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Abstract
Deep neural networks have been successfully ap-
plied to activity recognition with wearables in
terms of recognition performance. However, the
black-box nature of neural networks could lead to
privacy concerns. Namely, generally it is hard to
expect what neural networks learn from data, and
so they possibly learn features that highly discrim-
inate user-information unintentionally, which in-
creases the risk of information-disclosure. In this
study, we analyzed the features learned by conven-
tional deep neural networks when applied to data
of wearables to confirm this phenomenon. Based
on the results of our analysis, we propose the use
of an adversarial training framework to suppress the
risk of sensitive/unintended information disclosure.
Our proposed model considers both an adversarial
user classifier and a regular activity-classifier dur-
ing training, which allows the model to learn rep-
resentations that help the classifier to distinguish
the activities but which, at the same time, prevents
it from accessing user-discriminative information.
This paper provides an empirical validation of the
privacy issue and efficacy of the proposed method
using three activity recognition tasks based on data
of wearables. The empirical validation shows that
our proposed method suppresses the concerns with-
out any significant performance degradation, com-
pared to conventional deep nets on all three tasks.

1 Introduction
The recognition of human activities through the use of wear-
able devices, such as smartphones, is a key technology for
enabling next-generation applications; for example, it is pos-
sible for a smart phone to track exercise and sleep patterns
[Consolvo et al., 2008], to estimate emotional states [Rachuri
et al., 2010], and to be developed into a digital assistant [Lee
et al., 2012]. In the same way as with image and sound
processing, deep neural networks are increasingly used in
various activity recognition tasks, exhibiting excellent lev-
els of performance [Plötz et al., 2011; Yang et al., 2015;

Hammerla et al., 2015; Ordóñez and Roggen, 2016].
Although recognition performance is obviously a very im-

portant aspect of wearable-based activity recognition, the pri-
vacy of the data produced by wearables, in that they could
possibly contain rich personal information, is also impor-
tant. From the viewpoint of privacy, the black-box properties
of neural networks could lead to privacy issues of their ap-
plication on data obtained from wearables; i.e., generally it
is hard to pre-expect what neural networks learn from data,
and as a result of the optimization, they possibly learn fea-
tures that could accurately estimate user information, such
as gender, age, or state of health, without any intentional
design. This phenomenon potentially causes the privacy is-
sues because such neural networks help to estimate the user-
information without the informed consent with users. This
issue is also problematic for application providers because
it prevents users from using their applications, prevents data
sharing with co-companies, and increases management costs.
In this study, we set out to analyze the features learned

by conventional deep neural networks when applied to data
of wearables, to confirm the relevance of privacy con-
cerns. Specifically, we found that neural networks trained
with cross-entropy regarding activity Y learn highly user-
discriminative features without any intentional design. Based
on the results of our analysis, we propose the use of user-
adversarial neural networks that utilize an adversarial train-
ing to prevent the occurrence of this phenomenon. Our pro-
posed model considers an adversarial user classifier in addi-
tion to a regular activity classifier during training, which al-
lows the model to learn representations that help the activity
classifier to distinguish activities but which, at the same time,
prevent it from accessing user-discriminative information. In
other words, the proposed model trains feature extractor to
deceive virtual-adversarial classifier and explicitly penalize
those features to become user-discriminative.
It should be noted that poor design of the privacy-

protection significantly affects the utility of data. For exam-
ple, the output of random mapping f(X) apparently has no
unintended/sensitive information, but it also gives no infor-
mation about activities. Alternatively, as a more realistic ex-
ample, a neural network with limited capacity might acquire
less unintended information, but it may also lead to poorer
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performance. This paper empirically validates that our pro-
posed model establishes a better balance between the utility
of the data and privacy protection compared to the simple
neural networks and the networks with limited capacity.
The primary contributions of this paper are as follows:
• Our paper provides empirical validations of the pri-

vacy risk regarding unintended information disclosure
for publicly available datasets (Opportunity and USC-
HAD) regarding activity recognition with wearables.
Specifically, empirical validations show that a simple
logistic regressor achieves 0.847 of user-classification
accuracy (Opportunity) and 0.657 of accuracy (USC-
HAD) from features given by neural networks trained
with cross-entropy regarding activity Y only, which is
significantly higher than accuracy with raw-data (0.352
and 0.100 respectively).

