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Abstract

Primates demonstrate unparalleled ability at rapidly ori-
enting towards important events in complex dynamic envi-
ronments. During rapid guidance of attention and gaze to-
wards potential objects of interest or threats, often there is
no time for detailed visual analysis. Thus, heuristic compu-
tations are necessary to locate the most interesting events
in quasi real-time. We present a new theory of sensory sur-
prise, which provides a principled and computable short-
cut to important information. We develop a model that
computes instantaneous low-level surprise at every loca-
tion in video streams. The algorithm significantly correlates
with eye movements of two humans watching complex video
clips, including television programs (17,936 frames, 2,152
saccadic gaze shifts). The system allows more sophisticated
and time-consuming image analysis to be efficiently focused
onto the most surprising subsets of the incoming data.

1. Introduction

Attention in biological and artificial systems serves to
rapidly identify subsets within sensory inputs that contain
important information [14, 12], in order to allocate slower
processing resources [35]. Although computationally chal-
lenging given vast amounts of data carried by up to millions
of sensory receptors, efficient and rapid attentional alloca-
tion is key to predation, escape, and mating — in short, to
survival. Thus central to perception is providing a compu-
tationally tractable definition of “important information,” at
the neuronal as well as behavioral levels.

The present study proposes such a definition under the
label of “surprise” and develops a computational model
to detect surprising locations in video streams, validated
against eye movements of human observers.

2 Background and Rationale

Several approaches have been proposed to computa-
tionally characterize the potential behavioral importance
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or surprise of visual stimuli. Saliency is one such metric
[15, 36, 17, 13], which defines important stimuli as statis-
tical outliers, over the extent of an image and along one
or more visual feature dimensions [12, 29]. Thus, for a
stimulus to become salient, at least one of its visual at-
tributes needs to be unique or at least rare over the entire
visual scene: a red coat is perceptually salient among black
suits but not among many others red coats. Computation-
ally, detecting salient outliers may be achieved by analyzing
an image along a number of feature channels, each locally
sensitive to a distinct image attribute. Example features in-
clude local luminance contrast, color contrast, orientation,
or direction of motion [37]. Salient locations, then, are
those which elicit isolated peaks of activity in some fea-
ture map. These special locations are detected in biology
via inhibitory spatial competition for representation within
each map [31, 17, 12]. Hence, isolated active regions re-
ceive no competition and remain strong, whereas active re-
gions within a similarly active neighborhood are inhibited.
Saliency models explain a wealth of psychophysical results
on human visual search behavior [34, 37, 38], and have been
shown to correlate with human eye movements over static
images [25]. They are also appealing because of their close
link to the neurophysiology of early visual processing in the
primate brain [12]. Indeed, monkey recordings have iden-
tified correlates of saliency in brain areas that include the
superior colliculus [5, 22], frontal eye fields [1], V4 [21],
and posterior parietal cortex [9].

Complementing this spatial definition of importance
through saliency, a number of computer vision models have
emphasized the temporal dimension, defining important or
“novel” [2, 19] objects as those which stand out given an
adaptive model of an image’s background scenery. Novelty
of astimulus is then defined by the degree to which its visual
appearance does not fit the statistics of previously received
image samples at a given location [6, 7]. Novelty detec-
tion starts by assuming a model for the data; for example,
the distribution of a pixel’s intensity values over time may
be modeled by a mixture of Gaussians [10, 20]. New data
samples are then evaluated against the current model: if the



probability of the observed data is low given the model, the
pixel is labeled as containing a novel stimulus. The same
data samples are then used to adapt the model’s parameters;
e.g., the means and variances of the Gaussian mixture are
updated using the Expectation-Maximization (EM) algo-
rithm [2, 33]. This approach is effective at learning scenery
backgrounds, even when their temporal dynamics are not
trivial. For example, trees or grass waving in the wind can
be well captured; yet another gust of wind elicits little nov-
elty whereas a pedestrian suddenly occluding a patch of tree
or grass is reliably detected as novel.

Studied thus far largely independently, the notions of
saliency and novelty provide two complementary answers
to the question of how behaviorally important stimuli
may be characterized computationally. Novelty resembles
saliency in time, while saliency is somewhat like novelty
over space. Below we develop a theory and model which re-
solve this duality, combining into a principled Bayesian no-
tion of surprise the strengths of both approaches. To test our
model, we analyze complex video stimuli, including televi-
sion broadcast. We find that humans gaze towards surpris-
ing locations in the video streams, in a highly statistically
significant manner. We finally discuss how surprise theory
may find broader applicability beyond video analysis.

