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ABSTRACT Article information:
Intelligent vehicles attempt to improve the daily transportation of people,
but their safety has been questioned after numerous tra�c accidents. This
paper proposes a Safety Driving Framework (SDF) to improve the ability
of intelligent vehicles to avoid risks during emergencies. When performing
autonomous driving tasks, the SDF interacts with the environment using
a camera, makes decisions using convolutional neural networks, and can
perform an emergency stop if it encounters an obstacle. In this paper,
we examine the potential of attention mechanisms to enhance the perfor-
mance of convolutional neural networks and construct four convolutional
neural networks with attention mechanisms to use in experiments. Addi-
tionally, we extend a dataset and enhance the robustness of the model by
implementing data augmentation (DA) techniques. We train the model us-
ing 10-fold cross-validation. In this article, we build an intelligent driving
platform and a simulation track for simulation testing. The experimental
results show that CNNs using data reinforcement and with an attention
mechanism perform better than existing models. In particular, ENetb0-SE
has an average recognition rate of 95.6% for obstacles and an accident rate
of 2%, which is much better than existing models.
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1. INTRODUCTION

Autonomous driving is a critical future develop-
ment direction for the automotive industry. In 1995,
Pomerleau et al. at Carnegie Mellon University de-
signed a simple self-driving car, the NavLab5 [1]. The
NavLab5 is equipped with a camera that detects lane
lines in the view of the vehicle and a vision system
that controls the turning of the vehicle laterally, while
the throttle and brakes of the vehicle are controlled
manually. The NavLab5 was a huge success, which
attracted a large number of research institutions and
universities to work on autonomous driving projects.
In 2004, DARPA, a U.S. military research institute,
organized a global self-driving car race in the Mo-
jave desert. Google was one of the �rst companies
to enter the self-driving car market, setting up a
self-driving car development project led by Thrun in
2009, and by 2014 it was demonstrating its �rst self-
driving prototype. Simultaneously, Mercedes-Benz,
BMW, Toyota, Ford, Bosch, Google, Baidu, Uber,
and Tesla have all made signi�cant progress toward

developing and launching representative autonomous
vehicles. However, the development of autonomous
driving technology has also exposed the problems of
intelligent vehicles in safe driving. Tesla and Google
self-driving cars have previously experienced issues
with out-of-control acceleration and an inability to
detect obstacles in autopilot mode, causing numer-
ous accidents. In March 2018, a self-driving car from
Uber caused the �rst smart car death in the world.

The frequent occurrence of safety incidents has be-
come a primary obstacle to the development of intelli-
gent vehicles. Self-driving cars cause nearly �ve times
as many tra�c accidents as conventional vehicles, ac-
cording to a 2015 report [2] from the Transportation
Research Institute of the University of Michigan. An
analysis of this report indicates that a primary con-
tributing factor to the high rate of accidents in self-
driving cars is that environmental awareness in au-
tonomous vehicles remains woefully inadequate for
responding to unexpected circumstances. Environ-
mental awareness is the ability of a vehicle to rec-
ognize information about its surroundings, in partic-

1,2The authors are with Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi, Thailand
11120, Email: 6372100126@stu.pim.ac.th and jianqu@pim.ac.th



A Study on Safety Driving of Intelligent Vehicles Based on Attention Mechanisms 411

ular other vehicles, pedestrians, and obstacles with
potentially dangerous characteristics. In intelligent
vehicles, the ability to perceive is enhanced, reducing
the possibility of accidents to some extent.

Many researchers have added multiple expensive
sensors to their vehicles to solve this problem. Nand-
ing and Jing [3] employ cameras and infrared sensors,
while Rhe et al. [4] employ cameras and ultrasonic
sensors to enable intelligent vehicles to perform road
tracking and obstacle avoidance tasks. Intelligent ve-
hicles detect obstacles by emitting infrared light and
emitting ultrasonic waves. It is how they identify and
avoid obstacles. Ranjbar and Vig [5] use cameras and
color sensors to enable their intelligent vehicles to per-
form road tracking and steering tasks. By detecting
the color of the turn mark, the color sensor transmits
the information to the control platform, which then
completes the turn operation.

