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Abstract
The global effort to sequence millions of SARS-CoV-2 genomes has provided an unprecedented view of viral evolution.
Characterizing how selection acts on SARS-CoV-2 is critical to developing effective, long-lasting vaccines and other
treatments, but the scale and complexity of genomic surveillance data make rigorous analysis challenging. To meet this
challenge, we develop Bayesian Viral Allele Selection (BVAS), a principled and scalable probabilistic method for inferring
the genetic determinants of differential viral fitness and the relative growth rates of viral lineages, including newly
emergent lineages. After demonstrating the accuracy and efficacy of our method through simulation, we apply BVAS to
6.9 million SARS-CoV-2 genomes. We identify numerous mutations that increase fitness, including previously identified
mutations in the SARS-CoV-2 Spike and Nucleocapsid proteins, as well as mutations in non-structural proteins whose
contribution to fitness is less well characterized. In addition, we extend our baseline model to identify mutations whose
fitness exhibits strong dependence on vaccination status as well as pairwise interaction effects, i.e. epistasis. Strikingly,
both these analyses point to the pivotal role played by the N501 residue in the Spike protein. Our method, which couples
Bayesian variable selection with a diffusion approximation in allele frequency space, lays a foundation for identifying
fitness-associated mutations under the assumption that most alleles are neutral.
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1. Introduction
The SARS-CoV-2 pandemic has seen the repeated emergence of
new viral lineages with higher fitness, where fitness includes any
attribute that affects the lineage’s growth, including its basic
reproduction number and generation time. The virus has evolved
into numerous sublineages that are characterized by distinct
phenotypes including enhanced pathogenicity, increased escape
from convalescent and vaccine-acquired immunity, differential
host tropism, and altered biochemical interaction with cell
surface machinery. For example, the Spike mutation S:D614G,
found in nearly all Variants of Concern, is associated with
higher SARS-CoV-2 loads (MacLean et al., 2020; Yurkovetskiy
et al., 2020). Other mutations such as S:N439R, S:N501Y,
and S:E484K, have been linked, respectively, to increased
transmissibility (Deng et al., 2021), enhanced binding to ACE2
(Starr et al., 2020), and antibody escape (Choi et al., 2020;
Greaney et al., 2021). For the vast majority of observed
mutations, however, links to SARS-CoV-2 fitness are unknown
and functional consequences remain uncharacterized.

Fortunately, the SARS-CoV-2 pandemic has prompted a
global genomic surveillance program of unprecedented scope
and scale, with more than 10 million virus genomes sequenced
to date. This growing quantity of genomic surveillance data
provides a unique opportunity to interrogate the dynamics of
viral infection and quantify selective forces acting on lineages
and mutations. Current methods to analyze such data typically
rely on phylogenetic analysis or parametric growth models.
Phylogenetic methods usually rely on expensive Markov Chain
Monte Carlo (MCMC) for inference, with the result that

handling more than „5000 samples becomes computationally
infeasible (Pybus and Rambaut, 2009; Morel et al., 2021). By
contrast, parametric growth models are scalable to large datasets
but typically do not systematically account for competition
between multiple lineages, have little to say about newly
emergent lineages, and cannot pinpoint the genetic determinants
of differential fitness (Davies et al., 2021; Volz et al., 2021).

Two recently developed methods address some of these
shortcomings. The first method, PyR0, is a hierarchical
Bayesian parametric growth model that jointly estimates growth
rates for multiple lineages across multiple geographic regions
(Obermeyer et al., 2022). Since PyR0 regresses growth rates
against genotype, it can also make inferences about the genetic
determinants of differential fitness. Moreover, since PyR0 relies
on variational inference it can be applied to large datasets.
However, variational inference also results in poor uncertainty
estimates and the parametric likelihood that underlies PyR0

makes ad hoc assumptions about the noise characteristics of
surveillance data. The second method, which we refer to as
MAP, likewise regresses growth rates against genotype but
instead utilizes an elegant diffusion-based likelihood that is
better suited to the stochastic dynamics of viral transmission
(Lee et al., 2022). However, unlike PyR0 MAP does not assume
that most alleles are approximately neutral, with the result
that MAP risks inferring non-negligible selection effects for
implausibly many alleles.

In the following we set out to formulate a method—Bayesian
Viral Allele Selection—that combines and improves upon the
respective strengths of both PyR0 and MAP and achieves the
following desiderata. First, we retain both methods’ scalability
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to large datasets and their ability to account for competition
between multiple co-circulating lineages. Second, we retain
both methods’ ability to infer the genetic determinants of
differential fitness, which is important both for understanding
the biology of transmission and pathogenesis and for predicting
the fitness of emergent lineages. Third, we incorporate the
sparsity assumption of PyR0—namely that most alleles are
approximately neutral—while adopting the principled diffusion-
based likelihood that underlies MAP. Finally we discard
variational inference in favor of efficient MCMC so as to obtain
more plausible uncertainty estimates, which provide crucial
nuance for public health agencies.

To establish the operational characteristics of our method
we perform a large suite of simulations, including detailed
comparisons to PyR0, MAP, and another diffusion-based method
we introduce (Laplace). We find that Bayesian Viral Allele
Selection (BVAS) performs well across the board, with notable
advantages of BVAS being its robustness to hyperparameter
choices, its satisfactory uncertainty estimates and the fact that
it offers interpretable Posterior Inclusion Probabilities that can
be used to prioritize alleles for follow-up study.

We apply BVAS to 6.9 million SARS-CoV-2 genomes
obtained through April 18th, 2022, noting that, to the best
of our knowledge, this is the largest such analysis to date. Our
genome wide analysis identifies known functional hot spots
in the SARS-CoV-2 genome like the receptor-binding domain
(RBD) in the S gene as well as additional hits in regions of the
genome whose function is less well understood like the ORF1ab
polyprotein. We argue, based on a retrospective backtesting
analysis, that running BVAS periodically as part of a real-time
genomic surveillance program could provide valuable estimates
of the growth rates of new lineages as they emerge. In addition,
we conduct an analysis that allows for vaccination-dependent
selection effects and find tantalizing evidence that S:N501Y
exhibits vaccination-dependent differential fitness. Finally, we
conduct an analysis that aims to identify pairs of mutations
whose fitness effect is not additive (i.e. epistasis), which likewise
points to the important role played by the RBD residue N501.

