
Julius Niyongabo, Yingjie Zhang, Jérémie Ndikumagenge                   DOI  10.2478/ama-2022-0017 
Bearing Fault Detection and Diagnosis Based on Densely Connected Convolutional Networks 

130 

 BEARING FAULT DETECTION AND DIAGNOSIS  
BASED ON DENSELY CONNECTED CONVOLUTIONAL NETWORKS 

 Julius NIYONGABO*    , Yingjie ZHANG**    , Jérémie NDIKUMAGENGE***   

*Doctoral School, University of Burundi, UNESCO Road No 2, Bujumbura 1550, Burundi  
**College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Changsha 410082, China 

***Faculty of Engineering Science, Department of Information and Communication Technology, University of Burundi,  
UNESCO Road No 2, Bujumbura 1550, Burundi 

niyojule@gmail.com, zhangyj@hnu.edu.cn, jeremie.ndikumagenge@ub.edu.bi 

received 18 December 2021, revised 3 February 2022, accepted 12 February 2022 

Abstract: Rotating machines are widely used in today’s world. As these machines perform the biggest tasks in industries, faults  
are naturally observed on their components. For most rotating machines such as wind turbine, bearing is one of critical components.  
To reduce failure rate and increase working life of rotating machinery it is important to detect and diagnose early faults in this most vulner-
able part. In the recent past, technologies based on computational intelligence, including machine learning (ML) and deep learning (DL), 
have been efficiently used for detection and diagnosis of bearing faults. However, DL algorithms are being increasingly favoured day  
by day because of their advantages of automatically extracting features from training data. Despite this, in DL, adding neural layers  
reduces the training accuracy and the vanishing gradient problem arises. DL algorithms based on convolutional neural networks (CNN) 
such as DenseNet have proved to be quite efficient in solving this kind of problem. In this paper, a transfer learning consisting  
of fine-tuning DenseNet-121 top layers is proposed to make this classifier more robust and efficient. Then, a new intelligent model inspired 
by DenseNet-121 is designed and used for detecting and diagnosing bearing faults. Continuous wavelet transform is applied to enhance 
the dataset. Experimental results obtained from analyses employing the Case Western Reserve University (CWRU) bearing dataset show 
that the proposed model has higher diagnostic performance, with 98% average accuracy and less complexity.  
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1. INTRODUCTION 

With the rapid growing of industrialisation, electrical machines 
are always present in industries and electrified transportation 
systems. Often, these machines operate under harsh environ-
ments and complex conditions, such as high ambient tempera-
ture, high moisture and overload, which can eventually result in 
motor malfunctions that lead to high maintenance costs, severe 
financial losses and safety hazards [1]. Many research projects 
have revealed that rolling element bearings, also known as bear-
ings, are the most vulnerable parts of electrical machines, ac-
counting for high failure rate and downtime. These studies have 
also shown that bearing fault is the most common fault type and is 
responsible for 30–40% of all electrical machine failures [1,2].  
Fig. 1. illustrates the structure of a rolling element bearing with 
four types of common scenarios of misalignment that are likely to 
cause bearing failures. 

Since bearing is the most vulnerable component in a motor 
drive system, fault detection and diagnosis of bearings have 
become an essential part of development and engineering re-
search [3]. Therefore, signal processing based–methods, machine 
learning (ML)–based techniques and deep learning (DL)–based 
approaches have been proposed and implemented. Signal pro-
cessing–based methods implement fault diagnosis by detecting 
characteristic frequencies which are related to the faults [2]. For 
example, Li et al. [4] developed a variational mode decomposi-

tion–based bearing fault diagnosis method, which can effectively 
identify fault frequencies. However, the signal processing–based 
methods need to rely on professional knowledge, and it is arduous 
for these methods to realise accurate fault diagnosis under an 
actual strong noise environment [5]. On the other hand, ML-based 
approaches and DL, known also as intelligent methods, can per-
form the fault diagnosis task without the fault-related characteris-
tics’ frequencies and prior physical knowledge [2]. 

 
Fig. 1. Structure of a rolling element bearing with four types of common  
            scenarios of misalignment that are likely to cause bearing failures:  
           (a) Misalignment (out-of-line), (b) shaft deflection, (c) crooked  
            or titled out race and (d) crooked or titled inner race [1] 
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Recently, various methods based on ML algorithms, including 
artificial neural networks (ANN), principal component analysis 
(PCA) and support vector machines (SVM), have been used 
successfully to make intelligent decisions regarding the presence 
of bearing faults [6-8]. Most of the literature applying these ML 
algorithms report satisfactory results with a classification accuracy 
of >90% [1]. However, one of the disadvantages of classical ML 
techniques is that they usually demand sophisticated manual 
feature engineering, which unavoidably requires expert domain 
knowledge and numerous human efforts. 

