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ABSTRACT
Large-scale text categorization is an important research topic
for Web data mining. One of the challenges in large-scale
text categorization is how to reduce the human efforts in
labeling text documents for building reliable classification
models. In the past, there have been many studies on ap-
plying active learning methods to automatic text categoriza-
tion, which try to select the most informative documents for
manually labeling. Most of these studies focused on selecting
a single unlabeled document in each iteration. As a result,
the text categorization model has to be retrained after each
labeled document is solicited. In this paper, we present a
novel active learning algorithm that selects a batch of text
documents for manually labeling in each iteration. The key
of the batch mode active learning is how to reduce the redun-
dancy among the selected examples such that each example
provides unique information for model updating. To this
end, we use the Fisher information matrix as the measure-
ment of model uncertainty and choose the set of documents
that can efficiently minimize the Fisher information matrix
of a classification model. Extensive experiments with three
different datasets have shown that our algorithm is more ef-
fective than the state-of-the-art active learning techniques
for text categorization and can be a promising tool toward
large-scale text categorization on World Wide Web.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.5.2 [Design Methodology]: Classifier Design and
Evaluation

General Terms
Algorithms, Performance, Experimentation

Keywords
text categorization, active learning, logistic regression, Fisher
information matrix, convex optimization

1. INTRODUCTION
The goal of text categorization is to automatically assign

text documents to a set of predefined categories. With the
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rapid growth of Web pages on World Wide Web (WWW),
text categorization has become more and more important in
both the world of research and applications. Usually, text
categorization is regarded as a supervised learning problem.
In order to build a reliable model for text categorization, we
need to first of all manually label a number of documents
using the predefined categories. Then, a statistical machine
learning algorithm is engaged to learn a text classification
model from the labeled documents. One important chal-
lenge for large-scale text categorization is how to reduce the
number of labeled documents that are required for building
reliable text classification models. This is particularly im-
portant for text categorization of WWW documents given
its large size.

We focus on attacking this challenge for text categoriza-
tion in this paper. In the past, there have been a number
of studies on applying active learning to text categoriza-
tion. The main idea is to only select the most informative
documents for manually labeling. Most active learning al-
gorithms are conducted in the iterative fashion. In each
iteration, the example with the highest classification uncer-
tainty is chosen for manually labeling. Then, the classifica-
tion model is retrained with the additional labeled example.
The step of training a classification model and the step of
soliciting a labeled example are iterated alternatively until
most of the examples can be classified with reasonably high
confidence. One of the main problems with such a scheme
is that only a single example is selected for labeling. As a
result, the classification model has to be retrained after each
labeled example is solicited.

In the paper, we propose a novel active learning scheme
that is able to select a batch of unlabeled examples in each
iteration. A simple strategy toward the batch mode active
learning is to select the top k most informative examples.
The problem with such an approach is that some of the se-
lected examples could be similar, or even identical, to each
other, and therefore do not provide additional information
for model updating. In general, the key of the batch mode
active learning is to ensure the small redundancy among the
selected examples such that each example provides unique
information for model updating. To this end, we use the
Fisher information matrix, which represents the overall un-
certainty of a classification model. We choose the set of
examples such that the Fisher information matrix of a clas-
sification model can be effectively reduced.

The rest of this paper is organized as follows. Section 2
reviews the related work on text categorization and active



learning algorithms. Section 3 briefly introduces the con-
cept of logistic regression, which is used as the classifica-
tion model in our study for text categorization. Section 4
presents the batch mode active learning algorithm and an ef-
ficient learning algorithm based on the bound optimization
algorithm. Section 5 presents the results of our empirical
study. Section 6 sets out our conclusions.

2. RELATED WORK
Text categorization is a long-term research topic which

has been actively studied in the communities of Web data
mining, information retrieval and statistical learning [15,
35]. Essentially the text categorization techniques have been
the key toward automated categorization of large-scale Web
pages and Web sites [18, 27], which is further applied to im-
prove Web searching engines in finding relevant documents
and facilitate users in browsing Web pages or Web sites.

In the past decade, a number of statistical learning tech-
niques have been applied to text categorization [34], in-
cluding the K Nearest Neighbor approaches [20], decision
trees [2], Bayesian classifiers [32], inductive rule learning [5],
neural networks [23], and support vector machines (SVM) [9].
Empirical studies in recent years [9] have shown that SVM is
the state-of-the-art technique among all the methods men-
tioned above.