3. Methods: Theoretical Foundations

The proposed theory of surprise relies on a first-
principles analysis, to attempt to solidify some of the more
ad-hoc or empirically derived aspects of saliency and nov-
elty. In particular, the within-feature spatial competition
implemented by saliency models arises from an analysis of
horizontal neural connections in primary visual cortices of
monkeys and cats, but lacks a theoretical foundation. Con-
versely, novelty computation at present typically relies on
an ad-hoc choice and parameterization of a good model for
the distribution of data samples received at one location. In-
deed, a model-free approach seems out of the question in the
context of video processing, as it would take unreasonably
too many data samples and hence unreasonably too long
to accumulate sufficient data and allow accurate model-free
estimation of the underlying probability density function
(PDF) of the data. Yet, the rather arbitrary choice of a model
for the data, often guided by intuition, prior observations,
or computational complexity reasons, is problematic: what
if, rather rapidly over time, the process generating the data
changed in its statistical properties, requiring a new model
altogether every few data samples? Or, what if multiple,
contradictory models could co-exist at a given moment?

To address these issues, it is useful to go back to the
foundations of our current understanding of the notion of in-
formation. Shannon’s theory of communication focuses on
“reproducing at one point either exactly or approximately

a message selected at another point [30].” Accordingly the
amount of information contained in a single dataset D is
measured by the quantity — log P(D) and the average in-
formation over all datasets D is the entropy:

H(D) :—/DP(D) log P(D)dD 1)

In this definition, the probability originates from a single
observer (e.g., the Bell Labs engineer) with a single prob-
ability model. There are situations, however, characterized
by the presence of multiple models or observers and where
the subjective and semantic dimensions of the data are more
important than its transmission. In these situations, a suit-
able measure of information ought to remain probabilistic
in nature but to depend on the observer (be it a single cell,
complex organism, or artificial entity) and its prior beliefs
or expectations.

Regardless of whether one subscribes to the frequen-
tist or subjectivist [4, 8] approach to probabilities, the
fundamental impact data has on an observer is captured
by Bayes’ theorem for computing the posterior probabil-
ity P(M|D) = P(M)P(D|M)/P(D) of a hypothesis or
model M given the data. In this view, the information con-
tained in a dataset is not its entropy but rather what changes
the observer’s belief in M from prior P(M) to posterior
P(M|D). Thus, a complementary way of measuring in-
formation carried by data is to measure the difference be-
tween prior and posterior distributions over the set M of
all models, which is best done using the relative entropy or
Kullback-Liebler (K L) divergence [16]. Thus surprise is
defined by the average of the log-odd ratio:

S(D, M)

L(P(M),
- / P(M
taken with respect to the prior distribution over the
model class M. Note that KL is not symmetric but
has well-known theoretical advantages over other possi-
ble measures, including invariance with respect to repa-
rameterizations. KL(P(M|D),P(M)) could also be
used or the symmetric version [K L(P(M), P(M|D)) +
KL(P(M|D), P(M))]/2, or any other measure of similar-
ity between P(M) and P(M|D). While the term “surprise”
has sometimes been informally used in relation to Shannon
entropy, key to our new definition is how surprise requires
averaging over the space of models, whereas entropy aver-
ages over data without any explicit notion of model.
Surprise can always be computed numerically, but also
analytically in many practical cases, in particular those in-

volving probability distributions in the exponential family
[3] with conjugate or other priors.
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4. Computational Model

Armed with this theoretical framework, we can revisit
our previously proposed model of saliency-based visual at-
tention, where activity in a topographic master saliency map
guides attention bottom-up [13]. The master map (40 x 30
lattice of temporally low-pass leaky integrator artificial neu-
rons, given 640 x 480 stimuli) receives inputs from five
center-surround feature channels, operating in parallel over
the visual field at six spatial scales and thought to guide hu-
man attention [37, 12]: intensity contrast (six feature maps),
red/green and blue/yellow color opponencies (12 maps),
four orientation contrasts (24 maps), temporal onset/offset
(six maps), and motion energy in four directions (24 maps),
totalling 72 feature maps.

Here we retain the raw center-surround features of that
model, but attach local surprise detectors to every location
in each of the model’s 72 neural feature maps. In addition,
to replace the long-range inhibitory neural connections that
give rise to phenomena of attention capture and spatial pop-
out in the saliency model, we introduce below a second,
spatial, type of surprise detectors. As individual biologi-
cal neurons are unlikely to learn multimodal distributions
of inputs [18], we consider unimodal model families, but
multiple ones and operating at different time scales.