To achieve better performance, DL methods with automated 
feature extraction capabilities have recently received much inter-
est for bearing faults diagnosis [9,10]. DL is a subfield of ML that 
is inspired by ANN, which in turn are inspired by biological neural 
networks [11-15]. In the recent decade, deep Convolutional Neu-
ral Networks (CNN) have been classified as the most utilised 
models of DL and have been successfully applied to identify 
bearing faults. Moreover, many variations of CNN are employed in 
bearing fault diagnosis. 

In this paper, after applying transfer learning techniques on 
DenseNet-121 architecture, which is one of the latest discoveries 
in neural network architectures and solves challenges caused by 
the depth of CNN, we propose a new approach to detect and 
diagnose bearing faults. We show the effectiveness of our model 
by conducting its evaluation and compare the experimental results 
to other previous CNN-based models. 

The rest of this article is structured as follows: In section II, we 
briefly explain CNN architecture. Section III contains an overview 
of DenseNet algorithm and details of the proposed approach. In 
section IV, the most popular bearing dataset used in this work is 
presented. In section V, results are discussed. Finally, the conclu-
sion is presented in section VI. 

2. CNN ARCHITECTURE 

CNN are feed-forward neural networks in which information 
flow takes place in one direction only, from their inputs to their 
outputs. They are composed by an input layer, convolutional 
layers, pooling layers, fully connected layers and an output layer 
[16]. The typical architecture of a CNN-based bearing fault classi-
fier is illustrated in Fig. 2. The convolutional layer processes data 
input and passes the result to the next layer. The pooling layer 
has a function of compressing data in order to reduce its size and 
parameters. It is also charged to control overfitting. Often, max-
pooling is the most-intensively used convolution operation in CNN. 
The fully connected layer is on the last position and looks like the 
perceptron. Its inputs come from the final convolutional layer. At 
the end of CNN, the SoftMax operator is used for classification 
problems. Since 2016, many papers applying CNN bearing fault 
diagnosis [17-25] have proliferated in the research domain. 

 

Fig. 2. Architecture of CNN-based fault diagnosis model (1). CNN, convolutional neural networks 

The most common CNN architectures developed in the last 
decade are Alexnet (2012), Inception (2014), VGGNet (2014), 
ResNet (2015) and DenseNet (2017). Since AlexNet, the number 
of layers has increased and CNN architecture went deeper and 
deeper. However, deep networks become complex and difficult to 
be trained because of the vanishing gradient problem or dead 
neurons; the accuracy starts saturating and then degrades also. 
DenseNet has been proposed [26] to overcome this problem and 
easily train deep CNN. 

3. OVERVIEW OF DENSENET AND THE PROPOSED MODEL 

3.1. Overview of DenseNet 

DenseNets or Densely Connected Convolution networks were 
introduced in 2017 by Gao Huang Liu, Zhuang Liu, Laurens van 
der Maaten and Kilian Q. Weinberger in their paper “Densely 
Connected Convolutional Networks” [26].  

In comparison with traditional convolutional networks, which 
have L layers with L connections, one between each layer and its 
subsequent layer, DenseNet has L(L+1)/2 direct connections, and 

each layer is directly connected to every other layer.  
DenseNet architecture is mainly constituted by Dense Block 

and the transition layers. The transition layers consist of a Batch-
Normalisation layer, and 1 × 1 convolution followed by a 2 × 2 
average pooling layer. The first part of DenseNet architecture is 
constituted by 7 × 7 convolution, and a stride 2 layer followed by a 
3 × 3 maxpool, stride 2 layer. After the four dense blocks comes a 
classification layer. Inside each Dense Block and transition layer, 
the convolution operations are performed [26]. 

The main advantages of DenseNet are that it overcomes the 
vanishing gradient problem and does not require many parame-
ters to train the model. Moreover, variation in the input of layers as 
a result of concatenated feature maps prevents the model from 
succumbing to the overfitting problem. The most popular Dense-
Net architectures are DenseNet-121, DenseNet-169, DenseNet-
201 and DenseNet-264. Tab. 1 shows that each DenseNet archi-
tecture has four dense blocks with a varying number of layers, 
and Transition Layers are added between these blocks. Thus, 
DenseNet-121 consists of [6, 12, 24, 16] layers in the four dense 
blocks, DenseNet-169 has [6, 12, 32, 32] layers and DenseNet-
201 consists of [6, 12, 48, 32] layers, whereas DenseNet-161 has 
[6, 12, 36, 24] layers. 
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Tab. 1. DenseNet Architectures for ImageNet [26] 

Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264 

Convolution 112 × 112 7 × 7 conv, stride 2 

Pooling 56 × 56 3 × 3 max pool, stride 2 

Dense Block (1) 56 × 56 [
 1 × 1 conv 
 3 × 3 conv 

] × 6 [
1 × 1 conv

 3 × 3 vonv 
] × 6 [

1 × 1 conv 
3 × 3 conv

] × 6 [
1 × 1 conv
3 × 3 conv

] × 6 

Transition Layer (1) 
56 × 56 1 × 1 conv 

28 × 28 2 × 2 average pool, stride 2 

Dense Block (2) 28 × 28 [
1 × 1 conv
3 × 3 conv 

] × 12 [
1 × 1 conv 
3 × 3 conv

] × 12 [
1 × 1 conv
3 × 3 conv

] × 12 [
1 × 1 conv
3 × 3 conv

] × 12 

Transition Layer (2) 
28 × 28 1 × 1 conv 

14 × 14 2 × 2 average pool, stride 2 

Dense Block (3) 14 × 14 [
1 × 1 conv
3 × 3 conv

] × 24 [
1 × 1 conv
3 × 3 conv

] × 32 [
1 × 1 conv
3 × 3 conv

] × 48 [
1 × 1 conv
3 × 3 conv

] × 36 

Transition Layer (3) 
14 × 14 1 × 1 conv 

7 × 7 2 × 2 average pool, stride 2 

Dense Block (4) 7 × 7 [
1 × 1 conv
3 × 3 conv

] × 16 [
1 × 1 conv
1 × 1 conv

] × 32 [
1 × 1 conv
3 × 3 conv

] × 32 [
1 × 1 conv
3 × 3 conv 

] × 24 

Classification  Layer 
1 × 1 7 × 7 global average pool 

 1000 D fully − connected, softmax 

a
3.2. The Proposed Model 

In this article, by using transfer learning techniques, we fine-
tuned DenseNet-121 [26]. To be precise, the following strategies 
are used: 

 DenseNet-121’s original architecture is implemented.  

 Weights are initialised randomly. 

 The last fully connected layer of DenseNet-121 is replaced 
with another new layer adapted to our classification problem. 

 A flatten layer is added before the last fully connected layer. 
Before training and evaluation of the proposed model, a trans-

formation of the time domain data to wavelet domain is realised, 
and thereafter, we train and evaluate the new architecture on 
wavelet domain image for fault diagnosis. As the number of clas-
ses for Case Western Reserve University (CWRU) bearing data is 
10, in the proposed approach we use a 10 Dense fully connected 
layer to detect and diagnose different faults of bearing. SoftMax is 
utilised for a classification layer. A comparison with other CNN-
based models is also done. The architecture of the proposed 
model is shown in Tab. 2 and Fig. 3. 

Tab. 2. DenseNet Architecture of the proposed model 

Layers Output Size Proposed Model 

Convolution 112 × 112 7 × 7 conv, stride 2 

Pooling 56 × 56 3 × 3 max pool, stride 2 

Dense Block (1) 56 × 56 [
1 × 1 conv
3 × 3 conv

] × 6 

Transition Layer 

(1) 

56 × 56 1 × 1 conv 

28 × 28 2 × 2 average pool, stride 2 

Dense Block (2) 28 × 28 [
1 × 1 conv
3 × 3 conv 

] × 12 

Transition Layer 

(2) 

28 × 28 1 × 1 conv 

14 × 14 2 × 2 average pool, stride 2 

Dense Block (3) 14 × 14 [
1 × 1 conv
3 × 3 conv

] × 24 

Transition Layer 

(3) 

14 × 14 1 × 1 conv 

7 × 7 2 × 2 average pool, stride 2 

Dense Block (4) 7 × 7 [
1 × 1 conv
3 × 3 conv

] × 16 

Classification 

Layer 

1 × 1 7 × 7 global average pool 

Flattening 

 
10 Dense fully
− connected, softmax 

4. DATASET AND IMPLEMENTATION 

4.1. Dataset 

Data is the fundamental unit and the foundation for all ML or 
DL architectures. Deep networks and DL algorithms are influential 
ML structures that work most excellently if trained on vast 
amounts of data. With a small training dataset, we get limited 
sample variations, and the network efficiency decreases. So, the 
quantity and the frequency of data availability have a vital role in 
DL applications. Generally, the more the data, the better the 
accuracy [2]. 

To evaluate the performance of the model, in this research 
work, we used the popular bearing dataset from CWRU Bearing 
Data Center. The CWRU bearing dataset has become one of the 



DOI  10.2478/ama-2022-0017                  acta mechanica et automatica, vol.16 no.2 (2022) 

133 

most popular datasets for machine fault diagnosis since it was 
published. The experimental setup for collecting the CWRU bear-
ing dataset, consisting of an electric motor on left, a torque trans-
ducer/encoder in the middle and a dynamometer on the right, is 
illustrated in Fig. 4. 

