1609.09152v1 [cs.IR] 28 Sep 2016

arxXiv

Fusing Similarity Models with Markov Chains for Sparse Sequential
Recommendation

Ruining He, Julian McAuley
Department of Computer Science and Engineering
University of California, San Diego
Email: {rdhe, jmcauley}@cs.ucsd.edu

Abstract—Predicting personalized sequential behavior is a
key task for recommender systems. In order to predict user
actions such as the next product to purchase, movie to watch,
or place to visit, it is essential to take into account both long-
term user preferences and sequential patterns (i.e., short-term
dynamics). Matrix Factorization and Markov Chain methods
have emerged as two separate but powerful paradigms for
modeling the two respectively. Combining these ideas has led
to unified methods that accommodate long- and short-term
dynamics simultaneously by modeling pairwise user-item and
item-item interactions.

In spite of the success of such methods for tackling dense
data, they are challenged by sparsity issues, which are prevalent
in real-world datasets. In recent years, similarity-based methods
have been proposed for (sequentially-unaware) item recom-
mendation with promising results on sparse datasets. In this
paper, we propose to fuse such methods with Markov Chains to
make personalized sequential recommendations. We evaluate
our method, Fossil, on a variety of large, real-world datasets.
We show quantitatively that Fossil outperforms alternative
algorithms, especially on sparse datasets, and qualitatively
that it captures personalized dynamics and is able to make
meaningful recommendations.

Keywords-Recommender systems; Sequential Prediction;
Markov Chains

I. INTRODUCTION

Modeling and understanding the interactions between
users and items, as well as the relationships amongst the
items themselves are the core tasks of a recommender
system. The former helps answer questions like ‘What
kind of item does this specific user like?’ (item-to-user
recommendation), and the latter “Which type of shirts match
the pants just purchased?’ (item-to-item recommendation).
In other words, (long-term) user preferences and (short-term)
sequential patterns are captured by the above two forms of
interactions respectively.

In this paper, we are interested in predicting personalized
sequential behavior from collaborative data (e.g. purchase
histories of users), which is challenging as long- and short-
term dynamics need to be combined carefully to account
for both personalization and sequential transitions. This
challenge is further complicated by sparsity issues in many
real-world datasets, which makes it hard to estimate parame-
ters accurately from limited training sequences. Particularly,

Similar

oty Polter
FARY

predict

< Z

action sequence of a certain user

Sequential

Figure 1: An example of how our method, Fossil, makes
recommendations. Harry Potter 2 is recommended to the
user because it (1) is similar to content already watched (i.e.,
fantasy movies), and (2) frequently follows the recently-
watched movie Harry Potter 1. The former is modeled with
a similarity-based method and the latter Markov Chains.

this challenge is not addressed by models concerned with
historical temporal dynamics (e.g. the popularity fluctuation
of Harry Potter between 2002 to 2006), where user-level
sequential patterns are typically ignored (e.g. ‘what will Tom
watch next after watching Harry Potter?’).

To model user preferences, there have been two relevant
streams of work. Traditional item recommendation algo-
rithms are typically based on a low-rank factorization of the
user-item interaction matrix, referred to as Matrix Factoriza-
tion [1]]. Each user or item is represented with a numerical
vector of the same dimension such that the compatibility
between them is estimated by the inner product of their
respective representations. Recently, an item similarity-based
algorithm—Factored Item Similarity Models (FISM)—has
been developed which makes recommendations to a user
u exclusively based on how similar items are to those
already consumed/liked by u. In spite of not explicitly
parameterizing each user, FISM surprisingly outperforms
various competing baselines, including Matrix Factorization,
especially on sparse datasets [2].

The above methods are unaware of sequential dynamics.
In order to tackle sequential prediction tasks, we need to
resort to alternate methods, such as Markov Chains, that
are able to capture sequential patterns. To this end, Rendle
et al. proposed Factorized Personalized Markov Chains
(FPMC), which combines Matrix Factorization and a first-
order Markov Chain [3] to model personalized sequential

behavior.