These studies enhance the ability of intelligent ve-
hicles to perceive their environment by diversifying
the input data generated by sensors. However, this
introduces additional problems: increased manufac-
turing costs for intelligent vehicles, complex systems,
and increased development and maintenance costs.

Additionally, some studies [6-9] have utilized rein-
forcement learning as a strategy to improve the safety
of self-driving vehicles. The principle of reinforce-
ment learning states that when intelligent vehicles
are stimulated by rewards or punishments provided
by a particular environment, they gradually develop
an expectation of stimulation and develop habitual
behaviors that maximize benefits. Intelligent vehi-
cles based on reinforcement learning learn the best
strategies by improving their perception of a given
environment through trial and error in that environ-
ment. Reinforcement learning, however, is strongly
dependent on the training environment, and intelli-
gent vehicles are unable to cope with environments
they have not experienced before. Furthermore, in-
telligent vehicles using trial and error for reinforce-
ment learning are prone to traffic accidents in the
real world, and the cost is too high.

The approaches described above each attempt to
improve the safety of autonomous vehicles in terms
of adding multiple sensors and using reinforcement
learning. But their approaches all increase the cost
of autonomous vehicles. Therefore, it becomes crucial
to improve vehicle perception and efficiently reduce
accident rates. In human cognitive science, humans
selectively focus on a portion of all information and
thus ignore the rest of the visible information. Hu-
mans can focus their attention on what is important,
increasing the efficiency of their perception of the en-
vironment.

In order to address these issues, we have focused
our attention on neural networks. We discovered a
’component’ that has a wide range of applications in
the field of natural language processing: the Atten-

tion Mechanism. It shares similarities with human
attention. The attention mechanism is a signal pro-
cessing mechanism that was discovered in the 1990s
by many scientists studying human vision. The at-
tention mechanism is a technique in artificial neural
networks that mimics cognitive attention. This mech-
anism focuses the attention of the network on a small
part of the data that is most important by increasing
the weight of some parts of the input data to the neu-
ral network and decreasing the weight of other parts.

Attention mechanisms are also known to have ap-
plications in image processing. Jie Hu, Li Shen,
and Gang Sun [10] proposed Squeeze-and-Excitation
Networks (SE) in 2018 and used them in conjunc-
tion with ResNet to win the classification project at
ILSVRC 2017. Their method reduced the top-5 er-
ror to 2.251% on the ImageNet dataset, compared to
the previous best of 2.991%. Subsequently, Sanghyun
Woo et al. proposed the Macroeconomic Block At-
tention Module (CBAM) [11], a simple and effective
attention module for convolutional neural networks.
Their study experimented with ImageNet-1K, MS
COCO detection, and VOC 2007 detection datasets.
The results show that the model using CBAM mod-
ules has improved classification and detection perfor-
mance compared with other models, including mod-
els using SE modules. Shukai Ding [12] and Jian Qu
explored the effect of attentional mechanisms on au-
tonomous driving in their study. However, they only
studied CBAM and Resnet18 but did not do a more
extensive study of other attentional mechanisms and
CNNs.

In this paper, we discuss the impact of atten-
tion mechanisms on reducing the accident rate of
intelligent vehicles. Using the SE and CBAM
attention mechanisms, we construct four models:
Efficientnet b0-CBAM (ENetb0-CBAM), Efficient-
net b0-SE (ENetb0-SE), Resnet18-CBAM (RNet18-
CBAM) and Resnet18-SE (RNet18-SE). Further-
more, we have developed the Safety Driving Frame-
work (SDF), which is equipped with a convolutional
neural network and is at the core of intelligent ve-
hicles to ensure safe driving. It provides emergency
stops in case of danger for intelligent vehicles. Data
augmentation and 10-fold cross-validation are used
to optimize the model, which improves its robustness
and generalization, and reduces noise interference.

2. METHOD

This paper focuses on achieving safe driving of in-
telligent vehicles and reducing the number of acci-
dents. First of all, we propose the Safety Driving
Framework (SDF), which links hardware (camera,
development board) and software (model and algo-
rithm). Then, we employ convolutional neural net-
works based on attention mechanisms as predictive
models for intelligent vehicles in order to improve en-
vironmental perception. Finally, data augmentation
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Fig.1: Structure of The Safety Driving Framework.