• Our paper proposes the use of an adversarial training
framework to alleviate the above phenomenon. The
empirical validation shows the proposed model gives
significantly less user-discriminative features (approx-
imately 0.40 points lower than the simple neural net-
works on average) while maintaining a level of activity
classification performance on three activity-recognition
tasks.

2 Related Works
2.1 Activity Recognition using Wearables
The primary requirement for an activity recognition system
using wearables is to be able to accurately predict yt from
Xt, where Xt is a multichannel time series from the out-
puts of wearables from time t to time t + T , and yt is an
activity performed by the user with the wearable during that
time slice. In this context, deep neural networks demonstrate
significant performance improvement over classical feature-
engineering approaches. Deep neural networks were first ap-
plied to human activity recognition with wearables by [Plötz
et al., 2011]. The authors demonstrate the superior perfor-
mance of restricted Boltzmann machines, relative to tradi-
tional feature engineering, such as time-domain statistics and
frequency coefficients. In the context of supervised represen-
tation learning, [Yang et al., 2015] proposed a multi-channel
convolutional neural network with a sensor unification layer
to make CNN usable with multi-sensor inputs and, more re-
cently, [Hammerla et al., 2016] and [Ordóñez and Roggen,
2016] proposed the use of long- and short-term memory
(LSTM) and its variants. As such, deep neural networks are
becoming key to achieving high recognition performance.
Besides prediction accuracy, privacy protection is a core

requirement for activity-recognition systems. One of the pri-
vacy risks peculiar to wearables is inferring risks, which is
the risk associated with adversarial inference from the data
provided by wearables [Raij et al., 2011]. Since the wear-
ables continuously sense the activity of users and the way ac-
tivity taken differ among users’ attributes, we need counter-
plans for privacy-protection, or adversary could infer user-
information such as age, gender, or possibly levels of health.
The simplest existing counter-plan involves stopping sen-

sors based on user-intention by specifying the potential infer-

ence risks [Chakraborty et al., 2014] or based on locations
of users [Raghavan et al., 2012]. Although such sensor-level
corruption indeed reduces inference risks, it also directly re-
duces the utility of the data. Another approach involves trans-
forming the representation of data to reduce privacy risks.
For example, [Supriyo et al., 2012] proposes an obfuscation
strategy that selects features to help classify white-listed in-
formation but, at the same time, obstructs the classification
of blacklisted information. This feature-level corruption po-
tentially provides a better privacy-utility balance compared
to naive sensor-level corruption, and it is similar to our pro-
posal in principle. However, their proposals were limited to a
feature-engineering paradigm and were not easily applicable
to a representation-learning paradigm.

2.2 Adversarial Training
The central principle of the proposed method is the use of
adversarial training for preventing representations from be-
coming user-discriminative. As far as the authors are aware,
the adversarial training framework was first introduced by
[Schmidhuber, 1992], and later re-invented by [Goodfellow
et al., 2014] in the context of an image-generation task. More
recently [Ajakan et al., 2014] introduced domain-adversarial
neural networks (DANN), which use a framework for domain
adaptation scenarios, while [Edwards and Storkey, 2016] pro-
posed adversarial learned fair representations (ALFR), which
are intended to remove sensitive information from represen-
tations. Although these studies are closer in principle to the
proposed method, our work differs from the previous propos-
als; while both DANN and AFLR consider the case of the
information sources being binary features S = 1 or S = 0,
in our case there are typically many users and so U is cate-
gorical rather than binary. This paper first presents empirical
validations of the categorical case, and investigates parame-
ter sensitivity regarding the capacity of the adversarial clas-
sifier and that of the feature extractor, neither of which have
been mentioned in previous studies. Also, this is the very first
study that investigates potential privacy issues of application
of deep nets on the data of wearables.