Despite the success achieved by FPMC, it suffers from
sparsity issues and the long-tailed distribution of many
datasets, so that the sequential prediction task is only
partially solved. In this paper, we propose to fill this
gap by fusing similarity-based methods (like FISM) with
Markov Chain methods (like FPMC) to tackle sparse
real-world datasets with sequential dynamics. The result-
ing method, FactOrized Sequential Prediction with Item
SImilarity ModeLs (or Fossil in short), naturally combines
the two by learning a personalized weighting scheme over
the sequence of items to characterize users in terms of
both preferences and the strength of sequential behavior.
Figure [I] demonstrates an example of how Fossil makes
recommendations.

Fossil brings the following benefits for tackling sparsity
issues: (1) It parameterizes each user with only the historical
items so that cold-user (or ‘cool-user’) issues can be allevi-
ated so long as the representations of items can be estimated
accurately. (2) For cold-users, Fossil can shift more weight
to short-term dynamics to capitalize from ‘global’ sequential
patterns. This flexibility enables Fossil to make reasonable
predictions even though only a few actions may have been
observed for a given user.

Our contributions are summarized as follows: First, we
develop a new method, Fossil, that integrates similarity-
based methods with Markov Chains smoothly to make
personalized sequential predictions on sparse and long-tailed
datasets. Second, we demonstrate quantitatively that Fossil is
able to outperform a spectrum of state-of-the-art algorithms
on a variety of large, real-world datasets with around five
million user actions in total. Finally, we visualize the learned
model and analyze the sequential and personalized dynamics
captured.

Data and code are available at https://sites.google.com/a/
eng.ucsd.edu/ruining-_he/.

II. RELATED WORK

The most closely related works to ours are (1) Item
recommendation methods that model user preferences but
are unaware of sequential dynamics; (2) Works that deal
with temporal dynamics but rely on explicit time stamps;
and (3) Those that address the sequential prediction task we
are interested in.

Item recommendation. Item recommendation usually re-
lies on Collaborative Filtering (CF) to learn from explicit
feedback like star-ratings [[1]. CF predicts based only on the
user-item rating matrix and mainly follows two paradigms:
neighborhood- and model-based. Neighborhood-based meth-
ods recommend items that either have been enjoyed by like-
minded users (user-oriented, e.g. [4, 5, |6]]) or are similar
to those already consumed (item-oriented, e.g. [7, 8]]). Such
methods have to rely on some type of predefined similarity
metric such as Pearson Correlation or Cosine Similarity. In

contrast, model-based methods directly explain the interac-
tions between users and items. There have been a variety
of such algorithms including Bayesian methods [9, [10],
Restricted Boltzmann Machines [11], Matrix Factorization
(MF) methods (the basis of many state-of-the-art recommen-
dation approaches such as [12f], [13]], [14]), and so on.

In order to tackle implicit feedback data where only posi-
tive signals (e.g. purchases, clicks, thumbs-up) are observed,
both neighborhood- and model-based methods have been
extended. Recently, Ning er al. proposed SLIM to learn an
item-item similarity matrix, which has shown to outperform
a series of state-of-the-art recommendation approaches [15].
Kabbur et al. further explored the low-rank property of
the similarity matrix to handle sparse datasets [2]. Since
similarity (or neighborhood) relationships are learned from
the data, these methods overcome the rigidity of using a
predefined similarity metric. On the other hand, MF has
also been extended in several ways including point-wise
methods that inherently assume non-observed feedback to
be negative [[16} [17], and pair-wise methods like BPR-MF
[L8] that are based on a more realistic assumption that
positive feedback should only be ‘more preferable’ than non-
observed feedback.

