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1 Setting the problem

An n×n Toeplitz matrix Tn is a matrix with coefficients of the form (Tn)jk = cj−k, 0 ≤ j, k ≤ n−1,
for some given sequence {cℓ}ℓ∈Z. An n × n Toeplitz determinant Dn(T ) is the determinant of
some given Toeplitz matrix T = Tn. If ϕ = ϕ

(
eiθ
)
is an integrable function on the unit circle

S1 = {z = eiθ} (oriented in the positive direction) with Fourier coefficients

ϕℓ =

∫ π

−π
e−iℓθ ϕ

(
eiθ
) dθ

2π
, ℓ ∈ Z

the Toeplitz matrices Tn(ϕ) and Toeplitz determinants Dn(ϕ) associated with ϕ are given by

(1) Tn(ϕ) = {ϕj−k}0≤j, k≤n−1

and

(2) Dn(ϕ) = det Tn(ϕ)

respectively. Note that if c−ℓ = cℓ, then Tn is self-adjoint. This is true, in particular, if ϕ is real

valued, and it follows that for such functions ϕ, Dn(ϕ) and the eigenvalues λ
(n)
1 , . . . λ

(n)
n of Tn(ϕ)

are real.
Toeplitz matrices and determinants are named for Otto Toeplitz, who, in his Habilitationsschrift

in 1907 (see [Toep1] [Toep2]), initiated the study of quadratic forms Σϕjk xjyk with coefficients of
special type ϕjk = ϕj−k. At the time Toeplitz was a young researcher in Göttingen where Hilbert
was developing his general and abstract theory of functional analysis. Toeplitz introduced the forms
Σϕj−k xjyk, together with the associated matrices Tn(ϕ) = {ϕj−k}0≤j, k≤n−1 and determinants
Dn(ϕ) = det(Tn(ϕ)), in order to give concrete examples of Hilbert’s general theory which could
be analyzed in great detail. Toeplitz called the forms Σϕj−k xj yk “L-forms” because of their
connection, via Fourier theory, with Laurent series

∑∞
−∞ ϕk z

k.
A striking example of the connection between Laurent series, and more broadly analytic function

theory, on the one hand, and L-forms on the other, is given by the following problem studied by
Carathéodory: For which sequences c0, c1, . . . , cn of complex numbers does the polynomial

p(z) = c0 + c1z + · · ·+ cnz
n

have an extension to an analytic function ϕ(z) in the unit disk D = {|z| < 1}

(3)
ϕ(z) =d0 + d1z + · · ·+ dn z

n + dn+1 z
n+1 + . . . ,

dj = cj , 0 ≤ j ≤ n

such that ℜϕ(z) ≥ 0 in D? In [Car1] in 1907, Carathéodory characterized such sequences in terms
of Minkowski’s theory of convex bodies, but a few years later in 1911 Toeplitz [Toep3] gave the
following algebraic characterization (see also [Car2], [CarFej]): p(z) = c0 + c1 z+ · · ·+ cn z

n has an
extension ϕ(z) as above with ℜϕ(z) ≥ 0 in D if and only if the Toeplitz matrix

(4)




2c0 c1 c2 . . . cn−1 cn
c−1 2c0 c1 . . . cn−1

c−2 c−1 2c0
...

c−n+1 . . .
c−n c−n+1 . . . 2c0
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with c−k ≡ ck, 0 ≤ k ≤ n, is non-negative definite. Over the years, up till the present, there
have been many applications of this beautiful result, both theoretical and applied (see e.g. [Weg]).
Many of the results and applications in this paper, however, rely on the connection between Toeplitz
matrices/determinants and another problem in analytic function theory, the Riemann-Hilbert Prob-
lem (RHP) — see, in particular, [CG] [LS] and the references therein. We note that Wiener-Hopf
factorization theory and the Wiener-Hopf method fall under the general rubric of RHP.

An extraordinary variety of problems in mathematics, physics and engineering, can be expressed
in terms of Toeplitz matrices and determinants. This is a remarkable fact that could hardly have
been anticipated in 1907, and there is a vast literature on the subject. A classical reference is the text
by Grenander and Szegő1 [GreSz] in which the authors describe applications of Toeplitz matrices to
problems in analytic function theory, stationary stochastic processes and linear estimation theory
in statistics. In addition to problems in probability theory and statistics, Fisher and Hartwig
[FisHart1] present a long and varied list of applications of Toeplitz determinants to problems
in statistical mechanics, including the ground-breaking work of Kaufman and Onsager on the
Ising model. Many results in the theory of Toeplitz determinants can be found, for example, in
the seminal papers of Harold Widom (see [Wid1] [Wid2] [Wid3] [Wid4], amongst many others)
and in the books of Böttcher, Silbermann, and Grudsky (see [BottSilb1] [BottSilb2] [BottSilb3]
[BottGr], amongst others). For a review of some more recent developments in the theory of Toeplitz
determinants, see [Kr].

Closely related to Toeplitz matrices are Toeplitz operators, defined as follows (see e.g. [Doug],
[BottSilb3]). Let S1 denote the unit circle as above with Lebesgue measure dθ

2π , and let L2(S1)
denote the associated Hilbert space. The Hardy space H2 is defined as the closed subspace

{
f ∈ L2(S1) :

1

2π

∫ 2π

0
f
(
eiθ
)
einθ dθ = 0, n = 1, 2, . . .

}
.

The orthogonal projection P+ of L2(S1) onto H2 is given by

L2(S1) ∋ f =

∞∑

−∞
fk e

ikθ 7−→ P+f =

∞∑

0

fk e
ikθ ∈ H2.

Now let ϕ ∈ L∞(S1). Then the Toeplitz operator T (ϕ) : H2 → H2 associated with ϕ is given by

(5) T (ϕ)f = P+ ϕf, f ∈ H2.

The operator T (ϕ) is bounded in H2, and with respect to the standard basis
{
eikθ : k ≥ 0

}
, T (ϕ) is

represented by the semi-infinite matrix {ϕj−k}j, k≥0 acting in ℓ2+ = {u = (u0, u1, . . . ) :
∑∞

0 |uj|2 <
∞}. Thus the Toeplitz matrices Tn(ϕ) are finite sections of the Toeplitz operator T (ϕ). The
function ϕ is frequently referred to as the symbol of the operator T (ϕ) and the sequences {Tn(ϕ)}n≥1,
{Dn(ϕ)}n≥1.

Matrices with coefficients of the form {cj+k}0≤j, k≤n−1 are called Hankel matrices. These ma-
trices are in turn finite sections of the semi-infinite Hankel operators with matrix coefficients
{cj+k}j, k≥0 acting in ℓ2+. The theory of Hankel matrices and operators is parallel to, and closely

related to the theory of Toeplitz matrices and operators (see e.g. (166) et seq. below). Operators

1For many years “Szegő” was mis-spelled in the literature as “Szegö”. Knuth first introduced the Hungarian umlaut
into TeX specifically so that names like Szegő, Erdős and Kőnig would be spelled correctly. (Private communication
to the authors from D. Knuth.)
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acting in L2(0,∞) with kernels of the form K(x − y), or of the form K(x + y), x, y ≥ 0, may be
viewed as continuum limits of Toeplitz matrices, or Hankel matrices, and are called Wiener-Hopf
and Hankel operators respectively (see e.g. [BottSilb3] [Pel]).

Our goal in this paper is not to review the above applications and developments in a systematic
way, but rather to focus on one central problem in the theory of Toeplitz determinants, viz.,
the Szegő Strong Limit Theorem (SSLT) (see Theorem 3 below). We will, in particular, trace the
history of this theorem and its later generalizations, in response to a succession of questions raised
in the analysis of the Ising model. An earlier, and very informative, description of the influence of
the Ising model on SSLT and related developments, was given by Böttcher in [Bott1].

The story begins in 1915 when Szegő [Sz1], at the very start of his career, proved the following
result conjectured earlier by Polya.

Theorem 1. Let ϕ
(
eiθ
)
> 0 be a continuous, positive function on the unit circle S1 and let Dn(ϕ)

be the associated Toeplitz determinant. Then

(6) lim
n→∞

1

n
logDn(ϕ) =

1

2π

∫ π

−π
logϕ

(
eiθ
)
dθ.

Note that Dn(ϕ) > 0. Indeed for u = (u0, u1, . . . , un−1)
T ∈ C

n, a simple calculation shows that

(u, Tn(ϕ)u) =

∫ π

−π
ϕ
(
eiθ
) ∣∣∣∣∣

n−1∑

k=0

uk e
ikθ

∣∣∣∣∣

2
dθ

2π

and as ϕ
(
eiθ
)
> 0, we conclude that Tn(ϕ) is strictly positive definite, Tn(ϕ) > 0. Thus Dn(ϕ) =

det Tn(ϕ) > 0. In addition, the eigenvalues λ
(n)
1 , . . . , λ

(n)
n of Tn(ϕ) are positive and so (6) can be

rewritten in the form

(7) lim
n→∞

log λ
(n)
1 + · · ·+ log λ

(n)
n

n
=

1

2π

∫ π

−π
logϕ

(
eiθ
)
dθ.

Szegő recognized that (7) is a special case of equidistribution for the λ
(n)
j in the sense of Weyl, and

in 1920 [Sz2] Szegő proved the following result (see also [GreSz]).

Theorem 2. Let ϕ
(
eiθ
)
be a real-valued function in L∞(S1) with m ≤ ϕ

(
eiθ
)
≤M a.e. If F (λ) is

any continuous function defined on the interval m ≤ λ ≤M , we have

(8) lim
n→∞

F
(
λ
(n)
1

)
+ · · · + F

(
λ
(n)
n

)

n
=

1

2π

∫ π

−π
F
(
ϕ
(
eiθ
))

dθ.

Taking F (λ) = log λ, we clearly recover (7). We consider more detailed asymptotic properties
of the eigenvalues below (see Section 9).

Relation (6) may be rewritten in the form

(9) Dn(ϕ) = exp

[
n

∫ π

−π
logϕ

(
eiθ
) dθ
2π

+ o(n)

]

as n → ∞. The issue of determining the precise nature of the term o(n) came to the fore in the
following way.
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The two-dimensional Ising model, the central model in statistical mechanics (see [McWu1] [Pal]
[Lie] [Dom1]), named for E. Ising (see [Is]), concerns the interaction of random spins σi,j = ±1 at
sites (i, j) in Z

2. Of great interest is the situation in which only nearest-neighbor spins interact
and the interaction energy is given by

−J1 σi,j σi,j+1 − J2 σi,j σi+1,j

where the vertical and horizontal interaction constants, J1 and J2 respectively, are translation
invariant, and in addition, J1 and J2 are positive, so that the system is ferromagnetic, i.e. parallel
spins have lower energy than anti-parallel spins. As is standard in statistical mechanics, one analyzes
the infinite system on Z

2 by first considering the spins in a finite rectangular box Λ ⊂ Z
2 of size

M ×N (see below for a discussion of boundary conditions) and then letting M, N → ∞. For such
a box the total interaction energy of the spins σ = (σi,j) is given by

(10) EΛ(σ) = −
∑

Λ

[J1 σi,j σi,j+1 + J2 σi,j σi+1,j]

where J1 σi,j σi,j+1 is included in the sum if (i, j) or (i, j + 1) ∈ Λ and J2 σi,j σi+1,j is included if
(i, j) or (i+ 1, j) ∈ Λ. The associated normalized Gibbs measure is then

(11) PrΛ(σ) =
1

ZΛ
e−EΛ(σ)/kB T

where kB is Boltzmann’s constant and T is the temperature. Here the partition function ZΛ is

(12) ZΛ =
∑

σ

e−EΛ(σ)/kB T

where the sum is taken over all possible spin configurations σ in Λ. For fixed finite sets A ⊂ Λ, one
defines the correlation functions

(13)

〈
∏

(i,j)∈A
σi,j

〉

Λ

=
∑

σ

∏

(i,j)∈A
σi,j PrΛ(σ).

The thermodynamic limits of these correlation functions as Λ ↑ Z
2, i.e. M,N → ∞,

(14)

〈
∏

(i,j)∈A
σi,j

〉
≡ lim

Λ↑Z2

〈
∏

(i,j)∈A
σi,j

〉

Λ

are the objects of principal physical interest. In particular such correlations
〈∏

(i,j)∈A σi,j
〉
should

model physical phenomena such as phase transitions. For example, a bar magnet has a critical
temperature Tc called the Curie point: for temperatures T < Tc, the magnet exhibits spontaneous
magnetization, but for T > Tc the magnetization is zero (in zero external field). This behavior

cannot be described by a function such as
〈∏

(i,j)∈A σi,j

〉
Λ
in (13), which is real analytic for T > 0:

in the thermodynamic limit, however, analyticity can be, and indeed is, destroyed.
In the presence of an external magnetic field, one must add a term of the form h

∑
(i,j)∈Λ σi,j to

EΛ(σ), h ∈ R, but the most complete results have been obtained only when the field is absent, and
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we will always assume h = 0. It remains an outstanding problem in the theory of the Ising model
to find the analogs of the explicit formulae below for the correlation functions in the case h 6= 0.

We note the following: In order to compute EΛ(σ) in (10), we need to know σi,j not only at the
points (i, j) ∈ Λ, but also at the points adjacent to Λ. In particular, if M and N are integers and
Λ =

{
(i, j) ∈ Z

2 : 0 ≤ i ≤M, 0 ≤ j ≤ N
}
, then we need to know σM+1, j, σ−1, j , 0 ≤ j ≤ N and

σi,N+1, σi,−1, 0 ≤ i ≤M . In practice, this issue is addressed by imposing boundary conditions on
Λ. One common choice is, for example, periodic boundary conditions, σi+M+1, j = σi,j, σi, j+N+1 =
σi, j . Another choice is the fully magnetized boundary conditions where σi,j = +1 (alternatively
σi,j = −1) at all points (i, j) adjacent to Λ. General boundary conditions are discussed, for example,
in [Gal], and also from a different point of view, in [LebM-Lof]. For each choice of boundary
conditions, provided the thermodynamic limits in (14) exist, we obtain a family of functions

(15) 〈σi,j〉 ,
〈
σi,j σi′,j′

〉
, . . .

In the spirit of the classical moment problem, one says that the family in (15) determines a (Gibbs)
equilibrium state (see e.g. [Sim1] [Ru]). A priori, different boundary conditions can give rise to
different families (15), and hence to different equilibrium states. For example (cf [Pal]), for closed
boundary conditions σij = +1 adjacent to Λ, one finds 〈σ0,0〉 > 0, but for periodic boundary
conditions, by symmetry, 〈σ0,0〉 = 0. Nevertheless, it suffices for our purposes to note that for the
two-point correlation function that we discuss below, the thermodynamic limit is independent of
the boundary conditions (cf [BGJ-LS]). The same is true for the free energy F per unit spin in
(17) below.

In 1 dimension, Ising [Is] showed that the Ising model does not exhibit a phase transition for
any temperature T > 0. What about 2 or 3 dimensions? In a landmark paper in 1936, Peierls [Pei]
gave a simple argument asserting that in 2 or 3 dimensions, the Ising model does indeed exhibit
spontaneous magnetization at some temperature Tc > 0. It turns out that Peierls’ argument
involved an incorrect step2, which was corrected only many years later in 1964 by Griffiths [Grif].
Griffiths confirmed Peierls’ conclusion and “Peierls argument” remains a standard tool in many
statistical situations. The first exact quantitative result for the 2-dimensional Ising model was
obtained by Kramers and Wannier in 1941 [KraWan] when they wrote down the following formula
for Tc. In the case J1 = J2 = J ,

(16) sinh

(
2J

kB Tc

)
= 1.

In 1942, Wannier gave a talk on this work at a meeting of the New York Academy of Sciences. In
an extraordinary denouement, at the end of the talk Onsager announced that he had obtained an
exact solution for the two-dimensional Ising model (without magnetic field). Onsager3 published
the proof of his result two years later in [Ons1]. More precisely, Onsager had obtained a formula
for the partition function ZΛ, and, in particular, in the case of a square lattice ΛN of size N ×N ,
with J1 = J2 = J , he showed that in the thermodynamic limit the free energy per unit spin F

2First discovered by M. Fisher (see [Grif]).
3All of Onsager’s published papers, including his PhD dissertation, can be found in “The Collected Works of Lars

Onsager, Eds. P. C. Hemmer, H. Holden and S. K. Ratkje, World Sci. Ser. in 20’th Century Phys., Vol. 17, World Sci-
entific, Singapore, 1996”. An extensive collection of Onsager’s hand-written notes, unpublished manuscripts, etc., can
be found on the Onsager archive at Trondheim, http://www.ntnu.no/ub/spesialsamlingene/tekark/tek5/arkiv5.php:
much of this material was scanned from the “Guide to the Lars Onsager Papers MS794” at the Yale library.
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exists and is given by

(17)

F = −kB T lim
N→∞

1

N2
logZΛN

= −kB T
[
log

(
2 cosh

2J

kBT

)
+

1

2π2

∫ π

0
dφ1

∫ π

0
dφ2 log

(
1− κ

2
(cosφ1 + cosφ2)

)]

= −kB T
[
log

(
2 cosh

2J

kBT

)
+

1

2π

∫ π

0
log

1

2

(
1 +

√
1− κ2 sin2 φ

)
dφ

]

where κ = 2 sinh (2J/kBT ) / cosh
2(2J/kBT ). It follows from this formula that the specific heat

C = −T ∂2F
∂T 2 diverges logarithmically as T → Tc ± 0, where Tc is precisely the critical temperature

obtained by Kramers and Wannier (note that for Tc we have κ = 1, and the argument of the
logarithm in the double integral vanishes at the integration limit φ1 = φ2 = 0). Onsager’s analysis
allows for different interaction constants J1 6= J2, in which case equation (16) for Tc must be
replaced by

(18) sinh

(
2J1
kB Tc

)
sinh

(
2J2
kB Tc

)
= 1.

For the description of the events that followed, we refer to the informative, and entertaining,
recent papers by Baxter [Bax] and McCoy [McC1]. In the mid-1940’s, Kaufman, a doctoral student
at Columbia University, began working with Onsager, who was then at Yale, on the 2-D Ising
model. Onsager’s computation of the partition function had stunned the physics community by its
ingenuity and complexity, and Kaufman was determined to find a simpler approach. As Onsager
relates [Ons2], Kaufman “ . . . decided to look for a possible connection with spinor theory. Why
not? In fact, it seemed like very good sense, and so it was . . . . By the summer of 1946 she had a
beautifully compact computation of the partition function, bypassing all tedious details.”

The methods of Onsager and Kaufman for the partition function are based on the calculation
of the eigenvalues of the transfer matrix [KraWan] associated with the problem. Another simplified
solution based on this approach was given in 1964 by Schultz, Mattis, and Lieb [ScML] . On the
other hand, it was observed in 1941 by van der Waerden [vanderW] that the calculation of the
Ising partition function is equivalent to the problem of counting closed polygons on the square
lattice. This observation was the origin of an alternative (and more direct) combinatorial approach
to the Ising model. A solution using such an approach was given by Kac and Ward in 1952
[KacW] (see also [PotWar] where the calculation of the correlation functions we discuss below is
addressed by this method). Kac and Ward did not intend to present a rigorous derivation; the
missing proofs were given later by Sherman [Sher] and Burgoyne [Bur] following a conjecture by
Feynman. A rigorous combinatorial solution by a related method was given by Hurst and Green
[HurGr]. Another combinatorial solution was obtained by Kasteleyn [Kas1]. A useful modification
of Kasteleyn’s approach is due to Fisher [Fis3] (see [McWu1]). One more simple solution based
on the method of Kac and Ward was given by Vdovichenko [Vdov] (see [LanLif]) although [Vdov]
omits the discussion of the boundary conditions. In [Kas1], Kasteleyn maps the Ising problem onto
the dimer covering problem (i.e. the problem of counting all possible coverings by dimers) on a
special lattice, slightly more complex than the square lattice. It is interesting to note that the dimer
problem on the square lattice, which thus can be regarded as a simpler version of the Ising problem,
was solved by Kasteleyn himself [Kas2] and, independently, by Temperley and Fisher [TemFis] in
1961 (see also [LieLoss] for a later alternative, particularly simple, solution of the dimer problem
on the square lattice).
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We now return to 1946. Kaufman’s method and results were eventually published three years
later in [Kau1]. Onsager continues in [Ons2]: “By itself that was only a more elegant derivation of
an old result; but the approach looked powerful enough to produce a few new ones. Very well, how
about correlations?” As noted by Baxter, the history of the Ising model from that time forth has
been the study of these correlations.

In 1948, at a conference at Cornell, and again in 1949 at a conference in Florence, Onsager
astounded the audience by announcing that he and Kaufman had recently obtained an exact formula
for the spontaneous magnetization M0 of the 2-D Ising model. He gave the result as

(19) M0 =
(
1− k2ons

)1/8
, kons ≡

(
sinh

2J1
kBT

sinh
2J2
kBT

)−1

for 0 < kons < 1, corresponding to T < Tc. And for kons > 1, corresponding to T > Tc, M0 = 0.
Onsager and Kaufman never published a proof of this result. The situation was as follows.

In 1949 they published their famous paper [KauOns], based on Kaufman’s spinor (free-fermion)
approach, in which they found, in particular, an explicit expression (see (21) below) for the two-
point correlation function along a row in the thermodynamic limit, i.e. 〈σ1,1σ1,1+n〉. By physical
arguments

(20) M0 = lim
n→∞

〈σ1,1 σ1,1+n〉
1
2

so that in order to derive (19), what they had to do was to control the limit in (20). As Onsager
describes the situation [Ons3]: “And then, finally, it became apparent that we had a last problem,
of the degree of the order, and that turned out to need more invention.”

2 Toeplitz meets Ising

What precisely was this “last problem” that Kaufman and Onsager had to face in order to compute
the limit in (20)? It is here that we make contact with the theory of Toeplitz matrices. In [KauOns]
Kaufman and Onsager expressed 〈σ1,1 σ1,1+n〉 as a sum of two Toeplitz determinants as follows (in
the notation of [MPW]):

(21)

(−1)n 〈σ1,1 σ1,1+n〉 = c∗ 22 det




b−1 b−2 b−3 . . . b−n
b0 b−1 b−2 . . . b1−n
b1 b0 b−1 . . . b2−n
...

...
...

...
bn−2 bn−3 bn−4 . . . b−1




− s∗22 det




b1 b2 b3 . . . bn
b0 b1 b2 . . . bn−1

b−1 b0 b1 . . . bn−2
...

...
...

...
...
...