We model data received from feature map f at location
(x,y) and time ¢ as Poisson distributions M (\) (which well
describe cortical pyramidal cell firing statistics [32]), pa-
rameterized by firing rate A > 0. A is estimated over the
duration of each video frame (33.185ms) as A\ = f(z,y, t).
It is important to note a central difference between surprise
and previous outlier-based novelty detection approaches.
Here, fitting a PDF to the data samples is a trivial step,

and \ which parameterizes the data PDF is estimated inde-
pendently at every video frame, from a sample of Poisson
spikes received over the duration of the frame. Thus, when
the distribution of data samples changes rapidly (e.g., from
aquiescent state with low X to a highly active state with very
high X at the next video frame), there is no inertia in our es-
timation of \. This contrasts with what would happen in
outlier-based novelty models which incrementally update a
longer-term estimate of the data PDF cumulated over many
successive frames. Hence, a rapid change in the statistics
of the data is not necessarily surprising. For this change to
become surprising, it must also yield a change in the distri-
bution of beliefs about which models are likely, as described
by the prior distribution P(M) over models.

Proceeding as prescribed by our surprise theory outlined
above, we here consider conjugate priors, whereby the pos-
terior belongs to the same functional family as the prior. In
such case, the posterior at one frame can directly serve as
prior for the next frame, as is customary in Bayesian learn-
ing. Thus, here we consider for P(M) a functional form
such that P(M|D) has the same functional form when D is
Poisson-distributed. It is easy to show that P(M) satisfying
this property is the Gamma probability density:

ﬁa)\a—le—ﬁk

POM() o)

=v(Na,f) = 3)

with shape o« > 0, inverse scale 5 > 0, and I'(.) the Eu-
ler Gamma function. To allow the model to detect sur-
prise at several time scales, we implement cascades of five
surprise detectors at every pixel in every feature map: the
first (fastest) is updated with feature map data, and detector
1 + 1 samples from ¢, so that time constants increase ex-
ponentially with 7. In total, the attention model comprises
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Figure 2. Combination of temporal and spatial surprises. We calibrate our model
against single-neuron monkey data, then will test it against behavioral human data. (a)
Extracellular mean firing rate (solid-black curve, +S.D. dashed-black) of a macaque V1
complex cell during three successive brief presentations of an isolated grating stimulus
demonstrates rapid adaptation (from first to second presentations) and recovery (from
second to third) [23]. This suggests that cortical neurons do not passively signal Shan-
non information, which here would directly follow the stimulus (some information when
stimulus on, none otherwise), but instead are actively affected by prior exposures to a
stimulus. (b) Temporal surprise signals in real-time how rapidly the neuron’s adapting
“belief” in the presence or absence of a stimulus is changing as the stimulus is flashed
on and off. Hence temporal surprise here follows stimulus transients within the receptive
field, more weakly when temporally closer. (c) Spatial surprise signals how much a local
model which hypothesizes in real-time the presence or absence of a grating stimulus dis-
agrees with a broader model by which the display overall is blank. Hence spatial surprise
here follows the stimulus. A reasonable fit of the neuron’s mean firing rate (a; red curve)
is obtained with the additive temporal/spatial surprise combination rule of Eq. 8: spatial
surprise provides a sustained component of the firing rate while the stimulus is on, and
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72 x (40 x 30) x 5 = 432,000 surprise detectors. Given an
observation D = X at one of these detectors and prior den-
sity v(\; «, 3), the posterior v(X; o, ") obtained by Bayes
theorem is also a Gamma density, with:

o =a+X and B =3+1 4

To prevent these from increasing unboundedly over time,
we introduce a forgetting factor 0 < ¢ < 1, yielding:

o =Ca+X and B =(B+1 (5)

¢ preserves the prior’s mean a/3 but increases its variance
«/3?, embodying relaxation of belief in the prior’s preci-
sion (we use ¢ = 0.7; see below). Local temporal sur-
prise St resulting from the update can be computed exactly
when using the KL divergence to quantify the differences
between prior and posterior distributions over models:

Sp(D,M) = KL(y(X\; o, 8),v(X; ¢, 8)  (6)

! ﬁ F(a/) / « !