3 User-Adversarial Neural Networks
The proposed model user-adversarial neural networks de-
signed to learn features that contain information about the ac-
tivity label Y while, at the same time, not contain information
about user U 1. Formally, the networks solve a joint optimiza-
tion problem of the loss L = Ly(X,Y )+ λLu(R,U), where
X indicate the input random variable, R is the random vari-
able of representations, and, Lu and Ly are loss functions that
represent how much information about Y and U are held, re-
spectively. The λ is a weighting parameter between Lu and
Ly , and the proposed method is equivalent to conventional
method when λ = 0.
The proposed method consists of three feed-forward neural

networks: feature extractor ff : X → R, label classifier

1Because of the dataset-limitation, this paper focuses on the
removal of user-discriminative information, but a similar strat-
egy could, in principal, be applied to the removal of other user-
information. We will discuss this point later in this paper.
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fy : R → Y , and adversarial user classifier fu : R → U
(Figure 1). These networks are parameterized by θf , θy , and
θu, respectively. The proposed methods measure Ly and Lu

using the networks.

3.1 Quantifying Ly(X,Y )

Ly is the same as in the case of a conventional neural network;
generally it is the cross-entropy between the true probability
distribution P (Y ) and P (Y |X) estimated by neural networks
with softmax activations. Formally, Ly is

Ly = − 1

N

N∑
n=1

M∑
m=1

ynm log fy(ff (xn)), (1)

whereN is the number of samples,M is the number of activ-
ity classes, and ynm is a binary variable that indicates whether
the n-th sample belongs to them-th class. By minimizing Eq.
1, the feature extractor and label classifier are trained to pre-
dict Y from X as correctly as possible.

3.2 Quantifying Lu(R,U)

Lu is measured using adversarial training frameworks. First,
assume that adversarial user classifier fu tries to predict U
from R. Specifically, this classifier is a neural network that is
trained to maximize the log likelihood

Lu =
1

N

N∑
n=1

K∑
k=1

unk log fu(ff (xn)), (2)

where K is the number of users, and unk is a binary variable
that indicates whether the n-th sample is the k-th user or not.
The user classifier is trained to predict U from R. Formally,
this is done by updating θu to maximize Eq. 2 while fixing
θf . On the other hand, feature extractor ff is trained to ob-
struct user classifier fu to predict user U from R. Formally,
this is done by updating θf to minimize Eq. 2 while fixing
θu. Intuitively, this optimization can be regarded as being
a privacy-protection step, which assumes a virtual adversary
and improves privacy by updating the feature extractor so that
the adversary cannot retrieve any information from R.

3.3 Optimization
Overall, the proposed method consists of three neural net-
works ff , fy , and fu, and the problem is defined as

min
θf ,θy

max
θu

[Ly(X,Y ; θf , θy) + λLu(R,U ; θf , θu)]

As the overall loss is not convex, single-step optimization is
not possible. Rather, we alternatively optimize 1. θu to max-
imize Lu fixing other parameters and 2. θf and θy to mini-
mize the entire loss fixing θu, in the same way as in related
works that used adversarial training [Goodfellow et al., 2014;
Ajakan et al., 2014; Edwards and Storkey, 2016].
Regarding this alternative optimization, a balance is sought

in the min-max game between the adversary (user classifier)
and feature extractor regarding Lu. If the adversary is too
strong for the feature extractor, the feature extractor can never
deceive the user classifier and therefore the features cannot
be user-dependent; on the other hand, if the user classifier is

(a) Feedforwad NN

x

ff(x; ?f)

-??Lu

fy(ff(x); ?y)

Classification 
Loss: Ly

fu(ff(x); ?u)

User Classification 
Loss: Lu

?Ly ?Lu

?Ly

?y={Wc, bc} ?u={Wu, bu}

?f={Wf, bf}

(b) User Adversarial NN

Figure 1: User-adversarial neural networks.