Temporal dynamics. Several works take temporal dynamics
into account, mostly based on MF techniques [19]. This
includes seminal work proposed by Koren [20, 21], where
they showed state-of-the-art results on Netflix data by mod-
eling the evolution of users and items over time. However,
such works are ultimately building models to understand
past actions (e.g. “What did Tom like in 2008?’, “What does
Grace like to do on Weekends?’), by making use of the
explicit time stamps. The sequential prediction task differs
from theirs in that it does not use time stamps directly, but
rather models sequential relationships between actions.
Sequential recommendation. Markov Chains have demon-
strated their strength at modeling stochastic transitions, from
uncovering sequential patterns (e.g. [22, 23]]) to directly
modeling decision processes [24]]. For the sequential pre-
diction/recommendation task, Rendle ez al. proposed FPMC
which combines the power of MF at modeling personal
preferences and the strength of Markov Chains at modeling
sequential patterns [3]. Our work follows this thread but
contributes in that (1) we make use of a similarity-based
method for modeling user preferences so that sparsity issues
are mitigated; and (2) we further consider Markov Chains
with higher orders to model sequential smoothness across
multiple time steps.

III. SEQUENTIAL PREDICTION
A. Problem Formulation and Notation

Objects to be recommended in the system are referred
to as items. The most common recommendation approaches
focus on modeling types of items of interest to each user,
without accounting for any sequential information, e.g., the

https://sites.google.com/a/eng.ucsd.edu/ruining-he/
https://sites.google.com/a/eng.ucsd.edu/ruining-he/

Table I: Notation

Notation Explanation

u,z user set, item set

u, i, t a specific user, item, time step

S the item user u interacted with at time step ¢

Su action sequence of user u, S* = (53, S¥, ... ,Sﬁgu‘)
i the set of items in S¥, Z, = {S¥,SY, ... ,Stsu}
Bi bias term associated with item 4, 5; € R

P; latent vector associated with item i, P; € RE

Q; latent vector associated with item i, Q; € RE

K dimensionality of the vector representing each user/item
L order of Markov Chains

n global weighting vector, n = (171,12, ...,7L)

w personalized weighting vector, n* = (n{,n%,...,n})
pu(j | i) probability that user u chooses item j after item %
Du,t,i prediction that user u chooses item % at time step ¢
>t personalized total order of user w at time step ¢
« weighting factor, « € R
€ learning rate, € € R
o(-) the logistic (sigmoid) function

last item purchased/reviewed, or place visited by the user in
question.

We are tackling sequential prediction tasks which are for-
mulated as follows. Let U = {u1,uz,...,up} denote the
set of users and 7 = {i1, 42, ...,z } the set of items. Each
user u is associated with a sequence of actions (or ‘events’)
S, (e.g. items purchased by u, or places u has checked in):
S* = (81,85,...,S[5u)), where S € I. We use It to
denote the ser of items in S* where the sequential signal
is ignored. Using the above data exclusively, our objective
is to predict the next action of each user and thus make
recommendations accordingly. Notation used throughout this
paper is summarized in Table [I} Boldfaced symbols are used
to denote matrices.

B. Modeling User Preferences

Modeling and understanding long-term preferences of
users is a key to any recommender system. Traditional
methods such as Matrix Factorization (e.g. [25]) are usually
based on a low-rank assumption. They project users and
items to a low-rank latent space (/-dimensional) such that
the coordinates of each user within the space capture the
preferences towards these K latent dimensions. The affinity
Du,; between user w and item 4 is then estimated by the inner
product of the vector representations of v and i:

Recently, a novel similarity-based method, called Sparse
Linear Methods (SLIM), has been developed and shown to
outperform a series of state-of-the-art approaches including
Matrix Factorization based methods [15]. By learning an
item-to-item similarity matrix W from the user action
history (e.g. purchase logs), it predicts the user-item affinity

as follows:
Pui= >, Wi 2

FETI\ {4}

where Z; is the set of items u has interacted with. W ; is
the element at the j-th row and ¢-th column of matrix W,
denoting the similarity of item j to item ¢. The underlying
rationale it follows is that the more j is similar to those
items already consumed/liked by u, the more likely j will
be a preferable choice for .