 
Fig. 3. Structure of the proposed model 

The single point motor bearing faults simulated by the electro-
discharge machining were tested in this platform, including inner-
race fault (IF), outer-race fault (OF) and ball fault (BF). Each fault 
has three types: 7 mils, 14 mils, 21 mils (1 mil = 0.001 inches). 
The sampling frequencies of 12 kHz and 48 kHz were used for the 
collection of data. For the drive-end bearing experiments, data 
were collected at 12,000 and 48,000 samples/s. Fan-end data 
were collected at 12,000 samples/s. For the normal-baseline, the 
data collection rate was 48,000 samples/s [2]. 

 
Fig. 4. Experimental setup for collecting the CWRU bearing dataset.  
            CWRU, Case Western Reserve University 

In this work, we selected 48 kHz drive-end bearing fault data. 
Normal data collected with 1 hp load have also been used. We 
applied continuous wavelet transform on the dataset consisting of 
4,600 data samples and 10 classes are considered: Ball defect 
(0.007 inch, load: 1 hp), Ball defect (0.014 inch, load: 1 hp), Ball 
defect (0.021 inch, load: 1 hp), IF (0.007 inch, load: 1 hp), IF 
(0.014 inch, load: 1 hp), IF (0.021 inch, load: 1 hp), Normal (load: 
1 hp), OF (0.007 inch, load: 1 hp, data collected from 6 O’clock 
position), OF (0.014 inch, load: 1 hp, 6 O’clock) and OF (0.021 
inch, load: 1 hp, 6 O’clock) [13]. 

4.2. Implementation 

In this research paper, we implemented our model with Ten-
sorflow (2.3.0) environments using Jupyter Notebooks and Python 
on a computer with the following properties: 

 Processor: Intel® Core (TM) i5-8250U CPU @ 1.60GHz 1.80 
GHz 

 Installed RAM: 12.0 Go (11.9 Go Usable) 
The number of parameters of the model is as follows: total: 

7.047.370, trainable: 6.965.898 and non-trainable: 81.472. The 
following hyperparameters are used: number of filters: 128, kernel 
size:1, strides: 2, zero-padding: same, batch size: 64 and learning 
rate: 0.007. 

The activation function used in the model is ReLU. The size of 
the data is (4600, 32, 32). Eighty percent of the total data is taken 
as training data and 20% as test set [13,24]. The number of 
epochs for all models in this paper is 50, the optimiser is SGD and 
momentum is initialised at 0.5. 

5. RESULTS AND DISCUSSION 

In this part, we are going to present and discuss the experi-
mental results. After 10 iterations of running the proposed model 
under the above-mentioned conditions, an average accuracy of 
98.57% is obtained. The curves of the training and validation 
accuracy are shown in Fig. 5. In Fig. 6 the train and validation loss 
curves are illustrated. 

For the reliability of the experiment, confusion matrix of the 
considered model is created and can be seen in Fig. 7. The com-
parison of fault diagnosis accuracy with three previous DL Algo-
rithms based on CNN is presented in Tab. 3, from which it is clear 
that the accuracy of the proposed model is higher when compared 
with the AlexNet, VGG-16 and ResNet-50 models. Moreover, from 
Fig. 8, we can confirm that the proposed approach achieves high 
accuracy. 
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Tab. 3. Fault diagnosis average accuracy results of AlexNet, VGG-16, ResNet-50 and the proposed model 

Method Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 Iter9 Iter10 Average 

AlexNet 0.9110 0.9430 0.9620 0.9040 0.9280 0.9690 0.9710 0.9280 0.9690 0.9440 0.9349 

VGG-16 0.9010 0.9390 0.9560 0.9640 0.9640 0.9650 0.9680 0.9680 0.9680 0.9660 0.9559 

ResNet-50 0.9340 0.9440 0.9030 0.9630 0.9760 0.9700 0.9780 0.9840 0.9700 0.9760 0.9603 

Proposed model 0.9750 0.9620 0.9730 0.9670 0.9780 0.9810 0.9790 0.9850 0.9760 0.9810 0.9857 

Aa 

 

Fig. 5. Curves of training and validation accuracy during training 

 

Fig. 6. Curves of training and validation loss during training 

 
Fig. 7. Confusion matrix of DenseNet model 

 

 

Fig. 8. The average classification accuracies 

6. CONCLUSION 

The early detection, diagnosis and visualisation of bearing 
faults can significantly reduce downtime and maintenance costs in 
industry. In this research, using DL technologies and transfer 
learning, we presented an intelligent fault diagnosis method based 
on deep CNN applied to rolling element bearings. We applied the 
model to the CWRU bearing dataset, and the simulation results 
reveal that the fine-tuned DenseNet-121 model performs an effi-
cient classification for bearing faults. Moreover, it is observed that, 
in comparison with three previous DL models of the same family, 
this method has a higher classification accuracy and identifies 
different faults of bearing correctly. 

Future researches will consist of improving the structure of the 
model and applying the new model on other bearing datasets. 
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