2. Models and Methods
2.1. Viral Infection as Diffusion
The starting point for both MAP and BVAS is a branching
process that encodes the dynamics of infected individuals at
time t stochastically generating secondary infections at time
t` 1.1 Since SARS-CoV and SARS-CoV-2 are known to exhibit
super-spreading (Lloyd-Smith et al., 2005; Althouse et al., 2020)—
i.e. a minority of infected individuals causes the majority of
secondary infections—the number of secondary infections is
assumed to be governed by a Negative Binomial distribution,
which has a large variance for small values of the dispersion
parameter k. In particular we assume that if a given individual
is infected with a variant v with reproduction number Rv, the
number of secondary infections due to that individual has mean
Rv and variance Rv ` R2

v{k. If we let nvptq denote the total
number of individuals at time t infected with variant v, our
assumptions result in the following discrete time process:

nvpt`1q „ NegBinpmean“nvptqRv, dispersion“nvptqkq (1)

1 A more detailed exposition of this and the following sections
can be found in the supplement.

To connect these dynamics to genotype, we assume that variants
are characterized by A alleles and that each variant v is encoded
as a binary vector gv P t0, 1u

A. We then express Rv as Rv “
R0p1 `∆Rvq, where R0 corresponds to the wild-type variant,
and assume that ∆Rv is governed by a linear2 additive model

∆Rv “
A
ÿ

a“1

gv,aβa (2)

where β P RA are allele-level selection coefficients. If we
transform from case counts nvptq to allele frequencies xaptq, Lee
et al. (2022) show that the dynamics in Eqn. 1 are equivalent
to the following diffusion process in allele frequency space

xpt ` 1q „ N pxptq ` dptq, ν
´1

Λptqq (3)

where dptq P RA is the A-dimensional drift, given by

daptq “ xaptqp1 ´ xaptqqβa `
ÿ

b‰a

pxabptq ´ xaptqxbptqq βb (4)

The A ˆ A diffusion matrix Λptq is given

Λabptq “ xabptq ´ xaptqxbptq (5)

where xabptq is the fraction of infected individuals at time t who
carry alleles a and b. Finally ν is the effective population size
given by

ν ”
´

1
R0
` 1
k

¯´1
n “ kR0

k`R0
n (6)

where n is the total number of infected individuals. Importantly,
the equivalence of Eqn. 1 and Eqn. 3 holds in the diffusion limit
of large n.3

2.2. MAP
The simplest model that utilizes the diffusion-based likelihood in
Eqn. 3 is formulated as follows (we refer the reader to Lee et al.
(2022) for additional discussion). First we place a Multivariate-
Normal prior on the selection coefficients β

ppβ|τq “ N pβ|0, τ´11Aq (7)

where τ ą 0 is the prior precision and 1A is the A ˆ A identity
matrix. For observed incremental allele frequency changes

yptq ” xpt ` 1q ´ xptq (8)

the likelihood is given by

ppy1:T´1|β, νq “
T´1
ź

t“1

N pdpt|βq, ν´1
Λptqq (9)

where we have assumed that ν is constant across time. Since β

appears linearly in the drift dpt|βq and the prior is Multivariate-
Normal, the corresponding maximum a posteriori (MAP)
estimate is available in closed form:

β
MAP

“

˜

T´1
ÿ

t“1

Λptq `
τ

ν
1A

¸´1
´

xpT q ´ xp1q
¯

(10)

An attractive property of this estimator is that it can be
computed in OpA3

q time and is thus quite fast on modern

2 We consider quadratic effects in Sec. 4.7.
3 The use of diffusion processes similar to that in Eqn. 3 has a
long history in population genetics, including seminal work by
Kimura (Kimura, 1964) as well recent applications that employ
diffusion-based likelihoods in the context of statistical inference
(Lacerda and Seoighe, 2014; Terhorst et al., 2015; Ferrer-Admetlla
et al., 2016; Sohail et al., 2021).
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hardware, at least for A up to A „ 104
´ 105. An unattractive

property of this estimator is that it can perform poorly in the
high-dimensional regime, A " 1, since we expect most alleles to
be neutral, but βMAP

a will generally be non-zero for all a.

2.3. Bayesian Viral Allele Selection
We now introduce our method: Bayesian Viral Allele Selection
(BVAS). We expect most alleles to be nearly neutral (βa « 0)
and we would like to explicitly include this assumption in our
model. To do so we utilize the modeling motif of Bayesian
Variable Selection (Chipman et al., 2001):

rinclusion variabless γa „ Bernoulliphq (11)

rselection coefficientss βγ „ N p0, τ´11|γ|q

rallele frequency changess yptq „ N pdpt|βγq, ν´1
Λptqq

where a “ 1, ..., A and t “ 1, ..., T ´ 1. Here each Bernoulli
latent variable γa P t0, 1u controls whether the ath coefficient
βa is included (γa “ 1) or excluded (γa “ 0) from the model;
in other words it controls whether the ath allele is neutral or
not. The hyperparameter h P p0, 1q controls the overall level
of sparsity; in particular S ” hA is the expected number of
non-neutral alleles a priori. The |γ| coefficients βγ P R|γ| are
governed by a Normal prior with precision τ where τ ą 0 is a
fixed hyperparameter. Here |γ| P t0, 1, ..., Au denotes the total
number of non-neutral alleles in a given model.4

In addition to inducing sparsity, an attractive feature of
the model in Eqn. 11 is that—because it is formulated as a
model selection problem—it explicitly reasons about whether
each allele is neutral or not. In particular this model allows
us to compute the Posterior Inclusion Probability or PIP, an
interpretable score that satisfies 0 ď PIP ď 1. The PIP is
defined as PIPpaq ” ppγa “ 1|y1:T´1q, i.e. PIPpaq is the posterior
probability that allele a is included in the model. This quantity
should be contrasted to h in Eqn. 11, which is the a priori
inclusion probability. Alleles that have large PIPs are good
candidates for being causally linked to viral fitness.

In Eqn. 11 we assume that h is known. An alternative is to
place a prior on h, h „ Betapαh, βhq, and infer h from data. See
Sec. S9 for details.

2.4. MCMC Inference
BVAS admits efficient MCMC inference via a recently introduced
algorithm dubbed Tempered Gibbs Sampling (Zanella and
Roberts, 2019). This is quite remarkable: the underlying
inference problem is very challenging, since i) it is a
transdimensional inference problem defined on a mixed
discrete/continuous latent space; and ii) the size of the model
space, namely 2A, is astronomically large. The feasibility of
MCMC inference in this setting is enabled by the specific
Gaussian form of the diffusion-based likelihood in Eqn. 9 and
would be impractical for most other (non-conjugate) likelihoods.
Thus BVAS is made possible by a pleasant synergy between the
form of the prior and the likelihood.