Algorithm 1 Optimization of the proposed model

Require: dataset D = {(xn, yn, un)}Ni=1, parameter λ
Ensure: neural network {θf , θy, θu}
t ← 1
while training() do

Lu ← eq.2 ∀(xn, un) ∈ D
θu ← θu + δLu

δθu
Ly, Lu ← eq.1 ∀(xn, yn) ∈ D, eq.2 ∀(xn, un) ∈ D
λt ← eq.3

θf , θy ← θf − δ(Ly+λtL
′
u)

δθy
, θy − δLy

δθf

t← t + 1
end while

too weak, deceiving the user classifier is meaningless. Espe-
cially, compared with other applications of adversarial train-
ing, the training adversary presents greater difficulties in our
case, because adversary is a multi-class classification, not a
binary classification as in other applications, thus it may be
more difficult to distinguish between multiple users. To over-
come this issue, we applied annealing heuristics to weighting
parameter λ. the detailed scheduling was as follows:

λ(t) =


0.0 (t ≤ α)
(t− α) · Λ

(β−α) (α < t ≤ β)

λ (β < t)
(3)

where t is epoch, α + 1 is the start timing of annealing, β is
the stop timing of annealing, and Λ is the target parameter.
We found that this annealing sometimes improves the results,
but further investigation is necessary.
The overall algorithm, is as shown in Algorithm 1.

4 Experiments
4.1 Datasets
The Opportunity Recognition dataset [Sagha et al., 2011] is
a popular benchmark dataset in the field. The dataset con-
tains data for four subjects (S1–4) and simulates a daily life
activity, specifically, a breakfast scenario. A wide variety of
body-worn, object-based, and ambient sensors, are used (see
Figure 1 in the paper by Sagha et al. [2011] for more details).
Each record consists of 113 real-value sensory readings, ex-
cluding time information. We used two recognition tasks: the
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gesture recognition (Opp-G) and the locomotion recognition
(Opp-L). Opp-G requires the recognition of 18 class activities
2, while Opp-L requires the recognition of 4 class locomo-
tions: stand, walk, sit, and lie. Given a sampling frequency
of 30 Hz, the sliding window procedure with 30 frames and a
50% overlap produced 57,790 samples.
The USC-HAD dataset [Zhang and Sawchuk, 2012] is a

relatively new benchmark dataset, which contains a relatively
large number of subjects (14 subjects, 7 males and 7 female).
There are 12 activity classes, corresponding to the most basic
and common activities in people’s daily lives 3. MotionN-
ode, which is a 6-DOF inertial measurement unit specially
designed for human motion sensing applications, is used to
record the outputs from the accelerometers that record 6 real
sensory values. The sliding window procedure, using 30
frames and a 50% overlap, produced 172,169 samples.

4.2 Experimental Setting
Figure 2 shows the network architectures used for the eval-
uations. With the exception of the adversarial user classifier
connected to the full connected layer, the network architec-
ture is same as that of the simple CNN. The architecture of
the CNN was the same as that used in a previous study [Yang
et al., 2015] in which CNN was applied to the Opp-G task.
The lower-right number of each layer represents the #filter of
the convolution layers. Each convolution and fully connected
layer was followed by ReLU activations and Dropout, and the
output layer was followed by softmax. Every component of
the network was trained with Adam algorithms [Kingma and
Ba, 2015], using the default parameters for every optimiza-
tion (150 epochs). We used a logistic regressor as the user
classifier. The hyper parameter λ was set to 0.1, and the an-
nealing parameters α and β were set to 15 and 135 so that λ
will be fixed to the first and last 15 epochs.
We compared the models by using the leave-one-subject-

out (LOSO) procedure. The procedure yields a pair of test
users and K − 1 training users K times. At each iteration,
the classifier was trained using the data for K − 1 users, and
was tested using the one remaining user. All values reported
in the evaluation section are the average of theK iterations.
As an evaluation metric, we used the activity classifica-

tion accuracy for investigating the utility, and the user clas-
sification accuracy for investigating levels of the privacy-
thread. Namely, we regarded a privacy thread as being high
if we could build an accurate classifier over features. Oth-
erwise, the privacy thread was low. The evaluation of user-
classification is done by a new classifier γ that predicts U
from the features, instead of the adversarial classifier fu used
in the training phase. We chose to build a new classifier to
eliminate the possibility of underestimating the classification
accuracy in the event of the failure of the optimization of fu.
Although the choice of classifier for γ apparently affects the