...
b2−n b3−n b4−n b1




where

(22) c∗2 = cosh K∗
2 , s∗2 = sinh K∗

2 , e−2K∗
2 = tanh

J2
kBT

9



(23) bj =
1

π

∫ π

0
cos
(
δ̂(θ)− jθ

)
dθ

(24) cos δ̂(θ) = sin (δ∗(θ)) sin θ cosh 2K∗
2 − cos (δ∗(θ)) cos θ

and ϕons

(
eiθ
)
= eiδ

∗(θ) is a function introduced previously by Onsager in [Ons1]

(25) ϕons

(
eiθ
)
=

[(
1− γ1 e

iθ

1− γ1 e−iθ

)(
1− γ2 e

−iθ

1− γ2 eiθ

)] 1
2

(26)

where γ1 = z1 z
∗
2 , γ2 = z∗2/z1

z1 = tanh
J1
kB T

, z2 = tanh
J2
kB T

, z∗2 =
1− z2
1 + z2

,

The branch in (25) is chosen so that ϕons

(
eiπ
)
= eiδ

∗(π) > 0.

Remark 2.1. As noted in [MPW], there is a sign error in formula (21) in [KauOns].

So the problem that Kaufman and Onsager had to face to compute M0 via (20), was the purely
mathematical problem of computing the asymptotics of n×n Toeplitz determinants as n→ ∞. At
the time, however, all that was known was Szegő’s result (9) with unknown error term o(n). But
to compute (20), this error term is precisely what one needs to know!

Note that

(27) 0 < γ1 < 1 and γ1 < γ2.

If γ2 6= 1, we see that

(28) ϕons

(
eiθ
)
=

(
1− γ1 e

iθ
) (

1− γ2 e
−iθ)

|(1− γ1 e−iθ) (1− γ2 eiθ)|

and hence ϕons

(
eiθ
)
is a smooth, single-valued function on the unit circle S1. On the other hand,

if γ2 = 1, then

(29) ϕons

(
eiθ
)
= i e−iθ/2

(
1− γ1 e

iθ
)

|1− γ1 e−iθ|
, 0 < θ < 2π.

Simple algebra shows that for χ̂i = Ji/kBT, i = 1, 2,

γ2 ≷ 1 ⇐⇒ sinh (χ̂1 + χ̂2)− cosh (χ̂1 − χ̂2) ≶ 0

and

sinh2 (χ̂1 + χ̂2)− cosh2 (χ̂1 − χ̂2) = k−1
ons − 1

where kons = (sinh 2χ̂1 sinh 2χ̂2)
−1 as in (19). Thus

(30) γ2 ≷ 1 ⇐⇒ kons ≷ 1.

10



In other words, sub-critical (resp. super-critical) temperatures, T < Tc (resp. T > Tc) correspond
to z∗2 < z1 (resp. z∗2 > z1). And, of course, T = Tc ⇐⇒ z∗2 = z1.

It turns out that in their initial (unpublished) calculations to compute M0, Kaufman and
Onsager did not actually use (21). What happened is described by Onsager in [Ons2] and [Ons3]
(see also [Bax] for more details, particularly concerning the Wiener-Hopf calculation below). In
addition to (21), Kaufman and Onsager had derived, but apparently did not publish (see private
communication to C. Domb [Dom2, p. 201]), an expression for the 2-point correlation function
along a diagonal 〈σ1,1, σ1+n, 1+n〉, which is much simpler than (21). Only one Toeplitz determinant
is involved,

(31) 〈σ1,1 σ1+n, 1+n〉 = Dn (ϕdiag)

where4

(32) ϕdiag

(
eiθ
)
=

(
1− kons e

−iθ

1− kons eiθ

) 1
2

and again kons is given as in (19) and ϕdiag(e
iπ) > 0. The same physical arguments as in (20) yield

(33) M0 = lim
n→∞

〈σ1,1 σ1+n,1+n〉
1
2 .

Onsager then realized that the eigenvalue equation for the Toeplitz matrix T (ϕdiag),

uk =
1

λ

n−1∑

j=0

(ϕdiag)k−j uj , 0 ≤ k ≤ n− 1

was a discrete analog of the Milne integral equation

(34) f(x) =

∫ ∞

0
A(x− y) f(y)dy, x > 0

which arises, with a particular, explicit function A(·), in radiative equilibrium theory (see, for
example [DymMc]). Milne’s equation can be solved using the Wiener-Hopf method, a technique
with which Onsager was familiar from lectures that Wiener had given earlier in the Mathematics
Department at Yale. So Onsager tried the Wiener-Hopf technique on the above eigenvalue equation

for T (ϕdiag), to obtain the eigenvalues λ = λ
(n)
ℓ , 1 ≤ ℓ ≤ n, and then computed Dn(ϕdiag) =∏n

ℓ=1 λ
(n)
ℓ . Letting n → ∞, formula (19) for M0 then emerged. This was the basis for the first

announcements of the result in 1948 and 1949. So why didn’t Kaufman and Onsager publish the
details of their calculation? The situation was as follows. As in the case of Milne’s equation, the
Wiener-Hopf method requires very detailed knowledge of the kernel (ϕdiag)j−k, in the case of Ising.
Onsager sensed that there was another prize to be had: What about Toeplitz determinants with
general symbols ϕ? And so, before Kaufman and Onsager could get around to publishing their
calculation, Onsager began looking for a method to evaluate asymptotically Toeplitz determinants
with general symbols. We quote Onsager [Ons3]: “ . . . and lo and behold I found it. It was a
general formula for the evaluation of Toeplitz matrices. The only thing I did not know was how

4In [Dom2], the symbol is ϕdiag, not ϕdiag. However, the determinant is the same, Dn(ϕdiag) = detTn(ϕdiag) =
detTn(ϕdiag)T = detTn(ϕdiag)T = detTn(ϕdiag)

T = detTn(ϕdiag) = Dn(ϕdiag).
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to fill out the holes in the mathematics and show the epsilons and deltas and all of that, and the
limiting processes; I did not know just how it should be done and what mathematicians really knew
about limiting processes in that ball park.” As it turned out, by that point, mathematicians knew
a lot! Before it was clear what conditions to place on the symbol, Kaufman and Onsager spoke to
Kakutani and then Kakutani spoke to Szegő. Szegő then revisited his calculations from 1915, and
in 1952 [Sz3] evaluated the o(n) term in (9) for a very general class of symbols ϕ. This celebrated
result is the Szegő Strong Limit Theorem mentioned above. Faced with Szegő’s general result,
Kaufman and Onsager published neither their first, nor their second method. As Onsager noted
[Ons2], “ . . . the mathematicians got there first.” In the long history of mathematics and physics,
it is most unusual for a physicist to be scooped out of a formula by a mathematician!

There is, however, more to the story. On the web (see [Bax]) there is the draft of a paper titled
“Long-Range Order” from 1950 (never published), without names attached but almost certainly
by Onsager and Kaufman, that describes their more general method and obtains the result (19) for
M0. Here the authors use formulae (20) and (21). There is also an earlier letter [Kau2] written on
April 12, 1950, from Onsager to Kaufman containing some of the calculations from the above draft.
Presumably to allay any concerns about priority, Onsager assures Kaufman at the end of the letter
that “There will be time for all these things.” As one reads [Ons2] [Ons3], one senses the faint hint
of regret that Onsager must have felt for such optimism. In a letter from Kaufman to Onsager,
written on May 12, 1950, a month after the letter [Kau2], Kaufman says “Here is a draft of Crystal
Statistics IV”. In [Bax], Baxter makes a strong case that the above paper from 1950 is indeed
Kaufman’s draft of Crystal Statistics IV. However, this may not be so. On the Onsager archive in
Trondheim (see footnote 3) under “Selected research material and writings”, item 17.121, one finds
the paper “Long-Range order” discussed by Baxter. Although, again, no names are attached, this
establishes the provenance of the paper beyond any reasonable doubt, as suspected by Baxter. Item
17.121, however, also contains a second, completely separate paper called “Crystal statistics IV.
Long-Range Order in a Binary Crystal”, and both Kaufman’s and Onsager’s names are attached.5

The “Long-range” paper describes, as noted above, the second method of Kaufman-Onsager for
general symbols, and the second paper describes their first Wiener-Hopf type method. However,
it is unfinished and it ends abruptly. So when Kaufman wrote to Onsager “Here is the draft of
Crystal Statistics IV”, which of these two drafts did she mean? Either way, the evidence that
Kaufman/Onsager knew how to evaluate the asymptotics of Toeplitz determinants (in two ways!)
is now clear and written down in their own hand.

3 Szegő’s Theorem

Here is Szegő’s result [Sz3] [GreSz].

Theorem 3 (Szegő Strong Limit Theorem). Let ϕ
(
eiθ
)
be a positive, C1+ε, ε > 0, function on S1.

Let (logϕ)k = 1
2π

∫ π
−π e

−ikθ logϕ
(
eiθ
)
dθ, k ∈ Z, denote the Fourier coefficients of logϕ

(
eiθ
)
. Then

(35) lim
n→∞

Dn(ϕ)

en(logϕ)0
= eE(ϕ)

where

(36) E(ϕ) =

∞∑

k=1

k |(logϕ)k|2 .

5The authors thank H. Holden for locating this paper on the Trondheim archive.
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Thus the o(n) term in (9) is given by E(ϕ) + o(1).

Remark 3.1. Note that

(37) e(logϕ)0 = exp

[
1

2π

∫ π

−π
logϕ

(
eiθ
)
dθ

]

is the geometric mean of ϕ.

In contrast to (35), Szegő’s earlier result Theorem 1, limn→∞ (Dn(ϕ))
1
n = e(logϕ)0 , is known

simply as Szegő’s First Theorem, or sometimes just Szegő’s Theorem.
In the years that followed, there was considerable effort by many mathematicians to weaken

the assumptions in Theorem 3. Along the way, many new methods, quite different one from the
other, were discovered to prove (35). These developments are described in the outstanding recent
monographs by Barry Simon [Sim2] and Böttcher and Silbermann [BottSilb3]: also see [McC2]
and [Bott1] for earlier summaries. In [Sim2], the contributions of Kac [Kac], G. Baxter [BaxG1],
Hirschman [Hir], and Devinatz [Dev], in particular, are discussed, leading up through successively
weaker assumptions to the definitive result of Ibragimov [Ibr] in 1968 giving necessary and sufficient
conditions on ϕ

(
eiθ
)
for (35) to hold under the assumption of the positivity of ϕ.

Theorem 4 (Ibragimov). Let ϕ
(
eiθ
)
dθ
2π be a probability measure on S1 and suppose that logϕ

(
eiθ
)

is integrable. Then (35) is always true in the following sense: limn→∞
Dn(ϕ)

en(logϕ)0
always exists and

equals eE(ϕ), including the case where one, and hence both, are infinite. �

One can consider Toeplitz matrices Tn(dµ) for general probability measures dµ(θ) = ϕ
(
eiθ
)
dθ
2π+

dµs(θ) on S
1, where dµs denotes the singular part of dµ. We have Tn(dµ) = {µj−k}0≤j, k≤n−1, where

µℓ =
∫
e−iℓθ dµ(θ), ℓ ∈ Z and Dn(dµ) = det Tn(dµ). The following remarkable result generalizes

Theorem 1.

Theorem 5 ([Sz1][Sz2][Sz4][Ver]). Let dµ(θ) = ϕ
(
eiθ
)
dθ
2π + dµs(θ) be a probability measure as

above. Then Szegő’s Limit Theorem is always true in the following sense: limn→∞Dn(dµ)
1
n always

exists and equals exp
[∫ π

−π logϕ
(
eiθ
)
dθ
2π

]
, including the case where one, and hence both, are zero.

�

Szegő proved the result when dµs = 0, whereas Verblunsky was able to handle the case dµs 6= 0.
Of course, as ϕ

(
eiθ
)
∈ L1

(
dθ
2π

)
,
∫ π
−π logϕ

(
eiθ
)
dθ
2π <∞, and the integral can diverge, possibly, only

to −∞. The striking feature of Theorem 5 is that limn→∞Dn(dµ)
1
n is independent of dµs.

Is it possible that (35) remains true when dµs 6= 0? Here the definitive result is due to Golinskii
and Ibragimov.

Theorem 6 ([GolIbr]). Let dµ(θ) = ϕ
(
eiθ
)
dθ
2π + dµs(θ) be a probability measure as above, and

suppose logϕ
(
eiθ
)
∈ L1

(
dθ
2π

)
. If dµs 6= 0, then

(38) lim
n→∞

Dn(dµ)

exp
[
n
∫ π
−π logϕ(e

iθ) dθ
2π

] = +∞

�
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In other words, if (35) were to hold with E(ϕ) =
∑∞

k=1 k |(logϕ)k|
2 < ∞, then necessarily

dµs = 0.
In [Sim2], Simon presents six different proofs of (35). Some of these proofs require stronger

conditions on ϕ (see [Sim2]). We now describe these methods in some detail (but without giving
precise conditions on ϕ in each case) in order to illustrate the extraordinary variety of mathematical
areas and techniques that inter-relate with Szegő’s Strong Limit Theorem. Our presentation follows
[Sim2]. After this presentation, we will also describe three additional proofs not covered in [Sim2],
together with some brief comments on Szegő’s original proof (see Remark 3.2).

The first proof uses ideas and results from the theory of orthogonal polynomials on the unit
circle (OPUC’s). These polynomials were introduced by Szegő in the early 1920’s [Sz4] [Sz5] in the

course of his investigation of the eigenvalues λ
(n)
1 , . . . , λ

(n)
n of Toeplitz matrices Tn. The classical

references for OPUC’s are [Sz5] [Ge]. The OPUC’s pk(z) = χk z
k + . . . , χk > 0, associated with a

probability measure dµ(θ) on S1 are formed by orthonormalizing 1, z, z2, . . . , zk, . . . with respect
to dµ(θ) in L2

(
S1, dµ(θ)

)
,

(39)

∫

S1

pk(eiθ) pj

(
eiθ
)
dµ(θ) = δk,j, k, j ≥ 0 .

OPUC’s are intimately related to Toeplitz determinants. For example

(40)
Dn+1(dµ)

Dn(dµ)
=

1

χ2
n

=
1

χ2
0

n−1∏

j=0

(
1− |ξj |2

)
, n ≥ 1

where ξj ≡ − (χj+1)
−1 pj+1(0), j ≥ 0, are the so-called Verblunsky coefficients. The ξj’s

have modulus less than 1, and so F (dµ) ≡ limn→∞Dn+1(dµ)/Dn(dµ) always exists and equals

χ−2
0

∏∞
j=0

(
1− |ξj |2

)
. But then limn→∞ (Dn(dµ))

1
n always exists, and has the same limit. So the

proof of Szegő’s Limit Theorem, boils down to showing that

(41)
1

χ2
0

∞∏

j=0

(
1− |ξj|2

)
= exp

[
1

2π

∫ π

−π
logϕ

(
eiθ
)
dθ

]

where dµ(θ) = ϕ
(
eiθ
)
dθ
2π + dµs(θ). In turn, one finds that

(42) lim
n→∞

Dn(dµ)

(F (dµ))n
= lim

n→∞

∏n−2
j=0

(
1− |ξj |2

)−j−1

∏∞
j=n−1(1− |ξj|2)n

and the proof of SSLT for dµs = 0 reduces to showing that the limit on the RHS is just eE(ϕ).
As we will see below, OPUC’s play a crucial role in analyzing the Fisher-Hartwig conjecture for
Toeplitz determinants with singular symbols ϕ

(
eiθ
)
.

The second proof utilizes a remarkable identity which gives an exact formula for Dn(ϕ),

(43) Dn(ϕ) = en(logϕ)0+E(ϕ) det (1−QnH(b)H(c̃)Qn) , n ≥ 1

where det denotes the determinant in ℓ+2 = ℓ2(Z+), Z+ = {0, 1, . . . }, Qn is the orthogonal projection
in ℓ+2 onto ℓ+2,n = {u = (u0, u1, . . . ) ∈ ℓ+2 : ui = 0 for 0 ≤ i < n}, and H(b), H(c̃) are the Hankel
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operators with kernels {bi+j+1}i, j≥0, {c−i−j−1}i, j≥0. Here b
(
eiθ
)
=
∑

j bj e
ijθ, c

(
eiθ
)
=
∑

j cj e
ijθ

are defined in terms of the Szegő function D(z) = exp
(

1
4π

∫ π
−π

eiθ+z
eiθ−z logϕ

(
eiθ
)
dθ
)
,

(44) b ≡ D
D , c ≡ D

D

where D = D(eiθ) = limz→eiθ,|z|<1D(z). The point is that H(b)H(c̃) is a trace-class operator in

ℓ+2 = ℓ+2, 0, and hence QnH(b)H(c̃)Qn → 0 in trace-norm by abstract arguments as n→ ∞. But
then det (1−QnH(b)H(c̃)Qn) → 1 as n → ∞, by the continuity properties of the determinant.
(For more information about the trace class and determinants, see [BottSilb3] [Sim3].) Thus SSLT
is immediate, once one has proved (43). Formula (43) is known as the Borodin-Okounkov formula
and was proved [BorOk] in 2000 in the context of combinatorics and random matrix theory. The
formula evoked great interest, and meanwhile several new proofs and generalizations have been
given (see, e.g., [BasWid] [BottWid1] and [Sim2]). However, it turns out that it was already
proven many years earlier by Geronimo and Case in 1979 in their work on inverse scattering theory
[GerCase]. The broader significance of this paper was not appreciated at the time. But more to the
point, in a separate section in their paper titled “Szegő’s Theorem”, Geronimo and Case actually
used (43) to prove SSLT. It is unfortunate that these developments were overlooked by the experts
in the field.

The third and fourth methods utilize the following Heine-type multi-integral representation for
Dn(ϕ) (see, e.g., [BottSilb3] [Sim2])

(45) Dn(ϕ) =
1

n!

∫ 2π

0
. . .

∫ 2π

0

∏

0≤j<k≤n−1

∣∣∣eiθj − eiθk
∣∣∣
2
n−1∏

j=0

ϕ
(
eiθj
) dθj

2π
.

In the third method, due to Bump and Diaconis [BumpDia], the authors observe that the RHS
of (45) can be re-written via Weyl’s integration formula as

∫
U(n) e

Fn(g) dg, where dg denotes Haar

measures on the unitary group U(n), and Fn(g) =
∑n−1

j=0 logϕ
(
eiθj(g)

)
, where

{
eiθj(g)

}
are the

eigenvalues of g. Substituting the Fourier expansion logϕ
(
eiθ
)
=
∑∞

k=−∞(logϕ)k e
ikθ, one obtains

(46) Dn(ϕ) = en(logϕ)0
∫

U(n)
exp


∑

k 6=0

(logϕ)k tr (g
k)


 dg

and after expanding out the exponential, one ends up with the representation

(47) Dn(ϕ) = en(logϕ)0
∫

U(n)

(
∑

t

ηt Tt(g)

)(
∑

s

ηs Ts(g)

)
dg .

Here the sums are over all k-tuples of non-negative integers t = (t1, . . . , tk), s = (s1, . . . , sk), and for

any k, Tt(g) =
∏k
j=1

[
tr
(
gj
)]tj , and the ηt’s, ηs’s are explicit constants depending on {(logϕ)ℓ}.

The magic of the method is that one can use the theory of characters together with Frobenius-
Schur-Weyl duality to compute

∫
U(n) Tt(g)Ts(g) dg explicitly, obtaining

(48)

∫

U(n)
Tt(g)Ts(g) = δts W (t)
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where W (t) =
∏k
j=1 j

tj tj!, provided
∑k

j=1 j tj and
∑k

j=1 j sj are ≤ n. Substituting (48) into (47)
and controlling the errors as n→ ∞, one immediately obtains (35).

In the fourth proof, due to Johansson [Joh1], one rewrites (45) with ϕ
(
eiθ
)
= eV (θ) in the form

(49) Dn

(
eV
)
=

1

n!

∫
e−2Hn(θ0,...,θn−1) dθ0

2π
. . .

dθn−1

2π

where

(50) Hn = −1

2

n−1∑

j=0

V (θj) +
1

2

∑

0≤k<j≤n−1

W (θk − θj)

and

(51) W (θ) = − log
∣∣∣eiθ − 1

∣∣∣
2
.

This expression exhibits n!Dn

(
eV
)
as the partition function of a gas of 1-dimensional particles

with 2-dimensional Coulomb interactions — a “log-gas” in the terminology of Dyson. Dyson
introduced this terminology in the context of his analysis [Dy1] of Circular Ensembles of n ×
n random matrices. For such ensembles Dyson found that the distributions of the eigenvalues
{eiθj}n−1

j=0 , 0 ≤ θj < 2π, of the matrices were given by

(52)
1

Zn,β

∏

0≤j<k≤n−1

|eiθj − eiθk |β dθ0
2π

· · · dθn−1

2π
.

Here β = 1 for the orthogonal, β = 2 for the unitary, and β = 4 for the symplectic ensemble, and

(53) Zn,β =

∫ 2π

0

dθ0
2π

· · ·
∫ 2π

0

dθn−1

2π

∏

0≤j<k≤n−1

|eiθj − eiθk |β

is the normalization constant. Dyson then noted that the distribution of the eigenvalues {eiθj}n−1
j=0

was identical with the distribution of the positions 0 ≤ θj < 2π, j = 0, . . . , n − 1 of charges
in a finite gas with 2-D Coulomb interactions at inverse temperature β and with Gibbs mea-
sure 1

Zn,β
exp{−βHn(θ0, . . . , θn−1)}dθ02π · · · dθn−1

2π , whereHn(θ0, . . . , θn−1) = −
∑

0≤j<k≤n−1 log |eiθj−
eiθk |, and the partition function is given by (53). As emphasized by Dyson [Dy1], a consequence
of this identification is that “. . . the thermodynamic notions of entropy, specific heat, etc., can be
transferred from the Coulomb gas to the eigenvalue series. This will prove very useful, as it gives
us a precise and well-understood language in which to describe the statistical properties of the
eigenvalues”. If the matrices U in the ensembles carry a weight e−β trQ(U), then the energy in the
corresponding Coulomb gas must be replaced by

(54) Hn(θ0, . . . , θn−1) = −
∑

0≤j<k≤n−1

log |eiθj − eiθk |+
n−1∑

j=0

Q(eiθj )

where Q now plays the role of an external force acting on the charges.
In operational terms, the identification implies, in particular, (see [Dy2]) that the free energy

F ≡ −β−1 logZn,β is approximated to leading order as n → ∞ by the classical thermodynamic
recipe, F ∼ FT , where

(55) βFT = G2 +G1 +G0.
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Here G2 is the macroscopic Coulomb energy

(56) G2 = −β
2

∫ ∫
σ(eiθ)σ(eiθ

′
) log |eiθ − eiθ

′ |dθdθ′ + β

∫
Q(eiθ)σ(eiθ)dθ

and G1 +G0 is the local free energy term

G1 =

(
1− β

2

)∫
σ(eiθ) log σ(eiθ)dθ,(57)

G0 = n

[(
1− β

2

)
log

2π

n
+ log Γ

(
1 +

β

2

)]
− log Γ

(
1 +

β

2
n

)
.(58)

The function σ(eiθ) ≥ 0 is the macroscopic density of the gas and is chosen to minimize the
functional on the right-hand side of (55) subject to the constraint

(59)

∫
σ(eiθ)dθ = n.