Recently, logistic regression, a traditional statistical tool,
has attracted considerable attention for text categorization
and high-dimension data mining [12]. Several recent studies
have shown that the logistic regression model can achieve
comparable classification accuracy as SVMs in text catego-
rization. Compared to SVMs, the logistic regression model
has the advantage in that it is usually more efficient than
SVMs in model training, especially when the number of
training documents is large [13, 36]. This motivates us to
choose logistic regression as the basis classifier for large-scale
text categorization.

The other critical issue for large-scale text document cat-
egorization is how to reduce the number of labeled docu-
ments that are required for building reliable text classifi-
cation models. Given the limited amount of labeled docu-
ments, the key is to exploit the unlabeled documents. One
solution is the semi-supervised learning, which tries to learn
a classification model from the mixture of labeled and unla-
beled examples [30]. A comprehensive study of semi-supervised
learning techniques can be found in [25, 38]. Another solu-
tion is active learning [19, 26] that tries to choose the most
informative unlabeled examples for manually labeling. Al-
though previous studies have shown the promising perfor-
mance of semi-supervised learning for text categorization
[11], the high computation cost has limited its application
[38]. In this paper, we focus our discussion on active learn-
ing.

Active learning, or called pool-based active learning, has
been extensively studied in machine learning for many years
and has already been employed for text categorization in
the past [16, 17, 21, 22]. Most active learning algorithms
are conducted in the iterative fashion. In each iteration,
the example with the highest classification uncertainty is
chosen for manually labeling. Then, the classification model
is retrained with the additional labeled example. The step
of training a classification model and the step of soliciting a
labeled example are iterated alternatively until most of the
examples can be classified with reasonably high confidence.

One of the key issues in active learning is how to measure
the classification uncertainty of unlabeled examples. In [6,
7, 8, 14, 21, 26], a number of distinct classification models
are first generated. Then, the classification uncertainty of
a test example is measured by the amount of disagreement
among the ensemble of classification models in predicting
the labels for the test example. Another group of approaches
measure the classification uncertainty of a test example by
how far the example is away from the classification boundary
(i.e., classification margin) [4, 24, 31]. One of the most
well-known approaches within this group is support vector
machine active learning developed by Tong and Koller [31].
Due to its popularity and success in the previous studies, it
is used as the baseline approach in our study.

One of the main problems with most existing active learn-
ing algorithm is that only a single example is selected for
labeling. As a result, the classification model has to be
retrained after each labeled example is solicited. In this
paper, we focus on the batch mode active learning that se-
lects a batch of unlabeled examples in each iteration. A
simple strategy is to choose the top k most uncertain exam-
ples. However, it is likely that some of the most uncertain
examples can be strongly correlated and even identical in
extreme cases, which are redundant in providing the infor-
mative clues to the classification model. In general, the chal-
lenge in choosing a batch of unlabeled examples is twofold:
on one hand the examples in the selected batch should be in-
formative to the classification model; on the other hand the
examples should be diverse enough such that information
provided by different examples does not overlap with each
other. To address this challenge, we employ the Fisher in-
formation matrix as the measurement of model uncertainty,
and choose the set of examples that efficiently reduce the
Fisher information matrix. Fisher information matrix has
been used widely in statistics for measuring model uncer-
tainty [28]. For example, in the Cramer-Rao bound, Fisher
information matrix provides the low bound for the variance
of a statistical model. In this study, we choose the set of
examples that can well represent the structure of the Fisher
information matrix.

3. LOGISTIC REGRESSION
In this section, we give a brief background review of lo-

gistic regression, which has been a well-known and mature
statistical model suitable for probabilistic binary classifica-
tion. Recently, logistic regression has been actively studied
in statistical machine learning community due to its close
relations to SVMs and Adaboost [33, 36].Compared with
many other statistical learning models, such as SVMs, the
logistic regression model has the following advantages:

• It is a high performance classifier that can be efficiently
trained with a large number of labeled examples. Pre-
vious studies have shown that the logistic regression
model is able to achieve the similar performance of
text categorization as SVMs [13, 36]. These stud-
ies also showed that the logistic regression model can
be trained significantly more efficiently than SVMs,
particularly when the number of labeled documents is
large.