2open door 1, open door 2, close door 1, close door 2, open
fridge, close fridge, open dishwasher, close dishwasher, open drawer
1, close drawer 1, open drawer 2, close drawer 2, open drawer 3,
close drawer 3, clean table, drink from cup, toggle switch, and Null

3walking forward, walking left, walking right, walking upstairs,
walking downstairs, running forward, jumping, sitting, standing,
sleeping, elevator up, elevator down
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l
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User
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(I) Input
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Figure 2: Network architecture used for the evaluations.

accuracy, we used logistic regressor for γ, which is same as
the adversarial classifier we used in the training phases. We
later discuss how the choice of classifier for γ and fu affects
the results, by performing empirical evaluations.
In addition to the quantitative evaluation, we also provide

qualitative evaluations with clustering to show how the pro-
posed method remove information about users. In particu-
lar, we cluster the representations R, and visualizing user-
tendency matrix C, that is formed by the cross-tabulation of
the cluster indexes and user indexes of each sample. Here,
element cij of C indicates the ratio of the i-th user to the j-th
cluster, and can takes a value from 0.0 to 1.0. As the value
of cij increases, it indicates that the representation is highly
user-discriminative, which implies a greater privacy risk.

4.3 Experimental Results
Table 1 shows the user-discriminability of raw-data, popular
heuristic features (MV [Yang et al., 2015] and ECDF [Ham-
merla et al., 2013]), the features learned by CNN [Yang et
al., 2015], and the features learned by the proposed method
(CNN+Adv). Each value indicates the accuracy of user clas-
sifier γ trained for predicting U from each feature, which
means that a smaller value is a better value. As can be
inferred from the results, the features learned by CNN be-
come highly user-discriminative when compared with raw-
data or heuristic features on all three recognition tasks. On
average, the CNN-features achieve 0.798 accuracy, which is
approximately 0.53 point higher than the result of raw-data
(0.268). Note that the CNN is trained such that only the cross-
entropy regarding Y is minimized, and it is not intended to be
user-discriminative. The result also shows that the proposed
method gives significantly lower classification accuracy rela-
tive to heuristic features and CNN, although it is still approx-
imately 0.15 point higher than raw-data on average.
Figure 3 shows detailed comparison of the proposed

method and CNN. The left column of Fig. 3 shows the rela-
tive performance based on λ = 0.0, which is correspond to
CNN, for varied λ = {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}. Each
color denotes different metric (user accuracy, activity ac-

Table 1: The comparison of user-discriminability between different
features.

Opp-G Opp-L USC Ave.
Rawdata 0.352 0.352 0.100 0.268

MV 0.849 0.849 0.140 0.612
ECDF 0.914 0.914 0.204 0.678
CNN 0.847 0.890 0.657 0.798

CNN+Adv 0.456 0.475 0.264 0.398
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curacy on unknown users, and activity accuracy on known
users). The bold line indicates the average of LOSO itera-
tions, and the dashed line indicates each iteration. We make
the following observations. (1) λ> 0 tend to obstruct user
classification, though too big λ relatively harms the perfor-
mances. (2) With reasonable selection of λ, the performance
drop on both activity recognition performance of unknown
and known users is small or moreover, almost zero for Opp-L
and Opp-G. (3) The parameter sensitivity curve is almost the
same regardless of the iteration of the leave-one-subject-out
iterations (the subset of users for training).
The balance between the user classification accuracy

