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6.2. Method

choose to visualize such values by color coding the projected points by categorical colors
indicating the identities of their highest-ranked dimensions.

However, this design would not work when the total number of dimensions n is
larger than (roughly) 10, as it is well known that it is hard to generate good categorical
colormaps with more entries. To solve this problem, we proceed analogously to the
solution outlined in Sec. 5.1.4 for visualizing the best visible dimensions mapped to a
projection axis. Specifically, we count, for each dimension j, the number of times it is
selected as top-ranked over all points in D2. Next, we select the C � 9 most-encountered
dimensions to color map via a color table produced with ColorBrewer [74]. This essen-
tially highlights the dimensions which are top-rank for most points in the visualization.
All other top-rank dimensions, which cannot get a color due to the colormap-size limita-
tions, get mapped to a reserved color (dark blue in our case).

Uncertainty: If we were to directly visualize the per-point top-ranked dimensions di
with color coding, as outlined above, the result would show sharp color transitions
in areas where the top-ranked dimension quickly changes between neighbor points.
Assuming that the coordinates of local neighborhoods in Dn vary (relatively) smoothly,
such sharp transitions do not occur, and are misleading. Additionally, in most situations
the top-ranked dimension does not explain all the similarity of a local neighborhood – in
other words, the ranks muji are rarely all zero except a single one being equal to one.

One way to encode the uncertainty of the top-ranked dimension di as being capable
of explaining local similarity is to simply consider the values µdii of the top-ranked
dimensions di. However, in practice, we have seen that such values are, in general, quite
small – this being, possibly, an effect of the so-called curse of dimensionality. To obtain
a more robust evaluation of uncertainty, we compute, for a neighborhood ν2

i , and for
every dimension j, the sum σji of the rankings µji over all points in ν2

i for which j has
been selected as top-ranking dimension, i.e.

σji �
¸

pkPν
2
i^dk�j

µjk. (6.6)

Finally, we define the certainty, or confidence γi, that the top-rank dimension di can
explain well a local neighborhood around point i as the normalized value

γi �
σdii°n
j�1 σ

j
i

P r0, 1s. (6.7)

Simply put, defining the confidence by γi instead of µdii essentially smooths out, or
filters, large local variations of µdii . In other words, neighborhoods having homogeneous
top-rank dimensions get a high confidence, while regions having points with different
top-rank dimensions get a low confidence. Finally, we note that, in Eqn. 6.6, we use a
smaller neighborhood ν2

i of radius ρc   ρ than the one, of size ρ used to compute the
local contributions (Eqn. 6.3). Intuitively put, the larger ρ values allow us to compute the
rankings more robustly, while the smaller ρc values allow us to capture the fine-grained
variation of ranking confidence (see also Fig. 6.2 next).

Having now the top ranks di and their confidences γi, we visualize them over the 2D
projection using the Voronoi-based (nearest neighbor) interpolation technique presented
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earlier in Sec. 3.2.2 for the display of projection errors, by encoding top ranks into
categorical colors, and using confidences to interpolate between these colors (γ � 1)
and black (γ � 0q. Note that we use nearest-neighbor interpolation instead of the
smoother Shepard interpolation (described also in Section 3.2.2) since our data values
are categorical dimension IDs, for which interpolation of higher order than nearest-
neighbors does not make sense.

Figure 6.2 illustrates the proposed visualization applied to a synthetic dataset of 3000

points. The points are sampled using a Poisson distribution from three adjacent faces of
a 3D axis-aligned cube, and next jittered from their locations by uniformly-distributed
random noise of amplitude equal to 5% of the cube size. For projection, we use here
PCA [97] rather than more complex techniques, as PCA is simple and easy to interpret,
and works well for this manifold-like dataset. Rankings are computed by variance
(Eqn. 6.5). The neighborhood size ρ is set to 10% of the diameter of D2. We see that the
color-coded projection shows three regions that match very well the three faces of the
original cube. In other words, our visual explanation technique has, indeed, succeeded
to detect that each such face is best explained by a single dimension. Moreover, we see
that points that are close to the cube edges have a low confidence (dark). This is, again,
correct, since neighborhoods νni centered around such points contain high-dimensional
points belonging to two faces of the cube, and can as such not be well explained by a
single dimension.

radius ρ

ra
d

iu
s
 ρ

c

Figure 6.2: Dimension-based explanation of synthetic 3D cube dataset.

To help interpreting the color coding, a legend is added (Fig. 6.2 top-right) to show
the specific colors used for the three data dimensions x, y, and z, and also the number
of points of the dataset that are (best) explained by each dimension. As visible here, the
3000 input points are split into three approximately equal groups. This is correct, given
that the cube’s sampling density is relatively uniform, i.e., each of its three faces has
about the same number of samples.

To provide more insight into the explanation, we allow brushing the projected points
i to show their rankings µji . This information is shown in the bottom-right legend in
Fig. 6.2, for the currently brushed point i � 1447, located in the center of the top face.
For this point, the legend tells us that µ0 � 0, i.e., there is no variance of dimension x in
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the displayed neighborhood around this point. This is correct, given that the respective
cube face is orthogonal to dimension 0 (x) of the dataset. Additionally, we see that the
variances of dimensions 1 (y) and 2 (z) are relatively equal – which is also correct, given
that the respective neighborhood contains roughly the uniform sampling of a plane.

6.2.4 Visualizing top-ranked dimension sets

As mentioned above, in many cases it is hard to assign the explanation of similarity of
points in a neighborhood to a single dimension. So far, we approached this problem by
defining a confidence γi (Eqn. 6.7) to express how dominant the top-ranked dimension
is in this explanation. This works well for situations where, locally, a single dimension is
responsible for a large part of the similarity of points. However, in many cases, a point
can have several such dimensions j, which differ only very little in terms of values of
their (high) rankings µji . Using the single-dimension explanation will generate a dark
uninformative map, since most such points will have, in turn, very low confidence values
γi for their top-ranked dimension di.

A way to tackle this issue is to extend the possibility of explaining a neighborhood by
several dimensions rather than a single one. One way to do this is to let the user define
the number k of dimensions to be used for explaining each point. However, this solution
is impractical, as (1) one may not know what a good value for k is for a given dataset,
and, more importantly, (2) different regions in the same dataset may be explained up to
the same level by different values of k. This phenomenon is analogous to the difficulty
of choosing a good representative value for k when computing the k-nearest neighbors
of a non-uniformly distributed point cloud.

Following the above analogy, a good solution – in the case of nearest neighbors – is
to use range search rather than k-nearest search. In our context, the analogy works as
follows: We define a global maximal ranking value τ P r0, 1s. Next, for each point i, we
compute the maximal dimension-set Di � tdji uj containing all its top-ranked dimensions

dji , in increasing order of µ
d
j
i
i , whose summed rankings

°
j µ

d
j
i
i is equal or just larger

than τ . Intuitively put, all these dimensions dji have a contribution on the inter-point
Euclidean distance (or, alternatively, data variance) smaller than a fraction τ of the total
distance.

The above formulation computes dimension-sets Di of varying sizes for the different
points i: If, for a point, many of its dimensions have low rankings, then Di will be large.
That is, we need many dimensions to explain why points in a local neighborhood are
similar. If, on the contrary, only few dimensions of a point are good explainers (i.e., have
low ranking values), then the set Di will be small. That is, we can explain the similarity
of points in a neighborhood by just a few dimensions. Note that the dimension-set
explanation converges in the limit to the single-dimension explanation presented earlier
in Sec. 6.2.3 – indeed, when either τ is very small, or only all dimensions (except one)
have large rankings, Di will contain only the first, lowest-ranking-value, dimension. All
in all, the dimension-set explanation adapts itself to use as many dimensions as needed
to explain a local neighborhood, as specified by the user-given parameter τ . Setting this
parameter is intuitive: Small values of τ imply using, in general, few dimensions for the
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explanation. This is good for the explanation simplicity, but explains only a relative small
fraction of the inter-point distances. Larger τ values will explain a larger fraction of the
inter-point distance (which is good), but also need to use more dimensions (which makes
the explanation more complex). In the limit, setting τ � 1 explains the entire distance,
but requires using all the n dimensions (as expected). In practice, values τ P r0.02, 0.3s

have shown to give a good trade-off between explanation accuracy and conciseness.
Once we have computed the dimension-sets Di, we proceed to visualize them

similarly to the single dimensions used earlier. That is, given a categorical color table
with C entries, we find the C dimension-sets which occur most frequently over the entire
projection, and assign to these colors from the table. All other dimension sets (occurring
less frequently) are mapped to a reserved color (dark blue).

6.3 Examples

We illustrate our dimension-based projection explanations on three datasets (Fig. 6.3).
All datasets are projected by LAMP [95], which was selected as it is accurate, simple to
use, and was also studied extensively earlier in this thesis. The Euclidean and variance
ranking metrics were both tested, and we noticed them to produce very similar results.
However, the variance metric was found to be slightly more resistant to noise and
parameter variations, so we chose it to use next. The parameters were set to ρ � 10% of
the projection size and τ � 0.05 respectively. Finally, we manually added text labels atop
of the same-color regions identified by our explanation, to list the dimensions which
were selected for explanation.

6.3.1 Wine quality

This dataset has 6497 12-dimensional points. Each point describes a type of vinho verde
wine [38] by means of 11 physicochemical properties, such as density, concentration
of chloride, concentration of sulfur, pH, and alcohol percentage. The 12th variable is a
(subjective) human-specified level of quality. For more details, we refer to Sec. 5.2.1,
where the dataset was introduced.

Projecting this dataset to 2D creates a relatively amorphous shape without clear
cluster separation (Fig. 6.3 a). When adding our single-dimension explanation, we see
how this shape is partitioned into three zones which are best described by similarities in
the alcohol rate, sodium chloride, and residual sugar dimensions (purple, yellow, and red
areas in the image). A smaller cluster of brown points is wedged between the yellow
and purple zones, being best explained by volatile acidity. The borders of the same-color
zones appear dark, which is indeed plausible, as points here would be similar with
respect to more than a single dimension. Interestingly, these separation borders look
relatively smooth, which indicated (indirectly) that the projection succeeds in placing
similar points close to each other even at coarse scales.

If we use the dimension-set explanation, the four above regions appear to further
split (Fig. 6.3 b). Specifically, residual sugar is split into two zones A1 and A2, which are
best explained by (residual sugar, free sulfur dioxide, total sulfur dioxide) and (residual
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Explanation by a single dimension Explanation by dimension sets

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Dimension-based explanations of three datasets using a single dimension (left column)
and dimension-sets (right column). See Sec. 6.3.
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sugar, total sulfur dioxide) respectively. We see how residual sugar, which was previously
explaining the large red region in the single-dimension explanation, has been ‘inherited’
by the dimension-set explanation, which refined it by adding two extra dimensions.
Region A3 appears close to the border of the purple and red regions in the single-
dimension explanation, and is, indeed, explained by their joint dimensions residual sugar
and alcohol. Similar explanation-refinement phenomena are seen for the regions A4 and
A5. The remaining regions, identified by dimensions sodium chloride, alcohol, and volatile
acidity in the dimension-set visualization, show points which can be still explained by a
single dimension, even if we allow multiple dimensions in the explanation.

As compared to the single-dimension explanation, we see considerably more dark-
blue points. This is not surprising – when we admit dimension-sets to the explanation,
it is very likely that more than C � 9 such sets will be created (where C is the size
of our colormap). Interestingly, these appear to the periphery of the projection. The
reason for this may be related to the tendency of LAMP of generating missing neighbors
on the projection periphery (see Chapter 3). As such, 2D neighborhoods around the
periphery will correspond to widely spread points in the original dataset; so finding
concise explanations for such groups of loosely-related points will be hard.

6.3.2 Quality of software projects

This dataset describes a corpus of open-source software projects written in C [121]. For
each project, 11 software quality metrics were computed, by statically analyzing their
source code files, and averaging the results for the entire project. The provided database
contains 6733 projects (observations), each having 11 attributes (code quality metrics).
A separate 12th attribute measures the number of times each project was downloaded.
The dataset was introduced in Sec. 5.2.4.

The 2D projection of this dataset exhibits two separate clusters. Using single-
dimension explanation (Fig. 6.3 c), the left one is best explained by total lines of code,
while the right one is split into two groups, best explained by total lines of code and
lack of function cohesion. The double occurrence of the same dimension (total lines of
code) in two areas of the projection is not erroneous: Brushing the points shows that
the respective regions are explained by two different ranges of this attribute. Using
dimension-set explanation (Fig. 6.3 d) splits the large same-color zones shown earlier
into smaller zones, much like in the wine quality example. The left ‘lobe’ of the projec-
tion now becomes mainly blue, which shows that it contains smaller zones that can be
explained by a limited number of variables as compared to the right lobe; as such, the
explanation algorithm prefers to assign the (few) available colors to the right lobe and
leave the left one unexplained. The right lobe is split into several regions: A3 (adds lack
of function cohesion to the explanation); A5 (adds lack of function cohesion, number of
function parameters); A4 (adds number of function parameters); and A6 (adds number of
public variables).
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6.3.3 US counties

This 12-dimensional dataset describes social, economic, and environmental data from
3138 USA cities [191]. As for the wine dataset, LAMP projects it into a single clump.
Using the single-dimension explanation, we see six large groups, of which the largest two
are characterized by the dimensions below 18 (years old) and high school 25+ (Fig. 6.3 e).
As for the previous two examples, the dimension-set explanation refines these groups
into smaller ones (Fig. 6.3 f). The below 18 group gets split into four parts: A small purple
part (still best explained by below 18); A2 (adding dimensions unemployed, population
density to the explanation); A3 (adding dimensions unemployed, population density, and
percent of college/higher graduates); and A1 (adding dimensions unemployed, population
density, percent of college/higher graduates, and median of owner-occupied housing value).
The yellow region in the single-dimension explanation gets split into a smaller yellow
area (still best explained by high school 25+); and a pink area A4, which adds population
¥ 65 years old to the high school 25+ explanation.

6.4 Discussion

Below we discuss several relevant aspects of our explanatory method.

Related work: Using color coding to explain salient dimensions in a projection is also
used by Gleicher [66] which employs a color field visualization to quickly judge the
importance of a dimension in a projected space. However, our way of defining and
computing the importance of a dimension, as well as the usage context, are different
from the above-mentioned approach.