• It is a robust classifier that does not have any configu-
ration parameters to tune. In contrast, some state-of-
the-art classifiers, such as support vector machines and



AdaBoost, are sensitive to the setup of the configura-
tion parameters. Although this problem can be par-
tially solved by the cross validation method, it usually
introduces a significant amount of overhead in compu-
tation.

Logistic regression can be applied to both real and binary
data. It outputs the posterior probabilities for test examples
that can be conveniently processed and engaged in other sys-
tems. In theory, given a test example x, logistic regression
models the conditional probability of assigning a class label
y to the example by

p(y|x) =
1

1 + exp(−yαT x)
(1)

where y ∈ {+1,−1} is the class label, and α is the model
parameter. Here a bias constant is omitted for simplified
notation. In general, logistic regression is a linear classifier
that has been shown effective in classifying text documents
that are usually in the high-dimensional data space. For the
implementation of logistic regressions, a number of efficient
algorithms have been developed in the recent literature [13].

4. BATCH MODE ACTIVE LEARNING
In this section, we present a batch mode active learning al-

gorithm for large-scale text categorization. In our proposed
scheme, logistic regression is used as the base classifier for
binary classification. In the following, we first introduce
the theoretical foundation of our active learning algorithm.
Based on the theoretical framework, we then formulate the
active learning problem into a semi-definite programming
(SDP) problem [3]. Finally, we present an efficient learn-
ing algorithm for the related optimization problem based
on the eigen space simplification and a bound optimization
strategy.

4.1 Theoretical Foundation
Our active learning methodology is motivated by the work

in [37], in which the author presented a theoretical frame-
work of active learning based on the minimization of Fisher
information matrix. Given the Fisher information matrix
represents the overall uncertainty of a classification model,
our goal is to search for a set of examples that can most
efficiently reduce the Fisher information matrix. As showed
in [37], this goal can be formulated into the following opti-
mization problem:

Let p(x) be the distribution of all unlabeled examples,
and q(x) be the distribution of unlabeled examples that are
chosen for manually labeling. Let α denote the parameters
of the classification model. Let Ip(α) and Iq(α) denote the
Fisher information matrix of the classification model for the
distribution p(x) and q(x), respectively. Then, the set of
examples that can most efficiently reduce the uncertainty of
classification model is found by minimizing the ratio of the
two Fisher information matrix Ip(α) and Iq(α), i.e.,

q∗ = arg min
q

tr(Iq(α)−1Ip(α)) (2)

For the logistic regression model, the Fisher information

Iq(α) is attained as:

Iq(α)

= −
Z

q(x)
X

y=±1

p(y|x)
∂2

∂α2
log p(y|x)dx

=

Z
1

1 + exp(αT x)

1

1 + exp(−αT x)
xxT q(x)dx

(3)

In order to estimate the optimal distribution q(x), we re-
place the integration in the above equation with the sum-
mation over the unlabeled data, and the model parameter α
with the empirically estimated α̂. Let D = (x1, . . . ,xn) be
the unlabeled data. We can now rewrite the above expres-
sion for Fisher information matrix as:

Iq(α̂) =

nX
i=1

πi(1− πi)xix
T
i qi + δId (4)

where

πi = p(−|xi) =
1

1 + exp(α̂T xi)
(5)

In the above, qi stands for the probability of selecting the i-
th example and is subjected to

Pn
i=1 qi = 1, Id is the identity

matrix of d dimension, and δ is the smoothing parameter.
The δId term is added to the estimation of Iq(α̂) to prevent
it from being a singular matrix. Similarly, for Ip(α̂), the
Fisher information matrix for all the unlabeled examples,
we have it expressed as follows:

Ip(α̂) =
1

n

nX
i=1

πi(1− πi)xix
T
i + δId (6)

4.2 Why Using Fisher Information Matrix?
In this section, we will qualitatively justify the theory of

minimizing the Fisher information for batch mode active
learning. In particular, we consider two cases, the case of
selecting a single unlabeled example and the case of select-
ing two unlabeled examples simultaneously. To simplify our
discussion, let’s assume ‖xi‖22 = 1 for all unlabeled exam-
ples.