and label classification accuracy of the proposed method
(CNN+Adv, red marker) and the baseline (CNN, blue
marker) is illustrated in the right column of Fig. 3. The
horizontal axis corresponds to the user classification accu-
racy while the vertical axis is the label classification accu-
racy, i.e., upper left side indicates that the model provides a
better balance between user-discriminability and label classi-
fication performances. We show the results for a different-
capacity feature extractor (specifically, a different unit size of
the fully connected layer), which corresponds to each marker
type in the figure. The unit size of each marker is indicated
below (or above) each marker. The results show that, for any
unit size and datasets, the proposed method indeed learns less
user-discriminative features without significant performance
drop on activity recognition performances compared to CNN
with the same unit size. Moreover, the adversarial regulariza-
tion provides better balance compared to CNN with smaller
unit size. For example, on the result on USC dataset, the
CNN+ADV with 1600 units provides better performance on
both user classification accuracy and activity classification
accuracy compared to CNN with 100 units, and similar con-
clusion could be made on the other datasets.
Figure 4 visualizes the user tendency matrix C. The depth

of the blue increases with the user-tendency. The clusters are
arranged in descending order of user-tendency. The visual-
ization again indicates that the proposed method learns fewer
user-discriminative features than CNN. For example, CNN
produces a cluster that is almost occupied by a thrid user, but
CNN+Adv did not give rise to such a cluster.
Table 2 lists the user classification accuracy when different

adversarial user classifiers fu and user classifiers γ are used
for evaluations. We tested None (without adversarial train-
ing), logistic repressor (LR), multi-layer perceptron with 800
hidden units, and deep neural networks with 400-200 hidden
units for ff , and LR, multi-layer perceptron with 50 hidden
units (MLP50), and multi-layer perceptron with 800 hidden
units (MLP800) for γ. The table also includes the theoreti-
cal values for random guessing (Rand) as reference values.
Rand is the logical limit as any classifier results in random
guessing if the feature becomes perfectly user-independent.
We can make the following observations. (1) With any value
of γ, comparing the use of adversarial regularization with
its non-use, the user identification performance was found
to be relatively low when using adversarial regularization.
(2) However, with any adversarial classifiers and γ, the pro-
posed model results in a significantly better recognition per-
formance, relative to random guessing. (3) The best adver-
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Figure 3: Performance comparison of the proposed method with dif-
ferent parameters. Left: The results of various hyper parameter λ =
{0.0, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0}. Note that λ = 0.0 correspond
to the normal CNN. Right: Balance between user-classification ac-
curacy and label-classification accuracy for different unit sizes of
fully connected layer.
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Figure 4: Visualization of user tendency of each cluster.

sarial user classifier depends on the dataset and γ, although
MLP and DNN exhibit a relatively lower discrimination.

5 Discussion
This paper provides empirical validations of (1) the risks
related to unintended information disclosure when applying
deep nets to wearable-sensor data that contains rich user in-
formation, and (2) the efficacy of the proposed method for
preventing the risk. Table 1 shows that the simple CNN learns
highly user-discriminative features, despite not being trained
to become user-discriminative. This phenomenon supports
our assumption that the application of deep neural networks
to data of wearables could lead to the appearance of new types
of privacy issues, unintended information disclosure. The re-
sults also indicate that the installation of a trained model on
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Table 2: Comparison of user classification accuracy between different user classifiers for training and evaluation.