Advantages: Arguably the main added-value of our method is its ability to treat any
projection, regardless of the presence of clearly-separated visual clusters herein (see e.g.
Fig. 6.3a,c). This is in contrast with other clustering-based techniques, which need to
separate the projection space into several areas which are next explained. In contrast to
this, our method partitions the projection space implicitly. Separately, our method is fully
automatic (the parameters ρ, ρc and τ working well with the default values mentioned
in this chapter). This is in contrast to explicit clustering methods, whose output can
depend significantly on clustering parameters, e.g., [175, 130, 101].

Simplicity: The proposed technique is easy to learn and use – in most cases, it operates
fully automatically, and only requires the user to read the color legends and, optionally,
perform some brushing to get more information on the displayed clusters. Compu-
tationally speaking, our single-threaded CPU implementation of the method in C++
runs in real-time for datasets of up to 10000 points on a standard PC. As for the error
explanatory metrics and 3D explanatory techniques presented earlier in this thesis, our
dimension-based explanation is generic, i.e., it can handle any projection technique, as
long as we know the high-dimensional coordinates of the projected points.
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Parameters: If desired, users can control various visual aspects of the explanation using
the method’s three parameters. Here, rho acts as a level-of-detail parameter – large values
create larger same-explanation regions, but also typically lower confidence (thicker dark
borders), and small values act in the opposite direction. ρc acts as a denoising filter: large
values eliminate local variations, but create thicker dark borders, and small values work
in the opposite direction. Finally, τ controls the balance between accurate explanations
of the inter-point similarity (potentially creating too many subregions which cannot be
color mapped) and coarser similarity explanations (which create less subregions, thus
minimize the chance that we exhaust the color map entries).

Hierarchy: As outlined in the examples in Sec. 6.3, the dimension-set explanation refines
the single-dimension explanation in a hierarchical nature. While we cannot state that
regions created by the former are always a partition of the larger regions created by
the latter, spatially speaking, we do see a quite good match here. Also, we see that the
finer-grained explanation used by the dimension-set method for some region A always
includes the dimension that the single-dimension explanation produced for the region
A1 that A most overlaps with. In other words, the single-dimension and dimension-set
explanations appear to create a two-level hierarchy that partitions the dataset both
spatially, and in terms of dimensions used for explanations. Exploiting this observation
to generate more refined visual explanation methods is thus an interesting future work
direction.

Limitations: As our explanatory methods use (categorical) color coding, they are
implicitly limited to the maximum size C of such colormaps. As shown in our examples,
C can be smaller than the number of regions required for the explanation, both in
the single-dimension and in the dimension-set modes. This limitation is expected to
become more problematic as the number of dimensions increases. However, in this case,
the dimension-set method has the chance of actually working better than the single-
dimension explanation, as a single region (using a color entry) can be explained by an
arbitrary number of dimensions. Other limitations include the lack of display of values of
the dimensions over the identified same-explanation regions. Separately, the Euclidean
distance and variance ranking metrics, while simple to compute, may not be the best
way one can measure the contributions of dimensions to similarities of close points. In
this sense, it is extremely interesting to study feature scoring, dimension correlation, and
outlier detection metric well known in machine learning [72, 64]. Fortunately, any such
metric can be adapted to be used by our visual explanation, and can be also easily added
to the current implementation of our method.

6.5 Conclusions

We have presented a simple and automatic technique that visually explains 2D scatter-
plots, created by multidimensional projections, by the names of the original dimensions.
In contrast to other explanatory techniques for multidimensional projections which aim
at globally explaining the projection in terms of variances or spreads of attributes, our
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approach focuses on explaining each local neighborhood of close points in the projection
by color-coding the attribute(s) that are most responsible for placing those points close
together.

Several directions can be envisaged to extend the local attribute-based explanation
of multidimensional projections presented in this chapter. First, automatic segmentation
of the regions implicitly created by our ranking techniques can be easily produced using
e.g. level-set techniques [165]. This would allow explicit construction of labels or
glyphs to explain such regions in more detail than by using color-coding only. Secondly,
such segments could be used to construct smoother representations of the variation
of the explanation confidence atop a single region, by using e.g. the construction
of generalized shaded cushions following the regions’ shapes, along the techniques
presented in [182, 26]. Thirdly, our explanations in terms of individual dimensions
vs dimension-sets creates an implicit hierarchy of coarse-to-fine explanations. Such
explanations could be visualized in a single image by adapting hierarchical shaded
cushion techniques used for the depiction of treemaps [196, 129]. All these directions
open new possibilities for the compact and intuitive explanation of multidimensional
projections in ways which are simple to understand for a large class of users. Finally, we
intend to better integrate the error-analysis techniques described in Chapters 3 and 4
with the attribute-based explanations, in order to fully support the workflow of first
filtering the projection for high-quality regions, then exploring these regions regarding
their representative attributes.

Contributions

The text of this chapter is based on the paper Attribute-based Visual Explanation of
Multidimensional Projections (R. R. O. da Silva, P. Rauber, R. Martins, R. Minghim, A.
Telea), Proc. EuroVis Workshop on Visual Analytics (EuroVA), eds. E. Bertini and J.
C. Roberts, Eurographics Association, pp. 134-139, 2015. The key contributions of R.
Martins have been the adaption of the dense image-based error visualization technique,
presented earlier in this thesis in Chapter 3, to visualize attributes and their confidence
levels; the proposal of the variance-based ranking metric (Eqn. 6.5); and the selection,
analysis, and interpretation of the software dataset (Sec. 6.3.2).

137





Chapter 7

Multidimensional Visual Analysis of Networks

I
n the previous chapters, we have presented several types of methods that aim to
explain, or facilitate the visual interpretation of, multidimensional projections from

various angles: Chapters 3 and 4 present methods for explaining projection distance-
related and neighborhood-related errors respectively; Chapter 5 presents methods that
explain 3D projections in terms of axes related to the original high-dimensional variables;
and Chapter 6 explains local neighborhoods in 2D projections in terms of the most
important attributes that are responsible for creating these neighborhoods1.

All the explanatory methods outlined above address projections of multidmensional
datasets whose attributes are, essentially, quantitative values. However, as outlined
in Sec. 2.1, such attributes can be of more types: integral, ordinal, categorical, text,
and relational. From the perspective of our explanatory techniques, integral, ordinal,
categorical, and text attributes can be essentially treated in similar ways to quantitative
attributes when generating multidimensional projections, by designing suitable dissim-
ilarity or distance functions for the respective attribute spaces, as shown by several
papers [1, 24, 23].

In contrast to the above, relational attributes occupy a particular position in the
‘attribute space’ defining multidimensional datasets. As outlined in Sec. 2.1, their main
difference with respect to the other above-mentioned attribute types, is that they are
defined on sets of observations rather than on individual observations – indeed, this is
the essence of the term ‘relation’. As such, visually depicting relational attributes creates
different, and particularly hard, challenges.

Relational datasets, also called networks or graphs, are ubiquitous in many appli-
cation areas. There is, for example, a great amount of information regarding human
relationships in social networking sites and databases that can be used for various pur-
poses, such as to investigate preference patterns to support commerce and production
sectors, to detect and investigate illegal activities, and to discover new forms of commu-
nication among individuals [37, 102]. In a different field, the structure, dependencies,
and operation of large software systems can be described and analysed as multivariate
networks of relationships between entities such as files, packages, components, classes,
methods, tasks, developers, change reports, and bugs [46, 45]. Many other application
domains generate networks, such as the transportation sector [87], biology [16], and
medicine [56].

The most common way to represent networks in visual analysis tools is by using
graphs drawn using the well-known node-link metaphor [75, 83], an approach that

1The content of this chapter was expanded from the paper Multidimensional projections for visual
analysis of social networks (R. M. Martins, G. F. Andery, H. Heberle, F. V. Paulovich, A. de Andrade
Lopes, H. Pedrini, and R. Minghim), Journal of Computer Science and Technology, 27(4):791–810,
2012.
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highlights relationships (edges) between actors (vertices) and groups of actors. Various
algorithms and tools for graph drawing exist [44, 70, 7]. Recent techniques, such as
multilevel layout algorithms [59] and edge bundling techniques [82, 61, 85] succeed in
creating drawings of graphs having millions of nodes or edges with limited clutter and
good overview of the high-level graph structure.

However, networks may include also attributes for their vertices or edges, which can
be of all the above-mentioned types (quantitative, intgral, ordinal, categorical, and text).
Such attributes are (at least) as important as the relations that describe the network
itself to understanding and using the network data. As such, the grand challenge of
understanding relational attributed datasets regards the visual depiction of both relations
and node-and-edge attributes in a scalable and understandable way.

As we have seen in the previous chapters, multidimensional projections are effective
and efficient techniques for depicting large multidimensional datasets, especially when
the analysis tasks at hand regard the detection and understanding of groups of similar
observations and the detection and analysis of correlations of attributes. As such, it
seems natural to consider adapting such techniques for the (more challenging) task of
depicting large multivariate networks, i.e., networks whose nodes and/or edges have
several data atrributes, and whose analysis should jointly consider the network structure
and attribute values. In this chapter, we address this challenge, at two different levels, as
follows.

First, we show how the relational data present in a network can be regarded in
similar ways to the distance information implied by multidimensional datasets. We next
use this approach to construct network layouts, or graph drawings, that emphasizes
different kinds of connections between nodes. This approach has similar goals to the
well-known force-based techniques used in graph drawing to generate embeddings of
graphs [44, 48]. However, as we shall see, several differences exist between our approach
and classical force-based graph drawing.

Secondly, we show how to incorporate node attributes in constructing such layouts,
so that the resulting graph drawing emphasizes both connections between nodes and
node similarities due to their attribute values. When a network is described not only
by its relations, but also by attributes mapped on its elements, then it is important
that its visual layout reflects not only the connections of the nodes in the network
structure, but also the similarities of the nodes’ attributes. Creating a graph drawing that
reflects strictly the relational information is the common use-case of force-based layouts.
Creating a visualization that reflects similarities of observations is the typical use-case
of dimensionality reduction methods, or projections. The additional requirement of
considering both relations and attributes at the same time, and producing a visual layout
that reflects both types of information, is explored in this chapter.

More than one view of the same graph can be generated at once to provide views
of different contexts on the same data, and the resulting views can be coordinated to
cross-analyse attribute against structure in the network, or even to associate properties of
different networks with shared individuals. The goal of the concurrent use of these two
approaches is to support data centered visual exploration of networks and to promote
easy visual location, in the layout, of groups of nodes that are also related by their
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properties.
The structure of this chapter is as follows. In Section 7.1, we explore the similarities

and differences of relational (graph) data and multidimensional data, with the aim of
establishing a conceptual framework that will further let us (a) model relational data
as multidimensional data and (b) unify both data types to handle them by multidimen-
sional projections. Section 7.2 presents our use of projection techniques to construct
visualizations for multivariate network data. Section 7.3 presents several applications of
our proposed visualization methods for the visual exploration of real-world multivariate
networks. In Section 7.4 we discuss some of the more important aspects of our proposal
to use multidimensional projections for the visualization of attributed networks, and
Section 7.5 concludes this chapter.

7.1 Preliminaries

Let G � pV,E � V � V q be a graph, where V � txiu denotes its nodes or vertices, and
E � tpxi P V,xj P V qu denotes its edges respectively. A multivariate attributed graph
further associates several attributes to its nodes and/or edges. In this sense, the node-set
V is basically identical to our by now well-known set of observations which are the target
of multidimensional data visualization methods.

Let us now consider the main high-level goals, or tasks, of graph visualization: For a
non-attributed graph, a good drawing thereof should convey (1) the strongly-connected
components, or node groups, in the graph; (2) the main connectivity patterns linking
the above-mentioned node groups; (3) the paths between (ideally) any pair of nodes
in the graph [109, 202]. With due simplification, these tasks can be described in terms
of a similarity metric: Nodes which are connected should be placed close to each other
in the resulting graph drawing; and, consequently, groups of strongly connected nodes
should be compact, and placed at a distance from each other that reflects the aggregated
connection strength between their node elements. In other words, the connection
pattern between nodes in a graph can be modeled as a similarity, or distance, matrix
A � paijq where aij models the connection strength between nodes xi and xj . In the
simplest case, aij equals one if nodes xi and xj are connected by an edge, or else it
equals zero. In this case, A is also called the adjacency matrix describing the graph
G. Alternatively, aij can be set to model the (positive real-valued) connection strength,
or weight, of the edge pxi,xiq. These aspects are reflected by many existing graph
drawing methods. For instance, force-based methods explicitly model node connections
in terms of a distance, or energy, function described by the combination of an elastic
spring and repulsion factor [48]. More recent scalable graph drawing methods model
the entire graph structure as a distance matrix which is next subjected to a minimization
process [103, 104, 62].

In parallel, let us recall the main goal of multidimensional projection methods – that
of generating a placement of the observations xi in a low dimensional space (typically,
2D or 3D) so that inter-observation distances in this space match the (typically Euclidean)
distances between observations in their original high-dimensional space, as given by
their attributes. As outlined in Sec. 2.3.1, multidimensional projections can use either
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the original observations xi or alternatively the distance matrix A � p}xi � xj}qij to
compute the desired low-dimensional embedding.

From the above, it follows that, at a high level, the goals of graph drawing and
multidimensional projections are related: Both types of methods take as input a matrix
describing similarities between observations, and output a low-dimensional drawing
where distances between observations should reflect the above-mentioned similarities.
As such, it follows that both tasks of standard (non-attributed) graph drawing and
multivariate graph drawing could be joined in a single framework based on the usage
of multidimensional projections. This observation forms the core of our visualization
methods for (multivariate) graphs which are described next.

7.2 Method

In line with the preliminaries outlined in Sec. 7.1, we present next two types of methods
for the visual depiction of networks. The first type of methods creates graph draw-
ings based solely on the connectivity (relational) information present in a graph, by
embedding nodes in the low-dimensional (2D) space so that their distances reflect
their graph-theoretic distances (Sec. 7.2.1). The second type of methods adds node
attribute information in the process of computing the low-dimensional embedding, and
thereby makes the resulting distances between drawn nodes (also) reflect their attribute
similarities (Sec. 7.2.2).