Selecting a single unlabeled example. The Fisher
information matrix Iq is simplified into the following form
when the i-th example is selected:

Iq(α̂;xi) = πi(1− πi)xix
T
i + δId

Then, the objective function tr(Iq(α̂)−1Ip(α̂)) becomes:

tr(Iq(α̂)−1Ip(α̂)) ≈
1

nπi(1− πi)

nX
j=1

πj(1− πj)(x
T
i xj)

2

+
1

nδ

nX
j=1

πj(1− πj)(1− (xT
i xj)

2)

To minimize the above expression, we need to maximize
the term πi(1 − πi), which reaches its maximum value at
πi = 0.5. Since πi = p(−|xi), the value of πi(1 − πi) can
be regarded as the measurement of classification uncertainty
for the i-th unlabeled example. Thus, the optimal example
chosen by minimizing the Fisher information matrix in the
above expression tends to be the one with a high classifica-
tion uncertainty.



Selecting two unlabeled examples simultaneously.
To simplify our discussion, we assume that the three exam-
ples, x1, x2, and x3, have the largest classification uncer-
tainty. Let’s further assume that x1 ≈ x2, and meanwhile
x3 is far away from x1 and x2. Then, if we follow the simple
greedy approach, the two example x1 and x2 will be se-
lected given their largest classification uncertainty. Appar-
ently, this is not an optimal strategy given both examples
provide almost identical information for updating the classi-
fication model. Now, if we follow the criterion of minimizing
Fisher information matrix, this mistake could be prevented
because

Iq(α̂;x1,x2) =
1

2
(x1x

T
1 + x2x

T
2 ) + δId

≈ x1x
T
1 + δId = Iq(α̂;x1)

As indicated in the above equation, by including the second
example x2, we did not change the expression of Iq, the
Fisher information matrix for the selected examples. As a
result, there will be no reduction in the objective function
tr(Iq(α̂)−1Ip(α̂)) when including the example x2. Instead,
we may want to choose x3 that is more likely to decrease the
objective function even though its classification uncertainty
is smaller than that of x2.

4.3 Optimization Formulation
The idea of our batch mode active learning approach is

to search a distribution q(x) that minimizes tr(I−1
q Ip). The

samples with maximum values of q(x) will then be chosen
for queries. However, it is usually not easy to find an ap-
propriate distribution q(x) that minimizes tr(I−1

q Ip). In the
following, we present a semidefinite programming (SDP) ap-
proach for optimizing tr(I−1

q Ip).
Given the optimization problem in (2), we can rewrite

the objective function tr(I−1
q Ip) as tr(I

1/2
p I−1

q I
1/2
p ). We

then introduce a slack matrix M ∈ Rn×n such that M �
I
1/2
p I−1

q I
1/2
p . Then original optimization problem can be

rewritten as follows:

min
q,M

tr(M)

s. t. M � I1/2
p I−1

q I1/2
p

nX
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(7)

In the above, we use the property tr(A) ≥ tr(B) if A � B.
Furthermore, we use the Schur complementary, i.e.,

D � AB−1AT ⇔
�

B AT

A D

�
� 0 (8)

if B � 0. This will lead to the following formulation of the
problem in (7)

min
q,M

tr(M)

s. t.

 
Iq I

1/2
p

I
1/2
p M

!
� 0

nX
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(9)

or more specifically

min
q,M

tr(M)

s. t.

nX
i=1

qiπi(1− πi)

 
xix

T
i I

1/2
p

I
1/2
p M

!
� 0

nX
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(10)

The above problem belongs to the family of Semi-definite
programming and can be solved by the standard convex op-
timization packages such as SeDuMi [29].

4.4 Eigen Space Simplification
Although the formulation in (10) is mathematically sound,

directly solving the optimization problem could be com-
putationally expensive due to the large size of matrix M ,
i.e., d × d, where d is the dimension of data. In order
to reduce the computational complexity, we assume that
M is only expanded in the eigen space of matrix Ip. Let
{(λ1,v1), . . . , (λs,vs)} be the top s eigen vectors of matrix
Ip where λ1 ≥ λ2 ≥ . . . ≥ λs. We assume matrix M has the
following form:

M =

sX
k=1

γkvkv
T
k (11)

where the combination parameters γk ≥ 0, k = 1, . . . , s.