Without parameterizing each user explicitly, SLIM relaxes
the low-rank assumption enforced on user representations
and has achieved higher recommendation accuracy (see [15]]
for details).

The major challenge faced by SLIM comes from the large
amount of parameters (|Z|x|Z|) to be estimated from the
sparse user-item interactions. SLIM approaches this issue
by exploring the sparsity characteristic of W using L;-
norm regularization when inferring the parameters. Another
direction is to capitalize on the low-rank potential of the
similarity matrix by decomposing W into the product of
two independent low-rank matrices [2]:

W =PQ7, 3)

where P and Q are both |Z|x K matrices and K < |Z|. This
method is called Factored Item Similarity Models (FISM)
and brings two benefits: (1) It significantly reduces the
number of parameters and has been shown to generate state-
of-the-art performance on a series of sparse datasets; and (2)
Compared to SLIM, it is stronger at capturing the transitive
property of item similan'tiesp_-] When it comes to real-world
datasets which are usually highly sparse, the above benefits
contribute considerably to recommendation performance.

C. Modeling Sequential Patterns

Sequential (or short-term) dynamics are typically mod-
eled by Markov Chains. Given the last item 7 that has
been interacted with, the first-order Markov Chain predicts
the probability of item j being chosen at the next step
p(j | ¢) by maximum likelihood estimation of the item-
to-item transition matrix. A further improvement can be
made by factorizing the transition matrix into two low-rank
matrices, similar to the idea in Section (ie., Eq. (G));
thus the transition probability of item ¢ to item j is estimated
by the following inner product:

P | 4) o< (M, Ny),)

where M; and N are the latent vector representations of
item ¢ and j respectively. Note that each item i is associated
with two vectors: M; and N;.

IFor instance, if items a and b, b and ¢ are two co-purchase pairs in the
training data but (a, ¢) is not, SLIM will erroneously estimate the similarity
of a and c to be 0.

Markov Chains are strong at capturing short-term dynam-
ics. For instance, if one purchased a laptop recently, it is
reasonable to recommend relevant items such as peripherals
or laptop backpacks. Nevertheless, such methods are limited
in their ability to capture user preferences that are both
personal and long-term (e.g. what type of laptop backpack
this particular user likes). Thus there is a need to combine
the two lines of models carefully in order to benefit from
modeling long- and short-term dynamics simultaneously.

D. The Unified Sequential Prediction Model

Recently, Rendle et al. introduced a seminal method
that combines Matrix Factorization (i.e., Eq. @)) and the
first-order Markov Chain (i.e., Eq. (@) to form a unified
prediction model, which is dubbed Factorized Personalized
Markov Chains (FPMC) [3]]. The probability that an arbitrary
user u transitions from the last item ¢ to the next item j is
estimated by

where the first inner product computes how much u likes
item j and the second calculates the extent to which j is
‘similar’ to the last item [

IV. THE PROPOSED Fossil MODEL
A. The Basic Model

In contrast to FPMC, here we take another direction and
investigate combining similarity-based methods and Markov
Chains to approach the sequential prediction task (see Figure
[2). In particular, we take FISM (see Section as our
starting point, in light of its ability to handle the sparsity
issues in real-world datasets.

The basic form of our model is as follows:

user preferences sequential dynamics

R / *
pu(i 1) oc Y (P, Q)+ (n+ma) - (M, N;), (6)
el ——
J'€TI\{7} personalized

weighting factor

where each user is parameterized with only a single scalar
1, that controls the relative weights of the long- and short-
term dynamics. 7 is a global parameter shared by all users
and helps center 7, at 0.