(a) Opp-G

LR MLP50 MLP800
None 0.857 0.971 0.998
LR 0.463 0.960 0.997

MLP 0.464 0.726 0.972
DNN 0.438 0.678 0.944
Rand 0.333 0.333 0.333

(b) Opp-L

LR MLP50 MLP800
None 0.895 0.968 0.998
LR 0.477 0.951 0.997

MLP 0.499 0.757 0.966
DNN 0.502 0.679 0.913
Rand 0.333 0.333 0.333

(c) USC-HAD

LR MLP50 MLP800
None 0.669 0.767 0.892
LR 0.266 0.516 0.731

MLP 0.249 0.334 0.612
DNN 0.313 0.424 0.695
Rand 0.077 0.077 0.077

the client side (such as a smartphone) could prove problem-
atic, since the use of neural networks greatly increases the
classification accuracy of user U . We need to determine why
this phenomenon occurs, but we do not think that we can
safely draw a clear conclusion based only on the results of
this study. However, one possible explanation is that neural
networks tend to learn the combination of user-specific fea-
tures rather than user-general features, because the way in
which activities are performed differs to a greater or lesser
degree between the users. Therefore, the learning of a com-
bination of user-specific features can be done at less cost than
that incurred when learning user-general features, especially
if the neural networks have a rich capacity. If the assumption
is correct, it is also probable that neural networks learn fea-
tures that clearly discriminate user-information such as ages,
weights, or other physical characteristics, state of health, all
of which can affect the way in which activities are performed.
Further investigations with a dataset that provides informa-
tion about user-attributes, and a deep analysis of how and why
the phenomenon occurs, is required to clarify the privacy is-
sues associated with the application of deep nets.
To prevent the occurrence of the above phenomenon, this

paper has proposed the use of adversarial-training, and has
provided empirical validations that the proposed method in-
deed reduces the possibility of said occurrence. Specifically,
Table 1 shows that the proposed method significantly re-
duces the possibility of learning representations that incor-
porate user-discriminative information. Also, the left column
of Fig. 3 shows that the proposed method prevents it with
only small (USC) or even almost zero (Opp-G, Opp-L) per-
formance drops in the label-classification accuracy (that is,
the utility of the data), with reasonable hyper-parameter se-
lection. Although the poor selection of λ possibly harm ei-
ther the of user-discriminability or classification accuracy of
activities, the parameter-sensitivity curve is almost the same
for all users and therefore easy to optimize in practice. More-
over, the right column of Fig. 3 shows that adversarial train-
ing provides better balance between user-discriminability and
the utility of features compared to the naive limitation of the
capacity of the neural networks. All these results point to the
suitability of the proposed method for balancing the preven-
tion of unintended information disclosure with the level of
performance of activity-recognition.
A limitation of this study is that it has only considered the

user-discriminability of features to illustrate the efficacy of
the proposed countermeasure, as well as the existence of pri-
vacy issues arising from the black-box property of neural net-
works. However, as mentioned in Section 3, the proposed
method can, nevertheless, be used to remove more sensitive

information about users. The only requirement needed to re-
alize this method is the ability to construct classifiers of the
target information, which means being able to prepare super-
vised data about the information. Also, the efficacy of the
proposed method could be limited by the amount of infor-
mation naturally possessed by a neural network. That is, the
proposed method would not be necessary if the original CNN
did not learn the features that discriminate the information,
although our proposal would still help in preventing discrim-
ination explicitly.
Another limitation of this paper is, as shown in Table 1

and Table 2, that the proposed method still produces those
features that a user classifier could use to discriminate be-
tween, compared to completely random guessing or classi-
fication from raw-data. In other words, although the results
show the superior performance of the proposed method rel-
ative to a conventional neural network, the learned features
could still incorporate unintended information. Table 2 also
shows that user-discriminability is highly affected, in terms of
training and evaluation, by the choice of adversarial-user clas-
sifiers. In addition, there is the possibility that an adversary
could retrieve information more accurately with the applica-
tion of a better strategy, such as using the data from multiple
windows to assemble user-classification results. In the future,
we intend to improve the proposed method to attain better pri-
vacy protection, while considering the presence of a stronger
adversary in the training phase instead of the naive adversary
considered in this study.

6 Conclusion
Although deep nets currently offer a significant improvement
in the performance of activity recognition based on data ac-
quired from wearables, the black-box nature of such neural
networks could lead to privacy concerns with the application
of deep nets to data from wearables that could contain user-
specific information. This study set out to analyze the fea-
tures learned by conventional deep neural networks and con-
firm that the neural networks tend to learn user-discriminative
information, despite this not being the intention of the net-
work designer, further implying the relevance of the privacy
concerns. Based on the results of our analysis, we propose
the use of adversarial training to suppress these concerns, and
verified the efficacy of the method by applying it to publicly
available datasets related to activity-recognition using data
gathered from wearables. The above two empirical valida-
tions imply the occurrence of privacy concerns, illustrate the
efficacy of the proposed method, and give insights into better
privacy protection.
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