Dyson first applied these thermodynamic notions to compute [Dy2] the probability Ps that there
are no eigenvalues for a random matrix in the interval (0, 2s/π), in the bulk scaling limit where the
average distance between the eigenvalues is rescaled to 1, for the Gaussian Unitary Ensemble (see
[Meh]). Using these notions, he derived, for the first time, the leading order of Ps, Ps ∼ exp{−s2/2}
as s→ ∞. (We return to this problem further on (see (225) et seq).) A year later in [Dy3], Dyson
showed how these notions play out in the context of SSLT. First Dyson noted, as explained above,
that the Heine-type representation (45) immediately displayed n!Dn

(
eV
)
as the partition function

of a log-gas as in (49)–(51) above. This connection between Toeplitz determinants and the Coulomb
gas was first pointed out in an unpublished manuscript by G. Kreisel, which was made available to
Dyson by courtesy of E. Wigner.6

For β = 2 the term G1 = 0 and the constant G0 = − log n!, and we have

(60) FT = −1

2

∫ ∫
σ(eiθ)σ(eiθ

′
) log |eiθ − eiθ

′ |dθdθ′ +
∫
Q(eiθ)σ(eiθ)dθ − 1

2
log n!

The constrained minimum is obtained when

(61) Q(eiθ)−
∫
σ(eiθ

′
) log |eiθ − eiθ

′ |dθ′ = const

on the unit circle. Solving this equation together with (59), Dyson finds that for Q(eiθ) sufficiently
smooth,

(62) FT = −1

2
log n! + nQ0 −

∞∑

k=−∞
|k|QkQ−k

where {Qk} are the Fourier coefficients of Q(eiθ). For V = −βQ = −2Q, we obtain

(63) − 1

2
log(n!Dn(e

V )) = F ∼ FT = −1

2
log n! + nQ0 −

∞∑

k=−∞
|k|QkQ−k

6We note that already in the 1880’s Stieltjes gave an electrostatic interpretation of the zeros of certain classical
orthogonal polynomials (see [Sz5], Section 6.7). For a discussion of logarithmic potentials from the viewpoint of
potential theory, see the book of Saff and Totik [SaTo].
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which is precisely SSLT, Dn(e
V ) ∼ exp{nV0 +

∑∞
1 k|Vk|2}. There is an irony in this argument:

on the one hand, SSLT was proved in response to a problem in statistical mechanics, but on the
other hand, SSLT is obtained here by the methods of statistical mechanics. The above calculation
is based on the (unproven) validity of the thermodynamic recipe (55)–(58), (59). Johansson’s proof
in [Joh1] does not rely on the thermodynamic recipe. The proof in [Joh1] starts with the identity
Dn(1) = 1 and develops a perturbation theory around ϕ(z) = 1. Johansson notices that the
minimum of the double sum in (50), and thus the maximum of the integrand in (49) for V ≡ 0
is reached when the points eiθj , j = 0, . . . , n − 1, are uniformly distributed on the unit circle, i.e.
when they are the vertices of a regular n-gon. For ϕ(z) = eV (z) 6≡ 1, normalize ϕ by requiring
V0 = 0. If one adds the corresponding first sum with V 6≡ 0 to (50), the position of the maximum
of the integrand in (49) becomes displaced, but in a sense only slightly if n is large. For large n
Johansson introduces the following change of variables in (49):

(64) θj = ψj −
1

n
h(eiψj ), j = 0, . . . , n− 1,

where h(z) = −i∑∞
k=1(Vkz

k−V−kz−k) is the conjugate function to V (z). The main contribution to
the integral comes from a small neighborhood of a configuration where ψj ’s are uniformly distributed
on the unit circle. Due to this crucial fact, all the sums which appear (as a result of the change of
variables (64)) in the exponent, apart from the main one,

∑
0≤k<j≤n−1W (ψk−ψj), can be replaced

by integrals with good precision and produce, as n → ∞, the constant (36), while the remaining
1
n!

∫
exp(−∑0≤k<j≤n−1W (ψk − ψj))

∏n−1
k=0

dψk
2π = Dn(1) = 1.

The fifth method is combinatorial and is due basically to Kac [Kac]. At the start one renormal-
izes ϕ

(
eiθ
)
so that supθ ϕ

(
eiθ
)
= 1. Setting h = 1−ϕ and wλ = 1−λh, 0 ≤ λ ≤ 1, we have w1 = ϕ.

Under the additional assumption that infθ ϕ
(
eiθ
)
> 0, we clearly have 0 ≤ h(θ) ≤ supθ h(θ) < 1.

Using the identity log detA = tr logA, one expands logDn (1− λh) for 0 ≤ λ ≤ 1 in a power series
(note that ‖Tn(h)‖ ≤ ‖h‖∞ < 1)

logDn (1− λh) = −
∞∑

m=1

λm

m
tr ([Tn(h)]

m)(65)

and also

∫
log (1− λh)

dθ

2π
= −

∞∑

m=1

λm

m

∫
hm(θ)

dθ

2π
.(66)

On the other hand

(67) (log (1− λh))k = −
∫
e−ikθ

∞∑

m=1

λm

m
hm(θ)

dθ

2π

and so

(68)
∞∑

k=1

k |(log (1− λh))k|
2 =

∞∑

m=1

sm
λm

m

where

sm =

∞∑

k=1

k

m−1∑

ℓ=1

m

ℓ(m− ℓ)

(∫
e−ikθ hℓ(θ)

dθ

2π

)(∫
eikθ hm−ℓ(θ)

dθ

2π

)
.
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Thus the strategy is to show

(69) lim
n→∞

−
[
tr ([Tn(h)])

m − n

∫
hm(θ)

dθ

2π

]
= sm.

Combinatorial issues arise when one tries to control the complicated multilinear sums in tr [Tn(h)]
m.

The sixth method is based on a formula of Baik, Deift, McLaughlin, and Zhou (unpublished)
for relative determinants

(70) log
Dn (ϕψ)

Dn (ψ)
=

∫ 1

0
dt

∫ 2π

0

[
d

dt
logϕt

]
Kt(θ)ϕt(θ)

dθ

2π

where ϕ and ψ are two functions on S1 and ϕt = (1− t) + tϕ and Kt(θ) is the Christoffel-Darboux
kernel

(71) Kt(θ) =
n−1∑

j=0

∣∣∣pj
(
eiθ, ϕt ψ

)∣∣∣
2

and pj
(
eiθ, ϕt ψ

)
are the OPUC’s associated with the weight ϕt

(
eiθ
)
ψ
(
eiθ
)
dθ
2π . SSLT then follows

by computing the (weak) limit of 1
n Kt(θ) as n → ∞. Thus, as in the first method, SSLT is seen

here as following from properties of OPUC’s pj
(
eiθ
)
.

The mathematical challenge that is posed by SSLT can be viewed as follows. In functional
analysis one commonly considers continuous maps F , say, from one fixed topological space X to
another fixed topological space Y . Then in order to verify that limn→∞ F (xn) = F (x) all one has
to do is verify that xn → x as n→ ∞ in the topology of X. In particular, if X is the space of trace
class operators on a separable Hilbert space H, and F (x) = det (1 + x), then F : X → Y = C and
limn→∞ det (1 + xn) = det (1 + x) if xn → x in trace norm. But SSLT is not of this standard type.
Instead, one has F : M(n,C) → C taking An ∈ M(n,C) to F (An) = detAn. So the initial space
X = Xn =M(n,C) is changing with n and it is not at all clear how to topologize the situation so
that “limn F (An) = F (limAn)”. If, for example, we let X =M(∞,C) be the inductive limit of the
M(n,C)’s, then Tn(ϕ) converges to the Toeplitz operator T (ϕ) in the associated topology, but T (ϕ)
is not of the form 1 + trace class, and so F (T (ϕ)) = det(T (ϕ)) is not defined. In such situations
when X = Xn, or Y = Yn, is varying, there is no general procedure to follow and each problem
must be addressed on an ad hoc basis. And when there is no preferred path to the solution of a
problem, there are many paths, as we see from the six very different methods above. In this regard,
the method of Borodin-Okounkov-Geronimo-Case is singled out: after factoring out en(logϕ)0+E(ϕ),
one has

(72)
det (Tn(ϕ))

en(logϕ)0+E(ϕ)
= det (1−Bn)

where Bn = QnH(b)H(c̃)Qn is trace class in ℓ+2 and Bn → 0 in trace norm as n → ∞. In other
words, one of the paths is to renormalize the problem so that it assumes the standard form.

This pathway, to reduce SSLT to standard form, goes back to Harold Widom, who was the first
to apply operator-theoretic methods to the problem of Toeplitz asymptotics. In [Wid4], Widom
gave yet another proof of (35). This proof, which was found more than 35 years ago, has not lost its
charm. We follow the presentation in [Bott1]. It turns out that by a simple trick, the determinants
of finite sections of the inverse Toeplitz operator T (ϕ)−1 are easy to compute,

(73) detPn T (ϕ)
−1 Pn = e−n(logϕ)0
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where Pn projects u = (u0, u1, . . . , un−1, un, . . .) ∈ ℓ+2 to (u0, u1, . . . , un−1) ∈ C
n. Simple algebra

shows that

(74)
detTn(ϕ) =detPnT (ϕ)Pn = det

(
Pn T

−1
(
ϕ−1

)
Pn
)

× det
(
1 +

(
Pn T

−1
(
ϕ−1

)
Pn
)−1

PnK Pn

)

where K ≡ T (ϕ)− T−1
(
ϕ−1

)
is trace-class. By (73),

(75) detPn T
−1
(
ϕ−1

)
Pn = en(logϕ)0 .

But
(
Pn T

−1
(
ϕ−1

)
Pn
)−1

Pn can be shown to converge strongly as n→ ∞ in ℓ+2 to
(
T−1

(
ϕ−1

))−1
=

T
(
ϕ−1

)
, and as K is trace class, Rn ≡

(
Pn T

−1
(
ϕ−1

)
Pn
)−1

PnK Pn → T
(
ϕ−1

)
K. We conclude

that as n→ ∞

(76)
detTn(ϕ)

en(logϕ)0
= det(1 +Rn) → det

(
1 + T

(
ϕ−1

)
K
)
= det T

(
ϕ−1

)
T (ϕ).

Using the remarkable Helton-Howe-Pincus formula (see [HeltHow]), det
(
eA eB e−A e−B

)
= etr[A,B],

if A, B are bounded, and [A,B] = AB−BA is trace class, one then shows that det
(
T
(
ϕ−1

)
T (ϕ)

)
=

eE(ϕ), and (35) is proved.
Of all the methods to prove SSLT, perhaps the simplest and most direct was introduced by

Basor and Helton in [BasHelt]. As in [Wid4], the method also proceeds by reducing SSLT to
standard form. We follow [BasHelt]: Suppose ϕ has a Wiener-Hopf factorization ϕ = ϕ+ϕ−,
where ϕ+, ϕ

−1
+ are bounded analytic functions in {|z| < 1}, and ϕ−, ϕ

−1
− are bounded analytic

functions in {|z| > 1}. Then by direct calculation, the Toeplitz operator T (ϕ) has a factorization
T (ϕ) = T (ϕ−)T (ϕ+), furthermore,

(77) PnT (ϕ+) = PnT (ϕ+)Pn, T (ϕ−)Pn = PnT (ϕ−)Pn.

As T (ϕ±)T (ϕ
−1
± ) = 1, we see that T (ϕ±)−1 exist and T (ϕ±)−1 = T (ϕ−1

± ). We thus have

(78) PnT (ϕ)Pn = PnT (ϕ+)PnT (ϕ+)
−1T (ϕ−)T (ϕ+)T (ϕ−)

−1PnT (ϕ−)Pn

so that

(79)
Dn(ϕ) =det(PnT (ϕ+)Pn) det

(
Pn
{
T (ϕ+)

−1, T (ϕ−)
}
Pn
)
det(PnT (ϕ−)Pn)

= ((ϕ+)0(ϕ−)0)
n det

(
Pn
{
T (ϕ+)

−1, T (ϕ−)
}
Pn
)

where
{
T (ϕ+)

−1, T (ϕ−)
}
= T (ϕ+)

−1T (ϕ−)T (ϕ+)T (ϕ−)−1 is the multiplicative commutator. How-
ever

{
T (ϕ+)

−1, T (ϕ−)
}
= 1+T (ϕ+)

−1 [T (ϕ−), T (ϕ+)]T (ϕ−)−1 and under mild smoothness condi-
tions on ϕ(eiθ), the commutator [T (ϕ−), T (ϕ+)] = T (ϕ−)T (ϕ+)− T (ϕ+)T (ϕ−) is trace class. For
such ϕ, det

(
Pn
{
T (ϕ+)

−1, T (ϕ−)
}
Pn
)
is equal to the Fredholm determinant

det
(
1 + PnT (ϕ+)

−1 [T (ϕ−), T (ϕ+)]T (ϕ−)
−1Pn

)

which converges by abstract theory as n→ ∞ to

(80)

det
(
1 + T (ϕ+)

−1 [T (ϕ−), T (ϕ+)]T (ϕ−)
−1
)
=det

{
T (ϕ+)

−1, T (ϕ−)
}

=det
(
T (ϕ+)

−1T (ϕ−)T (ϕ+)T (ϕ−)
−1
)

=detT (ϕ−1)T (ϕ).
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Again by the Helton-Howe-Pincus formula, we have

(81) lim
n→∞

Dn(ϕ)

en(logϕ)0
= detT (ϕ−1)T (ϕ) = eE(ϕ)

which proves SSLT under mild assumptions on ϕ (see [BasHelt] Theorem 2.1.).
In [Dei1], the author gives yet another proof of (35) by expressing Dn(ϕ) as a Fredholm deter-

minant of the following form:

(82) Dn(ϕ) = det (1− Vn)

where Vn is a trace class operator acting on L2(S1)

Vn f(z) =

∫

|z′|=1
Vn
(
z, z′

)
f
(
z′
)
dz′ , |z| = 1,(83)

with

Vn
(
z, z′

)
=
zn (z′)−n − 1

z − z′
1− ϕ (z′)

2πi
.(84)

The operator Vn is oscillatory and does not converge as n → ∞ in the trace-norm topology.
However, Vn has the special form of an integrable operator, that is, operators with kernels of the

form
∑m

j=1
fj(z)gj(z′)

z−z′ , with z, z′ on some contour Γ in C, m < ∞, and fj, gj are given functions
on Γ. Such operators were first singled out as a distinguished class by Its, Izergin, Korepin and
Slavnov7 (see [Dei1] for a pedagogic presentation). Associated with the integrable operators there
is a canonical Riemann-Hilbert Problem, which, in this case, is of oscillatory type. Such problems
can be analyzed asymptotically by applying the nonlinear steepest descent method for Riemann-
Hilbert Problems introduced by Deift and Zhou in [DZ], and further developed in [DVZ], and SSLT
then follows (see [Dei1]).

Remark 3.2. In the methods of Widom and Basor-Helton the existence of the limit of Dn(ϕ)

en(logϕ)0
as

n→ ∞ follows directly from general theorems in functional analysis: the identification of the limit
with eE(ϕ) is a separate matter and uses other means (Helton-Howe-Pincus). The situation is similar

regarding Szegő’s original proof of SSLT (see [Sz3] [GreSz]): as ϕ(eiθ) > 0, the ratio Dn(ϕ)

en(logϕ)0
is

monotone increasing in n, so the existence of the limit (which may, a priori, be infinite) is immediate.
Again the evaluation of the limit is a separate matter. Indeed, Szegő first computes the limit for
a dense class of symbols {ϕ̃} for which Dn(ϕ̃) can be evaluated explicitly for n sufficiently large,
n > nϕ, and then obtains the general result by an approximation argument ϕ̃→ ϕ.

By contrast, all the other methods we have described above prove the existence of the limit,
and compute its value, both at the same time.

We return now briefly to the 2-dimensional Ising model. One notes that Szegő’s Theorem 3
does not actually apply to ϕdiag(θ), say, in (32), because the symbol is not real valued. Moreover,
Szegő’s proof of (35) depends in a crucial way on the positivity of ϕ

(
eiθ
)
(see Remark 3.2 above),

and it was not at all clear at the time how to extend Theorem 3 to non-real symbols ϕ. So Onsager’s
lament that “. . . the mathematicians got there first”, was in fact not true! The result in the 1950
unpublished draft of Kaufman and Onsager mentioned above, without “the epsilons and deltas and

7 Some of the elements of the theory of integrable operators were already present in the earlier work [Sakh].

21



all of that”, but allowing for non-real ϕ, was in fact the first to break the tape! Now although
the symbol ϕdiag(θ) is not real, for 0 < kons < 1 however, logϕdiag(θ) is still smooth on S1, in
particular, the winding number of ϕdiag(θ) on S1 is zero. The first result for such symbols was
proved by G. Baxter in 1963 [BaxG2]. He showed that under certain technical conditions, if ϕ

(
eiθ
)

is smooth, non-zero, and has zero winding number on S1, then

(85) lim
n→∞

Dn(ϕ)

en(logϕ)0
= e

∑∞
k=1 k(logϕ)k(logϕ)−k .

Note that for ϕdiag(θ) in (32), one has for 0 < kons < 1, (logϕdiag)ℓ = (sgn ℓ) k
|ℓ|
ons/2|ℓ| for ℓ 6= 0 and

(logϕdiag)0 = 0. Hence
∑∞

ℓ=1 ℓ (logϕ)ℓ (logϕ)−ℓ = −1
4

∑∞
1

(k2ons)
ℓ

ℓ = 1
4 log

(
1− k2ons

)
, which yields

(19) via (33).
In retrospect, many of the proofs of SSLT do extend directly to complex-valued symbols with

smooth logarithm. This is true, in particular, for Kac’s proof of (35) in 1954 [Kac], as noted by
Montroll, Potts and Ward in [MPW] (see footnote 17, p. 316). Moreover, the proofs in [Wid4] and in
the text [BottSilb3], for example, are all designed from the very beginning to cover complex-valued
functions.

If ϕ(eiθ) is non-zero and continuous, say, on S1, and has zero winding number, then ϕ(eiθ) =

eV (eiθ) for some continuous, periodic function V (eiθ) = logϕ(eiθ). The strongest version of SSLT
with complex symbols ϕ(eiθ) is the following.

Theorem 7. Let V (eiθ) ∈ L1(S1) be a (possibly complex-valued) function on S1 with Fourier
coefficients (Vk)k∈Z satisfying

(86)
∞∑

k=−∞
|k| |Vk|2 <∞ ,

then

(87) lim
n→∞

Dn

(
eV
)

enV0
= e

∑∞
1 k Vk V−k .

�

Note that for V (eiθ) satisfying (86), eV (eiθ) ∈ Lp
(
S1, dθ2π

)
for 1 ≤ p <∞ (see [Sim2]). The proof

of Theorem 7 is given by Johansson [Joh1]. In particular, his argument for the extension of the
result to complex-valued V (z) proceeds by considering the analytic functions

gn(z) = Dn

(
e(ℜV+zℑV )

)/
en[(ℜV )0+z(ℑV )0]

and applying Vitali’s Theorem. When z is real, limn→∞ gn(z) is given by (85), and to obtain (87)
one just sets z = i.

Under the additional assumption that V is in L∞(S1), Theorem 7 was already established in
[Wid4]. We also note that condition (86) can be replaced by certain “non-symmetric” requirements
on the decay of the Fourier coefficients Vk and V−k, k ≥ 0; see, for example, Theorem 10.32 and
Corollary 10.42 of [BottSilb3].
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Remark 3.3. In [Joh1], Johansson observes the following very interesting consequence of Theorem
7 (see also [Joh2]). Let V (eiθ) be a real-valued function on S1 with Fourier coefficients {Vk}
satisfying (86) and suppose V0 =

∫
V (eiθ) dθ

2π = 0. As in the Bump-Diaconis method for SSLT
described above, equip the unitary group U(n) with Haar measure dg and consider the random
variable Fn(g) =

∑n−1
j=0 V

(
eiθj(g)

)
= trV (g), where

{
eiθj(g)

}
are the eigenvalues of g ∈ U(n). Then

we have the following Central Limit Theorem:

(88) Fn converges in distribution to N
(
0, σ2

)
, σ =

(
2

∞∑

k=1

k |Vk|2
) 1

2

where N
(
0, σ2

)
denotes the normal distribution with mean zero and variance σ. Indeed, for any

real t we have

(89)

∫

U(n)
ei t Fn(g) dg = Dn

(
ei t V

)

and so by Theorem 7, as n→ ∞

(90)

∫

U(n)
ei t Fn(g) dg → e

∑∞
1 k(itV )k (itV )−k = e−

t2

2 [2(
∑∞

1 k|Vk|2)]

from which we conclude (88). One notes that as opposed to the standard Central Limit Theorem for
independent random variables, the θj’s are very strongly uniformly distributed and no n−1/2 scaling
is needed. A suitable scaling is needed in the more general “interpolating” situation considered by
Duits and Johansson [DJ] where V (z) depends on n (cf. Section 11). In [DJ], for each n ≥ 1, the
authors consider sequences {kj(n)}j≥1 of mutually distinct positive integers, and they show that
for each m ≥ 1, the random variables 1√

min(kj(n),n)
tr gkj(n), j = 1, . . . ,m, converge to independent

standard complex normals. (This connects earlier results of Diaconis and Shahshahani for fixed
kj , and of Rains for kj(n) > n: see [DJ] for references.) Note an interesting difference in scaling
for kj(n) ≤ n and for kj(n) > n. In the latter case, the scaling is n−1/2. The authors in [DJ]
obtained their results by proving an analogue of SSLT for symbols depending on n in a special way,
as follows. If

V (n; z) =
∑

|j|>0

γjz
kj(n)

√
min(|kj(n)|, n)

,

where
∑

j |γj| <∞, the sequences {kj(n)}j≥1 are as above, and k−j(n) = −kj(n), then

lim
n→∞

Dn(e
V (n;z)) = e

∑∞
j=1 γjγ−j .