As we explain in more detail in Sec. S4 the resulting inference
algorithm has Op|γ|2Aq computational cost per MCMC iteration
and is thus quite fast on modern hardware. Here |γ| is the total
number of non-neutral alleles, which by assumption satisfies
|γ| ! A. Notably the computational complexity does not include

4 In the following we drop the γ subscript on βγ to simplify the
notation.

terms that are quadratic or cubic in A, since the (strict) sparsity
of Bayesian variable selection implies that the required linear
algebra never involves AˆA matrices. Importantly, the viability
of MCMC inference means that we expect to achieve satisfactory
uncertainty estimates, in particular ones that explicitly weigh
differing hypotheses about which alleles are neutral and which
are not. Indeed the BVAS posterior mean of β can be viewed as
an evidence-weighted linear combination of 2A MAP estimates.

2.5. Multiple spatial regions
In the above we have assumed a single spatial region. To apply
either BVAS or MAP to multiple spatial regions we simply add a
subscript where necessary and form a product of diffusion-based
likelihoods for NR regions indexed by r:

NR
ź

r“1

T´1
ź

t“1

N pdrpt|βq, ν´1
r Λrptqq (12)

As discussed in Sec. S4, including multiple regions has negligible
impact on the computational cost, since all summations over
the region index r are performed once in pre-processing.

2.6. Estimating the effective population size
The likelihood in Eqn. 9 depends on the effective population
size ν, a quantity that we do not know a priori and need to
estimate from data. For a given region r Eqn. 9 implies

E
”

yrptq
T

yrptq
ı

“ drptq
T

drptq ` ν
´1
r TrΛrptq (13)

so that if we assume that the drift term is subdominant we
obtain the approximation

ν̂r «
TrΛrptq

E ryrptqTyrptqs
(14)

We note that, since drptq
Tdrptq ě 0, we would expect ν̂r to be

an underestimate of νr, especially if the effective population
size is large. This results in the following simple estimator

ν̂r “
1

T´1

T´1
ÿ

t“1

TrΛrptq

yrptqTyrptq
(15)

where we have averaged Eqn. 14 over T ´ 1 time steps.
To accommodate multiple regions we compute ν̂r within

each region using Eqn. 15 and then compute a single global
effective population size ν̂ by computing the median of tν̂ru.
With this choice all regions contribute equally to the likelihood.
See Sec. S6 for additional details and discussion.

2.7. Sampling Rate
As we show in Sec. S8 an attractive property of the diffusion
process in Eqn. 3 is that it behaves sensibly in the presence of
sampling, i.e. the fact that not all viral sequences are observed in
real world datasets. Indeed if sampling is i.i.d. and the sampling
rate is ρ with 0 ă ρ ! 1 then the effect of sampling is to
renormalize the effective population size in Eqn. 6 as

ν Ñ
´

1
R0
` 1
k `

2
ρ

¯´1
n (16)

This means that the covariance structure in Eqn. 3 remains
intact, which is important because it is precisely this 2nd

order information that helps BVAS and MAP disentangle driver
mutations from passenger mutations. This is reassuring because
for SARS-CoV-2, where even the most ambitious surveillance
programs satisfy ρ ! k, the effective population size is dominated
by the effects of sampling and ν « ρ

2n.
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2.8. Vaccination-dependent effects
Suppose we know the vaccination rate 0 ď φrptq ď 1 for a given
region r. We would like to incorporate this information into our
modeling by allowing for vaccination-dependent selection. To
do so we write the drift in region r as

dr,aptq “ xr,aptqp1 ´ xr,aptqq pβa ` φrptqαaq ` (17)
ÿ

b‰a

pxr,abptq ´ xr,aptqxr,bptqq pβb ` φrptqαbq

where α P RA is a second group of selection coefficients whose
strength is modulated by the time- and region-local vaccination
rate. In particular α only has a non-negligible effect on infection
dynamics when φrptq is itself non-negligible. Disentangling the
effects of β and α is difficult a priori. Our hope, however, is
that a Bayesian variable selection approach with robust MCMC
inference should be up to the task provided we have enough
data. See Sec. S7 for additional discussion.

2.9. Alternative Model: Laplace
Finally we describe the simplest modification of MAP that can
account for the expected sparsity of non-neutral alleles.5 In this
approach we place a Laplace prior on β

ppβ|σ
Laplace

q “ 1
2σLaplace exp

ˆ

´
||β||1

σLaplace

˙

(18)

where ||β||1 is the L1 norm of β and σLaplace
ą 0 is a

hyperparameter that controls the expected level of sparsity.
We then define the maximum a posteriori estimate under this
Laplace prior:6

β
Laplace

” arg max
β

ppβ|σ
Laplace

qppy1:T´1|β, νq (19)

This estimator cannot be computed in closed form but can be
readily approximated with iterative optimization techniques. We
will consider Laplace alongside BVAS, MAP, and PyR0 in our
simulations, which we turn to next.

3. Simulation Results
To assess the performance of our method we conduct an extensive
suite of simulation-based experiments, including experiments
that rely solely on simulated data as well as a semi-synthetic
experiment that relies on perturbed SARS-CoV-2 data.

3.1. Simulation details
Our simulator closely follows the structure of the discrete time
process in Eqn. 1. The most salient details are as follows (see
Sec. S13 for details). We include exactly 10 non-neutral alleles
of varying effect size, with typical reproduction numbers for
variants v ranging between 0.9 and 1.1. In each simulation we
consider a given number of NR regions and T “ 26 time steps.
The initial number of infected individuals at time t “ 1 within

5 For additional discussion please refer to Sec. S10, where we
describe several alternative models that make use of the diffusion-
based likelihood in Eqn. 3.
6 For the sake of precision we should probably refer to MAP
as MAP-Gaussian and the approach described here as MAP-
Laplace. However, for brevity we instead refer to these methods
as MAP and Laplace, respectively.

each region is drawn from a Negative Binomial distribution
with mean 104. Case counts for t “ 2, ..., T are determined by
the stochastic dynamics in Eqn. 1 with k “ 0.1. This value of
k is chosen since it is consistent with estimates of the SARS-
CoV-2 dispersion parameter (Lau et al., 2020; Endo et al., 2020;
Bi et al., 2020; Miller et al., 2020). These raw counts are then
subjected to Binomial sampling with mean ρ “ 0.01, i.e. the viral
sequences of 99% of cases are not observed. Thus our parameter
choices result in simulated data that are highly stochastic and
that constitute a regime in which we expect that recovering the
true selection coefficients β˚ is quite challenging. Unless noted
otherwise, we generate 20 datasets per condition. We make these
choices because they result in simulated data that exhibit some
of the characteristics of our SARS-CoV-2 data. In particular,
typical estimated effective population sizes ν̂ range from about
25 to about 140 with a mean of about 75.