The above formulation parameterizes each item with four
vectors, i.e., P;, Q;, M;, and N;. Considering the limited
number of parameters we can afford in the sparse datasets
we are interested in, we reduce the four matrices to two
by enforcing P = M and Q = N. This makes sense since
ultimately sequentially-related items are also ‘similar’ to one

2In [3], the authors took a tensor-factorization perspective of the predic-
tor, which brings an additional term modeling the interactions between u
and the last item 7. However, this term is not required as it always gets
canceled out when making predictions.

Modeling
Long-term Dynamics

Modeling
Short-term Dynamics

First-order
Markov Chains

Matrix

Existing methods = Fhsioilziien

High-order
Markov Chains

Similarity-based
Methods

Our method =

Figure 2: Our method, Fossil, is a combination of similarity-
based methods and (high-order) Markov Chains, in contrast
to existing methods that combine Matrix Factorization and
first-order Markov Chains [3].

another. Adding a bias term §; and normalizing the long-
term dynamics component, we arrive at a new formulation
as follows:
. 1
pu(j | 4) o< B + <m > P+ (n+n) Py, Q).
“ €T3}

)

B. Modeling Higher-order Markov Chains

Up to now we have used first-order Markov Chains to
model short-term temporal dynamics. Next, we extend our
formulation to consider high-order Markov Chains to capture
smoothness across multiple time steps. Given the most recent
L items user u has consumed (S ;,S¢ 5,...,S;* 1), the
new formulation predicts the probability of item j being the
next item (at time step ¢) with an L™ order Markov Chain
as shown in Eq. . In this new formulation, each user is
associated with a vector n* = (i, n%,...,n¥). Likewise,
the global bias becomes the vector n = (11,72, .-.,1L)-
The rationale behind this idea is that each of the previous
L actions should contribute with different weights to the
high-order smoothness.

C. Inferring Model Parameters

The ultimate goal of the sequential prediction task is to
rank observed (or ground-truth) items as high as possible
so that the recommender system can make plausible recom-
mendations. This means it is natural to derive a personalized
total order >, ; (at each step ¢) to minimize a ranking loss
such as sequential Bayesian Personalized Ranking (S-BPR)
[3]. Here ¢ >, ; j means that item % is ranked higher than
item j for user u at step ¢ given the action sequence before
t.

For each user u and for each time step ¢, S-BPR employs
a sigmoid function o (Py,t,.5¢ — Pu,t,j) (Pu,¢,- is a shorthand
for the prediction in Eq. (7)) to characterize the probability
that ground-truth item S;* is ranked higher than a ‘negative’
item j given the model parameters O, i.e., p(S{* >+ j|©).
Assuming independence of users and time steps, model
parameters © are inferred by optimizing the following

long-term dynamics

L
: 1
Puli | S, Sita, -5 Sh) o Bt (oA > Pu+) (m+mi) Pse Q) (7
| U \ {j}| I, k=1
previous L items w interacted with J'E€TI\{4}
short-term dynamics

maximum a posteriori (MAP) estimation: Table II: Statistics of the Datasets.

u ore g avg. avg.
s) Dataset #(TZZ? #(IEIBS #actions #actions #actions

arg max = In H H H p(Sf >t j|@) p(@) /user /item
e well t=2 jASY Amazon-Office 16,716 22,357 128,070 7.66 5.73
5] ©)) Amazon-Auto 34316 40287 183,573 535 4.56
. R Amazon-Game 31,013 23,715 287,107 9.26 12.11
=D 3 Wo(Bussy —Pury) +np(®), Amazon-Toy 57617 69,147 410920 7.3 594
uelU t=2 jASH Amazon-Cell 68,330 60,083 429,231 6.28 7.14
. Amazon-Clothes 184,050 174,484 1,068,972 5.81 6.13
where the pairwise ranking between the ground-truth and Amazon-Elec 253,996 145,199 2,109,879 831 14.53
all negative items goes through all users and all time steps Epinions 5015 8335 26932 5.37 3.23
. . . Foursquare 43,110 13,335 306,553 7.11 22.99
p(©) is a Gaussian prior over the model parameters. Note Total 694,163 556,942 4951237 N/A N/A

that due to the ‘additive’ characteristic, our formulation can
allow t to run from 2 (instead of L + 1) to the last item in
S