7.2.1 Connectivity-based projections

Our first proposal for creating a two-dimensional embedding of a network is to map
its connectivity pattern to a dissimilarity matrix, designed to reflect the goals of the
underlying data analysis. As a running example, we use a bipartite graph G where nodes
represent scientific papers and authors of these papers. Edges exist between both types
of nodes: Paper-author edges represent authorship of papers; author-author edges model
co-authorship of papers; and paper-paper edges represent papers that have common
co-authors. We can represent this graph G by an adjacency matrix A � paijq, where aij
has a binary value (0 or 1) indicating whether two nodes (authors and/or papers) are
related or not in the senses mentioned above. A more refined approach is to actually
encode in the values aij the strength of connections between nodes. For this, we set aij
to (1) the number of papers two authors have in common, if xi and xj are both authors;
(2) the number of authors two papers have in common, if xi and xj are both papers;
and (3) one, if xi and xj are a paper and an author thereof, respectively.

With the adjacency matrix A � paijq described above, we next construct two typesof
dissimilarity matrices to create a two-dimensional embedding of the underlying research
network using projection techniques, as follows:

1. Modified adjacency matrix: We construct a modified adjacency matrixA1 � pa1ijq

where a1ij � 1{aij if aij � 0 and otherwise a1ij � k �maxi,j aij , where k is a fixed
constant value. The matrix A1 is essentially a distance matrix between papers
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and/or authors – if two papers and/or authors have a strong connectivity, in the
sense implies by the original adjacency matrix A, then they will have a small
distance in A1. We next use this distance matrix as input for any projection method
that accepts distance matrices, such as the multidimensional scaling (MDS) meth-
ods overviewed in Sec. 2.3.1. As outcome, the resulting projection will place nodes
which are immediately adjacent close to each other. In contrast, nodes which
are connected by paths having a length superior to one are not guaranteed to be
placed at distances proportional to the connecting path-length.

2. Shortest-path matrix: Consider the same graph G as outlined above. For this
graph, we construct a distance matrix A1 � pa1ijq where a1ij equals the length of
the shortest path connecting nodes xi and xj , if such a path exists. If the respective
nodes are not connected by any path in G, then we set a1ij � k �maxi,j P , where
P is the maximal path length between any two nodes in G. By using this distance
matrix A1 as input for a multidimensional scaling method, the resulting projection
will reflect more the global path-length structure of G rather than small-scale
connectivity patterns, such as captured by the proposal listed at point (1) above.

The examples in Fig. 7.1 illustrates the characteristics of the connectivity-based and
shortest-path-based projections using IDMAP [122]) as a projection technique. The input
network is a dataset called VisBrazil which describes the publications in the field of data
visualization in Brazil for a period of 7 years (2003–2010). In detail, this heterogeneous
network includes 262 nodes (105 papers and their 157 authors). The network has
1861 edges, which represent author-paper relations (representing the authorship of
the papers), author-author relations (representing co-authorship of papers), and paper-
paper (representing co-authors of papers). For this dataset, a paper can be thought of
as a community of authors. The final drawings of the projected observations encode
the observation type into shape – authors are circles and papers are square glyphs,
respectively. The size of the nodes maps their betweenness centrality, a measure that
indicates how many shortest paths between all pairs of nodes in the network pass
through a given node, or, in other words, the importance of the node in the exchange of
information between the nodes of the network [57, 19]. In this case, since the nodes
are authors and their co-authorships in published papers, nodes with high betweenness
centrality indicate important collaborators between different research groups (the exact
centrality value reflected by the nodes’ sizes is not important, only the comparison
between small and high values). In both the modified adjacency matrix plot (Fig. 7.1a)
and the plot using the shortest-path matrix (Fig. 7.1b), we can see that highly central
nodes (in terms of their centrality metric) are also located quite close to the local center
of the projection. Additionally, author nodes (circles) are color mapped to show their
productivity in the network, i.e., the number of published papers, using an inverted heat
(yellow to dark-brown) colormap. For papers, we set the color to correspond to a value
of zero (light yellow). The fact that most of the large (author) nodes are also darker
indicates that there is a direct relationship between collaboration and productivity in
this network.
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a) b)

number of publicationspapers

authors
size: betweenness

legend:

Figure 7.1: Connectivity-based projections of the VisBrazil network constructed using the IDMAP
projection technique [122]. (a) Layout based on the modified adjacency matrix. (b)
Layout based on the shortest-path matrix.

From a first look at Figs. 7.1a-b, one feature becomes apparent – the presence of
isolated points that populate empty areas around the large interconnected groups of
points. Browsing these points, to show their data attributes, we find out their reason of
showing up as outliers: These are small connected groups of papers and/or authors that
do not share any co-authorship with the remaining large group of papers and authors.
This feature can be found in most graph-based bibliography analyses: There is usually
a large connected component, explained by the propagation of cooperation between
researchers; the isolated graph fragments represent small sets of papers of research
groups with separate interest areas or papers of newly formed research groups. As can be
seen in Figs. 7.1a-b, both types of distance matrices proposed above isolate such smaller
groups from the larger main component quite well.

The projection method we are using (IDMAP) is specifically developed to consider
distances between all pairs of points present in its input dataset, in line with most
other distance-matrix-based projection methods. Also, we note that there is a large
difference in connectivities (in the sense of number of edges, or node degrees) between
nodes present in the large central strongly-connected component and the isolated small
components. As such, nodes in these small groups will have large distances to all other
nodes, given by k � maxi,jpaijq, as described earlier. Consequently, these small groups
will be placed far away from the central strongly-connected component, leaving large
areas of (unused) white space to surround them.

We continue the analysis of the connectivity-based projections by focusing on the
main inter-connected group of authors from the VisBrazil network, comprising 222 nodes
(89 papers, 133 authors) and 1739 edges (see Tab. 7.1). We call this selected subset of
observations VisBrazil-Main. The visualization of VisBrazil-Main, created with the same
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parameters as the visualization of VisBrazil (Fig. 7.1), is shown in Fig. 7.2.

Table 7.1: Differences between the datasets VisBrazil and VisBrazil-Main

Datasets Nodes Edges
Papers Authors Total

VisBrazil 105 157 262 1861
VisBrazil-Main 89 133 222 1739
Difference 15,23% 15,28% 15,26% 6,55%

number of publicationspapers

authors
size: betweenness

legend:

a) b)

Figure 7.2: Connectivity-based projections of the VisBrazil-Main network, formed by the main inter-
connected group of authors from VisBrazil, using IDMAP [122]. (a) Layout based on
the modified adjacency matrix. (b) Layout based on the shortest path matrix.

In Fig. 7.2, we see that the relationship between the nodes’ computed centralities,
encoded by their sizes, and their spatial positions in the central areas of the layout,
are more apparent for the shortest-path-matrix case (Fig. 7.2b) than in the modified-
adjacency-matrix case (Fig. 7.2a). This insight is useful to help us understand how
the shortest-path-matrix plot actually works: Nodes with high centrality – those with
short paths to most other nodes in the graph – are pushed towards the center of the
projection, which leads to the interpretation that central nodes are hubs that connect
peripheral nodes. Separately, let us consider the position of the nodes which have a
high centrality and high number of published papers, i.e., the large-and-dark circles. We
notice that their organization in the two layouts (Figs. 7.2a-b) changes significantly: In
the shortest-path-matrix plot, these nodes are located, again, close to the local center of
their surrounding node distributions, confirming their positions as central interaction
hubs int his social network; in contrast, in the modified-adjacency-matrix plot, they are
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located at various positions with respect to the surrounding nodes, thereby making it
harder to visually detect them as important interaction hubs. Following these insights,
we argue that projections created by shortest-path distance matrices are more effective
in highlighting the distribution of nodes, in such social networks, around central commu-
nication hubs.

Combining projections and spring embedders: Besides being able, on their own, to
construct two-dimensional embeddings of networks, our projection-based techniques
are also useful as ‘preconditioners’ for classical force-based layouts used to visualize
such networks. We illustrate this in Figure‘7.3. The input dataset consists of our entire
VisBrazil network discussed above. Figure 7.3a shows a graph layout created by using a
standard spring embedder that iteratively adapts the positions of the nodes, starting from
random placements, until the total spring energy captured by the graph’s edges, falls
under a given value, or until a maximal number of 30 iterations has been performed [48].
Figure 7.3b shows a layout of the same graph, using the same spring embedder and
parameters, this time starting from node positions given by the modified-connectivity-
matrix method (Fig. 7.1a). As can be seen in Fig. 7.3b, when a force-directed layout
is applied after a projection of the nodes, there is less likelihood of large groups of
connected nodes ‘collapsing’ together in the layout, as it happens with a conventional
force-directed layout with random initial node placement (Fig. 7.3a). We shall analyse
this property in more quantitative terms later on in Section 7.3. Projecting nodes first
before performing the force-directed layout prevents local energy minima, in the force-
directed layout, from derailing force-based placements. Importantly, we note that even a
force-based placement where spring stiffnesses of the edges are given by connectivity
calculation can not produce such a separation effect. As such, our proposed use of a
projection step as preconditioner for applying a force-directed graph layout is of added
value.

The movements of the nodes in Fig. 7.3b by the force-directed layout starting from
node positions determined by our projection reveal a better picture of small sub-graphs to
the left and right of the larger subgraph. These small subgraphs represent small research
groups working in relative isolation. Such subgraphs are also visible in the original
projection (Fig. 7.1a) in the sense of being separated from the central strongly-connected
graph component, due to the large distance values we set in the modified adjacency
matrix A1 between disconnected nodes. However, by using the projection only, these
small subgraphs appear as ‘collapsed’ to sets of overlapped nodes. In contrast, the force-
directed pass used after the projection keeps these components separated from each
other, but also spreads their nodes more uniformly over the available space, therefore
decreasing clutter and overlap (Fig. 7.3b). Finally, we note that, by using a force-directed
layout only, starting from random initial positions, nodes in the above-mentioned small
disconnected components get mixed with other nodes (Fig. 7.3a). To separate these, a
large number of force-directed iterations is required – and even if such an iteration count
is allowed, separation is not guaranteed, which in turn leads to a cluttered layout. At
a high level, the explanation of the above phenomena is as follows: Both our IDMAP
projection and force-directed technique are, essentially, embedders that take as input

146



7.2. Method

Figure 7.3: Using connectivity-based projections of the VisBrazil network as a preconditioner for a
force-directed layout. (a) Force-directed layout starting from random node positions.
(b) Force-directed layout starting from node positions given by a projection based on
our modified adjacency matrix (Fig. 7.1a).

a distance matrix and aim to create a two-dimensional configuration of nodes whose
2D distances best approximates the given distance matrix. However, differences exist
between the working and heuristics of these two techniques. In a general sense, neither
of them is ideal: IDMAP may preserve well distances from the input matrix, but this may
cause nodes to be placed too close to each other when such distances are too small; the
spring embedder, on the other hand, achieves better clutter and overlap minimization
by its repulsive forces [48], but cannot preserve distances between nodes as well as
IDMAP. In this sense, the combination of IDMAP (or, in the more general sense, a multi-
dimensional projection) and a spring embedder achieves a good combination between
desirable features of both types of techniques.

Comparing projections and spring embedders: Our final example, shown in Fig. 7.4,
shows a layout of the VisBrazil-Main dataset, i.e., the central strongly-connected compo-
nent of our authorship network, generated by 100 steps of a force-based spring embedder
starting from random initial positions. Interestingly, the result shown in Fig. 7.4 reflects a
spatial distribution of the nodes which is quite similar to the one shown by the projection
based on the shortest-path-matrix (Fig. 7.2b): Both images show that the network is
roughly divided into two large groups, to the left and to the right of the projection, with a
third smaller group towards the bottom, mediated by a single well-connected researcher
(marked as Researcher #1). However, the force-based layout (Fig. 7.4) consistently
settles on smaller edges between the nodes, cluttering the organization inside the two
distinct groups and making it hard to distinguish between papers (squares) and authors
(circles). In contrast, the projection based on the shortest-path-matrix (Fig. 7.2b) shows
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Figure 7.4: Connectivity-based projection of the VisBrazil network – 100 steps of force-based layout
with random initial positions.

a clearer separation between nodes of different types, which makes it easier to spot
their effect on the network around them. Together with the results presented in Fig. 7.3,
this supports our claim that projection-based techniques are good alternatives and/or
preconditioners to force-based embedders for the creation of low-clutter graph layouts.

7.2.2 Attribute-based projections

When a dataset is composed not only of relations, but also of (potentially multiple)
attributes that describe each observation (node) and/or relation (edge), a complete
visual analysis of this dataset must involve not only the exploration of its structural
connectivity patterns, but also of the similarities between its elements in terms of their
attributes. For this, the previously described techniques (Sec. 7.2.1) are not enough, as
these only consider the relations. To accommodate attributes, we consider separately
the two cases of edge attributes and node attributes. Edge attributes are relatively easy
to accommodate using the distance-matrix based techniques outlined in Sec. 7.2.1, by
weighting the entries a1ij of the connectivity-based distance matrix A1 by the values of
such attributes. This follows the typical usage of edge attributes to model the importance,
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or strength, of an edge, which is in line with the semantics of the connectivity-based
distance matrix entries. When multiple attributes are defined on an edge, they can be
aggregated by e.g. summation or averaging to compute a single weight. Node attributes,
however, are slightly less straightforward to integrate in the above solution, since they
are defined per observation rather than per relation. As such, we focus the discussion in
this section on node attributes solely.

We propose in this section an approach to combine, in one or more visualizations,
the two different viewpoints of a given network given by its relations and node attributes.
For this, we shall merge a number of distance matrices that capture separate aspects
of the network into a single distance matrix that reflects the user’s analysis goals. This
matrix is next used as input for a MDS-type projection technique, in the same way as
already described in Sec. 7.2.1.