We rewrite the inequality for M � I
1/2
p I−1

q I
1/2
p as Iq �

I
1/2
p M−1I

1/2
p . Using the expression for M in (11), we have

I1/2
p M−1I1/2

p =

sX
k=1

γ−1
k λkvkv

T
k (12)

Given that the necessary condition for Iq � I
1/2
p M−1I

1/2
p is

vT Iqv ≥ vT I1/2
p M−1I1/2

p v, ∀v ∈ Rd ,

we have vT
k Iqvk ≥ γ−1

k λk for k = 1, . . . , s. This necessary
condition leads to following constraints for γk:

γk ≥
λkPn

i=1 qiπi(1− πi)(xT
i vk)2

, k = 1, . . . , s (13)

Meanwhile, the objective function in (10) can be expressed
as

tr(M) =

sX
k=1

γk (14)

By putting the above two expressions together, we transform
the SDP problem in (10) into the following optimization
problem:

min
q∈Rn

sX
k=1

λkPn
i=1 qiπi(1− πi)(xT

i vk)2

s.t.

nX
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(15)

Note that the above optimization problem is a convex opti-
mization problem since f(x) = 1/x is convex when x ≥ 0.
Given this formulation in (15), we present a bound optimiza-
tion algorithm for solving the above optimization problem.



4.5 Bound Optimization Algorithm
The main idea of bound optimization algorithm is to up-

date the solution iteratively. In each iteration, we will first
calculate the difference between the objective function of
the current iteration and the objective function of the pre-
vious iteration. Then, by minimizing the upper bound of
the difference, we find the solution of the current iteration.

Let q′ and q denote the solution obtained in two consec-
utive iterations, and let L(q) be the objective function in
(15). Based on the proof given in Appendix-A, we have the
following expression:

L(q) =

sX
k=1

λkPn
i=1 qiπi(1− πi)(xT

i vk)2

≤
nX

i=1

(q′i)
2

qi
πi(1− πi)

sX
k=1

(xT
i vk)2λk�Pn

j=1 q′jπj(1− πj)(xT
j vk)2

�2

(16)

Now, instead of optimizing the original objective function
L(q), we can optimize its upper bound, which leads to the
following simple updating equation:

qi ←−q2
i πi(1− πi)

sX
k=1

(xT
i vk)2λk�Pn

j=1 qjπj(1− πj)(xT
j vk)2

�2

qi ←−
qiPn

j=1 qj

(17)

Similar to all bound optimization algorithms [3], this algo-
rithm will guarantee to converge to a local maximum. Since
the original optimization problem in (15) is a convex opti-
mization problem, the above updating procedure will guar-
antee to converge to a global optimal.

Remark: It is interesting to examine the property of the
solution obtained by the updating equation in (17). First,
according to (17), the example with a large classification
uncertainty will be assigned with a large probability. This
is because qi is proportional to πi(1− πi), the classification
uncertainty of the i-the unlabeled example. Second, accord-
ing to (17), the example that is similar to many unlabeled
examples is more likely to be selected. This is because prob-
ability qi is proportional to the term (xT

i v)2, the similarity
of the i-th example to the principle eigenvectors. This is
consistent with our intuition that we should select the most
informative and representative examples for active learning.

5. EXPERIMENTAL RESULTS

5.1 Experimental Testbeds
In this section we discuss the experimental evaluation of

our active learning algorithm in comparison to the state-of-
the-art approaches. For a consistent evaluation, we conduct
our empirical comparisons on three standard datasets for
text document categorization. For all three datasets, the
same pre-processing procedure is applied: the stopwords and
the numbers are removed from the documents, and all the
words are converted into the low cases without stemmming.

The first dataset is the Reuters-21578 Corpus dataset,
which has been widely used as a testbed for evaluating al-
gorithms for text categorization. In our experiments, the

Category # of total samples

earn 3964
acq 2369

money-fx 717
grain 582
crude 578
trade 485

interest 478
wheat 283
ship 286
corn 237

Table 1: A list of 10 major categories of the Reuters-
21578 dataset in our experiments.

Category # of total samples

course 930
department 182

faculty 1124
project 504
staff 137

student 1641

Table 2: A list of 6 categories of the WebKB dataset
in our experiments.

ModApte split of the Reuters-21578 is used. There are to-
tally 10788 text documents in this collection. Table 1 shows
a list of the 10 most frequent categories contained in the
dataset. Since each document in the dataset can be as-
signed to multiple categories, we treat the text categoriza-
tion problem as a set of binary classification problems, i.e.,
a different binary classification problem for each category.
In total, 26, 299 word features are extracted and used to
represent the text documents.