4 Back to Ising

After Onsager announced formula (19) for M0 in 1948, and again in 1949, but did not provide a
proof, three years went by until a derivation of the formula was found by Yang in a tour de force
in 1952 [Yan1]. Yang’s method is based on results of Kaufman and Onsager, but his approach
is different, and he does not explicitly use Toeplitz determinants. In his Selected Papers in 2005
([Yan2]), Yang described the long and winding road that led him to the Kaufman-Onsager formula
(19). The story has much charm:
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“I was thus led to a long calculation, the longest in my career. Full of local, tactical tricks,
the calculation proceeded by twists and turns. There were many obstructions. But always, after
a few days, a new trick was somehow found that pointed to a new path. The trouble was that I
soon felt I was in a maze and was not sure whether in fact, after so many turns, I was anywhere
nearer the goal than when I began. This kind of strategic overview was very depressing, and several
times I almost gave up. But each time something drew me back, usually a new tactical trick that
brightened the scene, even though only locally.

Finally, after about six months of work off and on, all the pieces suddenly fitted together,
producing miraculous cancellation, and I was staring at the amazingly simple final result.”

Remark 4.1. Let EΛ(σ) denote the interaction energy in a rectangular box Λ of sizeM×N as in (10)
above, and let EΛ,h(σ) = EΛ(σ) − h

∑
(i,j)∈Λ σi,j denote the energy in the presence of a magnetic

field of strength h. Let ZΛ,h =
∑

σ e
−EΛ,h(σ)/kB T denote the associated partition function, and let

FΛ,h = −kB T
MN logZΛ,h denote the associated free energy in the box Λ. What Yang proved in [Yan1]

was that, for T < Tc,

(91)
MY ≡ − lim

h↓0
lim

|Λ|→∞

FΛ,h/N − FΛ,0

h/N

=
(
1− k2ons

) 1
8 =M0 ≡ lim

n→∞
〈σ1,1 σ1,n〉

1
2 .

(In [Yan1], Yang only considered the case J1 = J2. Yang’s method was extended to the general
case J1 6= J2 by Chang [Cha].)

As noted and emphasized by Schultz, Mattis and Lieb [ScML] in 1964, neither MY nor M0

coincide, a priori, with the physically fundamental definition of the spontaneous magnetization
Mphys, viz.,

(92)

Mphys ≡ − lim
h↓0

lim
|Λ|→∞

∂ FΛ,h

∂h

= lim
h↓0

lim
|Λ|→∞

1

MN




∑
σ

(∑
(i,j)∈Λ σi,j

)
e
− 1

kB T
EΛ,h(σ)

∑
σ e

− 1
kB T

EΛ,h(σ)


 .

Only some years later was it shown that indeed for T < Tc

(93) Mphys =MY =M0 =
(
1− k2ons

) 1
8

(see, in particular, [LebM-Lof], [BGJ-LS]).
In 1955 an important technical advance was made by Potts and Ward [PotWar] when they

showed, in particular, that the correlation function 〈σ1,1 σ1,n〉 along a row for the 2-D Ising model
could be expressed in terms of a single Toeplitz determinant, rather than a sum of two Toeplitz
determinants as in (21). They were unable at the time to verify that their solution agreed with
(21): This was done later in 1963 [MPW] by Montroll, Potts and Ward, who also used recent ideas
of Kasteleyn on the Pfaffian approach to the dimer and Ising problems to give a new and simpler
proof of the formula in [PotWar]. The formula in [PotWar] [MPW] is the following

(94) 〈σ1,1 σ1,1+n〉 = Dn(ϕons)
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where ϕons

(
eiθ
)
is the Onsager function defined in (25). Through discussions with Mark Kac,

Montroll et al. were aware of SSLT. Furthermore they knew, as noted above, how to extend Szegő’s
result via Kac’s method to the case where the symbol is complex. For T < Tc, Montroll, Potts and
Ward noted that 0 < γ1, γ2 < 1 by (30), and so ϕ±1

ons

(
eiθ
)
6= 0 and ϕons has no winding on S1. As

in the computation for ϕdiag

(
eiθ
)
above, we find

(logϕons)ℓ = −
(
γℓ1
2ℓ

− γℓ2
2ℓ

)
, ℓ ≥ 1(95)

(logϕons)−ℓ =

(
γℓ1
2ℓ

− γℓ2
2ℓ

)
, ℓ ≥ 1(96)

and (logϕons)0 = 0. This implies
∑∞

ℓ=1 ℓ (logϕons)ℓ (logϕons)−ℓ = 1
4 log

(1−γ21)(1−γ22)
(1−γ1γ2)2

and after

some elementary algebra using (26), we again obtain (19), but now via (20) (cf. the discussion
following (85)).

We now consider the spontaneous magnetization for the Ising model for temperatures T ≥ Tc.
As kons ↑ 1 when T ↑ Tc, one anticipates from (19) that at T = Tc the spontaneous magnetization
M0 is zero. In [KauOns], Kaufman and Onsager proceed in the following way. They derive an
approximate formula for bk in (23) (bk =

∑
−k in the notation of [KauOns]) at T = Tc

(97) bk ∼
2

π (2k + 1)
as k → ∞.

They then take (97) as an equality for all k ≥ 0, and substitute this relation into (21) to obtain an

approximate asymptotic formula for 〈σ1,1 σ1,1+n〉 in the form of a linear combination c∗22 Wn−s∗2 W̃n

of two Cauchy determinants Wn and W̃n =W−n. Such determinants can be evaluated explicitly in
terms of gamma functions8

|Wn| =
2

π

n−1∏

q=1

Γ(q + 1)Γ(q + 1)

Γ
(
q + 1

2

)
Γ
(
q + 3

2

) ,(98)

∣∣∣W̃n

∣∣∣ = 2

3π

n−1∏

q=1

Γ(q + 1)Γ(q + 1)

Γ
(
q − 1

2

)
Γ
(
q + 5

2

)(99)

and Kaufman and Onsager observe that both Wn and W̃n → 0 as n → ∞, with W̃n decaying at a
much faster rate than Wn. They conclude that at T = Tc

(100) 〈σ1,1 σ1,1+n〉 ∼ (−1)nc∗22 Wn → 0 as n→ ∞

and so M0 = 0. In 1959, Fisher [Fis1] picks up on these calculations, and using Stirling’s formula
in (98) he shows via (100) that as n→ ∞

(101) 〈σ1,1 σ1,1+n〉 ∼ C n−1/4, T = Tc

for some (undetermined) constant C. This is the first derivation of an explicit decay rate for the
correlation function at Tc. Fisher argues further that off the lattice axes, (101) may be generalized
(in the case J1 = J2) to

(102) 〈σ1,1 σ1+ℓ,1+m〉 ∼ C(θ) k−1/4, T = Tc

8 Formulae (98) (99) differ slightly from the corresponding formulae in [KauOns].

25



where tan θ = ℓ/m and k =
(
ℓ2 +m2

) 1
2 → ∞, and C(θ) depends mildly on θ (see more below). As

Fisher learned later from Onsager himself (see reference 8 in [Fis1]; also, cf. the reference preceding
(31) above to [Dom2]), the analogue of formula (100) is in fact exact for correlations along the
diagonal:

(103) 〈σ1,1 σ1+n,1+n〉 = (−1)nWn, T = Tc.

Indeed from (31) , (32), for kons = 1 at Tc,

ϕdiag(θ) =
1− e−iθ

|1− eiθ| = ei(π−θ)/2 , 0 < θ < 2π(104)

and so

(ϕdiag)k =
2

π

1

2k + 1
, k ∈ Z(105)

which agrees with (97) (note from (21) that Wn is a Toeplitz determinant with shifted entries bk−1,
and to observe (103) one can write Wn as a determinant of the transposed matrix). If one repeats
Fisher’s calculation and keeps track of the constant, one obtains the exact asymptotics at T = Tc,

(106) 〈σ1,1 σ1+n,1+n〉 = e
1
4 A−3 2

1
12 n−1/4

(
1− 1

64

1

n2
+ . . .

)
as n→ ∞

where

(107) A = e
1
12 e−ζ

′(−1)

is Glaisher’s constant, ζ = Riemann’s zeta function. Formula (106) was first obtained by T. T. Wu
in [Wu] in serendipitous circumstances, as we describe below. The full expansion of (106) to all
orders was first given in [AuYPer1], together with a similar result, in the symmetric case J1 = J2,
for the next-to-diagonal correlation functions.

For T > Tc, Fisher notes in [Fis1] that one can use the matrix viewpoint in [Ons1] to show that
as k =

√
ℓ2 +m2 → ∞

(108) 〈σ1,1 σ1+ℓ,1+m〉 ∼ B k−
1
4 e−fk(T )

for some θ-dependent constant B = B(θ), where to leading order as k → ∞

(109) fk(T ) ∼ k g(T ).

As T ↓ Tc, g(T ) ↓ 0. These calculations show, in particular, thatM0 = 0 for T > Tc. If one includes
logarithmic correction terms in (109), one obtains (see [Fis2]) for T > Tc

(110) 〈σ1,1 σ1+ℓ,1+m〉 ∼ C(θ, T )
e−k g(T )

k1/2
(1 +O(1))

as k → ∞. This is the first derivation of an explicit decay rate for the correlation function at T > Tc.
In [KauOns] the authors show how the conclusion M0 = 0 also follows from their determinantal
formulae, at least for T > Tc sufficiently large. In [Kad], Kadanoff obtains a decay rate for T > Tc
of the same form as in (110), but only in the double scaling limit T − Tc ↓ 0, k → ∞ such that
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|T − Tc| k = c = constant. In [Rya], Ryazanov obtains the k−1/4 decay rate at T = Tc, and he also
obtains the general form (110), at least in the case that T is large, T >> Tc. The double scaling
limit, T → Tc and k → ∞, for the Ising model is an important issue, to which we will return at
various points in this paper. The importance of this issue rests in the fact that many believe in
universality for spin models in the sense that the double scaling limit for the spin-spin correlation
function in the Ising model also gives precisely the same limit (modulo lattice-dependent factors)
for a wide class of “non-integrable” two-dimensional models with short range interactions.

Remark 4.2. The result thatMphys, the physically fundamental spontaneous magnetization defined
above, is in fact zero for all T > Tc, was proven rigorously only many years later by Lebowitz in
[Leb] in (1972). The proof in [Leb] uses a variety of techniques from statistical mechanics, but as

shown in [LebM-Lof] [BGJ-LS], Mphys = M0 = limn→∞ 〈σ1,1 σ1,1+n〉
1
2 for all T > 0, and so the

proof that Mphys = 0 for T > Tc (in fact, for T ≥ Tc) follows, a posteriori, from a proof that
limn→∞Dn(ϕons) = 0, T ≥ Tc.

Remark 4.3. In the isotropic case, J1 = J2, explicit expressions for the correlation functions
〈σ1,1 σ1+m,1+ℓ〉 for values of (m, ℓ) other than (0, ℓ), (m, 0), or (m,m), were derived by Shrock
and Ghosh [ShGh]. In particular, they obtained expressions in the cases (m, ℓ) = (2, 1), (3, 1),
(3, 2), (4, 1), (4, 2), and (4, 3), in terms of complete elliptic integrals K and E. They also inferred
a general structural formula for arbitrary 〈σ1,1 σ1+m,1+ℓ〉 in terms of these elliptic integrals K and
E.

In further developments, Au-Yang, Jin, and Perk [AuYPer2] [AuYJPer] showed that the next-
to-diagonal correlations 〈σ1,1 σ1+n,n〉 have a “bordered” Toeplitz determinant form, that is, an n×n
Toeplitz determinant with the last column replaced by a certain explicit vector (bn−1, bn−2, . . . , b0)

T .
This representation is then used to express 〈σ1,1 σ1+n,n〉 in terms of a solution to the Painlevé VI
equation by Witte in [Wi].

5 New questions for SSLT

In view of the above calculations for T ≥ Tc, the Ising problem raised new questions and challenges
in Toeplitz theory. From (94), 〈σ1,1 σ1,1+n〉 = Dn(ϕons) (similarly, from (31), 〈σ1,1 σ1+n, 1+n〉 =
Dn (ϕdiag)), and so we want to know precisely how Dn(ϕons) behaves as n → ∞ for T ≥ Tc. But
for T > Tc, we have 0 < γ1 < 1 < γ2 (see (27), (30)), and so in contrast to the case T < Tc, the
winding number of ϕons is −1 6= 0. And at T = Tc, we see from (29) that ϕons

(
eiθ
)
has a jump

discontinuity at θ = 0. For such discontinuities the Fourier coefficients (logϕons)k decay as k−1 and
so
∑∞

k=1 k |(logϕons)k|2 = ∞. In both cases SSLT, or more properly Theorem 7, does not apply.
In 1966, in a tour de force in [Wu], Wu gave the first derivation of the precise asymptotics of

〈σ1,1, σ1,1+n〉 = Dn(ϕons) as n→ ∞, for T ≥ Tc. For T > Tc, Wu showed that for n→ ∞

(111)
〈σ1,1 σ1,1+n〉 = (πn)−

1
2 γ−n2

(
1− γ21

) 1
4
(
1− γ−2

2

)− 1
4 (1− γ1γ2)

− 1
2

×
(
1 +

A1

n
+
A2

n2
+
A3

n3
+ . . .

)

with explicit expressions for A1, A2 and A3 in terms of γ1 = z1 z
∗
2 and γ2 = z∗2/z1, defined in (26).

As T > Tc ⇐⇒ γ2 > 1, (111) agrees in the order of decay with (110) for ℓ = 0 and m = n, but now
we have the precise rate and constants. For T = Tc, Wu obtained

(112)
〈σ1,1 σ1,1+n〉 = e

1
4 2

1
12 A−3 n−

1
4 (1 + γ1)

1
4 (1− γ1)

− 1
4

×
(
1 +B1 n

−2 +O(n−3)
)
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with an explicit expression for B1 in terms of γ1, and A is again Glaisher’s constant (107). For
T < Tc, Wu also obtained higher order terms in (19) (20), i.e., as n→ ∞

(113) 〈σ1,1 σ1,1+n〉 =
(
1− k2ons

) 1
4

(
1 +

(
2π n2

)−1
γ2n2

(
γ−1
2 − γ2

)−2
[
1 +

c1
n

+
c2
n2

+ . . .
])

with explicit expression for c1 and c2 in terms of γ1 and γ2. In particular as γ2 < 1, we see that

〈σ1,1 σ1,1+n〉 →
(
1− k2ons

) 1
4 =M0 exponentially fast.

There is an interesting twist to the story of Wu’s computation of (112) at Tc. As a warm-up
problem at Tc, sinh

2J1
kB Tc

sinh 2J2
kB Tc

= 1, he considered the limiting case when J1 → 0 and J2 → ∞
in such a way that γ1 ↓ 0 and γ2 ↑ 1 in (25), and hence

ϕons

(
eiθ
)
=

(
1− e−iθ

1− eiθ

) 1
2

= ei(π−θ)/2, 0 < θ < 2π.

Wu recognized det
(
(ϕons)j−k

)
0≤j k≤n−1

as a Cauchy determinant and computed the asymptotics

which we have recorded above in (106). Wu was unaware at the time, just like Fisher before
him, that he had serendipitously computed the correlation function along the diagonal at Tc! Had
Kaufman and Onsager published their formula for 〈σ1,1 σ1+n,1+n〉, this comedy of errors would
probably have been avoided.

In the symmetric situation, J1 = J2, one finds that at Tc, γ1 = 3− 2
√
2 and so

(
1+γ1
1−γ1

) 1
4
= 2

1
8 .

Substituting this relation into (112), we obtain as n→ ∞

(114) 〈σ1,1 σ1,1+n〉 = e
1
4 25/24 A−3 n−

1
4

(
1 +O

(
1

n2

))
, J1 = J2.

This relation and (106) are consistent with the formula (cf. (102))

(115) 〈σ1,1 σ1+ℓ,1+m〉 = e
1
4 25/24 A−3 k−

1
4

(
1 +O

(
1

k2

))
, J1 = J2

where k =
√
ℓ2 +m2 → ∞. This asymptotic formula was derived by Cheng and Wu [ChenWu] in

1967 (they also consider J1 6= J2), but it was only established rigorously in the last year by H. Pinson
[Pin] using a Phragmen-Lindelof type argument to interpolate between (106) and (114). Recently
two additional independent proofs of the rotational symmetry of 〈σ1,1 σ1+ℓ,1+m〉 as k =

√
ℓ2 +m2 →

∞ have been given by Dubédat [Dub] and by Chelkak, Hongler, and Izyurov [CheHonIzy]. In [Dub]
the author proceeds by equating the product of two Ising correlators with a free field (bosonic)
correlator. In [CheHonIzy], the proof is based on convergence results for discrete holomorphic
spinor variables pioneered by S. Smirnov. In earlier work, Smirnov used such variables to prove
conformal invariance and to detect Schramm-Loewner evolution within the Ising model, in an
appropriate scaling limit (for references, see [CheHonIzy]). If J1 6= J2, one expects elliptical rather
than rotational symmetry in the analog of (115) (see [ChenWu] and also (199) below, which is
taken from [WMTB]).

The full expansion of 〈σ1,1 σ1+ℓ,1+m〉 as ℓ2 + m2 → ∞ at T 6= Tc in terms of so-called form

factors f
(j)
M,N , is discussed in detail in [McC1],

〈σ1,1 σ1+m,1+ℓ〉 = (1− t)
1
4

(
1 +

∞∑

n=1

f
(2n)
m,ℓ

)
for T < Tc(116)
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and

〈σ1,1 σ1+m,1+ℓ〉 = (1− t)
1
4

∞∑

n=0

f
(2n+1)
m,ℓ for T > Tc.(117)

For T < Tc, t = k2ons and for T > Tc, t = k−2
ons. These expansions were first obtained by Wu, McCoy,

Tracy and Barouch [WMTB] in 1976, but explicit expressions for the form factors were only given
in 1999 and 2000 by Nickel [Nick1] [Nick2].

The derivation of the form factor expansions (116) (117) for 〈σ1,1 σ1+m,1+ℓ〉 was obtained in
[WMTB] using the Fredholm determinant representations of Cheng and Wu [ChenWu]. In the
special cases m = 0, ℓ → ∞, or m = ℓ → ∞, Lyborg and McCoy [LyMcC] used the finite Toeplitz
determinant representations to derive form factor expansions as in (116) (117), but the detailed
form of the expansions they obtained differs from the general expansions obtained in [WMTB]. It
is an interesting, and still unresolved, question to reconcile the form factor expansions obtained in
these two different ways. For recent results on the form factor expansion of the diagonal correlations
〈σ1,1 σ1+m,1+m〉 which utilize results from [BorOk] and [GerCase], see [WiFo].

6 Fisher-Hartwig singularities. Fisher-Hartwig conjecture

In addition to the new questions and challenges raised in Toeplitz theory by the Ising model for
T ≥ Tc, other kinds of singularities also began to appear. For example, in 1964, in his work on the
ground state of the one-dimensional system of impenetrable bosons [Len1] Lenard expressed the
one-particle density matrix for the system as a Toeplitz matrix with a symbol ϕ

(
eiθ
)
that vanished

at some points on S1 (see (125) and particularly Remark 6.1 below for further discussion). In 1968,
in a major step in the development and generalization of SSLT, Fisher and Hartwig [FisHart1]
introduced a class of singular symbols for Toeplitz determinants, that allowed for zeros, (integrable)
singularities, discontinuities and non-zero winding numbers.

The symbols of Fisher-Hartwig (FH) class have the following form (we use the notation in
[DIK1])

(118) f(z) = eV (z) z
∑m

j=0 βj
m∏

j=0

|z − zj|2αj gzj , βj (z) z
−βj
j , z = eiθ, 0 ≤ θ < 2π,

for some m = 0, 1, 2, . . . , where

zj = ei θj , j = 0, 1, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π,(119)

gzj βj (z) ≡ gβj (z) =

{
eiπβj , 0 ≤ arg z < θj ,

e−iπβj , θj ≤ arg z < 2π,
(120)

ℜαj > −1

2
, βj ∈ C, j = 0, 1, . . . ,m,(121)

and V
(
eiθ
)
is a sufficiently smooth function on S1. Here the condition on ℜαj insures integrability.

Note that a Fisher-Hartwig singularity at zj , j = 1, . . . ,m, consists of a root-type singularity

(122) |z − zj |2αj =

∣∣∣∣2 sin
θ − θj

2

∣∣∣∣
2αj
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and a jump singularity zβj gβj(z) at zj (observe that z
βj gβj (z) is continuous at z = 1 for j 6= 0). For

j = 0, z0 = 1, in addition to the root-type singularity (122) at θ0 = 0, one has gz0, β0(z) = e−iπβ0 ,
0 ≤ θ < 2π and so zβ0 gz0, β0(z) = ei (θ−π)β0 , 0 ≤ θ < 2π, has a jump at z = z0 = 1. The factors

z
−βj
j are singled out to simplify comparison with the existing literature, in particular, [FisHart1].

Here are some examples of FH symbols:

• If f
(
eiθ
)
= −i for 0 ≤ θ < π and +i for π ≤ θ < 2π (cf [BasTr]), then z0 = 1, z1 = −1 = eiπ,

α0 = α1 = 0, β0 =
1
2 and β1 = −1

2 , and

(123)
f
(
eiθ
)
= zβ0+β1 g1, 1

2
(z) g−1,− 1

2
(z) z−β00 z−β11

= g1, 1
2
(z) g−1,− 1

2
(z) eiπ/2

• If f
(
eiθ
)
is a sufficiently smooth function on S1 (in particular, a trigonometric polynomial)

with two zeros at 0 < θ1 < θ2 < 2π (cf [BGrM], [DIK2]), then with z1 = eiθ1 , z2 = eiθ2 ,
α1 = α2 = 1/2, β1 =

1
2 , β2 = −1

2 ,

(124)
f(z) = eV (z) zβ1+β2 |z − z1| |z − z2| gz1, 1

2
(z) gz2,− 1

2
(z)

(
z1
z2

)− 1
2

= eV (z) |z − z1| |z − z2| gz1, 12 (z) gz2,− 1
2
(z) (z1/z2)

− 1
2

for a suitable function V
(
eiθ
)
on S1.