3.2. Method Comparison
We compare four methods for inferring allele-level selection using
simulated data, in particular three diffusion-based methods
(MAP, BVAS, and Laplace) and PyR0. For all methods except
for BVAS we rank allele-level hits by the absolute effect size,
whereas for BVAS we rank by the Posterior Inclusion Probability
(PIP). See Sec S13.3 for the hyperparameter choices made.

In Figure 1 we report results on the hit rate, which we define
as the fraction of the top 10 hits that are causal.7 This metric
is convenient since it does not depend on any method-specific
threshold for calling hits. As expected the hit rate generally
increases as the number of regions increases and decreases as
the number of alleles increases (since the number of possible
spurious hits increases). Strikingly, BVAS exhibits the best hit
rates across the board. Laplace and MAP are competitive with
BVAS in some regimes, but their performance degrades in other
regimes, particularly when the number of alleles is large.

We hypothesize that the main reason for the poor
performance of MAP in some regimes is the fact that MAP
does not enforce sparsity in the allele-level coefficients β. This
effect is particularly evident from the mean absolute error (MAE)
results in Figure 2, where it can be seen that the MAP MAE is
large across the board, since MAP assigns non-negligible effect
sizes to a large number of alleles. As the number of regions and
thus the total amount of data increases, MAP tends to identify
ever more non-negligible effects, potentially leading to a large
number of spurious hits.

In contrast to MAP, PyR0 and Laplace do impose sparsity
on the allele-level coefficients β. We hypothesize that one of the
main reasons for the poor performance of PyR0 and Laplace
in some regimes is the fact that they rely on hyperparameters
that are difficult to choose. This is especially the case for PyR0,
which contains 7 model hyperparameters, the most important
of which is a direct analog to σLaplace.

To make this broader point concrete we investigate the
sensitivity to the Laplace regularization scale σLaplace in
Figure 3. We find that moderate changes in σLaplace lead
to significant degradation in performance. Since there is no
principled method to choose σLaplace a priori, one must
instead rely on simulation-based intuition. Since, however, any
simulation cannot capture all the effects that characterize real
data and since it is unclear a priori what simulation parameters
should be used, it remains difficult to choose σLaplace and so the

7 Causal alleles are those for which the true effect is non-zero.
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Fig. 1. We compare the hit rate for four different methods using simulated data, where the hit rate is defined as the fraction of the top 10 hits that are
causal. Results are averaged across 20 independent simulations. See Sec. 3.2 for discussion.
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Fig. 2. We report the accuracy of inferred selection coefficients β for three diffusion-based methods using the simulated data described in Sec. 3.1. We
consider two metrics: root mean squared error (RMSE; left) and mean absolute error (MAE; right). In both cases the metric is normalized such that
the value of the metric for β “ 0 is equal to unity. For example, the RMSE is normalized by ||β˚||2, where β˚ are the true effects. We do not include a
comparison to PyR0, since it utilizes a somewhat different likelihood, making direct comparison subtle. See Sec. 3.2 for discussion.

sensitivity in Figure 3 is troubling. In the next section we show
that BVAS exhibits less sensivity to hyperparameter choices.
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Fig. 3. We explore the sensitivity of the Laplace method to the prior
scale σLaplace. Changing σLaplace from the optimal value of σLaplace « 0.01

results in significantly worse performance. We consider A “ 3000 alleles
and NR “ 30 regions and generate 40 simulated datasets.

3.3. BVAS sensitivity to hyperparameters and ν̂
BVAS is specified by two hyperparameters: the prior inclusion

probability h and the prior precision τ .8 The quantity τ´
1
2

controls the expected scale of effect sizes β. For example, for
τ “ 100 the prior standard deviation of β is 0.1. This choice
implies that „ 95% of prior probability mass concentrates on
the range β P r´0.2, 0.2s. In Figure 4 (top row) we depict the
sensitivity of BVAS to changes in τ . We find that the sensitivity
to τ is small over about 4 orders of magnitude. It is only for
very large τ (τ “ 104) that we see a large drop in performance.

8 For an extended dicussion of h see Sec. S9. Note that if a prior
is placed on h the hyperparameters instead become tτ, αh, βhu.
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Fig. 4. We explore the extent to which BVAS performance is sensitive
to its two hyperparameters, namely τ and S “ hA, using the simulated
data described in Sec. 3.1. We simulate data for NR “ 30 regions and
A “ 3000 alleles and generate 40 datasets. See Sec. 3.3 for discussion.

In Figure 4 (bottom row) we depict the sensitivity of BVAS to
changes in S ” hA, which is the expected number of non-neutral
alleles a priori. We find only moderate sensitivity as S ranges
from S “ 1 to S “ 64. In other words it is not necessary for S
to be an accurate estimate of the number of non-neutral alleles
(10 in our simulations): the posterior is a compromise between
the prior and the likelihood and for reasonable choices of S the
likelihood can overwhelm the prior if there is sufficient evidence
for non-neutral alleles. Importantly the precision remains high
for all values of S. The effect of choosing small S is to be more
conservative; in particular some weak effects at the threshold
of discovery may be assigned small PIPs. This robustness to
changes in S is reassuring because our a priori knowledge of the
number of non-neutral alleles in real data is limited.
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Next we explore the sensitivity of BVAS to accurate
estimation of the effective population size ν. Note that
unlike S or τ , which appear in the prior in Eqn. 11, ν

appears in the likelihood. The value of ν evidently plays an
important role because it controls the level of noise in the
diffusion process. Large values of ν imply that allele frequency
increments yptq are largely determined by (deterministic) drift.
Conversely, small values of ν imply that yptq exhibits significant
(stochastic) variability that dominates the drift. Thus, with all
else equal, increasing ν places more emphasis on fitting the
observed apparent drift with the result that BVAS will tend
to identify more signal, i.e. more alleles with non-negligible
PIPs. Conversely, decreasing ν places less emphasis on fitting
the observed apparent drift with the result that BVAS will tend
to identify less signal, i.e. fewer alleles with non-negligible PIPs.

We investigate this effect quantitatively in Figure 5, which
confirms our intuition. At least for our simulated data the
consequences of underestimating ν are more severe than
the consequences of overestimating ν; for example if we
underestimate ν by a factor of 4 the hit rate drops by a factor
of one half. By contrast overestimating ν by a factor of 4

actually improves the hit rate in this simulation, since the tighter
likelihood encourages BVAS to seek out less sparse solutions,
which results in additional hits for alleles at the margin of
discovery. Overall the behavior in Figure 5 is encouraging, since
we can estimate the effective population size with moderate
accuracy in simulation (see Sec. S13.2). In practice of course
we expect worse performance in the context of real data
because the noise structure of real data will not precisely follow
the noise structure assumed by our diffusion-based likelihood.
Nevertheless the fact that the results in Figure 5 exhibit a good
degree of robustness for ν estimates that are off by a factor
of „ 2 suggests that running BVAS on real data should be
relatively robust to the ν̂ estimation strategy used.
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Fig. 5. We explore the extent to which BVAS performance is sensitive to
accurate estimation of the effective population size ν using the simulated
data described in Sec. 3.1. To do so we modulate our estimate for ν by the
indicated multiplier, e.g. ν̂ Ñ 2ν̂. We simulate data for NR “ 30 regions
and A “ 3000 alleles and generate 40 datasets. See Sec. 3.3 for discussion.