=« logﬂ/ + log (@) + 6 3 + (a—a)¥(a) (@)
with ¥ (.) the digamma function. For example, local tempo-
ral surprise arises when new observations are received such
that an image patch previously well modeled as stationary-
black becomes better modeled as flickering-red.

Spatial surprise Sg is computed similarly. For ev-
ery t, (z,y), f, and 4, a Gamma neighborhood distribu-
tion of models is computed as the weighted combination
of distributions from the next-faster local models, over a
large neighborhood with two-dimensional Difference-of-
Gaussians profile (o0 = 20 and o = 3 feature map pix-
els). As new data arrives, spatial surprise is the K L between
prior neighborhood distribution and the posterior after up-
date by local samples from the neighborhood’s center. For

temporal surprise provides firing transients at stimulus onsets and offsets.

example, spatial surprise arises when a model of the entire
image as stationary-black must be reconsidered at some lo-
cations better modeled as flickering-red.

Our theory does not constrain how temporal and spatial
surprises combine. We hence turn to empirical single-unit
recordings of complex cells in striate cortex of anesthetized
monkey [23]. This also allows us to set the time scale at
which the model operates (defined by ¢ in Eq. 5). From the
fit shown in Figure 2, total surprise S is:

1
Ss]?
S = [ST + > 0} (8)
which results from a least-squares fit of a function of the
form S = [a1 ST + a2Ss + a3S7Ss]* to the neural data.
Interestingly, parameter a3 was near zero, suggesting that
spatial and temporal surprise combine additively rather than
multiplicatively in single neurons. We further posit that sur-
prise combines multiplicatively across time scales, such that
an event is surprising only if at all relevant time scales, al-
lowing the model to learn periodic stimuli of various fre-
quencies. We finally assume that surprise sums across fea-
tures, such that a location may be surprising by its color,
motion, or other. The sum is passed through a saturating
sigmoidal nonlinearity to enforce plausible neuronal firing
dynamics, then provides input to the master map. Figure 3
illustrates the model’s internals with simple stimuli.

5. Experimental Validation

We compare spatiotemporal distributions of surprise in
the model’s master map to eye-movement recordings from
two naive human observers watching 20 video clips, includ-
ing eight outdoors scenes, four video games, and eight tele-
vision programs including newscast, sports, and commer-
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Figure 3. Model behavior with simple stimuli presented for 15 frames (450 ms). A feature map is considered (image insets)
corresponding to: (a) a small stationary isolated stimulus on black background, and (b) a stationary array of small stimuli. Behaviors
of local and neighborhood models at the center location are shown. In each panel, the top graph shows normalized local temporal
surprise (cyan), spatial surprise (green) and total surprise (red) over time. P(D) represents the Poisson data distributions received at
the center location (one black curve per frame; all identical for these stationary stimuli). The Gamma prior distributions P(M (X))
over local and neighborhood models are shown, considering n = 3 cascaded surprise detectors for clarity although our full model
uses n = 5 (fastest in orange, second in purple, third in blue; more saturated colors correspond to later frames; only four Gamma
distributions for frames 1, 5, 10, and 15 are plotted for clarity, with means of the others plotted as small ellipses; initial condition
is a black-image prior). () Local priors quickly adapt towards the mean of the locally received data samples, generating decaying
local temporal surprise. Neighborhood priors remain unchanged given the black background, generating increasing spatial surprise,
as local and neighborhood priors increasingly differ. (b) The local situation is identical but neighborhood priors now quickly adapt

towards an average data value. Hence, spatial and total surprises are lower than in (a), allowing the model to predict pop-out.

cials (between 164 and 2,814 frames per clip, 17,936 frames
or about 10 minutes in total). Obviously, bottom-up sen-
sory processing may only contribute a fraction among all
competing influences on attentional allocation [24, 11, 28].
Nevertheless, models computing local image information in
Shannon’s sense predict human gaze fixations significantly
more reliably than chance [27, 26, 25], providing a chal-
lenging baseline for our model. Gaze was recorded with
a 240 Hz infrared-video-based eye-tracker (ISCAN, Inc.
model RK-464) (Figure 4), yielding 2,152 saccadic gaze
shifts. To determine whether humans preferentially oriented
towards surprising stimulus elements, at onset of every hu-
man saccade we sampled (circular aperture, diameter 5.6°)
model-predicted master map activity around the saccade’s
future endpoint, and around a random endpoint (uniform
probability). Saccade initiation latency was assumed ac-
counted for by the master map’s leaky integrators.