The other two datasets are Web-related: the WebKB data
collection and the Newsgroup data collection. The WebKB
dataset comprises of the WWW-pages collected from com-
puter science departments of various universities in Janu-
ary 1997 by the World Wide Knowledge Base (Web->Kb)
project of the CMU text learning group. All the Web pages
are classified into seven categories: student, faculty, staff,
department, course, project, and other. In this study, we
ignore the category of others due to its unclear definition.
In total, there are 4518 data samples in the selected dataset,
and 19, 686 word features are extracted to represent the text
documents. Table 2 shows the details of this dataset. The
newsgroup dataset includes 20, 000 messages from 20 differ-
ent newsgroups. Each newsgroup contains roughly about
1000 messages. In this study, we randomly select 11 out
of 20 newsgroups for evaluation. In total, there are 10, 996
data samples in the selected dataset, and 47, 410 word fea-
tures are extracted to represent the text documents. Table 3
shows the details of the engaged dataset.

Comparing to the Reuter-21578 dataset, the two Web-
related data collections are different in that more unique
words are found in the Web-related datasets. For exam-
ple, for both the Reuter-21578 dataset and the Newsgroup
dataset, they both contain roughly 10, 000 documents. But,
the number of unique words for the Newgroups dataset is
close to 50, 000, which is about twice as the number of unique



Category # of total samples

0 1000
1 1000
2 1000
3 1000
4 1000
5 1000
6 999
7 1000
8 1000
9 1000
10 997

Table 3: A list of 11 categories of the Newsgroup
dataset in our experiments.

words found in the Reuter-21578. It is this feature that
makes the text categorization of WWW documents more
challenging than the categorization of normal text docu-
ments because more feature weights need to be decided for
the WWW documents than the normal documents. It is
also this feature that makes the active learning algorithms
more valuable for text categorization of WWW documents
than the normal documents since by selecting the informa-
tive documents for manually labeling, we are able to decide
the appropriate weights for more words than by a randomly
chosen document.

5.2 Experimental Settings
In order to remove the uninformative word features, fea-

ture selection is conducted using the Information Gain [35]
criterion. In particular, 500 of the most informative features
are selected for each category in each of the three datasets
above.

For performance measures, the F1 metric is adopted as
our evaluation metric, which has been shown to be more
reliable metric than other metrics such as the classification
accuracy [35]. More specifically, the F1 is defined as

F1 =
2 ∗ p ∗ r

p + r
(18)

where p and r are precision and recall. Note that the F1
metric takes into account both the precision and the recall,
thus is a more comprehensive metric than either the preci-
sion or the recall when separately considered.

To examine the effectiveness of the proposed active learn-
ing algorithm, two reference models are used in our exper-
iment. The first reference model is the logistic regression
active learning algorithm that measures the classification
uncertainty based on the entropy of the distribution p(y|x).
In particular, for a given test example x and a logistic re-
gression model with the weight vector w and the bias term
b, the entropy of the distribution p(y|x) is calculated as:

H(p) = −p(−|x) log p(−|x)− p(+|x) log p(+|x)

The larger the entropy of x is, the more uncertain we are
about the class labels of x. We refer to this baseline model
as the logistic regression active learning, or LogReg-AL
for short. The second reference model is based on support
vector machine [31] that is already discussed in Section 2 of
related work. In this method, the classification uncertainty
of an example x is determined by its distance to the decision

boundary wT x + b = 0, i.e.,

d(x;w, b) =
|wT x + b|
‖w‖2

The smaller the distance d(x;w, b) is, the more the classifi-
cation uncertainty will be. We refer to this approach as sup-
port vector machine active learning, or SVM-AL for short.
Finally, both the logistic regression model and the support
vector machine that are trained only over the labeled ex-
amples are used in our experiments as the baseline models.
By comparing with these two baseline models, we are able
to determine the amount of benefits that are brought by
different active learning algorithms.

To evaluate the performance of the proposed active learn-
ing algorithms, we first pick 100 training samples, which
include 50 positive examples and 50 negative examples, ran-
domly from the dataset for each category. Both the logistic
regression model and the SVM classifier are trained on the
labeled data. For the active learning methods, 100 unla-
beled data samples are chosen for labeling and their per-
formances are evaluated after rebuilding the classifiers re-
spectively. Each experiment is carried out 40 times and the
averaged F1 with its variance is calculated and used for final
evaluation.