To demonstrate the underlying idea, we first describe the dataset to be visualized.
This dataset, called next VisBrazil-Papers, is a subset of the VisBrazil dataset introduced in
Sec. 7.2.1, containing only the paper-type nodes (that is, no author nodes) and edges link-
ing them, which represent, as already explained, papers that share at least one common
co-author. Edges are weighted by the number of common co-authors of their paper nodes.
To this relational information, we can add extra data concerning the contents of the
papers. For this, we transform their text contents into multidimensional attribute vectors
by using the classical Vector Space Model (VSM) representation of text documents [154].
In short, this process extracts all words from each document, removes stopwords, trans-
forms the remaining words into so-called radicals, and removes radicals that occur less
frequently over the entire set of processed documents. Each document then gets an
attribute vector with one entry (attribute) per radical having, as value, the number of
times this radical occurs in the respective document (a similar approach was used for the
ALL dataset used in Sec. 5.1). Following this description, it becomes clear why we elimi-
nated authors from the dataset – these do not have the same types of attributes as papers.

Connectivity vs attribute projections: Our first question is how does a projection that
solely uses the relational information in this dataset differ from a projection that solely
uses node-attributes. Figure 7.5 shows two visualizations that illustrate these differences.
Both visualizations are created by using the IDMAP projection. Figure 7.5a uses a
distance matrix computed from the VSM node-attribute representation, where attribute-
vectors are compared by using cosine distance, as typical in document processing. Hence,
distances between the nodes in this image encode the dissimilarity of the documents’
texts. Figure 7.5b uses the shortest-path distance matrix encoding the relations in
the network (Sec. 7.2.1). Hence, distances between nodes in this image encode the
connectivity patterns in the network.

To make the comparison of the two projections in Fig. 7.5 easier, we subsequently
cluster the nodes based on similarity of their VSM attributes, using the Bisecting K-Means
algorithm [174] (other clustering algorithms can be used equally well), and next color
all nodes in each cluster by the same categorical color. Since the clustering is identical
for both projections, differences in the distribution of node colors in the two images
indicate differences in the way the two projections place nodes in the two-dimensional
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a) b)

Figure 7.5: Two IDMAP projections of the VisBrazil-Papers dataset. (a) Projection using only the VSM
node attributes. (b) Projection using only the shortest-path distance matrix encoding
connectivity.

embedding space. We notice that same-color points, which belong to the same cluster, in
Fig. 7.5a are placed near each other, reflecting the fact that the layout favors similarities
in the multidimensional attributes. In contrast, there is no visible relation between node
colors and positions in Fig. 7.5b. Indeed, this image is a projection that places connected
nodes close to each other, regardless of their attribute values. On the other hand, the
layout in Fig. 7.5b has shorter edges and less edge-crossing, since, as explained, this
projection follows the network’s connectivity patterns. In contrast, edges in Fig. 7.5a
are long and crossing all over the projection, since this projection completely ignores
the relational data in the input dataset. This comparison shows two extreme viewpoints
that can be obtained from the same dataset, by considering its node attributes or its
node connections. Both viewpoints have their merits: Figure 7.5a is preferred if one is
interested purely in an attribute-based analysis; while Figure 7.5b is preferred if one is
interested purely in a connection-based analysis.

Combining connectivity and attributes: There are, clearly, cases when one wants
to analyse this type of dataset from a perspective that regards both attributes and
connections. For this, we need to merge both sources of information in the construction
of our projection. A simple way to do this is to compute two distance matrices, one
using only the connections (as explained in Sec. 7.2.1) and the second one using the
cosine distance between all attribute-vectors of all nodes; next, we add these distance
matrices to yield a final distance matrix that we use to compute the projection. To stress
connectivity vs attribute similarity, we can next weigh the two distance matrices in the
summation.

Figure 7.6 shows, for the VisBrazil-Papers dataset, the results of combining the
connectivity and attribute distance matrices, with equal weights, and applying the
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IDMAP projection technique to the final matrix. Colors follow the same scheme as in
Fig. 7.5. Figure 7.6a shows the result when connectivity is captured by the shortest-path
distance matrix. Figure 7.6b shows the result when connectivity is captured by the
modified adjacency distance matrix. Several observations can be made here. First,
both images in Fig. 7.6 have a structure that appears to be an in-between form of the
extreme structures shown in Figs. 7.5a,b: Same-color nodes are located relatively close
to each other (like in Fig. 7.5a, when using only node attributes in the projection);
and strongly-connected node groups are placed close to each other (like in Fig. 7.5b).
Additionally, when using the shortest-path distance matrix to encode the network’s
connectivity (Fig. 7.6), we see how central nodes (large circles) are placed far from the
layout’s periphery.

a) b)

clusters
size: betweenness

legend:

Figure 7.6: IDMAP projection of the VisBrazil-Papers dataset, based on a combination of the nodes’
attribute distance matrix and connectivity modeled by the (a) shortest-path distance
matrix and (b) modified adjacency matrix.

It might be the case that, depending on the analysis goals, one of the two factors
– connectivity or attributes – is more important than the other. To reflect that in the
resulting visualization, we can change the weights of the corresponding distance matrices
when summing them up to compute the final distance matrix. Figure 7.7 shows this by
using the same dataset and settings as in Fig. 7.6a, but having different weights on the
two distance matrices. In the first image (Fig. 7.7a), we set the weight of the attribute
distance matrix to be 3 times larger than the weight of the shortest-path matrix that
encodes connectivity. As a result, same-color (thus, similar) nodes are placed closer to
each other than in Fig. 7.6a, the result approaching more the purely attribute-based
image in Fig. 7.5a. In the second image Fig. 7.7b), we set the weight of the shortest-path
distance matrix to be 3 times larger than the weight of the attribute distance matrix. As a
result, strongly-connected node groups are placed closer to each other, and the placement
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is less influenced by the node attribute similarities. This can be seen by observing the
spread of the green nodes in the projection, which, even though similar, are pulled to
relatively far apart positions by their local connections to other nodes.

b)a)

clusters
size: betweenness

legend:

Figure 7.7: IDMAP projection of the VisBrazil-Papers dataset, using as input a weighted combination
of attribute and shortest-path distance matrices. (a) Attribute distance matrix has a
weight of 3; (b) Shortest-path distance matrix has a weight of 3.

Merging of the attribute and connectivity distance matrices does not have to include
necessarily all the node attributes of the input dataset. Depending on the analysis goals,
when exploring a network the user might be interested in the similarity of only one (or a
few) attributes, instead of all of them. As such, only these attributes should be included
in the computation of the projection. This can be easily done by considering only these
attributes when computing the attribute distance matrix, prior to merging it with the
connectivity distance matrix. Figure 7.8 shows such an example. The dataset and
projection technique here are VisBrazil-Papers and IDMAP, respectively, like in our earlier
examples. The projection uses a distance matrix merging the shortest-path distance
matrix with an attribute distance matrix considering only the year attribute of each node
(paper). Nodes are colored by their publication year, ranging from 1998 to 2010, and
scaled by their betweenness centrality. The resulting projection shows clearly how nodes
are positioned to reflect their connectivity pattern, with high-betweenness nodes closer
to the layout center, expected. In the same time, we see that same-color nodes are placed
quite close to each other – hence, the projection captures well similarity of the year
attribute.
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Figure 7.8: IDMAP projection of the VisBrazil-Papers dataset, created by a combination of shortest-
path distance and year-attribute-similarity matrices. Colors encode values of the
publication-year attribute, ranging from 1998 to 2010.

7.3 Applications

We next describe several applications of our techniques for visualizing multivariate
attributed networks. All applications take the form of using our techniques for exploring
a real-world dataset containing both relations and node attributes, and describing
relevant insights found by our visual exploration. Sections 7.3.1, 7.3.2, and 7.3.3
address the utilization of network visualizations constructed using purely connectivity
information (Sec. 7.2.1). Sections 7.3.4 and 7.3.5 address the utilization of network
visualizations constructed using the combination of connectivity information with node
attribute values (Sec. 7.2.2).

7.3.1 Connectivity-based projections: Research networks

The analysis of networks representing interactions among researchers and their research
subjects is an application useful for several purposes, such as understanding the evolution
of a subject area and evaluating impact, influence or performance from a certain point
of view. This example is meant to illustrate the nature of displays and types of analysis
provided by connectivity-based projections.

The dataset, obtained from [3], is the collection of all citations of two major journals
in areas of computer graphics: IEEE Computer Graphics and Applications (CG&A) and
Computer Graphics Forum (CGF). The full graph of citations and authors extracted
from this dataset comprises 2471 papers and 3841 authors. To explore this graph, we
computed its modified adjacency matrix, and used this matrix to project the nodes to 2D,
using the IDMAP projection technique.

153



Multidimensional Visual Analysis of Networks

Figure 7.9 shows the first projection-based visualization of this dataset. We see how
the modified adjacency matrix distance-technique dedicates most of the available 2D
space to the large connected subgraph of authors and papers (the crescent shape in
Fig. 7.9a). We also see an isolated outlier, which represents the projection of all papers
and authors which are not connected to the large crescent shape. These outlier nodes
are actually the ones that determine the crescent-like shape of the projection – in other
words, for the highly-connected nodes in the bulk of the graph to be placed (equally)
far away from the disconnected outliers, the bulk needs to assume the crescent shape
visible in the projection. In Figure 7.9a, nodes are colored by their degree (number of
edges), using a blue-to-red colormap. Figure 7.9b shows the same projection, this time
drawn without the edges that connect the nodes; also, node colors show now the nodes’
betweenness centrality (introduced in Sec. 7.2.1), using a red to blue colormap. We
see here how highly central nodes, i.e. papers and/or authors that are highly cited, are
distributed over the layout of the projection, acting as ‘connection hubs’ between all
nodes in the network.

a) b)

outliers

Figure 7.9: Paper-author network for the CG&A and CGF journals, composed of 2471 articles and
3841 authors. (a) Projection colored by graph degree; (b) Projection (drawn without
edges) colored by betweenness.

The above images are useful for locating the outlier papers and authors, as being
items which are disconnected from the main body of related publications. However, as
we have seen, the modified adjacency matrix technique collapses all these outliers to
a single location, making it impossible to further analyse potential relations between
them. To better see and analyse the structure of the disconnected outlier component,
we apply a force-directed layout to the paper-author graph, initialized with the node
positions delivered by the projection shown in Fig. 7.9. Figure 7.10 shows the result. In
the left image (Fig. 7.10a), we see how the disconnected outliers, which were originally
collapsed to a single 2D location, are now spread over a larger area of the available 2D
space, while the crescent shape of the bulk of related publications is kept. This allows us
to better see the structure of the outlier component – or, in other words, the available
projection space is used more efficiently, in the sense that less whitespace is spent in
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showing that the outlier component is disconnected from the bulk component. This
result is not surprising: Projection techniques, such as IDMAP which was used here, try
to approximate the input distances, provided in the distance matrix fed to the projection
algorithm, in the positions of the 2D points. Given the way our modified adjacency
matrix is computed (Sec. 7.2.1), it is not surprising that disconnected components are
placed far away from the remaining nodes in the projection, since they are marked as
being at very large distances from all nodes not being connected to them. In contrast,
force-directed layouts care far less about an accurate preservation of high-dimensional
distances. Moreover, the node-to-node repulsion terms used in typical force-directed
algorithms [48] spread the nodes away from each other, thereby making a more effective
use of the available empty space in the embedding dimension.

outliers

a) b)

Figure 7.10: Paper-author network for all papers for the CG&A and CGF journals, laid out with a
spring embedder initialized by the projection layout in Fig. 7.9. (a) Entire network,
colored by journal ID. (b) Zoom-in on the disconnected outlier component in Fig. 7.10a.

7.3.2 Connectivity-based projections: Quality analysis

As shown in Sections 7.2.1 and 7.3.1, networks can be visualized by using multidimen-
sional-scaling-type (MDS) projections based on their modified adjacency matrices. The
examples given in the above-mentioned two sections show that such visualizations look,
globally speaking, similar to visualizations created by classical methods that exploit the
available relational information, such as force-directed methods. However, such insights
are qualitative at best. To justify the use (and added value) of projections as tools for
constructing two-dimensional embeddings of networks, more detailed measurements
and comparisons of the quality of the produced layouts needs to be done.

In this section we address the above task of quantitative exploration of the quality of
graph layouts created by using our modified adjacency matrix. The proposed procedure
comprises the selection of a number of real-world network datasets; the creation of two-
dimensional graph layouts for these datasets using (1) standard force-based techniques
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where node positions are randomly initialized; and (2) force-based techniques where
node positions are initialized based on our proposed projection; and the comparison of a
number of quantitative metrics, measured on both types of visualizations, in order to
compare their quality.

For our analysis, we employed three datasets of co-authorship networks: The eurovis
dataset includes all papers and authors of the proceedings of the EuroVis Conference on
Data Visualization, and its precursor symposium VisSym, from 1990 to 2010. The second
dataset (vis) includes all papers and authors of the proceedings of the IEEE Visualization
and IEEE InfoVis conferences, from 2001 to 2010. The third dataset (agric) includes
papers (and their corresponding authors) published from 2009 to 2011 by Brazilian
researchers on agriculture. Table 7.2 summarizes the sizes of the graphs formed from
these datasets. The last column is the percentage of nodes that belong to the larger
connected component of each dataset.

Table 7.2: Datasets used for the analysis of quality of connectivity-based projections.

Dataset Papers Authors Nodes Edges % Largest
Component

eurovis 420 865 1,285 4,838 59.1
vis 1,586 2,849 4,435 21,176 72.2
agric 2,220 3,958 6,178 30,965 73.2

For each of the above three datasets, we generated layouts based on classical force-
directed methods (further called force) and force-directed methods initialized by our
projection technique (further called proj-force). Figure 7.11 shows two such typical
layouts, for the eurovis dataset. As visible, and in line with the similar results shown
in Sec. 7.2.1, the two types of layout methods yield very different results. However,
from a visual investigation only, it is not possible to tell which of the two layouts has a
better quality. To measure quality in a more detailed and objective way, we measure next
three metrics, for each pair of layouts (force vs proj-force): two metrics quantifying the
distribution of nodes based on their connectivity, and the number of edge crossings in
the resulting layout. The metrics are averaged over five runs of each dataset and each
algorithm, to account for possible variations. The aim of this experiment is to compare
these metrics for the force and proj-force techniques over the three considered datasets,
and thereby quantitatively assess the added-value, in terms of quality improvement, of
using our projection technique as initializer for a force-based placement.