Fig.2: The workflow of SDF.
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and 10-fold cross-validation are used to enhance
the generalization capabilities and robustness of the
model.

2.1 Safety Driving Framework

The Safety Driving Framework (SDF) is the basis
for the safe operation of our autonomous vehicles. Us-
ing the Python programming language, SDF is built
on a Jetson Nano development board. We do not
choose the Raspberry Pi [13] as a development board
because it is less capable of loading large neural net-
works than the Jetson Nano. The comparison of the
Jetson Nano and Raspberry Pi is shown in Table 1.
Additionally, we use OpenCV and PyTorch, which
are commonly used computer vision libraries and ap-
plication frameworks. The SDF framework is illus-
trated in Fig. 1, which shows how it connects hard-
ware and software and performs emergency avoidance
functions. In SDF, we use only one camera as the sen-
sor, which is responsible for information input and en-
vironmental interaction. It transfers images to convo-
lutional neural networks (predictive models) based on
attention mechanisms. It is the core of our approach,
which is described in detail in Section 2.2. SDF pre-
dicts road conditions based on the perceived images
of the environment and provides appropriate instruc-
tions. The intelligent vehicles perform Command 1
(Emergency Stop) in situations where accidents are
likely to occur, such as pedestrians and other vehicles
near the intelligent vehicles. Intelligent vehicles will
execute Command 2 (Continue driving) if the condi-
tions are safe, such as pedestrians or vehicles passing
safely. The SDF will make further judgments regard-
ing dynamic sign traffic lights. If the light is red, the
vehicle will come to an emergency stop. If the light
is green, the vehicle will continue to drive. The flow
diagram is shown in Fig. 2.

Table 1: The comparison of the Jetson Nano and
Raspberry Pi.

Name Jetson Nano Raspberry Pi 4B

CPU

Quad-Core
ARM Cortex- 64-bit 1.5GHz
A57 64-bit @ quad-core

1.42Ghz

GPU

NVIDIA
Maxwell

500MHz
w/128 CUDA

VideoCore IV
cores @ 921

Mhz
Memory 4GB LPDDR4 1-4GB DDR4

4 * USB3.0,
2*USB 3.0,

USB USB2.0
Micro-B

*USB 2.0

Video H.264/H.265(4 H.265(4Kp60
Encode Kp30) decode)

Networking

Gigabit

Gigabit Ethernet
Ethernet/M.2
Key E(for Wifi

support)

Display
HDMI2.0 and

2 micro HDMI
eDP1.4

2. 2 CNN with Attention Mechanism

2.2. .1 SE and CBAM

The selective attention in human vision is a unique 
brain signal processing mechanism that enables hu-
mans to screen out high-value information rapidly 
from a large amount of information using limited at-
tention resources. It is a survival mechanism formed 
by human beings in long-term evolution. This prop-
erty greatly enhances the efficiency and accuracy of 
human visual information processing. The attention 
mechanism in deep learning is derived from the mind-
set of humans. In cognitive science, due to bottle-
necks in information processing, humans selectively 
focus on a portion of all information while ignoring 
the rest of the visible information. Different parts 
of the human retina have different degrees of infor-
mation processing capability, or acuity, with only the 
central concave part of the retina having the strongest 
acuity. In order to make good use of the limited vi-
sual information processing resources, humans need 
to select a specific part of the visual area and then 
focus on it. For example, when people read, usu-
ally only a small number of words will be attended 
to and processed. In summary, the attention mech-
anism has two main aspects: deciding which part of 
the input needs to be attended to; and allocating the 
limited information processing resources to the im-
portant parts.

In the attention mechanism, the neural network 
learns autonomously and then outputs a set of 
weighted coefficients. At the same time, the neural 
network uses a “dynamic weighting” approach to em-
phasize the areas that need attention and suppress 
irrelevant background areas. This capability is re-
quired for intelligent vehicles. As road conditions 
become more complex and unpredictable, attention 
resources become scarcer. Focusing most attention 
on dangerous scenarios and ignoring irrelevant infor-
mation is crucial to reducing intelligent vehicle acci-
dents. Therefore, this paper discusses the application 
of attentional mechanisms in intelligent vehicles.