3.4. The value of PIPs
In contrast to the other methods we consider BVAS provides
a Posterior Inclusion Probability for each allele. In Figure S3
we demonstrate the value of PIPs by exploring the allele-level
precision and sensitivity that are obtained if we declare alleles
with a PIP above a threshold of 0.1 as hits. We observe very
high precision across the board. In other words, if an allele has
a high PIP there is good reason to believe it is causally linked
to viral fitness, at least if we believe the generative process that
underlies our diffusion-based likelihood. It is worth emphasizing
that an allele with a moderate effect size can still exhibit a large
PIP, thus signifying strong evidence for being causal.

3.5. Variability due to sampling rate
As discussed in Sec. 2.7 our diffusion-based likelihood, Eqn. 9,
naturally accommodates random sampling where only a fraction
ρ of infected individuals have their viral genomes sequenced. To
explore the effects of sampling we generate data with a sampling
rate that ranges between 1% and 64%. We find that the results
are remarkably robust (see Figure S4), even as the effective
population size decreases by a factor of „15 as ρ decreases from
64% to 1% (see Eqn. 16).

3.6. Including vaccination-dependent effects
We now incorporate vaccination rates φrptq into our simulations,
assuming that φrptq starts at zero everywhere and increases
linearly over time. We assume 20 non-zero effects, half of which
are vaccination-dependent. Otherwise our simulation follows the
specifications of Sec. 3.1. See Figure S5 for results. As we would
expect, robustly identifying causal mutations is harder in this
setting, and the hit rate for vaccination-dependent effects is
lower than for all effects. Nevertheless the precision is high in
all cases, which gives us confidence that high PIP vaccination-
dependent alleles identified in real data may be causally linked
to vaccination-dependent differential fitness.

3.7. Spike-in experiment
We conduct a semi-synthetic experiment where we add 200

spurious alleles to 3000 SARS-CoV-2 lineages (we use data
from January 20th 2022 for a total of A “ 2904 ` 200 “ 3104

alleles). Each lineage is assigned a Binomial number of non-wild-
type spiked-in alleles with mean 2. Since these assignments are
independent and identically distributed, the spiked-in alleles are
not correlated with the pre-existing genotype in any way and
thus any apparent selection effects due to these alleles are due
to chance alone. See Figure 6 for results. We find that PyR0

and BVAS select the fewest number of spiked-in alleles, whereas
MAP and Laplace select the most. Note that we expect some
small number of spiked-in alleles to be selected due to random
chance alone. Importantly, across 30 replications none of the
methods identifies a single spiked-in allele in the top 20 scoring
hits. This is encouraging, since it suggests that the top scoring
hits from all four methods should be enriched with causal alleles.
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Fig. 6. We compare the robustness of four methods for inferring allele-
level selection effects to the addition of spiked-in alleles. We depict the
total number of spiked-in alleles that are among the top 100 scoring alleles,
where the horizontal line within each violin plot denotes the median and
for consistency we rank alleles by the absolute value of the selection
coefficient β. The orange dotted line corresponds to the number of spiked-
in alleles that would be expected among the top 100 alleles if alleles were
ranked at random. We report results from 30 independent simulations.
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4. SARS-CoV-2 Analysis
4.1. Data
Our raw data consist of 8.6 million samples downloaded from
GISAID (Elbe and Buckland-Merrett, 2017) on April 18th, 2022.
In initial pre-processing we follow the procedure in Obermeyer
et al. (2022), which relies on a phylogenetic tree constructed
by UShER (Turakhia et al., 2021; McBroome et al., 2021), and
results in L “ 3000 SARS-CoV-2 clusters that are finer than the
1662 PANGO lineages in the data (Rambaut et al., 2020). In
our main analysis we consider A “ 2975 non-synonymous amino
acid substitutions, excluding both insertions and deletions due
to limitations of UShER, and taking Wuhan A as the reference
genotype, i.e. R0 ” RA. After filtering to well-sampled regions
there remain 6.9 million samples from NR “ 128 regions. Allele
frequencies for each region are computed in time bins of 14 days
and the effective population size is estimated using the global
strategy described in Sec. 2.6. Vaccination data for the analysis
in Sec. 4.6 are obtained from OWID (Ritchie et al., 2020). For
additional details on data pre-processing see Sec. S14.1.

4.2. Fitness of SARS-CoV-2 Lineages and Mutations
We use BVAS to rank the relative fitness of all SARS-CoV-2
lineages. To do so, we fit our model to allele frequencies of 2975

alleles across 128 regions, with τ“100 and S“50 (so h “ S{A «
0.017) reflecting our prior assumptions that a relatively modest
number of non-neutral alleles with (possibly) moderately large
selection effects are driving evolution of SARS-CoV-2 fitness.

In Table 1, we report relative growth rate estimates R{RA
for the top 20 lineages. Fitness estimates are broadly concordant
with the observed pandemic, with the fittest lineages all Omicron
variants. BVAS accurately captures the hierarchy of replacement
by fitter lineages with Omicron (BA.2) > Omicron (BA.1) >
Delta > Alpha > wild-type virus (Table 2). Notably some
PANGO lineages (e.g. B.1.1) exhibit very diverse genotypes and
thus correspondingly diverse growth rates, see Figure S7.

Analysis of sublineage fitness reveals that Omicron has
fractured into many sublineages whose fitness has increased
modestly over time (Table 1). BA.2.12.1 appears to be the fittest
lineage observed to date, although many BA.2 sublineages are
comparably fit. BA.4 and BA.5, which appear to be descended
from BA.2, have recently emerged in South Africa and are
reported to have enhanced fitness (Tegally et al., 2022) and
additional immune escape (Khan et al., 2022; Cao et al., 2022)
relative to Omicron BA.1. Since BVAS regresses growth rate
against genotype, it is able to infer that these lineages are among
the fittest lineages circulating despite the fact that very few
BA.4 and BA.5 sequences are in our dataset. Like BA.2.12.1,
BA.4 and BA.5 also possess mutations at Spike position 452
mutations (L452R), underscoring the key role that this site plays
in SARS-CoV-2 fitness.