Figure 7.12 shows, for our three considered datsets, the first two quality metrics we
consider, which are the neighborhood preservation (npres) and neighborhood hit (nhit),
described in detail below.

Neighborhood preservation (npres): Given a number of k nearest neighbors, npres
measures the percentage of neighbors, averaged for all nodes, which are the same in the
two-dimensional layout as well as in the adjacency matrix A introduced in Sec. 7.2.1.
Higher npres values are, clearly, desirable. Preserving node neighborhoods in two-
dimensional layouts is, clearly, not an easy task in the case of highly connected graphs.
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(a) (b)

Figure 7.11: Layout for the eurovis dataset by (a) force-based method using random positions
(force); and (b) projection followed by force-based method (proj-force). Colors indicate
the k-means clusters in the dataset.

However, as the npres plots in Fig. 7.12(b,d,f) show, node neighborhoods are consistently
better preserved when using a force-directed method preconditioned by a projection
(proj-force) than when using a force-directed method alone (force).

Neighborhood hit (nhit): We first cluster the points using a distance-based clustering
method – k-means in this case. Then, we count, for each node xi, the number of its 2D
k-nearest neighbors, with k being a free parameter, that fall into the cluster in which
xi is located, and average this quantity over all nodes to yield the final plotted value.
Figure 7.11 illustrates this for the eurovis dataset. Nodes are here colored to show the
identity of the clusters computed by k-means from this dataset. We see that the node
colors in the projection using the proj-force method (Fig. 7.11b) seem to match the
nearest-neighbors of their respective points better than when using the force method
(Fig. 7.11a). This is precisely the property that nhit aims to capture. Figure 7.12(a,c,e)
shows that preconditioning the force-directed layout by a projection (proj-force) yields
consistently higher nhit values than when using a standard force-directed layout (force).

Several additional global observations are due to the quality analysis presented in
Fig. 7.12, as follows. First, we note that the maximal values for both npres and nhit for
our studied datasets, respectively npres � 0.425 and nhit � 0.83, are not very large,
given that the absolute maxima of both metrics is one. This reflects the inherent difficulty
of mapping the connectivity patterns of the three considered relational datasets to a two-
dimensional space. However, as stated earlier, we obtain higher values for both metrics
when using our proposed proj-force method than when using the standard force spring-
embedder method. As such, we conclude that the projection-based preconditioning
of force-directed methods is beneficial in terms of increasing the quality of the final
visualization. Secondly, we see how both npres and nhit depend on the number k of
considered nearest neighbors. This phenomenon is expected – as discussed in more
detail in Chapter 4, preserving smaller neighborhoods is, in general, much easier than
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preserving large neighborhoods. We also note that, to get a more detailed comparison
and understanding of neighborhood preservation issues involved with the force and
proj-force methods, we could employ here the fine-grained set-difference (Sec. 4.1.3)
and sequence-difference (Sec. 4.1.4) views. However, our current purpose is to obtain a
global understanding of which of the two considered graph-drawing methods, force and
proj-force, has a higher quality, rather than interpreting the fine details and errors of a
given projection. As such, we prefer for this task the aggregated error plots shown in
Fig. 7.12. Finally, we note that we obtained similar npres and nhit curves, and observed
a similar quality advantage of the proj-force vs the force method, when using other
projection techniques than IDMAP, e.g., LSP [139]. This increases our confidence when
we state that multidimensional projections are useful precoditioners to force-directed
layouts.

To get a better insight in the perceived advantage of proj-force as compared to force,

(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Quality plots for both force and proj-force layouts. Top row: eurovis dataset; middle
row: vis dataset; bottom row: agric dataset. Left column: neighborhood hit metric.
Right column: neighborhood preservation metric.
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we computed, for each pair of plots (i.e., npresforce vs nhitforce and npresproj�force
vs nhitproj�force), the significance of their differences. For this, we used a simple
statistical t-test. The resulting p-values are shown in Table 7.3. They demonstrate the
growing significance of the advantages of performing a multidimensional projection
as an initial step to a force-directed layout, as the number of nodes grows. Table 7.3
also shows our third and final quality metric used to compate the force and proj-force
methods – the number of edge-crossings counted for a given layout. As well known
from numerous analyses, edge-crossings are undesirable artifacts in a graph drawing, as
they impair the easy and reliable reading of the connectivity information conveyed by a
node-link visualization [125, 181]. As such, graph visualizations which minimize such
edge crossings are preferred. In Tab. 7.3, we see that the number of edge-crossings is
(significantly) lower for the proj-force method as compared to the force method. This is
an additional argument in favor of our proposal to precondition force-based layouts by
multidimensional projections.

Table 7.3: Aggregated comparison values for proj-force and force plots.

Dataset nhit p-value npres p-value edge crossings edge crossings number of
proj-force force clusters

eurovis 0.25 0.16 45,600 54,500 10
vis 0.17 0.17 1,620,000 2,900,000 10
agric 0.0013 0.029 4,000,000 7,900,000 15

7.3.3 Connectivity-based projections: Neighborhood preservation

Section 7.3.2 has presented an aggregated quantitative analysis of the added-value of
preconditioning force-based graph layouts by multidimensional projections. As men-
tioned in that discussion, these aggregated views fulfill their aim quite well – that is,
showing whether and how much one gains from using projections before force-based
layouts.

A separate question is: How to provide fine-grained insight in the quality issues
involved in our projection-based methods used for the visualization of networks? In
other words: How can/should we adapt the detailed neighborhood preservation views,
presented in Chapter 4 for multidimensional datasets, to handle multivariate relational
datasets? To answer this question, we chose to adapt the set difference view described
in Sec. 4.1.3 to the context of networks. In detail, to do this, we need to provide a
definition of distances in the high-dimensional space between observations, which are
used to compute neighbor sets (Eqn. 4.3). For this, we proposed to use in our network
context the shortest-path distance matrix introduced in Sec. 7.2.1.

While the shortest-path distance matrix can, technically, be used without modifi-
cation to compute the set-difference view, in terms of finding the high-dimensional
k-neighborhood of any node, there are several special cases where this idea needs to be
adapted, as follows:

In many not strongly-connected graphs, some nodes may not have k neighbors.
In this case, a method that determines a k-neighborhood of a node xi may include as
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k-neighbors of xi, and for certain k values, nodes that are not connected to xi. This is due
to the fact that, in our shortest-paths distance matrix, distances between disconnected
nodes are all set to the fixed value maxi,j P , where P is the maximal path length between
any two nodes in the input graph (Sec. 7.2.1). To handle this, we adapt the global user-
provided value of k nearest neighbors in a local way: Given a value of k, a node xi
will have k1   k neighbors considered in its neighborhood-preservation analyses, if the
connectivity structure of the input graph states that xi has only k1 nodes connected to it.
The same value k1 is used next to determine the number of neighbors of the projection
of xi in 2D when computing, for example, the neighborhood-preservation npres quality
metric (Sec. 7.3.2).

In a shortest-paths distance matrix of a network with discrete edge weights,
several k-neighbors of a node xi may have the exact same distance to xi. The
problem here is that, when computing the k-neighborhood of xi given by this distance
matrix, the search for neighbors may finish with an arbitrary neighbor that has precisely
the same distance to xi than several other neighbors. Since all these neighbors have
precisely the same distance to xi, we do not know a priori which to include in the k
neighbors of xi. This is a well-known ‘tie’ situation encountered also when one searches
for k nearest neighbors in Euclidean distance spaces [6]. To solve this problem, we
include in the k-neighborhood of xi all neighbors having equal distances to xi equal to
the distance of the kth neighbor. Thereby we solve the aforementioned ties by including
all of them in the k-neighborhood of xi. Note that the problem of ties is also present in
the original set-difference view presented in Sec. 4.1.3, albeit to a lower extent, since the
likelihood that many high-dimensional Euclidean distances between observations are
precisely equal is far less than in the case of using connectivity distance matrices with
discrete edge weights.

With these two adaptations, the set difference view in Sec. 4.1.3 can be applied to
connectivity-based projections in order to compare the k-neighborhoods of points in the
original (network) space, given by the shortest-paths distance matrix, and those implied
by the resulting network drawing in 2D. Figure 7.13 presents the results of such an anal-
ysis for the eurovis dataset – one showing the full paper-author network (Figs. 7.13a,c)
and the second one showing the largest connected component (Figs. 7.13b,d), for the
two types of distance matrix proposed in Sec. 7.2.1, i.e., the modified-adjacency and the
shortest-paths distance matrices. The chosen projection method was ISOMAP [184]. The
number of considered nearest-neighbors k was set to 10% of the total number of nodes
in each graph, i.e., 128 nodes for the full graph, and 72 nodes for the main component,
respectively.

The layouts resulting from projections of the full eurovis graph (Figs. 7.13a,c) are
very different from each other, while the layouts resulting from projections of the main
component (Figs. 7.13b,d) are more similar. Nodes in these figures are colored by
the neighborhood-preservation error, using a blue (low) to red (high) colormap. This
confirms the large impact that sets of small disconnected sub-graphs have in the final
results of the projections of networks, in line with earlier findings discussed in Figs. 7.9
and 7.10 and related text. In Figure 7.13a it is possible to discern that these small
isolated subgraphs (dark blue component to the right of Fig. 7.13a) all show a very low
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a) k = 128 b) k = 72

c) k = 128 d) k = 72
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Figure 7.13: Analysis of neighborhood preservation using the set-difference view for two versions of
the eurovis dataset. (a,c) Full network. (b,d) Main connected component. The graph
drawings were created by (a,b) the modified adjacency distance matrix; and (c,d) the
shortest-paths distance matrix of the considered networks.

neighborhood preservation-error, as illustrated by the node’s colors, while the highest
errors are located in edges that reach this subset of isolated graphs. These errors are
very likely due to the close positions of these nodes in the 2D layout, while the original
(connectivity-based) distances are quite large, as this component is disconnected from
the remainder of the graph. The remainder of the network (large component in the
center and left of Fig. 7.13a) is roughly divided in horizontal bands of points with
similar levels of neighborhood-preservation errors. This reflects the tendency of the
modified adjacency distance matrix to group immediate-neighbor nodes with less focus
on the global distances. Two groups of nodes with smaller errors are positioned on the
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top and the bottom of the layout (green-cyan nodes in Fig. 7.13a), while the central
area is populated with nodes having middle-to-high errors. This indicates that these
central nodes (authors and papers) have a more confusing neighborhood structure on
the original graph, in terms of having many connections with several node groups, which
are hard to embed in two dimensions.

The shortest-paths-based layout of the full graph (Fig. 7.13c) is not very informative:
The large main component of the graph has collapsed into a small lump of nodes
(compact component showing warm colors to the top-right in Fig. 7.13c). All other other
smaller sub-graphs have a low neighborhood preservation error and are spread around
the 2D space. This shows that, for this specific projection, using distances from all pairs
of points might induce a process of distortion of inter-point similarities inside the main
component and the inter-group dissimilarities between all sub-graphs. On the other hand,
the similar layout and distribution of neighborhood-preservation of the two projections of
the main connected component of the graph (Figs. 7.13b,d) are an interesting indication
that the original structure of this large group is well captured, showing a few important
sub-groups with high connectivity, linked by a few nodes representing their research
collaborations. Given of this characteristic of this part of the graph, these sub-groups
and their structure are well preserved in the 2D layout, regardless of using the modified
adjacency or shortest-paths distance matrices.

Besides the variations caused by the structure of the network and the input distance
matrix used in the projection process, different projection methods will also generate
different layouts depending on how their inner algorithm works. In order to better clarify
the effects of the projection method on the layout of the networks and their correspondent
neighborhood preservation errors, in Fig. 7.14 we show two extra projections of the full
graph, using the modified adjacency distance matrix as input (in line with Fig. 7.13a).
The multidimensional projection methods used here are IDMAP [122] and classical
multidimensional scaling (MDS) [17].

As observed in Fig. 7.13, the set of small isolated sub-graphs behaves, again, very
differently for each projection technique. With the IDMAP projection (Fig. 7.14a), these
graph components are collapsed into a single 2D location. This is a common pattern for
this projection method, as shown, for example, in Figs. 7.1 and 7.9. While it may seem
that these sub-graphs are being neglected by the projection, in favor of laying out the
largest group, the wide empty circular area that is kept around them suggests that it is
not so: Their inner organization of these small components is not shown, but their effect
on, and distance to, the other nodes, which is due to the high distances in the distance
matrix between disconnected nodes, is clearly reflected. Inside the main connected
group in Fig. 7.14a, patterns between the nodes are hard to discern, as most of these
nodes are regularly distributed in the 2D embedding space and also show mid-to-high
neighborhood preservation error. Yet, these values are quite different from the errors
shown for the two smaller groups on the left and right sides of the projection, which
have lower neighborhood-preservation errors.

Figure 7.14b shows one final comparison of our eurovis dataset, using this time a
layout constructed by the classical MDS projection method [17]. In this case, in a similar
way to Fig. 7.13c, most nodes of the main component were collapsed into a small 2D
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a) IDMAP b) Classical MDS
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Figure 7.14: Analysis of neighborhood preservation errors using the set difference view for the
eurovis dataset, using different projection techniques. The network connectivity is
encoded by using the modified adjacency distance matrix.

area, making it hard to discern their inner organization. The neighborhood preservation
error in this central area is high (red cluster of nodes in Fig. 7.14b), hinting at a possibly
inaccurate layout. Three groups of nodes, however, were positioned in very distinct
groups in long ‘arms’ stretching from the central tight group. These arms also show
lower neighborhood preservation errors than the central group. This is an indication
that the MDS projection method, when used with a modified adjacency distance matrix,
considerably favors the separation of well-connected sub-groups instead of showing the
often more complex layout of tightly-connected node groups. Another characteristic of
the layout of Fig. 7.14b is that the smaller sub-graphs are not immediately visible, as with
most other layouts, but are mixed with the rest of the connected graph. This tells that, for
this particular projection method, the large dissimilarities between disconnected nodes
are not taken into account as much as, for instance, the IDMAP projection illustrated in
Fig. 7.14a.