• The following symbol arose in Lenard’s work in [Len1] on impenetrable bosons mentioned
above,

(125) f
(
eiθ
)
=
∣∣∣z − eiθ1

∣∣∣
∣∣∣z − eiθ2

∣∣∣

where θ1 6= θ2 (mod 2π). Here z1 = eiθ1 , z2 = eiθ2 , α1 = α2 = 1/2 and β1 = β2 = 0.

• For the Ising model at T < Tc, the winding number of ϕons

(
eiθ
)
is zero and so ϕons(z) = eV (z)

for a suitable smooth function V
(
eiθ
)
on S1. For T = Tc, we have from (29) with 0 < γ1 < 1,

(126)
ϕons

(
eiθ
)
=

1− γ1 e
iθ

|1− γ1 e−iθ|
i e−iθ/2, 0 ≤ θ < 2π,

= eV (z) zβ0 gz0, β0(z) z
−β0
0

where z0 = 1, α0 = 0, β0 = −1
2 and V

(
eiθ
)
is smooth on S1. For T > Tc, we have from (28)

with 0 < γ1 < 1 < γ2,

(127)
ϕons

(
eiθ
)
=

(
1− γ1 e

iθ
) (
γ2 − eiθ

)

|1− γ1 e−iθ| |1− γ2 eiθ|
(
−e−iθ

)

= eV (z) zβ0 gz0, β0(z) z
−β0
0

where z0 = 1, α0 = 0, β0 = −1 and again V (z) is smooth on S1.
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From the point of view of Toeplitz determinants with FH singularities, Wu was the first to obtain
[Wu] detailed asymptotic results for symbols with discontinuities as in (126) and for symbols with
non-zero winding as in (127). Lenard was the first to obtain [Len1] [Len2] detailed asymptotic
results for symbols which have zeros on S1 as in (125). For symbols (118) with βj = 0 and αj real,
αj > −1

2 , j = 0, . . . ,m, Lenard made a general conjecture [Len2]9 about the asymptotic form of
Dn(f),

(128) Dn(f) ∼ E
(
eV , α0, . . . , αm, θ0, . . . , θm

)
n
∑m

j=0 α
2
j enV0

as n → ∞, where V0 = 1
2π

∫ 2π
0 V

(
eiθ
)
dθ as in (37) (87), and E(f, α0, . . . , αm, θ0, . . . , θm) is some

(unspecified) constant. Moreover he was able to verify this conjecture for the case f
(
eiθ
)

=∣∣z − ei θ1
∣∣ ∣∣z − eiθ2

∣∣ in (125).

Remark 6.1. As noted above, the symbol (125) arose in Lenard’s study of impenetrable bosons
[Len1]. More precisely, Lenard considered N free bosons in one dimension confined to a box of
length L with periodic boundary conditions and lying in the (symmetric) ground state of the
system. According to the criterion of Penrose and Onsager [PenOns], Bose-Einstein condensation

takes place if the largest eigenvalue λ
(max)
N,L of the density matrix ρN,L(x, x

′) for the system is of order
N as N ∼ L → ∞. For the system at hand ρN,L is translation invariant, ρN,L(x, x

′) = ρN,L(x−x′),
so that the eigenvalues of ρN,L are just the Fourier coefficients ρ

(n)
N,L of ρN,L(·). A simple calculation

shows that λ
(max)
N,L = ρ

(0)
N,L, the zeroth Fourier coefficient. Writing ρN,L(ξ) =

1
LRN (2πξ/L), we have

that

(129)
λ
(max)
N,L

N
=

1

2πN

∫ π

−π
RN (t)dt.

(Note that in this case λ
(max)
N,L is actually independent of L.) Now it turns out that

(130) RN (t) = DN−1(ft)

where ft is precisely a symbol of type (125),

(131) ft

(
eiθ
)
=
∣∣∣eiθ − eit/2

∣∣∣
∣∣∣eiθ − e−it/2

∣∣∣ .

(Formula (130) was also obtained independently by Dyson, see [Len1].) At that point (April 10,
1963, according to a letter Lenard has kindly made available to the authors) Lenard asked Szegő
for help in evaluating the Toeplitz determinant DN−1(ft). On July 10, three months later, Szegő
wrote back to Lenard with the information that, although he had not been able to obtain precise
asymptotics, he had obtained the bound

(132) |RN (t)| ≤
∣∣∣∣

eN

sin(t/2)

∣∣∣∣
1/2

.

Substituting (132) into (129), we see that

(133)
λ
(max)
N,L

N
= O

(
N−1/2

)
→ 0, as N → ∞.

9 Note that although [Len2] was published in 1972, a preliminary unpublished version of the paper was already in
existence in 1968 (see [FisHart1]).
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In a letter of thanks to Szegő on July 23, Lenard describes the situation as follows: “This has
great physical interest: It may be expressed as saying that for the model considered there is no
Bose-Einstein condensation in momentum space”.10

Following a further suggestion contained in the above correspondence with Szegő in 1963, Lenard
considered, in particular, symbols of the form

(134) f (λ,µ)(eiθ) = |eiθ − eiπ/2|λ|eiθ − e−iπ/2|µ, λ, µ > 0.

He started with the general formula for positive symbols f
(
eiθ
)
> 0

(135) Dn(f) =

n−1∏

k=0

χ−2
k

where χk > 0 is the leading coefficient of the orthonormal polynomial pk(z) = χk z
k + . . . , k ≥ 0,

with respect to the weight of dµ = f
(
eiθ
)
dθ/(2π) on S1 as in (39). For f (λ,µ)(eiθ) in (134), the

polynomials pk(z) can be expressed in terms of classical Jacobi polynomials on the interval [−1, 1].
This then leads to explicit formulae for the χk’s in terms of Euler’s gamma functions.

After Lenard published the bound (132) for the impenetrable boson problem (a Plasma Physics
Laboratory preprint of [Len1] appeared in 1963), Dyson [Dy3] took up the problem of computing
the asymptotics of (129) precisely as N → ∞. In order to control the singularity in the symbol
ft(e

iθ) = |eiθ − eit/2||eiθ − e−it/2|, Dyson resorted to his interpretation of DN−1(ft) as a Coulomb
gas at inverse temperature β = 2 with N − 1 unit charges free to move around on the unit circle,
but now with two additional half-charges. The probability of finding the half-charges at an angular
distance t apart is then proportional to P (t) = |2 sin t

2 |1/2RN (t). On physical grounds, Dyson then
argued that for distances t much greater than the “Debye length” λ = 2π/N , the two half-charges
are effectively screened off from each other, and so P (t) = const. for t >> λ. In other words,

RN (t) = kN
(
sin t

2

)−1/2
for t >> N−1, where kN is a constant. However, clearly kN = RN (π),

which can be evaluated explicitly as N → ∞ since

ft(e
iθ)|t=π = f (λ,µ)(eiθ)|λ=µ=1

(see discussion of (134) above). Substituting the result into (129) and neglecting the contribution
from |t| < N−1, Dyson obtained, as N → ∞,

(136)
λ
(max)
N,L

N
∼ CN−1/2, C =

( e
π

)1/2
2−5/6A−6Γ

(
1

4

)2

where A is again Glaisher’s constant (107). The crux of the above calculation is clearly the explicit
evaluation of RN (π) as N → ∞.

More detailed analysis of (129) requires further study of the double-scaling limit as t → 1,
N → ∞. We return to this issue in Section 11.

Inspired by the work of Wu in [Wu], and perhaps also influenced by the calculations of Lenard
in [Len1] [Len2], Fisher and Hartwig [FisHart1] made a conjecture about the asymptotic form of
Dn(f) for general symbols (118),

(137)

Dn(f) = E
(
eV , α0, . . . , αm, β0, . . . , βm, θ0, . . . , θm

)

× n
∑m

j=0(α2
j−β2

j ) enV0 (1 + o(1)) , V0 =
1

2π

∫ 2π

0
V
(
eiθ
)
dθ

10This confirms an earlier result of Schultz [Sch] proving the absence of condensation. Schultz used other methods

which produced the (weaker) bound O(N−4/π2

).
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as n→ ∞, together with a conjecture on the general form of the constant E. In [FisHart2], Hartwig
and Fisher present various examples, heuristics and theorems in support of their conjecture.

In the remarkable paper [Wid2], representing “a jump of several quanta in depth and sophis-
tication” (see MathSciNet MR0331107), Widom verified Lenard’s conjecture for complex αj with
ℜαj > −1

2 , j = 0, . . . ,m, and V
(
eiθ
)
suitably smooth, and obtained an explicit expression for the

constant

(138)

E
(
eV , α0, . . . , αm, θ0, . . . , θm

)
=E
(
eV
) ∏

0≤j<k≤m

∣∣∣eiθj − eiθk
∣∣∣
−2αjαk

×
m∏

j=0

e
−αj V̂

(
eiθj

)

×
m∏

j=0

Eαj

where

E
(
eV
)
= e

∑∞
k=1 k Vk V−k , Vk = Fourier coefficient of V

(
eiθ
)
,(139)

V̂
(
eiθ
)
= V

(
eiθ
)
− V0(140)

and

Eα = G2(1 + α)/G(1 + 2α), G(z) = Barnes G-function (see [Bar]).(141)

Formula (138) is consistent with and confirms the general form of the conjecture [FisHart1] for the
constant term in the case β0 = β1 = · · · = βm = 0.

In [Bas1] Basor considered complex αj with ℜαj > −1
2 , βj pure imaginary, j = 0, . . . ,m, and

V
(
eiθ
)
suitably smooth, and verified (137) with constant term, again consistent with the general

conjecture in [FisHart1],

(142)

E
(
eV , α0, . . . , αm, β0, . . . , βm, θ0, . . . , θm

)

= E(eV )
m∏

j=0

[
b+(zj)

−αj+βj b−(zj)
−αj−βj

]

×
∏

0≤j<k≤m

[
|zj − zk|2(βjβk−αjαk)

(
zk

zj eiπ

)αjβk−αkβj
]

×
m∏

j=0

G (1 + αj + βj)G (1 + αj − βj)

G (1 + 2αj)
.

with E
(
eV
)
and G(z) as above, and

(143) b+(z) = e
∑∞

k=1 Vk z
k
, b−(z) = e

∑−∞
k=−1 Vk z

k

.

The branches in (142) are determined naturally, b+(zj)
−αj+βj = e(−αj+βj)

∑∞
k=1 Vkz

k
j etc, and

(
zk

zj eiπ

)(αjβk−αkβj)

= ei(θk−θj−π)(αjβk−αkβj), 0 ≤ θj < θk < 2π.
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In the paper [BasHelt] discussed above, Basor and Helton also introduce the first example of a
so-called “separation” theorem of the following form: For symbols ϕ and ψ of a certain prescribed
type, including FH symbols with disjoint singularities, they show that

(144) lim
n→∞

Dn(ϕψ)

Dn(ϕ)Dn(ψ)
≡ L(ϕ,ψ)

exists. Moreover, they provide an explicit form for L(ϕ,ψ). Iterating this result, they are able
to reduce the problem for general FH symbols to adding in pure FH singularities of the form
zβ|z−ẑ|2αgẑ,β(z)ẑ−β , |ẑ| = 1, one at a time. They analyze the asymptotics of Toeplitz determinants
with such pure (i.e., with V ≡ 0) FH singularities in the following way. In addition to the results
described above, in [Wid2] Widom also verified (137) for a single FH singularity with |ℜα| < 1

2 and
|ℜβ| < 1

2 , but without determining the exact value of the constant E. But then Basor’s formula
(142) for E obtained in [Bas1] for ℜαj > −1

2 and βj pure imaginary, together with Vitali’s theorem,
directly yields the desired explicit asymptotics for a single pure FH singularity with |ℜα| < 1

2 and
|ℜβ| < 1

2 . (In fact, as discovered later by Böttcher and Silbermann, see (145) below, there exists an
exact formula for a Toeplitz determinant with a single pure FH singularity in terms of the Barnes
G-functions, which easily yields the asymptotics). In the end, Basor and Helton are able to verify
(137) (142) for αj , βk in the open set {maxj,k(|αj |, |βk|) < δ} ⊂ C

2n for some (small) δ > 0.
In [Bas3], Basor showed using a separation theorem that (137) (142) also hold in the case αj = 0,

|ℜβj | < 1
2 , j = 0, . . . ,m.

Böttcher and Silbermann [BottSilb5] finally proved (137) with Basor’s constant (142) under the
assumption that |ℜαj | < 1/2 and |ℜβj | < 1/2 for all j. This is the most general setting in which
the conjecture (137) is true in its original form, that is, with the exponent of n conjectured to be∑

(α2
j −β2j ), without the need to take care of degenerate situations and of the ambiguity in the β’s

(see (154) below). We note that in [BottSilb6] it had already been shown that (137) does not hold
in general if αj+βj and αj−βj are nonnegative integers for all j = 0, . . . ,m, and a corrected version
of the conjecture was proved in this case (this is a particular case of a formula conjectured by Basor
and Tracy: see next section). The developments up to the 1990’s are described in [Bott1] and [Ehr]
and also in the books [BottSilb2] [BottSilb3]. We note that certain separation theorems also play
a key role in the work of Böttcher and Silbermann. Another important element in their proofs
is an explicit formula, noted above, for a Toeplitz determinant with a single, pure FH singularity
found by the authors in [BottSilb5] (see also [BottWid2] [BasChe] for later alternative derivations).
Namely, if V (z) ≡ 0, m = 0, then with α0 ≡ α, β0 ≡ β,

(145)
Dn(f) =

G(1 + α+ β)G(1 + α− β)

G(1 + 2α)

G(n + 1)G(n + 1 + 2α)

G(n+ 1 + α+ β)G(n + 1 + α− β)
,

ℜα > −1

2
, α± β 6= −1,−2, . . . , n ≥ 1.

The condition on α ± β is needed because the G-function has zeros at z = 0,−1,−2, . . . The
asymptotics for (145) follow from the asymptotics of the G-function (see [Bar])

(146)

logG(t+ a+ 1) =
1

12
− logA− 3t2

4
− at+

t+ a

2
log(2π)

+

(
t2

2
+ at+

a2

2
− 1

12

)
log t+ o(1), as t→ ∞

where again A is Glaisher’s constant (107). The resulting asymptotics are consistent with (137)
(142).
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In view of the Heine representation (45), it is not surprising that the formula (145) is related
to the Selberg integral. In fact, independently of [BottSilb5], a more general formula was obtained
by Selberg himself:

(147)

∫ 2π

0
. . .

∫ 2π

0

∏

0≤j<k≤n−1

∣∣∣eiθj − eiθk
∣∣∣
2γ

n−1∏

j=0

ei(θj−π)β
∣∣∣1− eiθj

∣∣∣
2α dθj

2π

=
n−1∏

j=0

Γ(1 + 2α+ jγ)Γ(1 + (j + 1)γ)

Γ(1 + α+ β + jγ)Γ(1 + α− β + jγ)Γ(1 + γ)

where

ℜα > −1

2
, ℜγ > −min

{
1

n
,
ℜ(2α + 1)

n− 1

}
.

In a published form, this formula first appeared in the thesis of Morris in 1982 (see [ForWar]
for a historic account). The interest in (147) was due to the efforts to prove one of Dyson’s
conjectures in the theory of random matrices in [Dy1]. If we set γ = 1 in (147), and use the relation
G(z + 1) = Γ(z)G(z), we recover (145) from (45).

The Barnes’ function G(z) is a basic object in analysis, bearing the same relation to the gamma
function as the gamma function bears to the function z, Γ(z + 1) = z Γ(z). Just as log Γ(z) is a
sum of values of log z, so logG(z) is the iterated sum. It is of interest to delineate some of the
analytic pathways by which G(z) appears in the asymptotics of Dn(f).

The most direct example, a particular case of (145), arises for the diagonal correlation function
〈σ1,1 σ1+n,1+n〉 at Tc, where ϕdiag(θ) = ei(π−θ)/2, i.e. V ≡ 0, m = 0, α0 = 0, β0 = −1/2, in (104)
gives rise to the Cauchy determinant (103) which can be evaluated as in (98) in terms of a product
of gamma functions, and hence in terms of G-functions,

∏n−1
q=1 Γ(q + 1) = G(n + 1)/G(2), etc.

For a system of polynomials orthonormal with respect to a function f on the unit circle, the
leading coefficients χk are related to Dn(f) by the product formula (135). As we discussed above,
in the case of f given by (134) the coefficients χk are expressed in terms of gamma functions,
and therefore G-functions appear in the product. More generally, there is a certain universality in
the asymptotic behavior of orthogonal polynomials associated with FH symbols on S1 (see [DIK1]
[DIK3]), and, mutatis mutandis, for general FH symbols f , the G-functions enter the arena through
the same stage door.

As noted above in (126), at T = Tc, ϕons

(
eiθ
)
has a single FH singularity at z0 = 1 with

α0 = 0 and β0 = −1
2 . The first confirmation of (137) (142) which allowed for these values was

given in [BottSilb4], where the authors proved the result for m = 0, ℜα0 ≥ 0, ℜ (α0 + β0) >
−1 and ℜ (α0 − β0) > −1. It is instructive to recover Wu’s asymptotic formula (112) from

(137) (142). Here V
(
eiθ
)
= 1

2 log
(

1−γ1 eiθ
1−γ1 e−iθ

)
and we find V0 = 0 and Vk = −γ|k|1 /2k for k 6=

0. Thus E
(
eV
)

= e−
1
4

∑∞
k=1 k γ

2k
1 /k2 =

(
1− γ21

) 1
4 . On the other hand (b+(1))

− 1
2 (b−(1))

1
2 =

e
1
4

∑∞
k=1 γ

k
1 /k e

1
4

∑−∞
k=−1 γ

|k|
1 /|k| = (1− γ1)

− 1
2 . But G

(
1
2

)
= 2

1
24 e

1
8 π−1/4 A−3/2, where again A is

Glaisher’s constant (see [Bar]), and we have G
(
3
2

)
= Γ

(
1
2

)
G
(
1
2

)
= 2

1
24 e

1
8 π

1
4 A−3/2. Thus

G
(
1
2

)
G
(
3
2

)
= 2

1
12 e

1
4 A−3. Substituting these relations into (142), we obtain E

(
eV , 0, 12 , θ0 = 0

)
=

2
1
12 e

1
4 A−3 (1 + γ1)

1
4 (1− γ1)

− 1
4 , and as n−β

2
0 = n−

1
4 , we arrive at precisely the leading order term

in (112).
The definitive result for the leading order asymptotics of Toeplitz determinants with FH

singularities was obtained by Ehrhardt in his PhD thesis at TU Chemnitz in 1997 (see [Ehr]). Let
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|||β||| denote the seminorm

(148) |||β||| = max
j,k

|ℜβj −ℜβk|

where 1 ≤ j, k ≤ m if α0 = β0 = 0, and 0 ≤ j, k ≤ m otherwise. If m = 0, set |||β||| = 0.
Note that in the case of a single singularity, we always have |||β||| = 0. If V

(
eiθ
)
is C∞ on S1,

|||β||| < 1, ℜαk > −1
2 and αj ± βj 6= −1,−2, . . . for j, k = 0, 1, . . . ,m, then Ehrhardt proved the

Fisher-Hartwig conjecture (137) with Basor’s constant (142). As above, the conditions on αj ± βj
ensure that Basor’s constant is non-zero and (142) indeed provides the leading order asymptotics
for Dn(f) as n → ∞. A key element in Ehrhardt’s proof is a suitably generalized version of the
separation theorem in [BasHelt].11

An independent proof of Ehrhardt’s result was given recently in [DIK3] where only a finite degree
of smoothness is needed for V

(
eiθ
)
. In [DIK3], estimates for the error term in the asymptotics are

also provided. If V (z) ∈ C∞ on S1, the asymptotics (137) (142) hold with error term

(149) o(1) = O(n|||β|||−1).

Note that the smallness of the error term breaks down if |||β||| ≥ 1. We will consider this situation
in detail in the next section. The main steps of the method of [DIK3] are as follows. First, the
authors derive differential identities for the logarithmic derivatives of Dn(f), in particular, for

(150)
∂

∂αj
logDn(f),

∂

∂βj
logDn(f),

in terms of the associated OPUC’s of degrees n and n + 1 only. Second, the authors obtain the
asymptotics of these OPUC’s using their Riemann-Hilbert representation and the steepest descent
analysis of the Riemann-Hilbert problem for large n. Third, the asymptotic formulas so obtained
are substituted into the RHS of the differential identities, and the final result (137) (142) is obtained
by integration.12 In [DIK1], [DIK3] the authors also note various uniformity properties of the large
n asymptotics for Toeplitz determinants in the parameters, such as αj, βj , on which f depends.
This issue becomes important in discussions of double-scaling limits (cf Section 11).

For the Ising model at T > Tc, we see from (127) that z0 = 1, α0 = 0 and β0 = −1, and so
α0 + β0 = −1. Thus (137) (142) do not provide the leading order asymptotics for 〈σ1,1 σ1,1+n〉 in
this case. One must analyze lower order terms, in fact go “beyond all orders” in the language of
Kruskal, to capture the exponential decay in Wu’s result (111) (see Remark 7.1 below).

7 Basor-Tracy conjecture

As already observed in [BottSilb5] [BottSilb6], Ehrhardt’s condition on the seminorm, |||β||| < 1, is
not just a technical matter. In a critical calculation in 1991, Basor and Tracy [BasTr] considered a
particular symbol f

(
eiθ
)
which has two FH singularities at z0 = 1 and z1 = ei π = −1 respectively

(151) f
(
eiθ
)
= g1, 1

2
(z) g−1,− 1

2
(z) ei π/2

11Note that the RHS of (137) and (142) make sense for any αj , 2αj 6= −1,−2, . . . . In fact, (137) (142) still hold in
this case. This extension to the left of the lines ℜαj = −1/2 is explained in [Ehr] and corresponds to replacing the
symbol f by an appropriate distribution.

12 Note that if one just used the formula (135) instead of the differential identities, then the product
∏n0

k=0 χ
−2
k for

small n0, and hence the constant factor E in (137), would remain undetermined.
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with β0 =
1
2 , β1 = −1

2 so that |||β||| = 1. By direct computation they found that as n→ ∞

(152) Dn(f) =
1 + (−1)n

2

√
2

n
G

(
1

2

)2

G

(
3

2

)2

(1 +O(1))

which is not of the general FH asymptotic form. Basor and Tracy observed, however, that f
(
eiθ
)

had another FH representation with β0 = −1
2 and β1 =

1
2 ,

(153) f
(
eiθ
)
= ei π g1,− 1

2
(z) g−1, 1

2
(z) e−i π/2 .