We report the fitness of recombinant lineages in Table S1.
In contrast to highly fit lineages that emerged in the BA.2
clade, several recombinants, including those that represent
recombination between Delta and BA.1 and BA.1 and BA.2,
have been the source of international concern (Colson et al.,
2022; Jackson et al., 2021; VanInsberghe et al., 2021). The
fittest recombinants are XN and XT, though their fitness is
intermediate to that of BA.2 and BA.1. While the appearance
of recombinant lineages is striking, the fitness of existing XA
- XT recombinants suggests that these particular lineages are
unlikely to play an important role in the future.

We report the fitness of top-scoring mutations in Table 3 and
plotted along the length of the genome in Figure 7. The strongest
signal of selection is in Spike, with the greatest concentration
of hits located in the receptor-binding domain (RBD). Strong
signals of selection are also observed in the N-terminal domain
(NTD) and furin cleavage sites. By effect size, S:L452R is the
top-scoring hit. This mutation is found in BA.4/BA.5 and was
also an important component of the ‘California’ variants, B.1.427
and B.1.429. Deng et al. (2021) have shown that this mutation
increases infectivity, while Li et al. (2020) and Liu et al. (2021)
have shown that it promotes antibody escape. The closely related
mutation S:L452Q, one of two key Spike mutations in the fast-
growing BA.2.12.1 variant, is also highly ranked, underscoring
the importance of this site.

The top-scoring mutations cluster together in various regions
of Spike (Figure 9A), particularly the ACE2 binding interface
of the RBD (Figure 9B). Three of the top five hits (S:L452R,
S:E484K, and S:N501Y) are within the RBD, and a fourth,
S:R346K, is just adjacent to it. The mechanisms driving positive
selection at these sites likely include increased affinity to ACE2,
as was shown for S:N501Y (Starr et al., 2020), as well as escape
from neutralizing antibodies that bind in this region, e.g. for
S:E484K, S:N440K and S:R346S (Weisblum et al., 2020; Iketani
et al., 2022).

We characterized antibody escape of Spike mutations further
by correlating BVAS RBD estimates to predictions made by the
antibody-escape calculator in Greaney et al. (2022) (Figure S8).
This escape calculator is based on deep mutational scanning
data for 33 neutralizing antibodies elicited by SARS-CoV-2 and
thus represents an independent source of experimental data.
As in Obermeyer et al. (2022), there is a strong correlation
(ρSpearman “ 0.89) between the two sets of predictions, lending
support to BVAS results for the RBD. We assessed the temporal
progression of selection effects in SARS-CoV-2 lineages by
aggregating ∆R estimates due to S gene, RBD, and non-S-genes
contributions (Figure 10). The elevated contribution of S-gene
mutations (notably in the RBD) over non-S-gene mutations
starting around November 2021 is apparent, in agreement
with the results from Obermeyer et al. (2022). Collectively
these two results suggest that immune escape has become an
increasingly prominent factor in SARS-CoV-2 evolution over
time, likely a result of rising rates of convalescent and vaccine-
induced immunity to Spike. The correlation between mutations
that confer antibody escape and mutations associated with
fitness supports the hypothesis that coronaviruses evolve through
positive selection of receptor-binding domain mutations that
escape neutralizing antibody responses (Kistler and Bedford,
2021).

Other hotspots within Spike include the furin cleavage
site, which features three of the top 20 mutations (S:P681R,
S:P681H, and S:N679K). These substitutions add positive
charge at the cleavage site, likely facilitating S1/S2 cleavage
and promoting infectivity by enhancing cell-cell fusion, which
has been demonstrated by several groups (Saito et al., 2022;
Mohammad et al., 2021; Lista et al., 2021).

BVAS also identifies numerous residues under selection
outside of Spike. These include P13L in the N-terminal region
and P199L and R203M in the linker region between the N- and
C-terminal domains (Figure S9). These latter two mutations
have been demonstrated by Syed et al. (2021) to enhance viral
packaging. Within ORF1a, several amino acid changes in NSP4
score highly, including T3090I, L3201P, and T3255I (Figure S10).
The importance of these effects can be quantified on a per-ORF
basis using PIPs, which provide a convenient numerical measure
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Fig. 7. We depict BVAS hits as a Manhattan plot of the entire SARS-CoV-2 genome, with gene boundaries indicated on the horizontal axis. We do not
include the small number of hits with negative selection coefficients (in particular ORF1b:K1383R, ORF1a:A2554V, ORF1b:S959P, and ORF1a:G697R).

of the total evidence for selection due to each allele. To assess
the overall contribution of various regions of the SARS-CoV-2
genome to differential viral fitness we sum PIPs across different
regions, see Figure S11, quantifying the relative importance of
S, N, and several non-structural proteins in ORF1ab.

Table 1. The 20 SARS-CoV-2 lineages with the highest (relative)
growth rates Rv{RA as estimated by BVAS. Here and elsewhere
uncertainty estimates are 95% credible intervals.

4.3. Sensitivity analysis
We perform an extensive sensitivity analysis to better
understand the robustness of our results to hyperparameter
and data pre-processing choices. In Figure S13-S17 we explore
the sensitivity of BVAS growth rate estimates for the fittest
lineages, noting that we might expect these estimates to be
sensitive to the strength of regularization. We find minimal
sensitivity to S (the number of non-neutral alleles expected a
priori), the total number of regions included in the analysis

Table 2. We report the relative growth rates R{RA of selected
SARS-CoV-2 lineages as estimated by BVAS.

NR, as well as N14
min, which controls which time bins enter

the analysis, see Figure S13-S15. The sensitivity to the prior
precision τ is somewhat larger (see Figure S16), especially as we
increase τ to τ “ 400, although we would argue that this is an
unreasonable prior choice, as it makes even relatively moderate
selection effects like β „ 0.15 a priori unlikely. Not surprisingly,
the sensitivity to the estimated effective population size, ν̂, is
fairly large (see Figure S17), roughly comparable to the scale of
the underlying statistical uncertainty.

We adopt a more global view in Figure S18-S27, reporting
sensitivity analyses for all PIPs and β estimates as well as for
growth rates for all 1662 PANGO lineages. Globally, growth
rate estimates are remarkably stable with Pearson correlation
coefficients of 0.999 or larger. Selection coefficient estimates β
are also quite stable, with Pearson correlation coefficients of 0.9

or greater, with the largest sensitivity being again to τ and ν̂.
Results for allele-level PIPs are broadly comparable, although
they tend to exhibit more variability and outliers, especially
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Table 3. The top 25 fitness-associated SARS-CoV-2 mutations as estimated by BVAS and ranked by PIP (left) and β (right). The two
rankings are largely the same, with 19 mutations appearing in both. Uncertainty estimates are 95% credible intervals.

for alleles with smaller PIPs. Importantly concordance between
independent MCMC chains is exceptionally high (R ě 0.9997),
see Figure S18, suggesting that MCMC error is minimal.