7.3.4 Attribute-based projections: Multivariate software networks

Apart from social networks, such as those created by considering papers and authors
discussed in the previous sections, software systems offer another rich field for the
exploration of multivariate attributed networks. Indeed, software systems can be de-
scribed by graphs, or networks, where nodes are software entities, e.g. functions, classes,
files, packages, and subsystems; and relations describe the interaction of such software
entities, such as dependencies, call relations, data flows, include relations, and code
duplication [45]. Nodes have a wealth of attributes, such as name, signatures, and
software quality metrics [107]. Altogether, this delivers us rich multivariate attributed
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graphs which we can explore to understand the software systems at hand from multiple
perspectives.

Below we describe several scenarios used to explore the multivariate network struc-
ture of software datasets by our proposed multidimensional projection methods intro-
duced in Sec. 7.2.1). The procedure for creating such networks from software projects is
outlined below.

1. Obtaining the source code: The source code of the studied software projects
was obtained from github [65], a popular source-code repository for open-source
software projects. For analysis, we selected several popular projects, having many
commits, active developers, and clones. For each project, we selected to analyse its
most recently updated revision in the project’s master branch. We selected projects
written in the C++ programming language, as our software-analysis tools, which
were used next to extract relations and attributes from source code, support this
language well.

2. Attribute extraction: To characterize the software entities in each project, we
need to extract a number of attributes for each such element. For these, we
used 37 code quality metrics frequently used in software maintenance, including
object-oriented measures such as structural complexity, coupling, cohesion, and
descriptive measures such as total lines of code, total number of methods and
attributes [33, 10, 107]. We automatically extracted these metrics from the
downloaded source code of the studied projects using Analizo [185], an open-
source tool for source code static analysis. Other static analysers, e.g. [183], can be
used equally well. The result of this analysis is a set of software entities, each being
described by a 37-dimensional vector of real-valued (quantitative) attributes.

3. Relation extraction: The software entities identified in our studied projects are
connected by dependency relationships which are explicitly defined in source code
in terms of method calls – an entity A depends on an entity B when at least one
method of A calls at least one method of B. The resulting dataset is typically
known as a call graph in program comprehension [45]. For simplicity, we chose to
consider edges as being undirected. The weight, or strength, of an edge connecting
two entities A and B equals the sum of the number of methods from A calling
methods from B with the number of methods from B calling methods from A. In
our terminology, this is a discrete edge attribute.

Merging these two features – multiple attributes per node from extracted software
metrics and connections between nodes – we construct multivariate software network
datasets that can be described either by the characteristics of their individual nodes, or
the relationships between their nodes, or both at the same time, depending on the goals
of the analysis. We next detail several visual exploration applications of such datasets
based on our projection methods.

The dataset discussed in this section was extracted from the source code of the
software project caffe, a deep learning framework developed mainly by the Berkeley
Vision and Learning Center (BVLC) at the University of Berkeley, California [93].
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Attribute-only projection: Considering first the multivariate nature of the dataset, its
many attributes (metrics) mapped on each element make it possible to construct a first
visualization of this dataset, using a multidimensional projection method that positions
the elements (nodes) in 2D based on distances that reflect their attributes’ similarities.
Figure 7.15 shows the result of applying the LSP projection method [139] on this dataset,
with no connectivity information considered during the projection process.

metrics

min max

a) CBO b) DIT c) NOA

Figure 7.15: Attribute-based projection of caffe dataset, using the LSP projection technique, with
three color-coded metrics: (a) Coupling between objects (CBO); (b) Depth of inheri-
tance tree (DIT); and (c) number of Attributes (NOA) [33, 10, 107].

To get more insight in how attributes determine the projection, we color the projected
nodes in Fig. 7.15 by the value of three different selected metrics: (i) coupling between
objects (CBO), which counts the unique number of other types (classes and interfaces)
that are related to a node through method calls, method parameter types, return types,
thrown exceptions, and accessed fields [33]; (ii) depth of inheritance Tree (DIT), which
measures the maximum length of the class-inheritance path from a given (class) node to
the root of its inheritance tree [33]; and (iii) the number of attributes, which gives, for
any node, the number of data attributes our static analysis computed for that node.

The three color-coded metrics shown in Fig. 7.15a–c lead to various insights and
interpretations of the resulting projection layout. In Figure 7.15a, we see that the values
of the CBO metric are distributed in increasing order from top to bottom (with only a
few outliers), resulting in a color gradient along the y axis of the 2D projection space. In
other words, the CBO metric increases gradually from bottom to top in this projection.
In Figure 7.15b, the gap separating the two vertical bands of points located at the left,
respectively right, of the projection, appears to be explained by the DIT metric, which
takes only three possible values in the dataset – low for the right group of points (yellow),
high for the left group of points (orange), and very low for a single outlier point located
to the extreme left of the projection (brown). Figure 7.15c shows that the NOA metric is
related to the formation of a tail-like structure in the lower part of the projection; all
points in this structure show high CBO and low DIT values, but they vary significantly
with respect to their number of attributes (NOA) values.

Connectivity-only projection: A different, but very common, way of looking at the
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structure of a software project is to visualize it as a dependency graph, where nodes can
be files, classes, modules, methods, or any other structural element of the programming
language used; and edges represent connections between these elements, e.g. depen-
dencies, communication paths, or containment relations. Using the connectivity-based
projection techniques described in Sec. 7.3.1, Figure 7.16a shows an LSP projection
created from the shortest-path distance matrix of the caffe dependency graph. In or-
der to contrast this new layout with the one presented in Fig. 7.15, we replicate it in
Fig. 7.16b with a new visual encoding: The three metrics displayed in separate subfigures
in Fig. 7.15 (CBO, DIT, and NOA) and are also shown by Fig. 7.16; however, we now
attempt to let one visualize these three metrics simultaneously, and therefore encode
them into three separate visual properties of the network nodes, as follows: (i) Since the
DIT metric only assumes three values in the entire dataset (0, 1 and 2), we encode it by
node-glyph shape, by using squares, circles, and triangles for the three values 0, 1, and 2
respectively. (ii) The values of the NOA metric, which were shown earlier to vary mostly
in a specific region – the tail-like formation at the bottom of the projection in Fig. 7.15c –
are now encoded by glyph sizes; and (iii) the CBO quantitative metric is color-coded by
a heat colormap.

In Figure 7.16a, the glyph properties (colors, shapes, and sizes) appear to have little
relation to the positions of the points, being randomly distributed throughout the entire
layout. This is expected, since the LSP projection used here uses purely connectivity
(shortest-path) information and no attribute information. The high-DIT-valued nodes,
however, are mostly distributed in a group of points in the lower-left part of the main
connected component in Fig. 7.16a, along with most of the high-CBO-valued nodes. The
tight grouping of nodes with these two attributes may be explained by two observations:
First, the way the CBO metric is computed is also related to the dependencies (relations)
of the network, since method calls, which we consider here as edges between nodes,
are one of the relationships that are counted for the metric. This means that high-CBO-
valued nodes are also highly-connected nodes in the network; hence, a connectivity-based
projection will tightly group such nodes. Secondly, most of the high-DIT-valued nodes
that form the tail-like structure in marked in Fig. 7.16b are connected to a single other
node (gtest in Fig. 7.16b). This node is also high-CBO-valued and is positioned inside
the same tight group of nodes in the lower-left part of the main component marked in
Fig. 7.16a.

In order to understand better the shared characteristics of the connectivity-based and
attribute-based projections of the caffe dataset, we select the same group of high-CBO-
valued nodes in both Figs. 7.16c,d, which show these two projections, and next manually
browse their elements to investigate their similarities. By brushing this group of points in
both images at the same time, following a linked-view metaphor, several insights appear:
(i) The tail-like formation derived from the NOA values is indeed well-hidden in the
connectivity view (Fig. 7.16a); (ii) a few nodes, such as the ones marked in Fig. 7.16d,
have a very high degree or number of edges; however, since the connectivity view favors
placing nodes close to their connected neighbors, this is hard to see behind the clutter;
and (iii) the strongy-connected and high-CBO-valued group of points marked in our
selection is related to testing code, and not the separate ‘production-grade’ code of the
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Figure 7.16: Projections of the caffe dataset, using the LSP projection technique, with attribute
values encoded by node glyph sizes and colors. (a,c) Projection based on the shortest-
path distance matrix only; (b,d) Projection based on the attribute values only. Bottom
row (b,d) focuses the visualization on two selections of nodes, and thereby renders
nodes outside these selections as half-transparent.
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caffe software system.

Attribute-and-connectivity projection: As it can be noticed by the previous analysis
of Figs. 7.15 and 7.16, the two different views of the caffe dataset generated by using
either attributes or connectivity information are each useful in their own way, showing
insights that relate to different aspects of the system under investigation. However, they
both also have their limitations. The attribute-based view does nothing to ensure that
the resulting 2D layout is coherent with the dependency structure (relations) of the
network; this aspect is prominent when seeing the long and multiply-crossing edges
in Figs. 7.15 and 7.16b,d. In contrast, the connectivity-based projection groups nodes
by their dependencies (relations), but does little to facilitate the examination of nodes
with different attribute values; such nodes are often collapsed into small areas which
are too compact for visual exploration, or alternatively they are spread randomly over
the projection. To deal with situations where both attributes and connectivities are
equally important for the analysis at hand, which is usually the case when investigating
software systems, we can use a projection based on the combination of attribute-based
and connectivity-based distance matrices introduced in Sec. 7.2.2. The results of using
this approach with the caffe dataset are shown in Fig. 7.17.

b)

size: NOA
DIT:

0 1 2 CBO

min max

legend:

a)

high C
BO

high CBO

high NOA

h
ig

h
 N

O
A

gtest

gtest

DIT
 =

 1

DIT
 =

 0
DIT = 0DIT = 1

Figure 7.17: Two LSP projections of the caffe dataset, using combinations of the attribute-based
and the connectivity-based distance matrices. Connectivity information is represented
using (a) the modified adjacency distance matrix, and (b) the shortest-paths distance
matrix.

Following patterns already observed in previous examples, e.g. Figs. 7.6 and 7.13),
the projection that uses the modified adjacency distance matrix (Fig. 7.17a) has a
tendency of better using the available screen space, spreading the nodes more evenly.
In contrast, the projection that uses the shortest-paths distance matrix (Fig. 7.17b) is
more strict and tends to group nodes more strongly. Due to the effects of the attributes,
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however, neither of the above two projections show the high level of compactness of
Figs. 7.16a–c. This makes it easier to discern structural patterns among the nodes, such
as the high-degree nodes separated from the main group in Fig. 7.17b.

When looking at the visual encodings of the three metrics in Figs. 7.17a–b, we
rediscover the patterns previously observed in the attribute-only projection (Fig. 7.15),
even though our new projection in Fig. 7.17 combines attributes and connectivity
information. This stands our in contrast to the connectivity-only projection (Fig. 7.16).
The gradient of colors that depict the values of the CBO metric is again visible, although
in a different direction in each projection. Again, we discover the group of high-
valued CBO nodes close to each other; however, in contrast to the attribute-only and
connectivity-only projections, we now obtain a more spread-out layout that allows for
node interconnections to be explored more easily.

The previously-noticed tail-like structure (Fig. 7.15) is now visible in both layouts
(Figs. 7.17a–b). This reflects the fact that, even though these nodes are very similar in
terms of connectivities, their values of the NOA metric increase considerably and must
be differentiated in the view. The edges that emerge from these nodes, however, are now
shorter and show less crossings, due to the better positioning of the gtest node in relation
to the group.

A final insight is found by looking at a direction perpendicular to the direction of
the color gradient showing the CBO metric. In this perpendicular direction, we see
how the DIT-metric values are distributed into different sides of the projection – see
annotations DIT � 0 and DIT � 1 in Figs. 7.17a–b – in a similar manner to the effect
shown in Fig. 7.15. However, in this case, instead of obtaining completely isolated
groups with different DIT values, we have a rough division of the projection in two
halves which still maintains the coherence given by groups of well-connected nodes. The
separation between the different DIT valued nodes occur inside each node-group; this
effectively combines both the insights that nodes in these groups are (1) similar, in terms
of connectivity; but (2) different, in terms of DIT attribute values.

7.3.5 Multivariate software networks: Quality analysis

The next application is based on the source code of the Bitcoin project [126], a digital
currency trading platform implemented as a decentralized peer-to-peer network. We use
the multivariate software network of Bitcoin, extracted from the project’s source code
using the process described in Sec. 7.3.4, to investigate the effects of using combined
connectivity-and-attribute distance matrices, with different projections methods, on
the neighborhood preservation of the nodes in the final 2D layout. For a fine-grained
local quality analysis, we employ again the set difference view adapted to multivariate
networks described in Sec. 7.3.3.

Figure 7.18 shows the results of using different types of distance matrices to generate
projections, using the LSP technique, of the main connected component of the Bitcoin
dataset, which we next call Bitcoin-Main. The colors of the nodes represent their
neighborhood-preservation error, computed by the network-adapted set-difference metric,
using a colormap ranging from blue (low error) to red (high error).

In the images presented in Fig. 7.18, each row contains projections created with one
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Figure 7.18: Neighborhood preservation error (set difference view) analysis of the Bitcoin-Main
dataset, using LSP projections with different inputs: (a) Attributes only; (b) Connectiv-
ity only (modified adjacency matrix); (c) Connectivity only (shortest-paths matrix);
(d) Combined attributes and modified adjacency matrix; (e) Combined attributes and
shortest-paths matrix.
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of the three different approaches for the visualization of multivariate networks presented
in this chapter, which means that the original high-dimensional distances used for
creating the projections are different. For this reason, when computing the neighborhood
preservation errors of the projections of each row, the input distance matrices used were
different, as follows: a distance matrix generated from Euclidean distances between
the nodes’ attributes (Fig. 7.18a); the shortest-path distance matrix, similar to the
approaches described in Sec. 7.3.3 (Figs. 7.18b,c); and a distance matrix combining
the Euclidean distance between node attributes and their shortest-path distance in the
network (Figs. 7.18d,e). The number k of nearest neighbors used when computing
the neighborhood preservation errors was set to 120, which represents 20% of the total
number of nodes. This was raised from the initial 10% used in previous applications
(Sec. 7.3.3), due to the even higher overall errors observed for lower k values.