If one substitutes the values V = 0, α0 = α1 = 0, β0 = 1
2 , β1 = −1

2 into (137) (142), one obtains
for (151)

n−(
1
4
+ 1

4)
∣∣1− eiπ

∣∣− 1
2
G
(
3
2

)
G
(
1
2

)

G(1)

G
(
1
2

)
G
(
3
2

)

G(1)
(1 + o(1))

= (2n)−
1
2 G

(
3
2

)2
G
(
1
2

)2
(1 + o(1))

as G(1) = 1. On the other hand, if one substitutes the values V = i π, α0 = α1 = 0, β0 = −1
2 ,

β1 =
1
2 , one obtains for (153)

einπ (2n)−
1
2 G2

(
1
2

)
G2
(
3
2

)
(1 + o(1)) .

Just adding these two asymptotic forms, we obtain precisely the Basor-Tracy result (152). So we
see that if a symbol f

(
eiθ
)
has more than one FH representation, then the asymptotics of Dn(f)

is given, at least in this case, by some combination of the Fisher-Hartwig asymptotics for each of
them. Based on this example, Basor and Tracy [BasTr] made the following bold, general conjecture.
First note the following. Let f

(
eiθ
)
be a Fisher-Hartwig symbol as in (118). Let n0, n1, . . . , nm be

a set of integers with
∑m

j=0 nj = 0, and let f
(
z; β̂
)
denote the FH symbol obtained by replacing βj

with β̂j = βj +nj, 0 ≤ j ≤ m, and eV (z) by
(∏n

j=0 z
ni
j

)
eV = eV+i

∑m
j=0 nj θj . Then f(β̂) = f

(
z; β̂
)

gives another FH representation for f(z),

(154) f(z) = f
(
z; β̂
)
, β̂j = βj + nj,

m∑

j=0

nj = 0 .

Moreover, it is easy to see that all FH representations of f(z) arise in this way. Given β, we call

(155) Oβ =



β̂ : β̂j = βj + nj,

n∑

j=0

nj = 0





the orbit of β. We consider the discrete minimization problem

(156) Fβ = min
β̂∈Oβ




m∑

j=0

(
ℜβ̂j

)2

 .

It is clear that the minimum is indeed obtained in Oβ . Let Mβ =

{
β̂ ∈ Oβ :

∑n
j=0

(
ℜβ̂j

)2
= Fβ

}
.

We say Mβ is non-degenerate if αi ± β̂j 6= −1,−2, . . . for all j = 0, . . . ,m and all β̂ ∈ Mβ .
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Conjecture 8. [BasTr] Let f
(
eiθ
)
be given as in (118) with V

(
eiθ
)
sufficiently smooth on S1 and

ℜαj > −1
2 , 0 ≤ j ≤ m. Suppose Mβ is non-degenerate. Then as n→ ∞,

(157) Dn(f) =
∑

β̂∈Mβ

[
Rn

(
f(β̂)

)
(1 + o(1))

]
.

Each Rn

(
f(β̂)

)
stands for the FH asymptotic form (137) (142) with β̂ and

(∏m
j=0 z

nj

j

)
eV in place

of β and eV respectively.

Note that by the definition of Mβ , all the terms Rn

(
f(β̂)

)
in (157) have the same order of

magnitude. Indeed for all β̂ ∈ Mβ, ℜ
∑m

j=0 β̂
2
j = Fβ −

∑m
j=0 (ℑβj)

2.

To see how this conjecture works for f
(
eiθ
)
in (151), where β0 =

1
2 and β1 = −1

2 , and n0+n1 = 0,
consider

1∑

j=0

(ℜβj + nj)
2 =

(
1

2
+ n0

)2

+

(
−1

2
− n0

)2

= 2

(
1

2
+ n0

)2

which clearly achieves its minimum at n0 = 0 = −n1 and also at n0 = −1 = −n1. These values
correspond to β̂ = β =

(
1
2 ,−1

2

)
and β̂ =

(
1
2 − 1,−1

2 + 1
)
=
(
−1

2 ,
1
2

)
, respectively. Thus the leading

asymptotics of Dn(f) is a sum of contributions from f(z) = f(z;β) and f(z) = f
(
z; β̂
)
, as in

(152).
Conjecture 8 was proved recently in [DIK1].

Theorem 9. [DIK1] Conjecture 8 holds.

The relation of the semi-norm |||β||| to the minimization problem is given by the following
elementary result.

Lemma 10. [DIK1] Given β, there are only two, mutually exclusive, possibilities: Either

(i) There exists β̂ ∈ Oβ such that |||β̂||| < 1. Then such a β̂ is unique and it is the unique

element of Mβ =
{
β̂
}

or

(ii) There exists β̂ ∈ Oβ such that |||β̂||| = 1. Then there are at least two such β̂’s and all of them

are obtained from each other by a repeated application of the following rule: add 1 to a β̂j
with the smallest real part, ℜβ̂j = mink ℜβ̂k, and subtract 1 from a β̂j′ with the largest real

part, ℜβ̂j′ = maxk ℜβ̂k. Moreover Mβ =
{
β̂ ∈ Oβ : |||β̂||| = 1

}
.

Clearly for f
(
eiθ
)
in (151), |||β̂||| = 1, if and only if β̂ = β or β̂ = β +(−1, 1). Also we see from

(i) that the case |||β||| < 1 in Ehrhardt’s Theorem corresponds to a unique minimizer in (156), and
hence to a single term in (157).

The proof of Conjecture 8 in [DIK1] proceeds as follows. Given β, if there exists β̂ ∈ Oβ with

|||β̂||| < 1, then β̂ is unique and as n → ∞, Dn(f) = Rn

(
f(β̂)

)
(1 + o(1)) (Ehrhardt’s Theorem).

On the other hand, if there exists β̂ ∈ Oβ with |||β̂||| = 1, then Mβ =
{
β̂ ∈ Oβ : |||β̂||| = 1

}
has at

least two elements. Then for some b,

(158) b ≤ ℜβ̂j ≤ b+ 1
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for all β̂j , and for some p, ℓ > 0 there are p values of j such that ℜβ̂j = b and ℓ values for which

ℜβ̂j = b+1. Let f̃
(
eiθ
)
be the FH symbol (not a FH-representation of f

(
eiθ
)
) with αj , V as before

but β̃j = β̂j if ℜβ̂j < b+ 1 and β̃j = β̂j − 1 if ℜβ̂j = b+ 1. Then clearly

(159) f(z) = c zℓ f̃(z)

for some simple constant c, and by a general relation

(160) Dn(f) =
cn(−1)ℓn FnDn(f̃)∏ℓ−1

j=0 j!

where

(161) Fn = det

(
dj π̃n+k
dzj

(0)

)

0≤j,k≤ℓ−1

and π̃q(z) = zq + . . . , q ≥ 0, are the monic orthogonal polynomials with respect to the (in general

non-real) weight f̃
(
eiθ
)
dθ
2π on S1,

(162)

∫ 2π

0
π̃q

(
eiθ
)
e−irθ f̃

(
eiθ
) dθ
2π

= 0, 0 ≤ r < q.

(A part of the proof of Conjecture 8 consists in showing that the π̃q’s exist and are unique for q

sufficiently large, q ≥ q
f̃
.) Now clearly |||β̃||| < 1, and so we can evaluate Dn(f̃) as n → ∞ using

Ehrhardt’s Theorem. The proof of the conjecture then reduces by (160) (161) to evaluating the
polynomials π̃n(z), . . . , π̃n+ℓ−1(z) and their derivatives at z = 0, as n→ ∞. This is effected by using
the steepest-descent method of Deift and Zhou for Riemann-Hilbert problems mentioned in Section
3 above (see also, for example, [DKMVZ1], [DKMVZ2]). The fact that orthogonal polynomials
with respect to a weight on the line, can be expressed in terms of a Riemann-Hilbert problem is
due to Fokas, Its and Kitaev in [FIK]: the extension of this result to orthogonal polynomials on
the circle is given in [BDJ].

Remark 7.1. As noted above, for the Ising model, at T > Tc, ϕons

(
eiθ
)
in (127) corresponds to

a degenerate case for Ehrhardt’s Theorem. However ϕons

(
eiθ
)
= −e−iθ ϕ̃

(
eiθ
)
where ϕ̃

(
eiθ
)
=

(1−γ1 eiθ)(γ2−eiθ)
|1−γ1 eiθ||1−γ2 eiθ| is smooth, nonzero, and has no winding on S1. Hence Dn(ϕ̃) can be computed as

n→ ∞ using SSLT as in (85). Analogous to (159), (160), we have the formula

(163) Dn(ϕons) = π̂n(0)Dn(ϕ̃)

where π̂n(z) = zn + . . . , n ≥ 0 are the complementary orthogonal polynomials to the π̃n’s (see
[DIK1])

(164)

∫ 2π

0
π̂n

(
e−iθ

)
ei jθ ϕ̃

(
eiθ
) dθ
2π

= 0, 0 ≤ j < n.

Applying the steepest descent method to the Riemann-Hilbert Problem for π̂n, and taking into
account the analyticity of ϕ̃(z) in an annulus around {|z| = 1}, we obtain the precise decay
rate of π̂n(0) as n → ∞, and hence via (163), the precise leading order exponential decay rate
cn−1/2γ−n2 (1 + o(1)) as in (111). The steepest descent method also yields the higher order terms in
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the expression, to any desired order. An alternative, and very elegant, proof of (111) using a contour
deformation argument, is given in [FF]. For ϕdiag(e

iθ) and the diagonal correlation function, the
situation is similar, and one obtains:

(165) 〈σ1,1 σ1+n,1+n〉 =
k−nons√
n

√
π

(1− k−2
ons)1/4

(1 + o(1)), T > Tc.

We also note that in Section 10.7 of [BottSilb3] and in the papers [BottWid1] [Wid7], the authors
also analyze the Toeplitz determinants arising in the case T > Tc.

Remark 7.2. Formulae (160) and (163) should be compared respectively with formulae (108) and
(97) in [FisHart1].

8 Hankel and Toeplitz+Hankel determinants

In [DIK1] the authors also consider Hankel and Toeplitz + Hankel determinants with FH-type
singularities. For a weight w = w(x) ≥ 0 on [−1, 1], the associated Hankel determinant is given by
[Sz5]

(166) D(H)
n (w) = det

(∫ 1

−1
xj+k w(x) dx

)n−1

j,k=0

.

The Hankel determinant D
(H)
n (w) is related to the polynomials orthogonal with respect to the

weight w on the interval [−1, 1] in a similar way as a Toeplitz determinant is related to OPUC’s.
For fixed r = 0, 1, 2, . . . we consider w(x) of the following form:

(167) w(x) = eU(x)
r+1∏

j=0

|x− λj |2αi ωj(x)

where

1 = λ0 > λ1 > · · · > λr+1 = −1,

ωj(x) =

{
eiπ βj , −1 ≤ x ≤ λj, ℜβj ∈

(
−1

2 ,
1
2

]

e−iπ βj , 1 ≥ x > λj

β0 = βr+1 = 0, ℜαj > −1

2
, j = 0, 1, . . . , r + 1

and where U(x) is a sufficiently smooth function on [−1, 1].

Remark 8.1. Note that there is no loss of generality in setting β0 = βr+1 = 0 and ℜβj ∈
(
−1

2 ,
1
2

]

as the functions ω0(x), ωr+1(x) are just constant on (−1, 1) and ωj (x;βj + kj) = (−1)kj ωj (x;βj)
for kj ∈ Z.

In [DIK1] the authors prove that for w as in (167) with ℜβj ∈
(
−1

2 ,
1
2

)
, j = 1, . . . , r, as n→ ∞,

(168) D(H)
n (w) = 2−n

2
GnH n

− 1
4
+2(α2

0+α
2
r)+

∑n
j=1(α2

j−β2
j )EH (1 + o(1))

for certain explicit constants GH and EH depending on U(x), λj and βj (see (1.37) in [DIK1]).
This result is derived by introducing the function

(169) f
(
eiθ
)
= f

(
ei(2π−θ)

)
≡ w(cos θ) | sin θ|, 0 ≤ θ < 2π
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on S1. With w as in (167), f has FH singularities of the form

(170)

f
(
eiθ
)
= c eV (e

iθ) |z − 1|4α0+1 |z + 1|4αr+1+1
r∏

j=1

|z − zj |2αj
∣∣z − z′j

∣∣2αj

×
r∏

j=1

[
gzj ,−βj(z) z

βj
j gz′j , βj(z)

(
z′j
)−βj] , 0 ≤ θ < 2π

where




cos θj = λj , zj = eiθj , j = 0, 1, . . . , r + 1, 0 = θ0 < θ1 < · · · < θr+1 = π

z′j = ei(2π−θj), j = 0, 1, . . . , r + 1

c = 2−2(
∑r+1

j=0 αj)−1 e2i
∑r

j=1 βj arcsinλj

and

(171) V
(
eiθ
)
= U(cos θ).

The Hankel determinant D
(H)
n (w) and the Toeplitz determinant D2n(f) are related in the following

way:

(172) D(H)
n (w)2 =

π2n

4(n−1)2

(π2n(0) + 1)2

π2n(1)π2n(−1)
D2n(f)

where πk(z) = zk + . . . , k ≥ 0, are the monic orthogonal polynomials with respect to the weight
f
(
eiθ
)
dθ
2π on S1 as in (162),

∫ 2π

0
πk

(
eiθ
)
e−ijθ f

(
eiθ
) dθ
2π

= 0, 0 ≤ j < k.

As the semi-norm |||β||| < 1 for f
(
eiθ
)
, we may use Ehrhardt’s result to evaluate D2n(f), n→ ∞,

and the result (168) follows from (172) by computing the asymptotics for π2n(z) for z = 0,±1.
Note that if ℜβj = 1

2 for some j ∈ {0, 1, . . . , r + 1}, then |ℜβj −ℜ (−βj)| = 1 and so |||β||| = 1. In
this case we would have had to use the Basor-Tracy form (157) for D2n(f): we have restricted our
attention to the case ℜβj ∈

(
−1

2 ,
1
2

)
only for simplicity.

Remark 8.2. For a discussion of results of various authors, particularly Basor and Ehrhardt, related
to (168), see [DIK1], Remark 1.24.

For even FH symbols f , i.e., f
(
eiθ
)
= f

(
ei(2π−θ)

)
, the authors in [DIK1] also consider Toeplitz

+ Hankel determinants of four types defined in terms of the Fourier coefficients fk of f ,

(173) det (fj−k + fj+k)
n−1
j, k=0 , det (fj−k − fj+k+2)

n−1
j, k=0 , det (fj−k ± fj+k+1)

n−1
j, k=0 .

Such matrices arise, in particular, in the theory of classical groups and its application to random
matrix theory and statistical mechanics, and there are simple relations between these determinants
and Hankel determinants on [−1, 1] with added singularities at the end-points (see [DIK1] and the
references therein). For example, for f

(
eiθ
)
= f

(
ei(2π−θ)

)
,

(174) det (fj−k + fj+k)
n−1
j, k=0 =

2n
2−2n+2

πn
D(H)
n (v)
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where D
(H)
n (v) is the Hankel determinant with symbol v(x) = f

(
eiθ(x)

)
/
√
1− x2, θ(x) = arccos x,

on [−1, 1], with similar formulae for the other three determinants. Let f
(
eiθ
)
= f

(
ei(2π−θ)

)
with

FH singularities at 0 = θ0 < θ1 < · · · < θr < θr+1 = π and complementary singularities at 2π − θj,
1 ≤ j ≤ r. Suppose that ℜβj ∈ (−1

2 ,
1
2), j = 1, . . . , r, and β0 = βr+1 = 0. Then utilizing (174) and

(168), the authors show that as n→ ∞

(175)
det (fj−k + fj+k)

n−1
j, k=0 = GnT+H n

∑r
j=1(α2

j−β2
j )+

1
2(α

2
0+α

2
r+1−α0−αr+1)

× ET+H (1 + o(1))

for certain explicit constants GT+H , ET+H , with similar results for the other three Toeplitz+Hankel
determinants in (173).

Remark 8.3. For a discussion of the related results of Basor and Ehrhardt for determinants of type
(173), see [DIK1], Remark 1.27.

Remark 8.4. In [FF] the authors discuss a large number of conjectures and results for Toeplitz,
Hankel, and Toeplitz+Hankel determinants with FH-type singularities. The determinants arise in
turn from problems in statistical physics. Many of the conjectures in [FF] can now be resolved
using results from [DIK1] such as (168) and (175).

9 Some applications

As advertised at the outset, the goal of this paper has been to show how SSLT developed and was
generalized in response to questions arising in the analysis of the Ising model. Although the case
|||β||| = 1 in [DIK1] does not arise in the Ising model (the same is true for the Hankel and Toeplitz
+ Hankel determinants (166) and (173) respectively), this case does arise in many other problems in
statistical physics. For example, the probability PE(n) of a string of length n of ferromagnetically
aligned spins in the antiferromagnetic ground state in the XY spin chain, is given, for a certain
range of parameters, by a Toeplitz determinant with 2 β-singularities such that |||β||| = 1. Thus
(157) verifies the result on PE(n), n → ∞, presented in [FrAb], which the authors based on the
Basor-Tracy conjecture. In a similar way, the results in [DIK1] can be used to justify the asymptotic
results for correlations arising in the theory of the impenetrable Bose gas that were obtained in
the work of Ovchinnikov [Ov] on the basis of the Basor-Tracy conjecture. In another direction in
[GGM], the authors use (157) to evaluate the long-time behavior of a variety of non-equilibrium
1D many-body problems. In particular, in the Fermi edge singularity and tunneling spectroscopy
problems considered in [GGM], the authors show that the various contributions to (157) have a
very transparent physical meaning: they correspond to contributions to the Green’s functions for
these problems from multiple Fermi edges.

Theorem 9 can also be used to analyze the asymptotic behavior of the eigenvalues λ
(n)
1 ≤ λ

(n)
2 ≤

· · · ≤ λ
(n)
n , n→ ∞, of a Toeplitz matrix Tn(ϕ) with a real symbol ϕ. At the beginning of our story

(see Theorem 2) we interpreted Szegő’s early results as saying that the λ
(n)
j ’s were equidistributed

as n → ∞. But what about the behavior of individual eigenvalues, λ
(n)
k , n → ∞? Early work on

this question considered the so-called extreme eigenvalues λ
(n)
k and λ

(n)
n−k with k fixed as n → ∞

(see [GreSz], [BGrM] and the references therein). The important case for λ
(n)
k with n → ∞ and

k/n → x ∈ (0, 1) was only considered for the first time recently in [BGrM]. Recall that by general

principles (see e.g. [GreSz]), for bounded, real-valued functions f
(
eiθ
)
, the eigenvalues {λ(n)k } lie
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in the interval [L,M ], L = inf f
(
eiθ
)
, M = sup f

(
eiθ
)
, and as n → ∞ the λ

(n)
k ’s fill out the

interval in the sense that if λ ∈ [L,M ], then there exist kn(λ) such that λ
(n)
kn(λ)

→ λ. In [BGrM]

the authors consider function f
(
eiθ
)
that are unimodal, real-valued trigonometric polynomials, i.e.,

for some 0 < θ0 < 2π, d
dθ f

(
eiθ
)
> 0 for 0 < θ < θ0 and d

dθ f
(
eiθ
)
< 0 for θ0 < θ < 2π, with the

additional property that d2

dθ2 f
(
eiθ
)
6= 0 at θ = 0 and θ = θ0. For any λ ∈ (L,M), there exist unique

0 < θ1(λ) < θ0 < θ2(λ) < 2π such that f
(
eiθj(λ)

)
− λ = 0, j = 1, 2. The function

ψ(λ) =
1

2
[θ1(λ)− θ2(λ)] + π

extends to a homeomorphism from [L,M ] onto [0, π]. In [BGrM] the authors prove, in particular,
that for any x ∈ (0, 1)

(176) λ
(n)
k = λx + o(1)

as n→ ∞ and k/n→ x, where ψ(λx) = πx, and

(177) λ
(n)
k+1 − λ

(n)
k =

π

ψ′(λx)
1

n+ 1
+ o

(
1

n

)

if |k/n− x| = O
(
1
n

)
as n→ ∞.

The estimate (177) brings precision to the equidistribution result in Theorem 2. In [DIK2] the
authors extend the result in [BGrM] to C∞ unimodal, real-valued functions on S1, and they also
consider piecewise–constant symbols of the form

(178)
f
(
eiθ
)
= 1, θ ∈

[
0, θ̂1

)
∪
[
θ̂2, 2π

)

= e2πγ , θ ∈
[
θ̂1, θ̂2

)

where 0 ≤ θ̂1 < θ̂2 < 2π and γ > 0 are given. For symbols such as (178), the eigenvalues λ
(n)
k

cannot be spaced 1/n apart as in (177). This is clear, for example, from (8) in Theorem 2, if we let
F (λ) be any non-negative continuous function with support in

(
1, e2πγ

)
. And indeed, the general

result in [Bas2] asserts that in the case (178), for any small ǫ > 0, the interval
(
1 + ǫ, e2πγ − ǫ

)

contains order log n eigenvalues λ
(n)
k , spaced at distance 1/ log n apart, as n→ ∞: The bulk of the

eigenvalues accumulate at 1 and at e2πγ . On the basis of numerical computations, the authors in
[LeSh] (see also [LeSoSo]) conjectured that in the case

(179) θ̂2 − θ̂1 = 2π p/q, p, q ∈ Z, 0 < p < q

there is a “near periodicity” in the spectrum of Tn(f). In [DIK2] the authors prove this conjecture

in the following sense: for n sufficiently large, if λ
(n)
k in an eigenvalue of Tn(f) in

(
1 + ǫ, e2π γ − ǫ

)
,

then there is an eigenvalue λ
(n+q)
j of Tn+q such that

∣∣∣λ(n)k − λ
(n+q)
j

∣∣∣ ≤ c(n log n)−1. Of course

1/(n log n) << 1/ log n, the spacing of the λ
(n)
k ’s, k = 1, . . . , n.