4.4. Backtesting
We perform a backtesting analysis in which we run BVAS
on subsets of the data defined by varying end dates. Doing
so allows us to assess the possible benefits of running BVAS
periodically as part of a real-time genomic surveillance program.9

See Figure S28 for results. We find that by May 13th 2021 BVAS
predicts that various Delta sublineages are fitter than B.1.1.7
(Alpha), which was the most prevalent lineage in England and
elsewhere at the time. Similarly, we find that by December 8th

2021 BVAS predicts that various Omicron sublineages are fitter
than AY.4.2.1 (Delta). Notably, since BVAS regresses Rv against
genotype, we also obtain plausible estimates for newly emergent
lineages that have only been sequenced a small number of times.
Finally by January 12th 2022 BVAS predicts that BA.2 was
fitter than BA.1, a prediction that has been borne out by the
subsequent takeover of BA.2.

During the time periods considered in our backtesting
analysis the number of samples of these newly emergent lineages
was increading rapidly, with the result that BVAS growth rate

9 We caution that these results need to be interpreted with
care, since in practice it can take several weeks before individual
genomic samples are deposited in GISAID. Additionally, the
calling of new lineages is also associated with a time lag.

estimates increase markedly as more data become available and
it becomes increasingly clear that these lineages were the fittest
lineages yet observed. Importantly, estimates stabilize after
sufficient data have been collected, see Figure S29.

4.5. Comparison to MAP and PyR0

We perform detailed comparisons of BVAS to both MAP (Lee
et al., 2022) and PyR0 (Obermeyer et al., 2022). Here we provide
a brief summary; see Sec. S14.4-S14.5 and Figures S30-S40 for a
detailed discussion. Despite differences in methodology, results
from BVAS, MAP and PyR0 are in broad qualitative agreement,
suggesting that all three methods are capable of identifying (at
least some) leading driver mutations in SARS-CoV-2. Because it
is only very recently that genomic surveillance data have become
available at this scale and the corresponding analysis methods
are still in their infancy, we believe this finding is encouraging
for this emerging new field.

While it is difficult to definitively establish the superiority of
one method over another without a larger corpus of experimental
data to serve as ground truth, we believe that the advantages of
BVAS become apparent upon closer comparison. First, inferred
selection effects are much sparser in the case of BVAS, which
aids interpretability and is arguably more plausible a priori.
Selection coefficients inferred by MAP are very dense unless the
regularization parameter γreg “ τ{ν is made sufficiently large.
However, in this limit growth rate estimates appear to be over-
regularized towards Wuhan A. Second, uncertainty estimates for
MAP and (especially) PyR0 are much narrower than for BVAS,
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Fig. 9. A. We depict the locations of the top 20 Spike hits, ranked by PIP, on the Cryo-EM structure of a Spike trimer bound to ACE2 (magenta)
at 3.9 Angstrom resolution in the single RBD "up" conformation from (Zhou et al., 2020) B. Enlarged view of the RBD-ACE2 interface, showing the
spatial proximity of S:R346, S:N339, S:N440, S:L452, S:S477, S:E484, and S:N501.

especially for allele-level quantities like selection coefficients.
Finally, BVAS exhibits much less sensitivity to hyperparameter
choices than PyR0, which—together with rigorous sparsity
requirements—is one of the key factors contributing to the
strong performance of BVAS in simulations.

4.6. Vaccination-dependent effects
We incorporate independent data on vaccination rates from 127

regions compiled by OWID.10 This has little impact on estimates

10 See Sec. S7 and Sec. S14.1.6 for additional details.

for most vaccination-independent effects (Figure S42), i.e. BVAS
finds that selection effects in the data are largely explainable by
vaccination-independent effects. Indeed we find only two alleles
with large PIPs in the vaccination-dependent model (Table 4).

The strongest evidence for allele-level dependence on
vaccination rates is in S:N501Y, which is also the only allele for
which BVAS finds it important to include both a vaccination-
dependent effect α and a vaccination-independent effect β. In
our analysis the selection coefficient estimates for S:N501Y are
α « ´0.15 and β « 0.41. This means that the model predicts
a selection effect due to the S:N501Y allele of β « 0.41 in a
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Fig. 10. We aggregate BVAS β estimates into S-gene, RBD (S gene receptor-binding domain), and non-S-gene components for L “ 3000 SARS-CoV-2
clusters (blue points). The horizontal axis denotes the date at which each cluster first emerged, and magenta squares denote the median ∆R within
each monthly bin. The elevated contribution of S-gene mutations (notably in the RBD) over non-S-gene mutations starting around November 2021 is
conspicuous. Compare to Figure 2CDE in Obermeyer et al. (2022).

completely unvaccinated population and a selection effect of
α ` β « 0.26 in a completely vaccinated population. This can
be interpreted as saying that vaccination appears to confer
differential protection against the S:N501Y allele, i.e. on top
of the protection that is conferred against typical SARS-CoV-2
variants that do not carry S:N501Y. Notably, S:N501Y also
exhibits a large PIP in an analysis conducted with a different
definition of vaccination rate (Table S3).

These results are also supported by a direct analysis of raw
allele frequencies of S:N501Y. Indeed S:N501Y exhibited a rapid
rise and fall in prevalence in Spring 2021 (Figure S43), at the
same time as vaccination rates were ramping up in many of
the regions in our dataset. Moreover, while the behavior of
S:N501Y is partially explained by the rise and fall of B.1.1.7
(Alpha), S:N501Y came to prominence in some regions (notably
Brazil) via P.1 (Gamma) where B.1.1.7 was never dominant.
Finally, the change in frequency of S:N501Y is correlated to
vaccination status (Figure S44); this correlation is stronger
than the correlation between changes in B.1.1.7 frequency and
vaccination status.

S:N501Y thus appears to exhibit vaccination-dependent
selection, which explains its relative disappearance from the
variant landscape over time as vaccination rates have increased.
The precise mechanism underlying this behavior is unclear,
but several authors have recently shown that S:N501Y exerts
epistatic effects on other mutations by altering their antibody
escape properties (Starr et al., 2022; Zahradník et al., 2021;
Bate et al., 2021). We hypothesize that S:N501Y serves as a
linchpin residue within the RBD that constrains the possibilities
for vaccine escape when present.

Table 4. We report PIPs and estimated coefficients α for vaccination-
dependent effects for an analysis in which the vaccination status
is ‘fully-vaccinated’. We report effects that are ranked in the top
75 by PIP. Estimated β coefficients and PIPs for the corresponding
vaccination-independent effects are reported in the two rightmost
columns.