To deploy efficient implementations of our scheme toward
large-scale text categorization tasks, all the algorithms used
in this study are programmed in the C language. The test-
ing hardware environment is on a Linux workstation with
3.2GHz CPU and 2GB physical memory. To implement
the logistic regression algorithm for our text categorization
tasks, we employ the implementation of the logistic regres-
sion tool developed by Komarek and Moore recently [13].
To implement our active learning algorithm based on the
bound optimization approach, we employ a standard math
package, i.e., LAPACK [1], to solve the eigen decomposi-
tion in our algorithm efficiently. The SVMlight package [10]
is used in our experiments for the implementation of SVM,
which has been considered as the state-of-the-art tool for
text categorization. Since SVM is not parameter-free and
can be very sensitive to the capacity parameter, a separate
validation set is used to determine the optimal parameters
for configuration.

5.3 Empirical Evaluation
In this subsection, we will first describe the results for the

Reuter-21578 dataset since this dataset has been most exten-
sively studied for text categorization. We will then provide
the empirical results for the two Web-related datasets.

5.3.1 Experimental Results with Reuter-21578
Table 4 shows the experimental results of F1 performance

averaging over 40 executions on 10 major categories in the
dataset.

First, as listed in the first and the second columns of Ta-
ble 4, we observe that the performance of the two classifiers,
logistic regression and SVM, are comparable when only the
100 initially labeled examples are used for training. For
categories, such as “trade” and ”interest”, SVM achieves
noticeably better performance than the logistic regression
model. Second, we compare the performance of the two
classifiers for active learning, i.e., LogReg-AL and SVM-AL,
that use the margin as the selection criterion. The results
are listed in the third and the fourth columns of Table 4. We



Category SVM LogReg SVM-AL LogReg-AL LogReg-BMAL

earn 92.12 ± 0.22 92.47 ± 0.13 93.30 ± 0.28 93.40 ± 0.14 94.00 ± 0.09
acq 83.56 ± 0.26 83.35 ± 0.26 85.96 ± 0.34 86.57 ± 0.32 88.07 ± 0.17

money-fx 64.06 ± 0.60 63.71 ± 0.63 73.32 ± 0.38 71.21 ± 0.61 75.54 ± 0.26
grain 60.87 ± 1.04 58.97 ± 0.91 74.95 ± 0.42 74.82 ± 0.53 77.77 ± 0.27
crude 67.78 ± 0.39 67.32 ± 0.48 75.72 ± 0.24 74.97 ± 0.44 78.04 ± 0.14
trade 52.64 ± 0.46 48.93 ± 0.55 66.41 ± 0.33 66.31 ± 0.33 69.29 ± 0.34

interest 56.80 ± 0.60 53.59 ± 0.60 67.20 ± 0.39 66.15 ± 0.49 68.71 ± 0.37
wheat 62.71 ± 0.72 57.38 ± 0.79 86.01 ± 1.04 86.49 ± 0.27 88.15 ± 0.21
ship 67.11 ± 1.59 64.91 ± 1.75 75.86 ± 0.53 72.82 ± 0.46 76.82 ± 0.34
corn 44.39 ± 0.84 41.15 ± 0.69 71.27 ± 0.62 71.61 ± 0.60 74.35 ± 0.47

Table 4: Experimental results of F1 performance on the Reuters-21578 dataset with 100 training samples
(%).

(a)
“earn”

(b)
“acq”
(c)
“money-
fx”

Figure 1: Experimental results of F1 performance on the “earn”, “acq” and “money-fx” categories

find that the performance of these two active learning meth-
ods becomes closer than the case when no actively labeled
examples are used for training. For example, for category
“trade”, SVM performs substantially better than the logistic
regression model when only 100 labeled examples are used.
The difference in F1 measurement between LogReg-AL and
SVM-AL almost diminishes when both classifiers use the 100
actively labeled examples for training. Finally, we compare
the performance of the proposed active learning algorithm,
i.e., LogReg-BMAL, to the margin-based active learning ap-
proaches LogReg-AL and SVM-AL. It is evident that the
proposed batch mode active learning algorithm outperforms
the margin-based active learning algorithms. For categories,
such as “corn” and “wheat”, where the two margin-based
active learning algorithms achieve similar performance, the
proposed algorithm LogReg-BMAL is able to achieve sub-
stantially better F1 scores. Even for the categories where
the SVM performs substantially better than the logistic re-
gression model, the proposed algorithm is able to outper-
form the SVM-based active learning algorithm noticeably.
For example, for category “ship” where SVM performs no-
ticeably better than the logistic regression, the proposed ac-
tive learning method is able to achieve even better perfor-
mance than the margin-based active learning based on the
SVM classifier.