The large amount of positive-negative pairs in the objec-
tive makes conventional batch gradient descent unaffordable.
As such, we adopt Stochastic Gradient Descent (SGD) which
has seen wide success for learning models in BPR-like op-
timization frameworks (e.g. [3} [18]). The SGD training pro-
cedure works as follows. First, it uniformly samples a user u
from U as well as a time step ¢ from {2,3,...,|S%|}. Next, a
negative item j € Z and j & {S¢", Sy, ... S p -y)
is uniformly sampled, which forms a training triple éu', t, 7).
Finally, the optimization procedure updates parameters in
the following fashion:

O(Pu,t.s¢ — Du,t.j)
90

_AG)@)a

(10)
where ¢ is the learning rate and Ag is a regularization
hyperparameter.

O+ O+e- (U(ﬁu,t,j _ﬁu,t,Sz‘)

V. EXPERIMENTS
A. Datasets and Statistics

To evaluate the ability and applicability of our method to
handle different real-world scenarios, we include a spectrum
of large datasets from different domains in order to predict
actions ranging from the next product to purchase, next
movie to watch, to next review to write, and next place to
check-in. Note that these datasets also vary significantly in
terms of user and item density (i.e., number of actions per
user/item).

Amazon. The first group of large datasets are from Ama-
zon.com recently introduced by [26]]. This is among the
largest datasets available that includes review texts and

3ie., optimize the AUC metric (See Section .
“https://www.amazon.com/

Amazon datasets are ranked by the ‘#actions’ column. Office: Office
Products, Auto: Automotive, Game: Video Games, Toy: Toys and
Games, Cell: Cell Phones and Accessories, Clothes: Clothing, Shoes
and Jewelry, Elec: Electronics.

time stamps spanning from May 1996 to July 2014. Each
top-level category of products on Amazon.com has been
constructed as an independent dataset by the authors of [26].
In this paper, we take a variety of large categories including
office products, automotive, video games, toys and games,
cell phones and accessories, clothing, shoes, and jewelry,
and electronics.

Epinions. The next dataset is collected from a popular online
consumer review website Epinions.conﬂ by the authors
of [27]. Like Amazon data, it includes all actions of all
users on the website so that the sequential relationships are
maintained. This dataset spans January 2001 to November
2013.

Foursquare. We also include another popular dataset which
is often used to evaluate next Point-Of-Interest prediction
algorithms. It is from Foursquare.conﬂ and includes a large
number of check-ins (i.e., visits) of users at different venues
(e.g. restaurants), spanning December 2011 to April 2012.
Note that the setting in this paper is to compare all methods
using collaborative data exclusively, as in Section
making use of side signals like geographical data is beyond
the scope of this work.

For each of the above datasets, we filter out inactive
users and items with fewer than five associated actions.
Star-ratings are converted to implicit feedback (i.e., ‘binary’
actions) by setting the corresponding entries to 1; that is, we
care about the purchase/review/check-in actions regardless

Shttp://epinions.com/
Ohttps://foursquare.com/

of the specific rating values. Statistics of each dataset after
the above processing are shown in Table

B. Evaluation Methodology

All methods are evaluated with the AUC (Area Under
the ROC curve) metric, not only because it is widely used
(e.g. [18, [28])), but also because it is a natural choice in our
case as all comparison methods directly optimize this metric
on the training set.

For each dataset, we use the two most recent actions of
each user to create a validation set }V and a test set &:
one action for validation and the other for testing. All other
actions are used as the training set 7. The training set 7 is
used to train all comparison methods, and hyperparameters
are tuned with the validation set V. Finally, all trained
models are evaluated on the test set &:

1 1
AUC = —3 ——
U= 2 i 2

ueU JEI\II

1(Pu,s),90 > Pu,|su].5)s

1D
where g, is the ground-truth item of user w at the most
recent time step |S¥|. The indicator function 1(b) returns
1 if the argument b is true, 0 otherwise. The goal here is
for the held-out action to calculate how highly the ground-
truth item has been ranked for each user u according to the
learned personalized total order >, ;.