We quantify differences between distributions of mas-
ter map samples from human and random saccades using
again the K L distance: models which better predict hu-
man scanpaths exhibit higher distances from random, as
observers non-uniformly gaze towards a minority of re-
gions with highest model responses. Three models are com-
pared, illustrated in Figure 4: Shannon entropy as com-

puted by Privitera and Stark [26], saliency as computed by
Itti and Koch [12], and surprise as presented here. Surprise
performed superiorly to entropy and saliency, exhibiting a
stronger human bias towards surprising locations than to-
wards entropic or salient regions. These results have been
confirmed in a larger study with more subjects and video
clips (manuscript submitted).

6. Discussion and Conclusion

We have proposed a method for computing low-level vi-
sual surprise in unconstrained video stimuli. The model
combines a notion of local temporal surprise, inspired from
previous work on novelty detection, to that of spatial sur-
prise, inspired from previous work on saliency computa-
tion. We find that a combination of both factors yields a
model that is superior to both a rather straightforward mea-
sure of local entropy over image patches, and a biologically-
inspired measure of bottom-up saliency.

Applications of the surprise model include the rapid,
knowledge-free pruning or compression of video streams so
as to focus computational resources or transmission band-
width onto only a few surprising locations and events. One
difference between our approach and many other machine
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Figure 4. Sample frames from our clips (first column), with corresponding human saccades (arrows) and predictions from the
entropy, saliency, and surprise models (second to fourth columns). Entropy maps exhibited many active locations, hence was poorly
discriminative (lower K L score between human and random). In contrast, saliency and surprise maps were sparser and more
specific. KL distances between histograms of sampled model activity at the endpoints of 2,152 human (thin blue histograms) and
random (fat green histograms which control for sparseness) saccades were all significantly higher than zero, which would indicate a
model not predicting human saccades better than chance (t-test, p < 1079 or better). K L distances all significantly differed from
one another (¢-tests, p < 10~'° or better), indicating a strict ranking of entropy < saliency < surprise.

vision efforts is that nowhere in this work did we tune the al-
gorithm for specific classes of objects or backgrounds. That
is, using a simple yet fairly general definition of surprise we
were able to reliably predict where human observers would
look in complex video stimuli as diverse as outdoors scenes
in parks, crowded streets, an open rooftop bar, video games
including first-person and racing, television commercials,
sports, news, and others. Yet, no training or software tuning
was necessary to process the different stimuli.

We believe this is the first time a novelty detection al-
gorithm is tested against human scanpaths (but see, e.g.,
[25] for testing of saliency models using static scenes).
Obviously, our results indicate that humans did not exclu-
sively orient towards surprising stimuli. Indeed, often they

looked at locations which had been present and stationary
for a while (e.g., a label indicating the name of a televi-
sion speaker), which were similar to others (e.g., one of the
players in a football game), or which contained no image
information but were predicted to contain some in the fu-
ture (e.g., the expected endpoint of the ball in a football
game). Nevertheless, our results indicate that surprise ac-
counts for human fixations highly significantly better than
entropy and saliency. Inspection of our video clips and as-
sociated model predictions suggests a number of qualita-
tive distinctions, in addition to the quantitative data reported
here. Entropy was high in most locations except highly uni-
form ones; hence the significantly better than chance perfor-
mance of the entropy model is to a large extent due merely



to the fact that humans most of the time avoided empty re-
gions in the displays (e.g., the empty sky, an empty wall).
Saliency often performed similarly to surprise, suggesting
that long-range inhibitory interactions may have evolved in
biological cortex to compute something equivalent to our
spatial surprise. Its lack of temporal dynamics, however,
often made saliency inferior to surprise, in that salient stim-
uli would remain so for extended time periods while they
would quickly become uninteresting to humans. One exam-
ple includes life/health indicators in the video games, highly
colorful and salient throughout the game but only fixated
by humans at onset of a clip or when significant changes in
their appearance over time occurred.

At the foundation of our model is a simple theory which
describes a principled approach to computing surprise in
data streams. While surprise certainly is not a new con-
cept, it had lacked a formal definition, broad enough to cap-
ture the intuitive meaning of the term, yet quantitative and
computable in a principled manner. The advantage of our
definition is its generality which results in widespread ap-
plicability not limited to early vision. For example, a vehi-
cle’s sudden trajectory deviation and lane change on a free-
way may elicit surprise that could be computed from dis-
tributions of trajectory models. Beyond vision, computable
surprise could guide the development of future data mining
systems, as it can in principle be applied to any type of data,
including visual, auditory, or text.
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