4.7. Epistasis
Mounting experimental evidence for epistasis in SARS-CoV-2
(Starr et al., 2022; Javanmardi et al., 2022) raises the question
whether these kinds of effects can be inferred from genomic
surveillance data. Doing so is expected to be difficult a priori due
to the combinatorially large space of possible interaction effects
coupled with the fact that many combinations of mutations
are unobserved in available data. In this context we expect
that explicit sparsity assumptions and high-fidelity statistical
inference—key selling points of BVAS—are likely to be crucial.

Here we report initial results of such an analysis, focusing on
pairwise interaction effects between non-synonymous mutations
in the Spike protein. In particular we consider pairwise
interactions between the 421 S mutations in our main analysis—
after excluding D614G because it became fixed early in the
pandemic—which corresponds to 88410 pairwise interactions.
We further exclude pairs of mutations that are not observed
together in at least two SARS-CoV-2 clusters—yielding 1432

pairwise interactions—and use BVAS to jointly infer selection
effects for the resulting 2975 linear and 1432 pairwise effects.
See Sec. S14.8 for details.

We summarize our results as a pair of ‘interaction networks’
in Figure 11 and report more detailed results in Table S4. We
find that top-scoring interaction effects in our analysis are
enriched for interactions between mutations that correspond to
top-scoring (linear) effects in our default analysis (P ď 10´4).
Put differently, we find limited evidence for interaction effects
between pairs of mutations where one or both mutations are
inferred as approximately neutral on their own.

The interaction effect with the largest PIP is between N501Y
in the RBD and P681H adjacent to the furin cleavage site. These
two mutations appear together in BA.1/B.1.1.7, while N501Y
appears without P681H in P.1/B.1.351 and P681H appears
without N501Y in B.1.1.159/B.1.243 (Table S4). As such there is
a plausible evidential basis for inferring the interaction between
N501Y and P681H, with each combination of these amino acids
appearing in at least 60k SARS-CoV-2 sequences in our dataset.
The importance of N501Y in epistatic interactions is concordant
with data from Starr et al. (2022), who found that N501Y caused
the largest shifts in the effects of mutations at other sites using
deep mutational scanning libraries of RBD and measuring the
impact of every amino acid mutation on ACE2-binding affinity.

Among subleading hits, we find a less well resolved picture
due to linkage between different pairs of amino acid mutations,
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which is reflected in the more moderate PIP scores. For example,
all SARS-CoV-2 clusters in our data that carry the pair of amino
acids (N501Y, A67V) also carry the pairs (N501Y, P681H) and
(A67V, E484A)—but not vice versa. This motivates the graphical
representation in Figure 11, which reflects the multiplicity of
several amino acid mutations in top-scoring interaction effects—
in particular N501Y, P681H, A67V, and L452R.

We expect that resolving these putative interactions in
greater detail necessitates follow-up in the lab. Mechanisms of
epistasis are likely pleiotropic, but some interactions likely arise
from a need to a) incorporate mutations that confer immune
escape against the current landscape of circulating variants while
b) maintaining protein structure and function. This behavior has
been demonstrated for the recurrent S:69-70 deletion (Gupta
et al., 2021). Because the space of possible combinations of
alleles is very large, most studies have characterized mutations
either individually or in the combinations present in common
lineages. By ranking combinations of mutations according to
evidence of their selective effects, our model may help focus
experimental design in this challenging combinatorial setting.

Fig. 11. We depict the two interaction networks of pairwise selection
effects in Spike inferred by BVAS. Edge widths are proportional to
the posterior inclusion probability of the corresponding pairwise effect.
Spatial orientation has no meaning.

5. Discussion
Bayesian Viral Allele Selection unifies and improves upon the
two available methods for inferring selection from large scale
genomic surveillance data. One of its strengths is that it makes
clear assumptions: i) most alleles are neutral; and ii) viral
dynamics is governed by an intuitive discrete time branching
process. Other advantages of BVAS include its robustness to
hyperparameter choices, its satisfactory uncertainty estimates
and the fact that it offers Posterior Inclusion Probabilities.
Moreover, the diffusion-based likelihood in Eqn. 9 is robust to a
number of sources of possible bias, including varying sampling
rates across time and space and changes in fitness that affect
all lineages equally (due to e.g. lockdown measures or variable
temperature/humidity).

We highlight the following limitations.11 Estimating the
effective population size ν is challenging, especially since ν can
exhibit significant variability across time. While we have argued
that sensitivity to ν is fairly moderate, improved ν estimates
should lead to improved statistical efficiency, especially if ν
can be estimated with finer spatial and temporal granularity.
Doing so would likely require incorporating additional sources of
data (e.g. case counts) and represents an important direction for
future work. Several of the simplifying assumptions that underly

11 Please refer to Sec. S12 for additional discussion.

BVAS are expected to be violated at some level in real world
data. Notably, our basic fitness model is unable to account for
epistasis (see Eqn. 2). While we have extended this linear model
to include pairwise interactions, we haved limited this analysis
to the Spike protein. Because a genome wide epistasis analysis
must contend with millions of possible interactions a priori,
additional assumptions to reduce the space of selection effects
considered are likely required to make this kind of analysis
statistically and computationally tractable. For example, one
might limit the analysis to pairs of mutations that are near each
other in space.

In summary, BVAS provides a principled statistical and
computational framework to identify selection under the
constraint of sparsity. Applying BVAS to 6.9 million SARS-CoV-
2 genomes provides a detailed picture of viral selection in action.
We anticipate that BVAS will be widely applicable to SARS-
CoV-2 and other viruses as large scale genomic surveillance data
become increasingly available.

6. Data Availability Statement
The SARS-CoV-2 data used in our analysis are provided by
GISAID (Elbe and Buckland-Merrett, 2017).12 A complete list
of accession numbers for the viral genomes used in our study is
publicly available:
https://github.com/broadinstitute/bvas/raw/main/paper/accession_ids.txt.xz

The UShER tree used in our pre-processing pipeline is publicly
available: https://hgwdev.gi.ucsc.edu/~angie/9f94a7b/. The
vaccination data we use are provided by OWID (Ritchie
et al., 2020): https://github.com/owid/covid-19-data/. An
open-source implementation of our analysis code is available
at https://github.com/broadinstitute/bvas. The initial portion
of our data pre-processing pipeline relies on open source code
described by Obermeyer et al. (2022):
https://github.com/broadinstitute/pyro-cov. Allele-level and
lineage-level inference results from our main BVAS analysis are
publicly available:
https://github.com/broadinstitute/bvas/raw/main/paper/allele_summary.csv

https://github.com/broadinstitute/bvas/raw/main/paper/growth_rates_summary.csv
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