The proof of the above results in [DIK2] rests on the simple fact that det (Tn(f)− λ) =
det (Tn(f − λ)), so that the eigenvalue equation for Tn(f) is equivalent to the vanishing of the
Toeplitz determinant Dn(f−λ). Now if f

(
eiθ
)
is a smooth, unimodal function on S1, then f

(
eiθ
)
−λ
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is a FH symbol with two singularities at z1 = eiθ1(λ), z2 = eiθ2(λ) and α1 = α2 =
1
2 , β1 = −β2 = 1

2
(see (124))

(180) f(z)− λ = eV (z) |z − z1| |z − z2| gz1, 12 (z) gz2,− 1
2
(z)

(
z1
z2

)− 1
2

where V
(
eiθ
)
is smooth on S1. This is a case of a FH symbol with |||β||| = 1. Therefore we need

to use Theorem 9 to obtain the asymptotics for Dn(f − λ). The set Mβ here contains 2 elements,
and the condition for an eigenvalue is the vanishing of the sum in (157):

(181) Dn(f − λ) = Rn(f(β1, β2)− λ)(1 + o(1)) +Rn(f(β1 − 1, β2 + 1)− λ)(1 + o(1)) = 0

The asymptotic results on the eigenvalues follow from this formula.
The Toeplitz matrix Tn(f) with the symbol f

(
eiθ
)
in (178) is handled similarly. The function

f(z) − λ in this case has 2 β-type singularities whose positions on the circle are fixed, but the
imaginary parts of β’s depend on λ: β1 = −β2 = 1

2 + iγ(λ). Note that we again have |||β||| = 1,
and the condition for the eigenvalues is thus given by Theorem 9.

Finally we describe an example where the results in [DIK1] are needed for a Toeplitz+Hankel
determinant of type (173). The following problem arises in the framework of the random matrix
approach to the theory of the Riemann zeta-function and other L-functions (see [Keat] for a recent
survey). Define

(182) φ(eiθ) =

∣∣∣∣2 sin
θ

2

∣∣∣∣
2k

eV (eiθ), k ∈ N

where

V
(
eiθ
)
= 2k



∫ e

1
u(y)





∞∑

j=−∞
Ci (|θ + 2πj| (log y)(logX))



 dy − log

∣∣∣∣2 sin
θ

2

∣∣∣∣


 ,

Ci (z) = −
∫ ∞

z

cos t

t
dt

and u(y) is a smooth, non-negative function supported on
[
e1−X

−1
, e
]
and of total mass one.

Consider the following average over the orthogonal group SO(2n),

(183) ESO(2n)




n∏

j=1

φ
(
eiθi
)

 .

Here e±iθ1 , . . . e±iθn are the eigenvalues of a random matrix in SO(2n): note that φ is even, φ
(
eiθ
)
=

φ
(
e−iθ

)
. This expectation was introduced by Bui and Keating in [BuKe] (following [GHK]) as the

random matrix counterpart of a key term contributing to the mean values of certain Dirichlet L-
functions in the Katz-Sarnak orthogonal family. The issue is the large n and large X behavior of
this average. The question can be resolved with the help of (175). One observes that

(184) ESO(2n)




n∏

j=1

φ
(
eiθj
)

 =

1

2
det (φj−k + φj+k)

n−1
j, k=0
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and that the symbol (182) is of FH type with a single α-singularity at z0 = 1 and α0 = k. Directly
from (the precise version of) the asymptotic formula (175) (see Theorem 1.25 in [DIK1]), one
obtains, for X large, as n→ ∞

(185) ESO(2n)




n∏

j=1

φ
(
eiθj
)

 ∼ G(1 + k)

(
Γ(1 + 2k)

G(1 + 2k) Γ(1 + k)

)1
2
(

2n

eγE logX

)k(k−1)
2

where γE is Euler’s constant. Formula (185) is precisely the asymptotic form conjectured by Bui
and Keating in [BuKe].

10 Block Toeplitz matrices

We now consider block Toeplitz matrices Dn(ϕ) of the form Dn(ϕ) = det(ϕj−k)
n−1
j,k=0 where ϕq ∈

M(r,C) are the Fourier coefficients of an r×r-matrix-valued integrable function ϕ
(
eiθ
)
on S1. The

earliest asymptotic result for such determinants is the analog of Szegő’s Theorem 1 due to Gyires
in 1956 [Gy], who showed that if ϕ(z) is continuous and positive definite for |z| = 1, then

(186) lim
n→∞

1

n
logDn(ϕ) =

1

2π

∫ 2π

0
log det ϕ

(
eiθ
)
dθ.

Block Toeplitz matrices arose in the Ising model in the following way. In their famous paper
[LeYa] on the Lee-Yang Theorem, asserting that the zeros of the partition function ZΛ,h (cf. Re-
mark 4.1 in Section 4), for the Ising model in the presence of a magnetic field, all lie on the
imaginary h-axis, Lee and Yang also proposed, but did not prove, expressions for the free energy

Fh = lim|Λ|→∞−kB T logZΛ,h and the magnetizationMh = limn→∞ 〈σ1,1 σ1,1+n〉
1
2 at the particular

imaginary value of h, h
kB T = 1

2 i π. In terms of the variable ρ = e−2h/kB T , the zeros of ZΛ,h lie on
the circle |ρ| = 1. As noted in [LeYa], Mh is precisely the density of the zeros of ZΛ,h on {|ρ| = 1}
at ρ = −1, in the limit as |Λ| → ∞. In [McWu2], McCoy and Wu present a derivation of these
expressions for Fh and Mh, h/kB T = 1

2 iπ. Regarding Mh, for this value of h, they first show how
to express the correlation function 〈σ1,1 σ1,1+n〉 in terms of a 2× 2 block Toeplitz determinant Bn.
Then they show by certain ingenious manipulations how to evaluate Bn in terms of a determinant
which is a product of two scalar Toeplitz determinants to which SSLT applies. In this way they
are able to compute Mh explicitly and recover the formula in [LeYa]. This is the first example of
an SSLT-type result for block Toeplitz matrices.

The general theory of SSLT for block Toeplitz matrices begins with Widom’s paper [Wid5].
Under certain smoothness assumptions on the r × r-matrix-valued function ϕ

(
eiθ
)
, Widom shows

that

(187) Y (ϕ) ≡ lim
n→∞

Dn(ϕ)/ exp

{
n

2π

∫ 2π

0
log det ϕ

(
eiθ
)
dθ

}

exists, and in [Wid3] he shows that

(188) Y (ϕ) = det
[
T (ϕ)T

(
ϕ−1

)]

where T (ϕ), T
(
ϕ−1

)
are the Toeplitz operators associated with ϕ and ϕ−1 respectively (cf. (76)).

Part of the proof of (188) consists in showing that T (ϕ)T (ϕ−1)− 1 is trace-class in ℓ2+, so that the
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RHS is well-defined. In the scalar case, as mentioned above, Widom uses the Helton-Howe-Pincus
formula to show that (188) reduces to the standard result Y (ϕ) = e

∑∞
k=1 k(logϕ)k (logϕ)−k . As noted

above (see (73) et seq), in [Wid4], Widom introduced a “standard” pathway to SSLT. The method
extends with only a change of notation to the block Toeplitz case, and so Widom obtains a new
direct proof of (187), (188) with no more effort than in the scalar case. The same is true for the
method of Basor and Helton in [BasHelt].

Block Toeplitz matrices occur in many physical situations, for example, in the study of the Ising
model with next-nearest-neighbor interactions, and also, more recently, in the theory of the dimer
model [BasEhr] and in the study of the entanglement spectrum in quantum systems (see [VLRK],
[JK]). The use of the general SSLT for block Toeplitz matrices in physical applications poses new
challenges vis a vis the scalar case. The new difficulties are due to the fact that formula (188), as
elegant as it is, is hard to evaluate in concrete calculations in the case of a matrix symbol ϕ. The
determinant on the right hand side of (188) is the Fredholm determinant of an infinite matrix, and
even for 2 × 2 matrix functions ϕ an effective evaluation of Y (ϕ) is a highly nontrivial enterprise.
Indeed, the authors are aware of only three situations when such effective evaluations have been
made so far. The first situation arises when, as in the work of McCoy and Wu mentioned above,
it is possible, by using an ad hoc technique, to express the block Toeplitz determinant in question
in terms of scalar Toeplitz determinants. The work of Tanaka, Morita, and Hiroike [TMH], and of
Böttcher [Bott2] on the Ising model with the next-nearest-neighbor interactions provides another
example of this sort. In this example, the relevant matrix symbol ϕ is described by the formula

(189) ϕ(z) = (I − zR) a(z)
(
I − z−1S

)

where a(z) is a diagonal matrix function,

(190) a(z) =

(
λ(z) 0
0 λ(z−1)

)

with λ(z) being an elementary algebraic function, and the constant matrices R and S are expressed
as follows:

R = U

(
α 0
0 β

)
U−1, S = U

(
β 0
0 α

)
U−1.

In these expressions, U is an invertible 2× 2 matrix, and α, β are complex numbers, satisfying the
conditions: |α| < 1, |β| < 1. Note that these inequalities guarantee that the first matrix factor in
(189) is holomorphic and invertible inside the unit disc while the last factor is holomorphic and
invertible outside of the unit disc. The function λ(z) (an analog of Onsager’s symbol (25)), the
matrix U , and the numbers α and β are determined by the physical parameters of the problem, the
temperature T and the anisotropy coefficients. As in the usual Ising model, there exists a critical
temperature Tc, and the behavior of the determinant Dn(ϕ) depends on whether T > Tc or T < Tc.
Böttcher shows that in the case T > Tc (the paramagnetic phase) the Wiener-Hopf factorization
of the matrix symbol ϕ−1(z) has nontrivial partial indices which implies that the operator T (ϕ−1)
is not invertible. In view of (188), this implies that the factor Y (ϕ) is zero. Moreover, it is easily

seen that
∫ 2π
0 log detϕ

(
eiθ
)
dθ = 0, and hence for T > Tc

lim
n→∞

Dn(ϕ) = 0

which has the physical interpretation that there is no spontaneous magnetization in the paramag-
netic phase. In the ferromagnetic phase, that is when T < Tc, an efficient direct analysis of Widom’s
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factor Y (ϕ) is not apparent, and Böttcher develops an ad-hoc approach which uses the specifics
of the symbol (189). Indeed, in his preprint, by means of ingenious operator-algebra arguments,
Böttcher obtains the formula

(191) lim
n→∞

Dn−1(ϕ)

Dn(a)
= (detU)−2(1− αβ)−2

[
U11U22

λ+(β)λ−(1/α)
− U12U21

λ+(α)λ−(1/β)

]2

where λ = λ+λ− is a Wiener-Hopf factorization of λ (which, as Böttcher shows, is possible in the
case T < Tc). Hence the evaluation of Dn−1(ϕ) as n→ ∞ is reduced to the asymptotic evaluation
of the scalar Toeplitz determinant Dn(λ), for which the standard (scalar) SSLT applies. In the
critical case, T = Tc, the function λ(z) acquires a Fisher-Hartwig type singularity. Böttcher then
provides a modification of his previous analysis for this case and, using in addition various results
obtained earlier with Silbermann (see Section 6), he then derives the leading asymptotics of Dn(ϕ)
in the critical case as well.

The two other types of block Toeplitz determinants for which the Widom pre-factor Y (ϕ) can
be evaluated are not reducible to the scalar case. The first one corresponds to the matrix symbols
ϕ with a Fourier series that is truncated on at least one side. This class was singled out by Widom
himself in [Wid5]. For such matrices ϕ, the evaluation of Y (ϕ) is reduced to the evaluation of a
finite dimensional determinant (in fact, a block Toeplitz determinant of a finite fixed size). This
result of Widom has been used in the recent paper [BasEhr] of Basor and Ehrhardt devoted to
the dimer model. The matrix function ϕ appearing in the dimer model is not originally of the
truncated form, but it is truncated up to a scalar algebraic factor. Basor and Ehrhardt show that
this factor can be accounted for by means of skillful algebraic manipulations which transform the
original quantity Y (ϕ) to one with ϕ replaced by its truncated part.

The second type of block Toeplitz determinants that are not reducible to the scalar case, but for
which the large n limit is still computable, are determinants with algebraic matrix symbols. Such
determinants appear in the theory of quantum entanglement when one evaluates the von Neumann
entropy, which is a fundamental measure of the entanglement of a subsystem with the rest of the
quantum system. For instance, as shown in [VLRK], [JK], the evaluation of the von Neumann
entropy of a subsystem of neighboring spins in the XY quantum spin chain is equivalent to the
asymptotic evaluation of the block Toepltz determinant Dn(ϕ) whose matrix symbol ϕ is given by
the formula (for more details and references see [JK]),

(192) ϕ(z) =

(
iµ ψ(z)

−ψ−1(z) iµ

)
, and ψ(z) =

√
(z − z1)(z − z2)

(1− z1z)(1 − z2z)
.

Here, z1 6= z2 are complex nonzero numbers not lying on the unit circle and determined by the
physical data of the model (the anisotropy parameter and the magnetic field) and µ is a free complex
parameter lying outside of the interval [−1, 1]. The asymptotic evaluation of Dn(ϕ) is performed in
[IJK] and it is based on yet another formula of Widom which he obtained in [Wid5]. This formula
is concerned with block Toeplitz determinants depending on an external parameter, say µ, and
is used to evaluate the leading asymptotics of the µ-logarithmic derivative of the determinant in
terms of the Wiener-Hopf factorizations of the matrix function ϕ−1, i.e. in terms of the ± - matrix
functions u± and v± defined by the equations

(193) ϕ−1(z) = u+(z)u−(z) = v−(z)v+(z) u−(∞) = v−(∞) = I,

where, as usual, f+ (f−) means that the matrix function is invertible and analytic inside (outside)
of the unit circle, respectively. Under some natural smoothness assumptions (see [Wid5], Theorem
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4.1), Widom’s formula reads:

(194)

d

dµ
logDn(ϕ) =

n

2πi

∫

S1

tr

(
ϕ−1(z)

∂ϕ(z)

∂µ

)
dz

z

+
i

2π

∫

S1

tr

((
u′+(z)u−(z)− v′−(z)v+(z)

)∂ϕ(z)
∂µ

)
dz + o(1), n→ ∞.

(In the case of symbols analytic in an annulus including the unit circle, formula (194) was re-derived
with a quantitative estimate of the error term in [IJK] via the Riemann-Hilbert scheme (see also
[IMM]).) Widom used this asymptotic formula in the proof of his main result, vis., the asymptotic
relation (187). A curious fact is that, up until the work [IJK], equation (194), apparently, had never
been used directly for the asymptotic evaluation of the determinants of block Toeplitz matrices.
And for a good reason: the efficiency of formula (194) relies on the effectiveness of the Wiener-
Hopf factorizations (193) of a given matrix valued function ϕ(z). Usually, this is a transcendental
problem equivalent to the solution of a system of singular integral equations on the unit circle which
can seldom be effected in terms of known special functions. However, as was observed in [IJK], in
the case of algebraic matrix functions ϕ(z) one can take advantage of the algebro-geometric method
that had been developed in the late 70s to the early 90s in soliton theory (see e.g. [BBEIM]). Using
the Riemann-Hilbert version of this method exploited in [DIZ] (see also [DKMVZ1], [DKMVZ2]),
the authors of [IJK] were able to construct the Wiener-Hopf factorizations of the symbol (192) in
terms of Jacobi theta-functions. This in turn, with the help of Widom’s formula (194), yielded the
following asymptotics of the corresponding Toeplitz determinant:

(195) Dn(ϕ) ∼
θ3

(
1
2πi log

µ+1
µ−1 +

στ
2

)
θ3

(
1
2πi log

µ+1
µ−1 − στ

2

)

θ23
(
στ
2

) (1− µ2)n, n→ ∞.

Here

θ3(s) ≡ θ(s; τ) =
∞∑

k=−∞
eπiτk

2+2πisk

is the Jacobi theta-function, σ = ±1, and τ is the modulus of the elliptic curve

(196) w2(z) = (z − z1)(z − z2)(z − z−1
2 )(z − z−1

1 ).

The concrete choice of σ depends on the way the branch points z±1
1,2 are located with respect to the

unit circle (see [IJK] for details). We refer the reader to the survey [IK] for more on these results
and on their applications in the theory of quantum entanglement. The asymptotic formula (195)
was extended in [IMM] to the case of more general integrable spin chains introduced in [KM]. The
relevant symbol has the same matrix structure as (192), but with scalar function ψ(z) now given
by

(197) ψ(z) =

√
p(z)

z2mp(1/z)

where p(z) is a polynomial of degree 2m. The analog of the formula (195) in the case m > 1 involves
a hyperelliptic curve instead of an elliptic curve, and instead of the Jacobi theta-function one needs
2m − 1 dimensional Riemann theta-functions. Independently of [IJK] and [IMM], similar results
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for block Toeplitz determinants with algebraic symbols appearing in the theory of the Gelfand-
Dickey hierarchy, were obtained, again with the help of the algebro-geometric approach, in [Caf].
It is worth noticing that the method of [IJK] can be applied to the problems considered above by
Böttcher and Basor-Ehrhardt. Indeed, the symbol of the determinant appearing in the work of
Basor and Ehrhardt is in fact algebraic and hence can be factorized within the algebro-geometric
approach, while the symbol of Böttcher’s determinant is already in the form u+u−. The reverse
factorization, i.e. representation of the symbol (189) as v−v+ involves an elementary algebraic
operation. We note finally that Widom’s formula (194) can be used to extend Böttcher’s results
to symbols of the form ϕ(z) = R(z)a(z)S(z−1), where a(z) is a diagonal matrix function and R(z)
and S(z) are polynomial matrix functions invertible for all z inside the unit circle.

11 Double-scaling limits

Of all the challenges in Toeplitz theory that arise from the Ising model, the deepest is the issue of
the double-scaling limit (or in physicists’ parlance, simply the scaling limit), T → Tc and n → ∞.
We have already mentioned the importance of this problem in physics. At the purely mathematical
level, the issue is the following: Suppose one has a Toeplitz determinant Dn(ϕ) with a symbol that
depends on some external parameter, say t, ϕ

(
eiθ
)
= ϕt

(
eiθ
)
. For t > 0, ϕt is regular, but at t = 0,

ϕt has a (Fisher-Hartwig) singularity, and hence, as we know, the nature of the asymptotics of
Dn(ϕt) as n → ∞ is different for t > 0 and t = 0. This raises the general question: How does one
describe the transition from the one kind of asymptotics to the other as n→ ∞ and t ↓ 0?

In [WMTB], Wu, McCoy, Tracy, and Barouch discovered a remarkable scaling relation for the
Ising model. They defined the scaling functions

(198) G±(r) = lim
ℓ,m→∞,t→∓0

∣∣1− e−2t
∣∣− 1

4 〈σ1,1 σ1+ℓ,1+m〉 , t = log

(
sinh

2J1
kBT

sinh
2J2
kBT

)

in the double-scaling limit

(199)

(
sinh (2J1/kB Tc) ℓ

2 + sinh (2J2/kB Tc)m
2

sinh (2J1/kB Tc) + sinh (2J2/kB Tc)

) 1
2

|t| ≡ r, fixed .

Here ± refer to T > Tc and T < Tc respectively. They then showed that G±(r) could be expressed
in terms of a solution of the Painlevé III equation

(200)
d2η

dθ2
=

1

η

(
dη

dθ

)2

− 1

θ

dη

dθ
+ η3 − η−1

as

(201) G±(r) =
1∓ η

(
r
2

)

2η
(
r
2

)1/2 exp

[
1

4

∫ ∞

r/2
θ

(
1− η2

)2 − (η′)2

η2
dθ

]

with the boundary condition η(θ) ∼ 1− 2
π K0(2θ) as θ → ∞, where K0 denotes the modified Bessel

function. The above calculation was the first derivation of an explicit scaling law for a two-spin
correlation function for any model in statistical physics. As noted before, the scaling functions
G±(r) are believed to be universal for a wide class of two-dimensional models with short range
interactions.
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A crucial issue for [WMTB] scaling theory was to show that formula (198) matches the critical
1/4 behavior (106) as r → 0. In order to do this, the authors needed to know the ∞ ↔ 0
connection formulae for the Painlevé functions η(θ). In [WMTB] they extracted this information
from the unpublished thesis of Myers [My] (see below). In a later paper in 1977, McCoy, Tracy, and
Wu [MTW] derived ∞ ↔ 0 connection formulae for a two-parameter class of bounded solutions
η(θ; ν, λ) of the general Painlevé III equation

d2η

dθ2
=

1

η

(
dη

dθ

)2

− 1

θ

dη

dθ
+

2ν

θ

(
η2 − 1

)
+ η3 − η−1.

We now describe in more detail what was done in [MTW], restricting our discussion to the case
ν = 0 which is relevant to [WMTB].

Consider the one parameter family η(θ) = η(θ; 0, λ) of the solutions of equation (200) defined
by the asymptotic condition

(202) η(θ) ∼ 1− 2λK0(2θ), θ → ∞.

In [MTW], it was shown that, for 0 ≤ λ < 1/π, as r → 0,

(203) η(r/2) = Brσ
(
1− 1

16
B−2(1− σ)−2r2−2σ +O(r2)

)

where the constants B and σ are functions of λ given by the explicit formulae:

(204) σ = σ(λ) =
2

π
arcsin(πλ), B = B(σ) = 2−3σ Γ((1− σ)/2)

Γ((1 + σ)/2)
.

In [My], Myers derived the asymptotics for η(r/2; 0, 1/π) as r ↓ 0,

(205) η

(
r

2
; 0,

1

π

)
∼ −r

2

(
log

r

8
+ γE

)

where γE is Euler’s constant. In [MTW] the authors recovered (205) by analyzing formally the
limit λ→ 1/π in (203). Proofs of (205) were given later in [Wid8] and, using the Riemann-Hilbert
method, in [Niles]. In turn, the asymptotic formula (205) yields the estimate:

(206) G± ∼ const r−1/4
[
1± r

2

(
ln
r

8
+ γE

)]
.

In order to see that this estimate matches equation (106), it is enough to notice that (198) and
(199) imply that

(207) 〈σ1,1 σ1+n,1+n〉 ∼ 21/4G±(r)|t|1/4 = 21/4G±(r)r
1/4n−1/4.

The main term in equation (106), up to the multiplicative constant, follows now directly from (206).
The evaluation of the constant in (206) that matches the transcendental constant A in (106) was
done by Tracy [T] in 1991.