There are three types of attention mechanisms, 
namely spatial, channel, and mixed. The specific 
structure of the SE is shown in Fig. 3, which is a 
channel attention mechanism. The SE performs the

Fig.3: Structure of the SE.
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Fig.4: Structure of The CBAM.

Fig.5: Structure of The Efficientnet b0-CBAM.

Squeeze and Excitation modules to implement the
“reduce dimension first, increase dimension later”
strategy. It automatically obtains the importance
of each feature channel using neural network learn-
ing. Finally, it assigns different weight factors to each
channel to reinforce the important features and sup-
press the non-important ones. The working process
of the SE involves two main operations: Squeeze and
Excitation. First, the Squeeze compresses the spatial
dimensions and pools each feature map globally. Sec-
ond, the network outputs a feature map of 1×1×C
size after the Squeeze, and the Excitation uses the
weight W to learn the direct correlation of C chan-

nels.
CBAM is a mixed attention mechanism that in-

cludes both channel attention mechanisms and spa-
tial attention mechanisms, as shown in Fig. 4. The
channel attention mechanism of CBAM are similar to
SE, but CBAM adds max pooling and shared MLP.
For the channel attention mechanism, after the input
feature F has been processed by global max pooling
and global average pooling, its result is shared in the
MLP. The MLP output feature is subjected to an
elementwise summation operation and sigmoid acti-
vation to generate the final Channel Attention Mc.
This Channel Attention Mc and input feature F are
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Fig.6: The Working Process of Data Augmentation.

subjected to an elementwise multiplication operation 
to generate Channel-refined feature F’, which is also 
the input feature required by the Spatial attention 
mechanism. The Spatial attention mechanism first 
does global max pooling and global average pooling 
based on the channel, and then the two results are 
concatenated based on the Spatial attention mecha-
nism. Then convolution and sigmoid operations are 
performed to generate spatial attention Ms. Finally, 
the feature is multiplied by the input feature of the 
module to obtain the final generated feature.

2.22.2 ENetb0-CBAM

Using Efficientnet b0 [14] and Resnet18 [15] as the 
base framework and combining SE and CBAM, we 
construct four models, namely Efficientnet b0-CBAM 
(ENetb0-CBAM), Efficientnet b0-SE (ENetb0-SE), 
Resnet18-CBAM (RNet18-CBAM) and Resnet18-SE 
(RNet18-SE). Taking ENetb0-CBAM as an exam-
ple, we show the structure of a convolutional neural 
network that incorporates attention mechanisms, as 
shown in Fig. 6.

We add CBAM to the MBConv module of the Ef-
ficientnet b0. MBConv is the body module of the Ef-
ficientnet b0, which is available in two versions, MB-
Conv1 and MBConv6. MBConv6 has one more con-
volutional layer, one more batch normalization layer, 
one more activation layer, and one more dropout layer 
than MBConv1.

2. 3 Data Augmentation

The development of deep learning cannot be sep-
arated from big data support. During training, the 
generalization ability of the model is directly influ-
enced by the size and quality of the data. However, 
during the data collection, it is often not possible to 
fully cover the scene. In this case, data augmentation 
(DA) [16] is needed. Data augmentation is a way to 
augment the size and richness of data samples and

Fig.7: Principles of 10-Fold Cross-Validation.

Table 2: Data Augmentation Methods.
Data augmentation

Description
methods
Resize Uniform image size

ColorJitter
Randomly changing the color

parameters of images
ToTensor Convert images to tensor
Normalize Normalizing data

RandomInvert Inverted pixel values

RandomPerspectiv
Random perspective

transformations

GaussianBlur
Image smoothing with

Gaussian blur
RandomHorizontalF Flip the image in the

lip horizontal direction

RandAugment
Enhanced generalization

performance

RandomCrop
Random cropping of a set

size image
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improve model robustness and generalization capa-
bilities. For example, in a scene where intelligent
vehicles collect traffic data, uncontrollable lighting
conditions result in a relatively single dataset sam-
ple. Therefore, data augmentation on lighting vari-
ations can be added to the model training. Alter-
natively, when data collection and labeling are dif-
ficult, the data augmentation method can generate
sufficient training data, lowering the cost of data col-
lection and processing. Additionally, by performing
data augmentation, the neural network can be pre-
vented from learning irrelevant features, thereby sig-
nificantly improving the overall performance of the
model.