C. Comparison Methods

We include a series of state-of-the-art methods in the field
of both item recommendation and sequential prediction.

1) Popularity (POP): always recommends items based
on the rank of their popularity in the system.

2) Bayesian Personalized Ranking (BPR-MF) [18]: is
a state-of-the-art method for personalized item rec-
ommendation. It only considers long-term preferences
and uses Matrix Factorization [25] as the underlying
predictor.

3) Factored Item Similarity Models (FISM) [2]: is a
recently-proposed similarity-based algorithm for per-
sonalized item recommendation. We build our model
on top of it to tackle the sequential prediction task.

4) Factorized Markov Chains (FMC): factorizes the
item-to-item transition matrix (|Z|x|Z|) to capture the
likelihood that an arbitrary user transitions from one
item to another. Here we use a first-order Markov
Chain as higher orders incur a state-space explosion.

5) Factorized Personalized Markov Chain (FPMC)
[3]: is a method that uses a personalized Markov
Chain (see Eq. (3)) for the sequential prediction task
we are interested in. Recall that FPMC is ultimately
a combination of Matrix Factorization and first-order
Markov Chains.

6) Factorized Sequential Prediction with Item Similar-
ity Models (Fossil): is the algorithm proposed in this

Table III: Models. P: Personalized?, Q: seQuentially-aware?,
S: Similarity-based?, E: Explicitly model users?, H: consider
High-order Markov Chains?.

Property POP BPR-MF FISM FMC FPMC Fossil
P X v v X v v
Q X X X v v v
S X X v X X v
E X v X X v X
H X X X X X v

paper (see Eq. (7). Markov Chains of different orders
will be experimented with and compared against other
methods.

For clarity, the above methods are collated in Table
in terms of whether they are ‘personalized,” ‘sequentially-
aware, ‘similarity-based,” ‘explicitly model users,” and ‘con-
sider high-order Markov Chains.” Note that all methods
(except POP) directly optimize the pairwise ranking of
ground-truth actions versus negative actions in the training
set 7 (i.e., the AUC metric), so that the fairness of the
comparison is maximized.

These baselines are designed to demonstrate (1) the per-
formance achieved by state-of-the-art sequentially-unaware
recommendation methods (BPR-MF and FISM) and purely
sequential methods (MC); (2) the effectiveness of the state-
of-the-art sequential prediction method by combining BPR-
MF and MC (FPMC); and (3) the strength of our proposed
combination of a similarity-based algorithm and (high-order)
Markov Chains (Fossil).

D. Performance and Quantitative Analysis

For simplicity and fair comparison, the number of di-
mensions of user/item representations (or the rank of the
matrices) in all methods is fixed to the same number K. We
experimented with different values of K and demonstrate
our results in Table[IV] (K = 10). Due to the sparsity of these
datasets, no algorithm observed significant performance im-
provements when increasing K beyond 10 (see the last row
of Table [[V] for the average accuracy of all methods when
setting K to 20).

For clarity, on the right of the table we show the percent-
age improvement of a variety of methods—FPMC vs. BPR-
ME, Fossil vs. FISM, Fossil vs. FPMC, and Fossil vs. the
best baselines. We make a few comparisons and summarize
our findings as follows.