A first interesting insight from Fig. 7.18 is that, besides the attribute-based projection
(Fig. 7.18a), all other shown projections, which use connectivity as a factor, display rela-
tively high neighborhood preservation errors (Figs. 7.18b–e). The errors are especially
large for the projections that use only connectivity information (Figs. 7.18b,c). While
the projections created from combined distances also show a similar trend (mid-to-high
errors), it’s possible to see that these contain several relatively large areas (marked in
Figs. 7.18d,e) with nodes with lower errors. These areas are localized in the periphery
of the resulting layout, with more central nodes showing higher errors. This shows that
these projections respect the original structure of the input dataset (in terms of relations
and attributes) better than the connectivity-based projections.

If we compare the above observations with the completely different picture shown
in Fig. 7.18a, we see that the attribute-based projection shows mostly mid-to-low error
values over basically the entire layout. Hence, we conclude then that using LSP for
connectivity-based projections generates tightly-packed layouts (confirming the features
seen previously e.g. in Figs. 7.16a,c), which do not preserve local neighborhoods very
well. In contrast, the quality of LSP with attribute-based (or combined) distance matrices
is generally better. To test this observation, we select the set-up shown in Fig. 7.18e –
combined attribute-and-shortest-paths based distance matrices – and use it to generate
projections with two other different previously-used methods: IDMAP and ISOMAP. The
results of the neighborhood preservation analysis, for the same value of k � 120, are
shown in Fig. 7.19.

The IDMAP projection of the combined distance matrix (Fig. 7.19a) also shows a
tight grouping of the nodes, similarly to what was observed with the LSP projection,
but with a clearly different error distribution: Instead of lower errors on the periphery
of the layout and higher errors towards the center, as the case of LSP was, IDMAP
shows exactly the opposite – central nodes have the lowest errors seen in any of the
combined attribute-connectivity projections of the Bitcoin-Main dataset. While the nodes
of the ISOMAP projection in Fig. 7.19b do not reach the same low-error values of the
IDMAP example (Fig. 7.19a), their errors are still overall lower than those shown for all
LSP-based layouts in Fig. 7.18. The ISOMAP projection also has one other interesting
characteristic: The error values show a roughly linear gradient: At the right of Fig. 7.19b,
nodes are more sparsely distributed and their errors are lower than to the left of the
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Figure 7.19: Neighborhood preservation analysis of the Bitcoin-Main dataset, using the IDMAP and
ISOMAP projection techniques. Nodes are encoded by a combined attributes-and-
shortest-paths distance matrix.

same figure, where nodes are more tightly-grouped and their errors are higher. Similarly
to LSP, but contrary to IDMAP, the tighter node groups of the ISOMAP projection show
more error, but at the same time the nodes with lower errors and their neighborhoods are
more visible. These observations positively corroborate our conclusion that LSP, while
working well with attributes, is arguably not a good candidate for connectivity-based
projections.

7.4 Discussion

Several aspects of our proposal to use multidimensional projections to create 2D visual-
izations of attributed networks are important to discuss, as follows.

Distance-based projections: As already mentioned in Sec. 7.2.1, all projections that
were used in our construction of visualizations of attributed networks are essentially
multidimensional-scaling-type (MDS-type) projections. As explained with several occa-
sions in this thesis, a second class of projections exist, which accepts multidimensional
observations rather than distance matrices, e.g., LAMP [95]. Although we have exper-
imented with using such projections for constructing 2D visualizations of attributed
networks, our results so far have been markedly of less quality than when using distance-
based projections. The key problem here seems to be related to the design of a meaningful
multidimensional attribute vector for observations (nodes) which encodes both their
attribute value and their connectivity pattern. Technically, many schemes can be created
which translate relational information into attributes in an algorithmically consistent
way. However, our experiments so far have shown suboptimal results as compared to
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projections using distance-based matrices. As such, the usage of projections that do not
use distance matrices to create network visualizations is still an open research topic.

Mixing connectivity and attribute information: We have shown that we can create
projections based purely on a network’s connectivity information, its node attributes,
or a (weighted) mix of the two. Not unexpectedly, mixing connectivity and attribute
information creates visualizations which are, in a qualitative sense, an ‘interpolation’
of the visualizations using connectivity or attributes only. The added-value of all these
different visualization styles is highly dependent on the use-case at hand – there are
several envisageable scenarios where a connectivity-only, an attribute-only, or a combined
visualization are preferred. An interesting area for further research, however, is exploring
how one can control the visual differences of such network layouts in terms of the used
weights for the construction of the underlying distance matrices. For instance, we would
find it useful if it were possible for users to specify how many units of two-dimensional
(embedding) space were to be affected by, e.g., relations, attributes, or even a specific
selection of attributes.

Projection space: As illustrated by our several examples in this chapter, we can create
projections which differ visually in significant ways by varying several parameters, such
as the kind of projection technique, type of connectivity-distance matrix, weighting
of attribute-distance matrix with the connectivity-distance matrix, and selection of at-
tributes being used in the attribute-distance matrix. The richness of the exploration space
opened by multidimensional projections is not surprising – we have discussed a similar
phenomenon for the use of projections to visualize non-relational multidimensional
datasets in Chapter 3. As such, and in line with the discussion and findings outlined in
Chapter 3, we note that our exploration of the usage of projections to visualize multi-
variate graphs discussed in this chapter is only a (very) limited sampling of the entire
space of possible parameter possibilities. A more thorough study of all combinations
of parameter values is of clear added-value in the sense of understanding the working
of multidimensional projections. Let us also note that this large space of parameters,
or possibilities, is, at a higher level, identical to the well-known space of possibilities
for creating significantly different drawings from the same graph. Just as we miss a
comprehensive exploration of the possibilities of drawing a graph, we advocate the need
of better exploration of possibilities of using multidimensional projections for drawing
attributed graphs.

Projection quality: In this chapter, we have shown that aggregated neighborhood-
preservation errors (Sec. 7.3.2) and the more detailed set-difference views (Sec. 7.3.5)
can be effectively used to explore projection errors incurred when drawing multivariate
networks with multidimensional projection techniques. However, several other ways
to quantify and visualize projection errors exist, as described in our earlier work on
distance-based errors (Chapter 3) and the sequence-difference views for neighborhood
preservation errors (Section 4.1.4). Technically speaking, adapting these error metrics
and visualization to work for multivariate networks is straightforward. We leave the
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exploration of the insights delivered by these metrics in the overall quality of multivariate
network layouts constructed with projections as a topic for future work.

Visual Presentation: In Chapters 3 and 4), we have shown several examples of networks
or graphs which use edge bundling techniques to spatially group edges connecting closely
placed endpoints (nodes). As explained in the respective chapters, edge bundling creates
simpler and less cluttered visualizations of large graphs, and thereby helps one detect
important connectivity patterns in the graph. In contrast, the network visualizations
shown in this chapter were created by using the classical node-link metaphor for graph
drawing. That is, nodes are placed using multidimensional projections, just as in the
applications described in Chapters 3 and 4). However, instead of drawing edge bundles,
we chose to draw edges as straight lines. This visualization design decision was taken
in order to focus the attention of the reader, when examining the resulting images, on
the specific details of node placement, which are the key contribution of this chapter.
Additionally, steaight-line node-link drawings allow an easier discussion and comparison
of the impact of the different proposed techniques for creating graph layouts, while
edge bundling visualizations tend to focus the attention of the observer mainly on the
connection patterns represented by the edges.

However, the above does not mean that edge bundling cannot be applied to, and
is not useful for the visual exploration of, graph layouts constructed by the projection
techniques presented in this chapter. To illustrate this, Figure 7.20 shows an alternative
visualization of the graph layouts presented earlier in Fig. 7.6, by using the edge bundling
technique described in [182] and used earlier in Chapter 3. Node colors and sizes encode
the cluster identities and betweenness-centrality measure respectively, as in Fig. 7.6.
Edges are rendered with alpha blending. As such, less dense bundles appear as half
transparent (light gray), while dense bundles containing many edges appear darker.
As visible from Fig. 7.20, edge bundling is very effective for showing the coarse-scale
main connectivity patterns in the depicted graph, and creates less cluttering than when
using straight-line drawing. In the same time, individual edges in the graph cannot be
easily followed in the bundled visualization – a well-known limitation of edge bundling
techniques.

7.5 Conclusions

In this chapter, we have explored the use of multidimensional projections for the con-
struction of visualizations of multivariate attributed graphs, of networks. The core of
our proposal is the unification of the concepts of connectivity and similarity of nodes of
a graph in a single real-valued distance matrix, which can be next used to create two-
dimensional embeddings reflecting the above-mentioned similarities, by using existing
multidimensional projection techniques.

We have presented, and explored, several ways of achieving the above goal, in terms
of (1) encoding the connectivity information of the underlying network by modified
adjacency matrices or shortest-path distances; (2) encoding node attributes by classical
distance matrices based on multidimensional distance metrics; and (3) combining the
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Figure 7.20: Alternative network visualization with edge bundling [182], using the same node coor-
dinates shown in Fig. 7.6. Bundle opacities encode the edge counts in the respective
bundles.

above-mentioned distance matrices in order to generate graph visualizations that reflect
both the connectivity of their nodes as the similarity of nodes in terms of their attributes.
These methods achieve different mixes of contributions of the relational information
(edges) and attribute information (node and edge values) in the construction of the
resulting 2D node-link layouts of the network.

One particularly interesting result regards the comparison of our graph visualization
methods with classical force-based layout methods, which are, to date, among the
most popular techniques for creating 2D embeddings of graphs. We have shown that
the use of our proposed projection methods to create a preliminary 2D embedding of
nodes, based on node connectivity and/or attribute similarity, can act as an effective
preconditioner for force-based methods: By using such a preconditioner, the results
of force-based embedders show a higher quality, measured both in terms of objective
graph-layout quality metrics and in terms of qualitative insights concerning the resulting
graph drawings.

Finally, we have shown how we can adapt the quality metrics proposed earlier
(Sec. 7.3.5) for quantification of neighborhood preservation in multidimensional projec-
tions to handle multivariate graphs. This shows that it is possible to analyse the quality
of drawings of such graphs at a spatially detailed level, and in ways which are identical
to analysing the quality of general multidimensional projections. We believe that the
unification of quality analysis of visualizations of graphs and multidimensional datasets
is an interesting result, which, if refined further, can lead to important and useful results
in the direction of exploration of complex hybrid multidimensional datasets.
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Chapter 8

Discussions and Conclusion

W
e conclude our presentation of techniques for the visual explanation of multidi-
mensional projections with an analysis of the key results presented in this thesis,

along with their main added value and respective limitations. Additionally, we outline
directions for future research and applications that are enabled by the work presented in
this thesis.

8.1 Analysis of the Research Questions

As described in Chapter 1, we started this thesis with the hypothesis that multidimen-
sional projections are effective tools for the exploration of high-dimensional datasets,
but their usefulness does not reach its full potential due to the absence of explanatory
techniques. For clarity, the general research question (originally presented in Section 1.2)
is reproduced below:

How can we increase the added value of multidimensional projections of high-dimen-
sional datasets with explanatory techniques that enable a wide range of users to interpret
the information present in a projection in more effective ways?

The general answer for this question – which has been proposed, described and
developed throughout the entire body of this thesis – is that the visual representation of
multidimensional projections should be improved in two different but complementary
ways:

1. To make it clearer for the user where projection errors occur, what they mean and
how severe they are, helping to evaluate whether a certain projection is indeed a
good representation of the original dataset for the given task; and

2. To tell the user not only that certain points are similar (or not) by positioning
them close to (or far away from) each other, but also why they are similar or not,
using clear and descriptive visual explanations that can be used to reason about
the original attributes of the dataset.

These two improvement areas are complementary – having one without the other
leads to an incomplete solution. If we show and explain projection errors but do not
explain the meaning of point positions in terms of the original data attributes, one
will be able to ‘filter out’ wrongly projected points from a subsequent analysis, but
not be able to understand the meaning of patterns created by the correctly projected
points. Conversely, if we explain the meaning of projected points in terms of the high-
dimensional variables but do not show local projection errors, one can be misled into
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using the visual explanation to reason about false patterns, which are due to projection
errors rather than to actual patterns present in the high-dimensional data.

The above analysis also indicates the order in which error explanation and projection
explanation techniques should be (jointly) used in a real-world visual analytics scenario.
Given a multidimensional dataset, one would first use a multidimensional projection
to generate a two-dimensional or three-dimensional projection of the respective data.
Next, the error exploration techniques described in Chapters 3 and 4 should be used
to understand the extend and distribution of projection errors. If these errors are too
large overall and/or distributed over significant areas of the projection, then one should
arguably not use the projection further, since it will very likely lead to too many wrong
insights. If the errors affect a limited and/or localized projection area, then visual analysis
of the remainder of the projection can be done. Next, visual explanatory techniques for
two-dimensional projections (Chapter 6) and three-dimensional projections (Chapter 5)
can be used to understand the meaning of the correctly-projected areas by explaining
them in terms of the original high-dimensional attributes. The above workflow, or
pipeline, can naturally be repeated by e.g. using different projection techniques and/or
projection parameters to improve the projection quality in specific areas of interest,
remove uninteresting observations and/or observations creating high projection errors,
or simply focus on specific areas of interest, until the desired insights are obtained. This
workflow follows the traditional visualization design mantra of overview and filtering
first (with the detection and investigation error areas) and then details-on-demand (with
the visual analysis of the remaining areas of interest in terms of their original attributes).

Since we could not, obviously, explore to exhaustion all the possible ways in which a
projection can be improved, we instead focused on showing that it is indeed possible to
improve the understanding of projections, and to provide insights that were not present
before, by focusing on the two previously highlighted improvement areas. By applying
the proposed techniques to various case studies with different datasets from different
sources and domains, we have also shown that the improvements are not domain- or
application-dependent, but can be observed in different situations, which points to the
possibility of the generalization and wide-applicability of the results.

8.2 Design Decisions

Throughout our work, we have consistently followed a number of constraints and design
decisions. As we believe that these design decisions support several important desirable
features of explanatory visualizations of multidimensional data, we discuss them next.