Data augmentation is mainly divided into two cat-
egories:

(1) Offline augmentation: Direct processing of ex-
isting data sets, the size of the data will become the
product of the augmentation factor, and the size of
the original data set, suitable for small data sets.

(2). Online augmentation: The dataset is ex-
panded during the model training process. Specifi-
cally, after obtaining the data of one batch, the data
under the match is enhanced. In this work, we choose
the online augmentation approach. The working pro-
cess of data augmentation is shown in Fig. 5.

There are many methods of data augmentation,
including, but not limited to, flipping, scaling, clip-
ping, and Gaussian noise. The data augmentation
methods below have been selected in this paper, as
shown in Table 2.

2.4 10-Fold Cross-Validation

The 10-fold cross-validation [17] has been widely
adopted as a standard for evaluating model perfor-
mance. This paper aims to achieve safe driving of
intelligent vehicles and has high requirements for the
stability and generalization ability of the model. As a
result, this paper adopts the 10-fold cross-validation
method to train the model and evaluate its stability
and generalization ability. It can be used to evalu-
ate model performance, and it can also be used to
compensate for the insufficient dataset.

The structure of the 10-fold cross-validation is
shown in Fig. 7. The dataset is divided into ten
mutex subsets of similar size, with each of them pre-
serving the consistency of data distribution to the
greatest extent possible. Each time, we select one
subset as the test set, and the union of the remaining
subsets as the training set. It can obtain ten train-
ing/test sets, allowing for ten training sessions and
ten tests. The accuracy (or error value) is generated
for each test.

3. EXPERIMENT

3.1 Data Collection and Model Training

The simulated track we have constructed is shown
in Fig. 8. It is a complicated track, and it can design
different routes as needed at will. For example, the
rectangular route of the outer ring of the track is cir-
cular, and the inner circle is a complex route contain-
ing multiple turns. Simulated tracks provide various
driving routes that simulate complex real-world road
conditions. In addition, in order to explore the im-
pact of attention mechanisms on the safe driving of
intelligent vehicles, we add risk factors (traffic acci-
dents that are likely to cause traffic accidents) to the
simulation tracks, referring to pedestrians, vehicles,
traffic lights, and traffic signs.

Fig.8: The Simulation Track.

Fig.9: Intelligent Driving Platform.

As shown in Fig. 9, we built an intelligent driving
platform. Its development board is Jetson Nano, and
it is equipped with only a camera that serves as a sen-
sor for environmental interaction. As the experimen-
tal subject, the intelligent driving platform collects
images on the simulated track. Since Resnet18 and
Efficientnet b0 (the two baseline models we have cho-
sen) require 224*224 input images due to their model
structure, we collect images of 224*224. If we use
high-resolution images, it will slow down the speed of
image processing. In addition, we are using an em-
bedded development board, the Jetson Nano, which
has limited computing power, making it difficult to
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deploy models that use high resolution smoothly.

Fig.10: Comparison of camera angles.

In addition, the tilt angle of the camera is impor-
tant for image collection. Different angles will collect
different images, and the quality of the images will
also determine how good the model is. The tilt angle
of our camera is 75◦. Our track and the experimental
environment determined it. As shown in Fig. 10, we
compared the view of the car at 60◦, 75◦ and 90◦ and
the distance when the car stopped against an obsta-
cle. We found that the greater the angle of the cam-
era, the wider the field of view of the car, but also the
more noisy environment is collected by the camera.
The smaller the angle of the camera, the narrower
the field of view of the car and the less likely it is to
recognise an obstacle and stop, so the closer the point
at which the car stops is to the obstacle. When the
camera angle is less than 60◦, the car’s field of view
is insufficient to see the obstacle’s full extent. So we
did not compare angles below 60◦. After testing, we
found that the best camera angle was 75◦. The image
collection is divided into five categories: pedestrians,
vehicles, traffic lights, traffic signs, and safety tracks.
We collect 1000 images of safe tracks and 500 images
of each of the remaining four categories.