The Painlevé functions, PI, . . . , PVI, (see [In]) were discovered and analyzed intensively at the
beginning of the 20th century until the First World War, and then fell into a period of latency. They
reappeared in theoretical physics quite unexpectedly in 1965 in the work of Myers [My] mentioned
above, who showed that the scattering of electromagnetic radiation from a strip in the plane could
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be expressed in terms of a solution of the Painlevé III equation. The paper [WMTB] was a seminal
event in mathematical physics, followed soon after by the landmark paper of Jimbo et al [JMMS]
on the impenetrable Bose gas, and the Painlevé equations have emerged over the years as the
core of modern special function theory, with applications across the board in mathematics, physics
and engineering (see, e.g., [FIKN]). In PDE’s, in particular, the Painlevé equations (specifically,
Painlevé II) appeared for the first time in the analysis of Ablowitz and Segur [AS] of self-similar
solutions of the Korteweg-de Vries equation. This pioneering development opened the door to
understanding the crucial role that the Painlevé equations play in the theory of integrable dynamical
systems (see [AC], [FIKN]). The work [MTW] demonstrated for the first time the possibility to
derive explicit connection formulae for families of solutions to a Painlevé equation, a property which
had been previously known only for the linear ODEs of hypergeometric type. Similar connection
formulae were obtained for the second Painlevé equation in [AS] (only formulae for the amplitude)
and in [SA] (complete formulae for the amplitude and the phase). The papers [MTW], [AS], and
[SA] generated a surge of activity in the global asymptotic analysis of the Painlevé equations (see
again [FIKN] for more history and the state of the art in the area). We view these developments as
one more example of the way in which questions arising in the analysis of the Ising model gave rise
to developments in Toeplitz theory, and in this case, through Toeplitz theory, to the global theory
of the Painlevé equations.

An alternative to the representation (201) of G±(r) was obtained in 1980 by Jimbo and Miwa
[JM]. Their formula for G−(r) reads:

(208) G−(r) = exp

[
−
∫ ∞

2r

σ(x)

x
dx

]
,

where σ(x) is the unique solution of the Painlevé V equation

(209)

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2
)2

− 4

(
dσ

dx

)2
((

dσ

dx

)2

− 1

4

)

satisfying the boundary conditions

(210) σ(x) =

{
−1/4 +O(x log x), x→ 0,
1
2πx

−1e−x
(
1 +O

(
1
x

))
, x→ +∞.

The equivalence of (208) to the original PIII-formula (201) was established in [MP].
Recently in [CIK] the following generalization of the Jimbo-Miwa result was obtained. The

authors in [CIK] considered the double-scaling limit for the Toeplitz determinant Dn(t) with the
symbol:

(211) ϕ(z) = (z − et)α+β(z − e−t)α−βz−α+βe−iπ(α+β)eV (z),

where t ≥ 0, α ± β 6= −1,−2, ...., ℜα > −1/2, and V (z) is analytic in an annulus containing the
unit circle. The powers in (211) are defined by requiring the arguments to lie between zero and
2π. The symbol ϕ(z) is analytic in C \

(
[0, e−t] ∪ [et,+∞)

)
. It is regular for t > 0 and has a

Fisher-Hartwig singularity for t = 0 at z0 = 1, ϕ(z) = |z − 1|2αzβe−iπβeV (z). The main result in
[CIK] is the following: There exists a finite (perhaps empty) set ∆ ⊂ (0,∞) and a (small) number
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t0 > 0, such that for n → ∞ and for all 0 < t < t0, logDn(t) has an expansion of the form (see
[CIK] Theorem 1.4)

(212) logDn(t) = nV0 + (α+ β)nt+
∞∑

k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]

+

∫ 2nt

0

σ(x)− α2 + β2

x
dx+ (α2 − β2) log 2nt+ log

G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
+ o(1),

with the error term being uniform for 0 ≤ t < t0 provided dist (2nt,∆) ≥ δ > 0 for some δ > 0,
and the path of integration in (212) does not intersect with ∆. (In fact, the asymptotics (212) hold
uniformly in a sector of the complex plane −π/2 + ǫ < argx < π/2 − ǫ, 0 < ǫ < π/2, away from
a finite number of points. These points, which include the points of ∆, are possible poles of the
function σ(x). A choice of the integration contour corresponds to a branch of the logarithm.)

The function σ(x) in (212) is the unique solution of the Painlevé V equation

(213)

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2

+ 2α
dσ

dx

)2

− 4

(
dσ

dx

)2(dσ
dx

+ α+ β

)(
dσ

dx
+ α− β

)

which is real analytic in (0,+∞) and satisfies the boundary conditions

(214) σ(x) =





α2 − β2 + α2−β2

2α {x− x1+2αC(α, β)}(1 +O(x)), x→ 0, 2α /∈ Z

α2 − β2 +O(x) +O(x1+2α) +O(x1+2α log x), x→ 0, 2α ∈ Z

x−1+2αe−x −1
Γ(α−β)Γ(α+β)

(
1 +O

(
1
x

))
, x→ +∞,

with

(215) C(α, β) =
Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1 − α− β)

Γ(1− 2α)

Γ(1 + 2α)2
1

1 + 2α
.

For fixed t > 0, equation (212) yields the standard Szegő large n asymptotics for the regular
symbol (211). It is interesting to note that this implies the following integral identity for the
Painlevé function σ(x) (cf. (1.31) in [CIK]): for any x0 > 0,

(216)

∫ x0

0

σ(x)− α2 + β2

x
dx+

∫ ∞

x0

σ(x)

x
dx+ (α2 − β2) log x0

= − log
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
.

In the case t = 0, the equation (212) transforms to a single-point Fisher-Hartwig formulae: To see
this, one utilizes the identity

∑∞
k=1 e

−2kt/k = − ln
(
1− e−2t

)
.

In the special case α = 0, β = −1
2 , V (z) ≡ 0, and with the identification, e−t = kons, the

symbol (211) becomes e−t/2ϕdiag(z). Therefore, in this case, Dn(t) = e−nt/2 〈σ1,1 σ1+n,1+n〉 with
t ↓ 0 corresponding to T ↑ Tc. Set 2nt ≡ 2r. Then formula (212), together with the identity
(216) and the definition (198) of the scaling functions G±(r), yields the Jimbo-Miwa relation (208).
With the equivalence of (208) and (201), this means that the uniform asymptotics (212) include
the double-scaling limit in [WMTB] as a special case corresponding to 2nt ≡ 2r fixed (away from
∆), n→ ∞, and α = 0, β = −1

2 , V (z) ≡ 0.
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Remark 11.1. In [JM], the authors used a remarkable relation (which they themselves discovered)
between the diagonal Ising correlations and isomonodromy deformations of a certain 2×2 Fuchsian
system. This discovery laid the foundation for the Riemann-Hilbert method in the theory of
correlation functions, random matrices, and Toeplitz and Hankel determinants (see [DIZ] for more
on the history of these developments). Using this link to Fuchsian systems, it was shown in [JM]
that the diagonal correlation function 〈σ1,1 σ1+n,1+n〉, as a function of the variable

s = e−2t ≡
(
sinh

2J1
kBT

sinh
2J2
kBT

)−2

is expressed in terms of a solution to the Painlevé VI equation. The derivation of (208) in [JM]
is done by formally performing a scaling transformation taking the inverse monodromy problem
associated with this Painlevé VI to the inverse monodromy (Riemann-Hilbert) problem associated
with the fifth Painlevé function σ(x). In the rigorous setting of [CIK], the latter problem appears
as a parametrix during the implementation of the nonlinear steepest-descent method.

Remark 11.2. The Painlevé VI description of the diagonal correlations in [JM] was the first example
of the appearance of the Painlevé functions in the theory of Toeplitz determinants before the large
n limit is taken. One realizes now that nonlinear differential equations of Painlevé type are always
present in situations where the symbol ϕ(z) satisfies the condition:

(217)
d logϕ(z)

dz
= rational function.

This fact is quite easy to see within the Riemann-Hilbert formalism (see, e.g., discussion in [ITW]).
These “finite n” Painlevé representations are not universal: the type of the nonlinear ODE depends
strongly on the structure of the rational right hand side of (217), i.e. on the symbol.

Double-scaling problems for Toeplitz determinants occur in many different areas. For example,
in combinatorics, let π = (π(1), π(2), . . . , π(N)) be a permutation of the numbers 1, 2, . . . , N . If
1 ≤ i1 < i2 < · · · < ik ≤ N and π(i1) < π(i2) < · · · < π(ik), we say that π(i1), . . . , π(ik) is an
increasing subsequence in π of length k. Let ℓN (π) denote the maximum length of all increasing
subsequences in π. With uniform distribution on the permutations, one is interested (see [BDJ])
in the distribution function

pN (n) = Prob {ℓN (π) ≤ n} =
#{π : ℓN (π) ≤ n}

N !

as N, n→ ∞. It turns out [Ges] that the Poissonized version φn(λ) of the process pN (n)

(218) φn(λ) =
∞∑

N=0

e−λ
λN

N !
pN (n), λ > 0

can be expressed in terms of a Toeplitz determinant

(219) φn(λ) = e−λDn(ϕλ)

where φλ(θ) = e2
√
λ cos θ. In order to recover pN (n) as N, n → ∞ from (218) (219) one must

analyze the double-scaling limit for the determinant as λ, n→ ∞. The main result in [BDJ] is the
following:

(220) lim
N→∞

Prob

(
ℓN − 2

√
N

N1/6
≤ t

)
= F2(t)
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where F2(t) is the Tracy-Widom distribution [TW] for the largest eigenvalue of a random matrix
in the Gaussian Unitary Ensemble. The distribution F2(t) can be expressed in terms of Painlevé
functions as follows:

(221) F2(t) = e−
∫∞
t (s−t) u2(s) ds

where u(s) is the unique solution of PII,

(222) u′′(s) = 2u3(s) + su(s)

with
u(s) ∼ −Ai (s) as s→ +∞.

Here Ai (s) is the standard Airy function. On the other hand, F2(t) can be expressed as a Fredholm
determinant

(223) F2(t) = det(I −K
(s)
Airy)

where K
(s)
Airy is the trace-class operator with kernel

K
(s)
Airy(x, y) =

Ai (x) ddyAi (y)−Ai (y) ddxAi (x)

x− y

acting on L2(s,∞). In random matrix theory, this determinant is the probability that the interval
(s,∞) contains no eigenvalues in the edge scaling limit in the Gaussian Unitary Ensemble.

The result in [BDJ] was the first of many results linking problems in pure and applied math-
ematics and in physics to the Tracy-Widom distribution F2(t) and its symplectic and orthogonal
analogs (see, for example [Dei2]).

As already noted on several occasions, in his work on impenetrable bosons [Len1], Lenard was
led to consider Toeplitz determinants with symbols of type

∣∣eiθ − eiθ1
∣∣ ∣∣eiθ − eiθ2

∣∣ (see (125) above)
that vanished on S1. In [Len2] he then considered symbols with any finite number of such α-type
FH singularities. Such symbols vanish at only a finite number of points, and in [Wid6] Widom
began considering symbols which vanished on a full interval. Let ϕµ

(
eiθ
)
denote the characteristic

function of the interval (µ, 2π − µ), 0 < µ < π. In a virtuoso calculation Widom showed that, for
µ fixed, as n→ ∞

(224) logDn(ϕµ) = n2 log cos
µ

2
− 1

4
log
(
n sin

µ

2

)
+ c0 + o(1)

where c0 = 1
12 log 2 + 3ζ ′(−1) and ζ(z) is the Riemann zeta-function. A few years later in 1976,

Dyson [Dy4] returned to the problem (cf. discussion following (59) above) of computing the prob-
ability Ps that there are no eigenvalues for a random matrix in the interval (0, 2s/π), in the bulk
scaling limit for the Gaussian Unitary Ensemble. He showed that as s → ∞, log Ps has a full
asymptotic expansion

(225) logPs = −s
2

2
− 1

4
log s+ a0 +

a1
s

+
a2
s2

+ . . . ,

Dyson identified all the constants a0, a1, a2, . . . , and it turns out that a0, which is of particular
interest, is precisely the constant c0 arising in Widom’s expansion (224) above. Dyson arrived at
the identification a0 = c0 by noting first that the probability Ps is given by (see, e.g., [Meh], [Dei3])

(226) Ps = det(I −Ks)
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where Ks is the trace-class operator with kernel

(227) Ks(x, y) =
sin(x− y)

π(x− y)

acting on L2(−s, s). A simple calculation shows that

(228) Dn(ϕµ) = det

(
δjk −

sinµ(j − k)

π(j − k)

)

0≤j,k≤n−1

and so for fixed s > 0,

(229) lim
n→∞

Dn

(
ϕ 2s

n

)
= Ps

and hence, if the error term o(1) in (224) was uniform in the double scaling limit, n→ ∞, µ→ 0 such
that µn = 2s, one could conclude from (224) (229) that a0 is indeed equal to c0. The uniformity of
the error term o(1), however, remained open. There are now three proofs that a0 = c0. The first two
were given simultaneously and independently by Ehrhardt and Krasovsky, and the third was given
a little later in [DIKZ]. The proofs by Krasovsky and by Deift, Its, Krasovsky, and Zhou proceed
by following Dyson’s observation (229) and verifying that the o(1) error term is indeed uniform. We
refer the reader to [DIKZ] for some history of the problem Ps, s → ∞, and, in particular, for the
relevant references to the work of Krasovsky and Ehrhardt. A similar asymptotic problem arises
when instead of the sine kernel determinant (226) one considers the general so-called confluent
hypergeometric kernel determinant which depends on two extra parameters (and is related to the
so-called Bessel kernel determinant and also to the determinant (226) for particular choices of the
parameters); another related problem is the asymptotics for the Tracy-Widom distribution (223)
as s→ −∞. These problems can also be represented as double scaling problems for Toeplitz (and
also Hankel) determinants, and such representations were crucial for finding complete solutions for
the asymptotic problems at hand. We refer the reader to [Kr] for a discussion of the results and
for the references.

Dyson’s identification of a1, a2, . . . in [Dy4] involves an ingenious application of inverse scat-
tering theory for Schrödinger operators on the half-line 0 ≤ x < ∞. He begins by noting that
Ps = det(I −Ks) can be factored

(230) det(I −Ks) = D+(s)D−(s)

where D±(s) = det(I − f±)L2(0,s) are Toeplitz+Hankel type determinants on L2(0, s) with kernels

(231) f±(x, y) =
1

π

[
sin(x− y)

x− y
± sin(x+ y)

x+ y

]
.

He then considers the functions

(232) W±(s) = −2
d2

ds2
logD±(s)− 1

as potentials for Schrödinger operators H± = − d2

ds2
+W±(s) on L2(0,∞) with appropriate Robin

boundary conditions at s = 0. Using the Gelfand-Levitan formalism (see, e.g., [Fad]), Dyson is able
to identify the spectral measures ρ±(λ)dλ for the operators H±. He then obtains the scattering

55



phase functions eiη± . In the Marchenko formalism (see, e.g., [Fad]) one utilizes the functions eiη±

to express the potentials W±(s) in terms of Fredholm determinants of the form

(233) W±(s) = −1

4

(
s± 1

2

)−2

− 2
d2

ds2
log ∆±(s), s >

1

2

where ∆±(s) = det(I −F±)L2(s,∞) and F±(x, y) are certain explicit kernels which decay as s→ ∞.

Equating (232) and (233), and integrating twice, one obtains the following identity for s > 1
2 :

(234) logPs = log(I −Ks) = logD+D− = −1

2
s2 − 1

8
log

(
s2 − 1

4

)
+ a0 + log (∆+(s)∆−(s))

(the terms linear in s drop out). As F±(x, y) decay as x, y → ∞, it is clear that (234) gives rise
to a full expansion of the form (225), where the coefficients can be computed in terms of the trace
powers trFm± .

Dyson is able to compute eiη± , and hence F±, explicitly, because of the following fundamental
fact from inverse scattering theory. The spectral weights have the form ρ±(λ) =

√
λ/(π|ϕ±(

√
λ)|2),

where ϕ±(k), k =
√
λ, are certain functions constructed from the Jost solutions J±(s, k) for H±,

H±J±(s, k) = k2J±(s, k), J±(s, k) ∼ eiks as s→ ∞. The functions ϕ±(k) are analytic in {ℑk > 0}
with prescribed asymptotics as k → ∞, and in the cases at hand, have no zeros in {ℑk > 0}. Hence,
by standard arguments, ϕ±(k) are determined by their absolute value |ϕ(k)| for ℑk = 0. Thus ρ±(λ)
determine ϕ±(k). However, eiη± can be expressed in terms of ϕ± as eiη±(k) = iϕ±(k)/|ϕ±(k)|, and
hence ρ±(λ) determine the scattering phase functions, and hence, eventually, F±.

These considerations bring to mind the Borodin-Okounkov-Geronimo-Case formula (43) in

which the Szegő function D(z) = exp
(

1
4π

∫ π
−π

eiθ+z
eiθ−z logϕ

(
eiθ
)
dθ
)
, which is analytic in |z| < 1,

plays the role of the functions ϕ±(k). Indeed, |D(eiθ)|2 = ϕ(eiθ), which is the spectral measure
for the associated Cantero-Moral-Velasquez (CMV) unitary operator acting on ℓ2+ (see [Sim2]).
Thus we may think of the Toeplitz determinant Dn(ϕ) as an expression in the “Gelfand-Levitan
formalism”. On the other hand, we may think of the Fredholm determinant on the RHS of (43) as

an expression in the “Marchenko formalism”. Indeed, from (44), b = D2
/|D|2, which we may view

as a scattering phase function b = e2iη for the CMV operator, and c is just b = e−2iη . These con-
siderations are very suggestive and invite further investigation. One notes that the original proof
of (43) by Geronimo and Case in [GerCase] was developed in the context of scattering theory.

Another example of a double-scaling limit is the following. Recall that the density matrix for
the impenetrable bosons is given by ρN,L(ξ) =

1
LRN (2πξ/L), where RN is the Toeplitz determinant

(130) with symbol (131). For definiteness, fix the length scale so that L = N . As we discussed
in Remark 6.1 in Section 6, of particular interest is the double-scaling limit N → ∞, ξ/N → 0.
In [Len1] Lenard considered this limit ρ(ξ) = limN→∞

1
NRN (2πξ/N) with ξ fixed. He obtained

an expression for ρ(ξ) in terms of a Fredholm determinant with explicit kernel related to the sine
kernel (227). He also obtained another representation for ρ(ξ) in terms of a Fredholm minor for

the kernel 2 sinπ|ξ|(x−y)
π(x−y) .

In order to complete his analysis of the limiting momentum distribution in the gas, Lenard
needed to know the large ξ behavior of ρ(ξ), but he did not derive this behavior in [Len1]. The
derivation of this limiting behavior was carried out by Vaidya and Tracy [VaiTr] who found that

(235) ρ(ξ) =
ρ∞

(πξ)1/2

(
1 +

1

8(πξ)2

(
cos 2πξ − 1

4

)
+ · · ·

)
, ρ∞ = πe1/22−1/3A−6,
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as ξ → ∞, where A is again Glaisher’s constant (107). Note that if one evaluates ρN,N (ξ) =
1
NRN (2πξ/N), N, ξ = tN

2π → ∞ using (137) (138), and assumes that the formulae remain valid as
t = 2πξ/N → 0, then one obtains the leading term in (235).

The double-scaling limit N → ∞, ξ/N → 0 corresponds to the Toeplitz determinant with two
FH singularities merging (at z = 1) with α1 = α2 = 1

2 , β1 = β2 = 0. A general analysis of
the double-scaling asymptotics of a Toeplitz determinant with two merging FH singularities (in
particular, of Lenard’s symbol (130)) is given in [CK].

Dyson also considered [Dy5] the following scaling problem associated with Toeplitz determi-
nants. Let

(236) ∆(z, t) = det(I − zK̂t)

where 0 < z < 1 and K̂t acts on L
2(−t, t) with kernel K̂t(x, y) =

sinπ(x−y)
π(x−y) . With the extra π in the

sine function (cf. Ks in (227)), ∆(1, t) is now the probability that there are no eigenvalues in the
interval (0, 2t). Of interest here is the double scaling limit for ∆(z, t) as t → ∞ and z ↑ 1. Dyson
analyses the problem by interpreting ∆(z, t) in terms of a Coulomb gas at inverse temperature
β = 2. In this interpretation, z corresponds to an external potential v via the formula 1−z = e−βv.
Then

(237) ∆(z, t) =
Z2(v, 2t)

Z2(0, 2t)

where

(238) Zβ =
∑

e−β(W+vn)

is the partition function of the gas with external potential v applied to charges in a fixed interval
of length 2t. The sum in (238) is to be interpreted as an infinite-dimensional integral over all
configurations of the gas, W represents the sum of all Coulomb interactions Wjk = − log |xj − xk|,
and for any configuration, n is the number of charges in a fixed interval of length 2t. Dyson does
not define the sum rigorously, but he uses it as a heuristic guide in his calculations. The main result
in the paper is the calculation of oscillatory factors in ∆(z, t) as t→ ∞: These factors turn out to
be so-called “genuinely non-linear oscillations” and are described by Jacobi elliptic functions. For
0 < z < 1, 0 < λ < 1, the symbol

(239) fz,λ(e
iθ) = χ[πλ,π(2−λ)] + (1− z)χ[−πλ,πλ]

gives rise to the Toeplitz determinant

(240) Dn(fz,λ) = det

(
δjk − z

sinλπ(j − k)

π(j − k)

)

0≤j,k≤n−1

and so for fixed z, t

(241) lim
n→∞

Dn

(
fz, 2t

n

)
= ∆(z, t).

Thus Dyson’s double scaling limit z ↑ 1, t → ∞ can be viewed as a triple scaling limit for the
Toeplitz determinant Dn(fz,2t/n) with z ↑ 1, t→ ∞, and n→ ∞. Note finally that fz,λ is precisely
the kind of symbol that arises in the Toeplitz eigenvalue problem (178).

57



Lenard ends his 1972 paper [Len2] with a hope and a prophecy: “It is the author’s hope that a
rigorous analysis will someday carry the results to the point where the true role of the zeros of the
generating function will be understood. When that day comes a capstone will have been put on a
beautiful edifice to whose construction many contributed and whose foundations lie in the studies
of Gabor Szegő half a century ago”.

Almost 100 years have passed since Szegő published his first paper on the asymptotics of Toeplitz
determinants. We certainly know more now than in 1972, but many new problems continue to arise,
and it is still too early, alas, to set the capstone.
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225–234.

[HurGr] C. A. Hurst and H. S. Green, New solution of the Ising problem for a rectangular lattice,
J. Chem. Phys. 33 (1960), 1059–1062

[Ibr] I. A. Ibraginov, A theorem of Gabor Szegö, Mat. Zametki 3 (1968), 693–702. [Russian]
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[LyMcC] I. Lyberg and B. M. McCoy, Form factor expansion of the row and diagonal correlation
functions of the two-dimensional Ising model, J. Phys. A 40 (2007), 3329–3346.

[McC1] B. M. McCoy, The Romance of the Ising Model. Preprint: presented at the 60th birthday
conference for M. Jimbo, Infinite Analysis II, Frontier of Integrability, July 2011, University
of Tokyo, Japan.

[McC2] B. M. McCoy, Introductory remarks to Szegö’s paper “On certain Hermitian forms associ-
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