Projections as black-boxes. One of our first choices of research method and design was
to consider projection methods as black-boxes. We did not make any assumptions on
specific constraints of the projection techniques, such as assuming that such techniques
are of the multidimensional scaling variant (accepting distance matrices as inputs) or of
the projection proper variant (accepting high-dimensional coordinates as inputs). We also
did not assume any knowledge of the projection internals, e.g., the fact that a projection
is linear or not, or the fact it uses a certain neighborhood size. For us, a projection is
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simply a function mapping a set of high-dimensional observations to two-dimensional or
three-dimensional points. The key advantage hereof is that all our results are directly
applicable to any projection technique out there, without any modification, and in a
technically straightforward manner. A second, equally important, advantage is that this
approach focuses on the needs of a typical user who wishes or needs to use a projection
to analyse a dataset of her own specific domain, but does not usually comprehend how a
projection method works internally. In other words, our key goal is to explain the result
of a projection, and not the projection technique.

However, this approach also comes with a limitation. Projection techniques get
increasingly specialized beyond the original goal of globally and uniformly preserving
distances and/or neighborhoods. For instance, projection techniques may choose to
embed points so that distances between certain given observation-pairs are best pre-
served at the expense of other observation-pairs; or that certain distance ranges are
better preserved than others; or to create as salient as possible separations between
groups of related observations. For such projections, our techniques will likely indicate
higher errors in certain areas, as compared to generic projections which aim to minimize
errors uniformly for all observations. However, such errors may actually not be harmful,
but actually instrumental, to using the projection for very specific tasks, such as the
localization of strongly-related groups of observations. As such, the interpretation of
errors seen in the projections should be always done by having a task in mind; and errors
should be deemed negative only when their presence clearly affects the task at hand.

Easy-to-understand error metrics. In our study of projection errors, initally presented
in Chapters 3 and 4, we introduced a number of relatively simple metrics for quantifying
these errors, and visual encodings thereof, such as the false positive neighbors, false
negative neighbors, group-related metrics, set-difference view, and sequence-difference
views. These metrics are effective in explaining local errors in a projection in terms of
both locality in the original high-dimensional space and the projection space. Obviously,
many other types of errors can be imagined for a projection, and many other correspond-
ing metrics can be designed to quantify these. However, the more complex such metrics
become, the harder will be their visual interpretation and analysis. As projections are
already very complex and abstract techniques, we believe that one should not make their
explanations, which aim to lower their interpretation burden, too complex – otherwise
they would be defeating their purpose. Additionally, more complex metrics serve more
specialized scenarios, and our focus has been to cover the baseline explanatory scenarios
first, which arguably are of interest for the widest category of users and their use-cases.

Visual and computational scalability. As outlined several times in this thesis, one of
the key attractive aspects of projection techniques is their visual and computational
scalability. Indeed, projections can handle datasets which are large in both observation
and dimension count, with modern projection implementations scaling roughly linearly
in computational effort with the size of the input dataset. Secondly, projections gener-
ate a structurally very simple representation – a two-dimensional or three-dimensional
point cloud or scatterplot – which is fast to render and visually navigate, and also may
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accommodate hundreds of thousands of data points on a single screen. As such, our
visual explanation tools were designed to keep the visual and computational scalability
features of projections. This way, an integrated end-to-end visual analytics pipeline fea-
turing joint projection and visual explanation tools will be visually and computationally
scalable, and thus interesting for real-world usage. We achieved this scalability by a
number of design decisions and techniques, as follows. First, we favored a simple visual
representation consisting of (color coded) scatterplots, edge bundles, synthesized images,
and legends. All these techniques are visually scalable, as they generate space-filling
representations where virtually every pixel can be counted on to encode information.
Secondly, these representations do a good job in reducing or minimizing visual clutter,
which is also instrumental to increase visual scalability. Thirdly, we used a mix of highly
computationally scalable techniques for the generation of our visualizations, such as
efficient spatial search structures [6], GPU-based image synthesis techniques [28, 182],
and GPU-accelerated edge bundling techniques [85]. All these techniques ensure that
we can generate our visual explanations within fractions of a second for datasets having
tens of thousands of observations and tens of dimensions on a typical desktop computer,
which allows for interactive exploration.

8.3 Advantages and Limitations

To provide more insight into our level of answering the original research questions, we
detail next the main advantages and limitations of our proposed techniques with respect
to these questions.

8.3.1 Sub-question #1: Understanding projection errors

Our main goal here has been to provide generic, computationally scalable, and easy-
to-understand visual metaphors that explain different types of errors that occur in
multidimensional projections. To this end, we have provided ways to measure and depict
false neighbors and missing neighbors caused by distance errors, at both individual
point level and at the level of groups of points, in 2D projections (Chapter 3); ways to
measure and depict the level of preservation of k-nearest neighborhoods at local point
level in 2D projections (Chapter 3); and ways to measure and depict false and missing
neighbors caused by distance errors at point level in 3D projections (Chapter 5). All these
techniques are simple to implement and computationally scalable. For 2D projections,
visual scalability is ensured by using image-based techniques to encode the resulting
error maps as continuous 2D fields (space-filling techniques). This design also allows us
to easily compute multiscale representations of our various error maps to focus on the
most salient error patterns and/or to increase visual scalability and decrease clutter.

The ease of understanding of the proposed techniques is, arguably, harder to quantify.
We have used the proposed techniques overall with a limited group of users (about 15
persons in total), but with a large number of representative datasets and corresponding
questions (over 25 in total). The qualitative feedback collected from observing the users
and discussing feedback with them was that the proposed error presentation techniques
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are quite easy to learn and understand, as they involve very simple and typically already
known visual metaphors (color-coded scatterplots, legends, colored heatmaps, and edge
bundles). The key difficulty in understanding was actually observed to be related to the
concept of projection error, whose comprehension requires a certain familiarity with the
process of dimensionality reduction. While researchers in machine learning, statistics,
or data visualization had no problems at all to follow the error explanations, typical
end-users coming from outside these fields would comprehend where an error is, which
points this error affects, and how to compare different error levels, but not necessarily
understand what to do next to reduce these errors or eliminate them from subsequent
data interpretations.

Related to the ease of use of our techniques, we should mention that all of them
involve a (small) amount of interactive exploration. This poses a corresponding (small)
burden on the users. However, we noticed no instance when this exploration would be
perceived as complex, hard to learn, or tedious to use. This is arguably related to the
minimal nature of the proposed interactive tools – brushing, lasso and bounding-box
selection, 3D trackball manipulation, and simple GUI-based preset choices for various
visualization styles. All these operations are well known by a large spectrum of users,
can be accomplished with minimal effort, and require limited precision during the
interaction.

8.3.2 Sub-question #2: Understanding projections

Our main goal here has been to provide generic, computationally scalable, and easy-to-
understand visual metaphors that explain (parts of) a multidimensional projection in
terms of the original high-dimensional variables of the projected dataset. To this end, we
have provided two different explanation designs.

For 2D projections, we used the same design elements employed to explain projection
errors – that is, shaded cushions, color coding, image synthesis, and legends. In line
with the comments provided above in Sec. 8.3.1, these techniques are generic, and
visually and computationally scalable. One main novel point for the visual explanation
of 2D projections was, in our view, the creation of implicit regions in a projection that
explain subsets of points in terms of the similarity of one or a few variables. This leads
to visualizations which strongly resemble the way humans annotate a map or diagram
or other drawing consisting of a set of graphical symbols, by surrounding regions that
allow a simple explanation, and writing the explanation atop of these regions. However,
this technique also has its limitations. When the number of regions that require different
explanations is too large, roughly over a dozen for a typical computer screen, our
technique may not be sufficiently visually scalable. More importantly, our technique only
covers explanation in terms of variable similarity. This naturally follows the fact that
projections place similar observations close to each other, thus naturally give birth to
precisely the type of regions we are creating in our visualizations. However, one can
easily imagine many other ways in which one can ‘divide’ a 2D projection into parts that
can be independently explained, e.g., by explaining why a region is different from all
surrounding regions. While our visual design accommodates such explanation types too,
they are still open to be explored in the future.
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For 3D projections, we extended the design elements promoted by Broeksema
et al. [24, 23] for the global explanation of 2D projections (Chapter 5). By global
explanation, we mean that our design only indicates how the original high-dimensional
variables map to the entire projection space – in contrast to the local explanation design
shown in Chapter 6 which divides the projection space into regions that are given
different explanations. As such, while both designs presented in Chapters 5 and 6 are
attribute-centric – in the sense that they explain a projection by the names and/or values
of the original high-dimensional attributes, the explanation of 3D projections (Chapter 5)
is global, while the explanation of 2D projections (Chapter 6) is local. The design choice
to use a global explanation for 3D projections has been determined chiefly by the fact that
local explanations would create too complex 3D patterns to be easily visualized. Indeed,
such patterns would give rise to multiple 3D shapes (groups of points, point hulls, or
similar) whose visual exploration in 3D would be, arguably, highly impeded by occlusion.
To limit occlusion, we restricted our 3D explanations designs to metaphors specifically
designed not to crowd and/or clutter the 3D scatterplot created by the projection – axis
legends, screen-axis legends, and viewpoint legends. All such legends, with the exception
of the axis legends, are placed outside the 3D scatterplot visualization, so do not create
any occlusion. The axis legends are minimal in design – a set of one-dimensional curves
embedded in 3D – and therefore create negligible additional clutter.

While our 3D explanatory visualizations demonstrably bring more insight than
visualizing ‘raw’ 3D scatterplots, they also have several limitations. First and foremost,
they are global, as said earlier. As such, if one locates, for example, a particular
formation (outlier, cluster) of points in a specific region of the 3D projection space,
explaining it in terms of variables and their values requires a certain amount of interactive
projection exploration in terms of axis alignment and color-coding (for details, we refer
to Chapter 5). This is in high contrast to our 2D projection explanations which require
no user interaction (Chapter 6). Secondly, 3D projections are, by their very nature,
encumbered by occlusion. Our explanatory techniques, while not increasing this clutter
further on, do not also decrease it, and thus still suffer from its presence. This is, to our
understanding to date, a required price to pay for the added precision of 3D projections.

8.4 Future Work

Given the huge scope, increasing abundance, and prominence in science and technology
of multidimensional data and related analysis problems, and the well-known scalability
and genericity of multidimensional projections as exploration tools for such data, there
are many future possible extensions and applications of our work presented here on
the design of visual exploratory and explanatory techniques for multidimensional data.
Below we outline only the most salient ones.

Data size and types: Our work has mainly considered quantitative and relational
datasets having up to tens of thousands of observations and tens of dimensions. Clearly,
much larger datasets in terms of both observation count and dimension count exist, are
easily to obtain, and are interesting to analyse for their involved stakeholders. Exploring
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how our visual explanatory tools can be adapted to cope with such massive datasets
is a low-hanging fruit for further exploration. Additionally, we can easily consider the
extension and/or adaption of our techniques to explain non-quantitative, non-relational
datasets, such as datasets having categorical and ordinal attribute types. Projection
techniques and explanatory techniques have been investigated for such datasets [24, 23].
Finally, our techniques have only handled static time-independent data. Exploring time-
dependent data brings a sizeable set of non-trivial theoretic and practical challenges:
Data sets become significantly larger; time requires a suitable mapping to a visual di-
mension; and defining, detecting, and explaining relevant spatio-temporal patterns and
corresponding errors in multidimensional data is, by itself, a barely studied problem.
Providing simple and effective visual explanations for multidimensional temporal data is
an important current, and future, challenge to visual analytics.

Improving projections: Our work has mainly focused on explaining projections, in
terms of errors and original high-dimensional variables. One of the use-cases related
to providing this explanation is that, when errors and/or other patterns of interest are
found by using our tools, users can next perform actions to focus on the interesting parts
of the data space for further exploration, e.g. by removing the causes of the errors and
redoing the projection, or by selecting specific subsets of observations and/or dimensions
to further explore. So far, our explicit support for the entire round-trip visualization
improvement and refinement pipeline is limited to the detection of problematic or
interesting events, but not to their further elimination or examination. Many future
work directions exist here. For instance, visual cues could be provided to indicate, in
a projection, the actions one needs to take locally or globally to decrease errors in a
specific area of interest; and next, interactive aids could be provided to execute these
actions in the visual space, thereby reducing the round-trip execution time to a minimum.

Evaluation: As already discussed in Chapter 4, proposed solutions for analysing projec-
tion errors and explaining them regarding the original attributes of the data may work
differently for different scenarios. To explore this variability, we have used, throughout
our work, a relatively small but – we argue – comprehensive set of projections, datasets,
and parameter settings. The main reason behind limiting the number of samples of
this space of possibilities is computational complexity: For instance, evaluating our
four different error types for ten projection techniques, each tested on ten different
datasets, each using ten different parameter settings, would produce four thousand
different projection images. Clearly, analysing and discussing such a number of examples
is prohibitive. To manage this complexity, we chose therefore to limit ourselves to a
smaller subset of well-known, robust, easy to use, and scalable projection techniques;
consider a small subset of parameter values which are close to the optimal configurations
for these techniques; and treat a limited number of datasets which are well-known in
the literature, so that comparisons with existing work are easier to do. Separately, this
limitation in variability of the studied projection techniques, parameter settings, and
datasets makes it easier to relate and compare our results presented in different chapters.

However, it is entirely possible that unknown strengths and/or limitations of our
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proposed techniques were still not fully explored with the presented use-cases. Hence,
we acknowledge the importance of performing, as future work, more strict and more
thorough evaluations and validations. One example hereof is the evaluation of the pro-
posed error metrics with artificial datasets specifically crafted to bring to light possible
limitations, such as the already discussed sensitivity to outliers. It is also important to
evaluate different combinations of projections, parameter settings and datasets, to vali-
date the quality of the results presented in this thesis and to understand how they behave
in the widest possible range of situations. The data-driven framework for evaluation
of visual quality measures proposed by Sedlmair and Aupetit [162] is one interesting
possibility for supporting future work in this direction.

Integration and validation: The last, but definitely not the least, important point for
future work concerns the integration of our visual explanatory tools together with other
data mining and analysis tools such as filters, statistical estimators, cluster and pattern
mining algorithms, into fully-fledged end-to-end visual analytics systems. Such systems
are, on the one hand, the prime means to test and validate the added value of our
proposed techniques in the context of real-world applications, users, and use-cases. On
the other hand, the design and deployment of such systems, and the generation of useful
insights for their targeted end-users, is the ultimate goal that our work aims to support,
and the core reason-to-be of the entire research in data visualization and visual analytics.
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