We train the model in Colab and optimize some of
the hyperparameters. The results show that choosing
the Smooth L1 loss function and the Adam optimizer
works best.

3.2 Image Augmentation

The images collected in the simulated environment
have certain limitations. Light may be ignored be-
cause it is difficult to collect images throughout the
day. Therefore, the collection of images is single in
type and not very wide. In addition, we collected only
1500 images, which is a small dataset. Therefore, we
used a variety of data augmentation methods from

Table 2 to extend the dataset. The effect of image
augmentation is shown in Fig. 11. One original im-
age was generated with several different images after
different data augmentation methods, which greatly
enriched the dataset. We use this approach to im-
prove the robustness and generalization of the model.

3.3 Test

We fused attention mechanisms to construct and
train four CNNs: ENetb0-CBAM (Efficientnet b0-
CBAM), ENetb0-SE, RNet18-CBAM (Resnet18-
CBAM) and RNet18-SE. In addition, our approach
was compared with existing studies. We compare the
four CNNs mentioned above with two existing mod-
els: Efficientnet b0 [14] (ENetb0) and Resnet18 [15]
(RNet18).

Abenezer Girma et al [18] used deep bidirectional
long and short-term memory (LSTM) and an atten-
tion mechanism model based on the hybrid state sys-
tem (HSS) framework in their study to solve the prob-
lem of estimating driver behavior near road intersec-
tions. However, they only worked on image datasets.
They used the transverse swing rate and speed data
of vehicles approaching the intersection at each time
step was recorded and discrete into a series of symbols
for training and testing the proposed model. They
did not test the model in the real world. Instead of
them, we have built a simulation track and an intel-
ligent driving platform. We can dynamically test our
proposed method and model in real-time in the real
world. This dynamic testing approach fully reflects
the effects of environmental noise and allows for a
more realistic test of the performance of the models.

Pedestrians, vehicles, traffic lights, and traffic signs
are randomly placed on the simulated track. In ad-
dition, we explore the impact of data augmentation
(DA) on model stability. The experiments were con-
ducted in two environments: a normal environment
(the environment in which the model was trained)
and a noisy environment. The reason for the noisy
environment is that noise immunity is an assessment
metric for evaluating the stability of the model. The
higher the noise, the higher the demands on the
model.

The noisy environment is where light noise and
other invisible objects are added to the normal en-
vironment. For light noise, we use lights of different
light intensities acting on the track to simulate an
environment containing light noise. Noise-disturbing
environments are environments where lighting and
other unseen objects are added to a normal envi-
ronment. The setting of the noise environment has
important practical significance for intelligent vehi-
cles. In the real world, intelligent vehicles will en-
counter numerous unexpected accidents, such as ani-
mals that appear suddenly in front of them, or a clear
sky suddenly covered in dark clouds. Intelligent vehi-
cles must possess superior environmental perception,
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Fig.11: Variation of Spacing with Suspension Preload.

Fig.12: An example of the recognition rate of an
intelligent driving platform.

image processing capabilities, and extreme robustness
in order to deal with unexpected situations.

The average recognition rate and accident rate are
used as evaluation indicators to assess the quality of
the model. The recognition rate refers to the pre-
dicted probability of the obstacle by the intelligent
driving platform. The testing process of an intelli-
gent driving platform is variable, so its recognition
rate is also a variable value. As shown in Fig. 12, it
is an example of the recognition rate of a smart driv-
ing platform. This example has a recognition rate of
100% for vehicles, with no vehicles misidentified as
pedestrians or other signs. It means that the intel-
ligent driving platform predicts that the obstacle in
the middle of the road ahead is the vehicle, which be-
longs to the dangerous area, and then the intelligent
driving platform will stop driving until the obstacle
is cleared. The intelligent driving platform drives on
a simulation track, so recognising obstacles is a dy-
namic process. The speed of the intelligent driving
platform and its distance from the obstacle greatly
influence the recognition rate. The recognition rate
will be low if the distance between the car and the
obstacle is far and close; if the car is fast, the recog-
nition rate will be low; if the car is too slow, the
car will not start. After experiments, we found that
the optimal speed of the car is 0.6. As the intelligent
driving platform gradually approaches the obstacle at
the optimal speed, its recognition rate gradually in-