In order to evaluate the performance in more detail, we
conduct the evaluation on each category by varying the num-
ber of initially labeled instances for each classifier. Fig. 1,
Fig. 2 and Fig. 3 show the experimental results of the mean
F1 measurement on 9 major categories. From the experi-
mental results, we can see that our active learning algorithm
outperforms other two active learning algorithms in most
of the cases while the SVM-AL method is generally better
than the LogReg-AL method. We also found that the im-
provement of our active learning method is more evident
comparing with the other two approaches when the number
of labeled instances is smaller. This is because the smaller
the number of initially labeled examples used for training,

the larger the improvement we would expect. When more
labeled examples are used for training, the gap for future im-
provement begins to decrease. As a result, the three meth-
ods start to behavior similarly. This result also indicates
that the proposed active learning algorithm is robust even
when the number of labeled examples is small while the
other two active learning approaches may suffer critically
when the margin criterion is not very accurate for the small
sample case.

5.3.2 Experimental Results with Web-Related Datasets
The classification results of the WebKB dataset and the

Newsgroup dataset are listed in Table 5 and Table 6, respec-
tively.

First, notice that for the two Web-related datasets, there
are a few categories whose F1 measurements are extremely
low. For example, for the category “staff” of the WebKB
dataset, the F1 measurement is only about 12% for all
methods. This fact indicates that the text categorization
of WWW documents can be more difficult than the cate-
gorization of normal documents. Second, we observe that
the difference in the F1 measurement between the logis-
tic regression model and the SVM is smaller for both the
WebKB dataset and the Newsgroup dataset than for the
Reuters-21578 dataset. In fact, there are a few categories in
WebKB and Newsgroup that the logistic regression model
performs slightly better than the SVM. Third, by compar-
ing the two margin-based approaches for active learning,
namely, LogReg-AL and SVM-AL, we observe that, for a
number of categories, LogReg-AL achieves substantially bet-
ter performance than SVM-AL. The most noticeable case is
the category 4 of the Newsgroup dataset where the SVM-
AL algorithm is unable to improve the F1 measurement
than the SVM even with the additional labeled examples.
In contrast, the LogReg-AL algorithm is able to improve the
F1 measurement from 56.09% to 61.87%. Finally, compar-
ing the LogReg-BMAL algorithm with the LogReg-AL al-
gorithm, we observe that the proposed algorithm is able to
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Figure 2: Experimental results of F1 performance on the “grain”, “crude” and “trade” categories
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Figure 3: Experimental results of F1 performance on the “interest”, “wheat” and “ship” categories

improve the F1 measurement substantially over the margin-
based approach. For example, for the category 1 of the
Newsgroup dataset, the active learning algorithm LogReg-
AL only make a slight improvement in the F1 measurement
with the additional 100 labeled examples. The improvement
for the same category by the proposed batch active learning
algorithm is much more significant, increasing from 83.12%
to 91.12%. Comparing all the learning algorithms, the pro-
posed learning algorithm achieves the best or close to the
best performance for almost all categories. This observa-
tion indicates that the proposed active learning algorithm
is effective and robust for large-scale text categorization of
WWW documents.

6. CONCLUSIONS
This paper presents a novel active learning algorithm that

is able to select a batch of informative and diverse examples
for manually labeling. This is different from traditional ac-
tive learning algorithms that focus on selecting the most
informative examples for manually labeling. We use the
Fisher information matrix for the measurement of model un-
certainty and choose the set of examples that will effectively
reduce the norm of the Fisher information matrix. We con-
ducted extensive experimental evaluations on three standard
data collections for text categorization. The promising re-
sults demonstrate that our method is more effective than the
margin-based active learning approaches, which have been
the dominating method for active learning. We believe our
scheme is essential to performing large-scale categorization
of text documents especially for the rapid growth of Web
documents on World Wide Web.
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APPENDIX

A. PROOF OF INEQUATION
Let L(q) be the objective function in (15). We then have

L(q) =
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Using the convexity property of reciprocal function, namely
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arrive at the following deduction:Pn
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Substituting the above inequation back into (19), we can
achieve the following inequality:
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This finishes the proof of the inequality mentioned above.