creases from low to high. When the intelligent driving
platform stops, its recognition rate reaches its maxi-
mum. Each obstacle is randomly placed ten times on
the simulated track for each experiment. The aver-
age recognition rate of obstacles in each experiment
will be calculated and used as one of the final evalu-
ation indicators. Another evaluation indicator is the
accident rate of the intelligent driving platform. Ev-
ery time the intelligent driving platform encounters
an obstacle, it is considered a test. If the intelligent
driving platform collides with an obstacle or goes off
the track, it is considered a violation of the operation.
The accident rate refers to the percentage of the num-
ber of violations of the intelligent driving platform
in the simulated track to the total number of tests.
There are five main types of accident, as shown in
Table 3.

Table 3: Types of accidents.
Accident type Reason

Hitting pedestrians No pedestrian recognition
Crash No vehicle recognition

Running a red light Unrecognisable traffic
light

Hitting the STOP sign STOP sign not recognised,
unable to stop

Driving off the track No road tracking

4. RESULTS AND ANALYSIS

Our experiments discuss four questions:
1. The comparison between CNNs with and with-

out attentional mechanisms. Results as shown in Fig.
13.

2. The comparison of models for noise resistance.
Results as shown in Fig. 14.

3. The comparison between CNNs with and with-
out data augmentation. Results as shown in Fig. 15.

4. Comparison of our approach with existing mod-
els. Results as shown in Fig. 16. The existing models
are the original unprocessed Resnet18 and Efficient-
net b0.
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The experimental results are shown in Table 4.
The recognition rate is positively correlated with the
accident rate. If the recognition rate is high, the ac-
cident rate will be low. However, there is no specific
functional relationship between the two sides. The in-
telligent driving platform is moving, and the process
of obstacle prediction is a dynamic one. The variable
position and environment of the intelligent driving
platform make obstacle prediction more difficult and
increase the probability of an accident.

Table 4: The Experimental Results

Average
Accident

Model accuracy
rate

rate

ENetb0 (Existing) 13.3% 91%
ENetb0+DA 82.6% 19%
ENetb0+DA+noise 23.1% 88%
ENetb0-CBAM+DA 90.5% 13%
ENetb0-CBAM+DA+noise 65.6% 43%
ENetb0-SE+DA 95.6% 2%
ENetb0-SE+DA+noise 73.5% 19%
RNet18 (Existing) 23.7% 84%
RNet18+DA 79.4% 22%
RNet18+DA+noise 22.6% 90%
RNet18-CBAM+DA 92.8% 6%
RNet18-CBAM+DA+noise 69.8% 39%
RNet18-SE+DA 87.9% 15%
RNet18-SE+DA+noise 67.8% 42%

Fig.13: The comparison between CNNs with and
without attentional mechanisms.

In Fig. 13, six CNNs are tested in a normal en-
vironment. According to our findings, CNNs with
SE and CBAM attention mechanisms are superior to
the existing network in terms of recognition rates and
error rates. The most effective CNN is ENetb0-SE.
The recognition rate is 95.6%, and the accident rate is
only 2%, which is attributed to the attention mecha-

nism. SE and CBAM attention mechanisms improve
the ability of CNNs to extract image information to
some extent. It is also evidenced by the results in
Fig. 14. In Fig. 14, six models have been tested in
a noisy environment. Because of the impact of envi-
ronmental noise, the recognition rate of ENetb0 and
RNet18 is greatly reduced, and the accident rate is
greatly increased. As compared to them, the recog-
nition and incident rates of the four models ENetb0-
CBAM, ENetb0-SE, RNet18-CBAM, and RNet18-SE
with attention mechanisms were not much weakened.
It also demonstrates the high robustness of models
with attention mechanisms to noisy environments.
The combination of Fig. 13 and 14 shows that neither
SE nor CBAM is superior or inferior to each other. In
comparison to CBAM, SE has better test results in
ENetb0 than RNet18. In contrast, CBAM performed
best in RNet18. It implies that there is no optimal
attention mechanism, only the most appropriate at-
tention mechanism for each CNN.

Fig.14: Experimental results in the noise environ-
ment.

The results of the tests on data augmentation are
shown in Fig. 15. We compare ENetb0 and RNet18
tests with and without data augmentation. The test
results show that the recognition rate of ENetb0 and
RNet18 without data augmentation is very low, and
the accident rate is high, far lower than the results
with data augmentation. For tests without data aug-
mentation, the reason for these results may be that it
is too small a dataset and the images are of a single
type. On the other hand, the use of data augmenta-
tion extends the dataset and improves the robustness
of the model. For intelligent driving platforms, the
safety of autonomous driving can be improved.

The above comparison illustrates the important
role of attentional mechanisms and data augmenta-
tion in improving the robustness and generalisation
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Fig.15: Experimental results of data augmentation.

Fig.16: Experimental results of our approach com-
pared to existing models.

of models. They can even achieve good results in
noisy environments. The core part of our proposed
Safety Driving Framework (SDF) is to train CNNs
that have incorporated the attention mechanism with
a data augmentation dataset. We used the SDF and
obtained four models (ENetb0-CBAM+DA, ENetb0-
SE+DA, RNet18-CBAM+DA and RNet18-SE+DA).
We compared the four models with the existing
ENetb0 (Efficientnet b0) and RNet18 (Resnet18).
The experimental results are shown in Fig. 16. All
four models achieved good results compared to the
two existing models. We attribute this to CNNs that
incorporate attention mechanisms and data reinforce-
ment. The attention mechanism can help CNN focus
more efficiently on the important parts. Data rein-
forcement can help CNN to expand the dataset and
improve robustness.

In addition, when collecting the data, we did not
collect images of scenes that included a mixture of
multiple signs. We only collected images of scenes
with a single sign. For example, we collected images
of only obstacles or only traffic lights. However, when

we tested the intelligent driving platform by placing
both green lights and pedestrians on the simulation
track, it would stop rather than continue driving. We
thought this situation might be because pedestrians
are larger than traffic lights, so pedestrians are more
easily recognised.

Shukai Ding conducted the experiment and drafted
the manuscript. Jian Qu guided and advised the ex-
periment and co-drafted the manuscript. Both au-
thors each contributed equally to this work. Jian Qu
is the corresponding author.

5. CONCLUSION

In this work, we present the Safety Driving Frame-
work (SDF), which is the basis for intelligent driv-
ing platforms to enable safe driving. We also ex-
plore the positive impact of attention mechanisms on
self-driving cars and build several models of ENetb0-
SE, ENetb0-CBAM, RNet18-SE, and RNet18-CBAM
to test. In addition, we optimize the models us-
ing the data augmentation method and 10-fold cross-
validation in order to increase their robustness and
generalizability. Experiments demonstrated that
CNNs with attention mechanisms perform better
than their existing models (ENetb0 and RNet18).
Our method improves the environmental perception
of the intelligent driving platform and reduces the
probability of colliding with obstacles. ENetb0-SE, in
particular, has an average recognition rate of 95.6%
for obstacles, an accident rate of only 2%, and the in-
telligent driving platform has basically no violations.
As shown through noise interference experiments,
the attention mechanism also positively improves the
generalization ability and anti-interference ability of
CNN models. Our data augmentation experiments
revealed that data augmentation techniques could be
extremely beneficial for smaller datasets. It is capa-
ble of expanding the data set and enriching the vari-
ety of images through color transformation, cutting,
and rotation operations, thereby resolving the issue
of insufficient data collection. In the future, we in-
tend to investigate additional methods for enhancing
the stability and safety of autonomous driving beyond
attention mechanisms in order to reduce further the
accident rate caused by intelligent vehicles.
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