FISM vs. BPR-MF. BPR-MF and FISM are two powerful
methods to model users’ personalized preferences, i.e., long-
term dynamics. Although ultimately they all factorize a
matrix at their core, they differ significantly both in terms
of the rationales they follow and performance they achieve.
BPR-MF relies on factorization of the user-item interaction
matrix and parameterizes each user with a K-dimensional

Table IV: AUC on different datasets (higher is better). The number of latent dimensions for all comparison methods (except
for POP) is set to K = 10. For Fossil, we test different orders of the Markov Chain (i.e., 1, 2, and 3). On the right we
demonstrate the improvement of FPMC vs. BPR-MF, Fossil vs. FISM, Fossil vs. FPMC, and Fossil vs. the best baselines.

Dataset (a) (b) (©) (d) (e) (f-1) (f-2) (f-3) % improvement
) POP BPR-MF FISM FMC FPMC Fossil Fossil Fossil evs.b fuvs.c fvs. e f vs. best

Amazon-Office 0.6427 0.6736 0.7113 0.6874 0.6891 0.7211 0.7224 0.7221 2.30% 1.56% 4.83% 1.56%
Amazon-Auto 0.5870 0.6379 0.6736 0.6452 0.6446 0.6910 0.6904 0.6901 1.05% 2.58% 7.20% 2.58%
Amazon-Game 0.7495 0.8483 0.8639 0.8401 0.8502 0.8793 0.8813 0.8817 0.22% 2.06% 3.71% 2.06%
Amazon-Toy 0.6240 0.7020 0.7499 0.6665 0.7061 0.7625 0.7645 0.7652 0.58% 2.04% 8.37% 2.04%
Amazon-Cell 0.6959 0.7212 0.7755 0.7359 0.7396 0.7982 0.8009 0.8006 2.55% 3.27% 8.29% 3.27%
Amazon-Clothes 0.6189 0.6513 0.7085 0.6673 0.6672 0.7255 0.7256 0.7259 2.44% 2.46% 8.80% 2.46%
Amazon-Elec 0.7837 0.7927 0.8210 0.7992 0.7985 0.8411 0.8438 0.8444 0.73% 2.85% 5.75% 2.85%
Epinions 0.4576 0.5520 0.5818 0.5532 0.5477 0.6014 0.6050 0.6048 -0.78% 3.99% 10.46% 3.99%
Foursquare 0.9168 0.9506 0.9230 09441 09485 09626 09621 0.9618 -022% 4.29% 1.49% 1.26%
Avg. (K = 10) 0.6751 0.7255 0.7565 0.7265 0.7324 0.7759 0.7773 0.7774 0.99% 2.79% 6.54% 2.45%
Avg. (K = 20) 0.6751 0.7285 0.7580 0.7293 0.7344 0.7780 0.7795 0.7788 0.88% 2.83% 6.44% 2.54%

vector. In contrast, FISM is based on the factorization of
the item-item similarity matrix and relaxes the need to
explicitly parameterize users, who may only have a few
actions in the training set. According to our experimental
results, FISM exhibits significant improvements over BPR-
MF on all datasets (over 4 percent on average), which makes
it a strong building-block for our sequential prediction task.
FMC vs. BPR-MF & FISM. Compared to BPR-MF and
FISM, FMC focuses on capturing sequential patterns among
items, i.e., short-term dynamics. Notably, FMC achieved
comparable prediction accuracy with BPR-MF. This sug-
gests that sequential patterns are important dynamics and
that it would be limiting to only consider long-term user
preferences.

FPMC vs. BPR-MF & FMC. BPR-MF and FMC are
limited by missing an important type of dynamic prevalent in
our datasets. FPMC combines them and emerges as a com-
prehensive model that is both personalized and sequentially-
aware. Quantitatively, FPMC is the strongest among the
three—0.99 percent better than BPR-MF and 0.80 percent
better than FMC on average (when K = 10).

Fossil vs. FPMC. By fusing FISM, which is strong at
modeling long-term dynamics on sparse data, and Markov
Chains, Fossil enhances the performance of FISM by as
much as 2.79 percent on average, compared to 0.99 percent
achieved by FPMC over BPR-MF. Comparing Fossil with
FPMC, we found that (1) Fossil beats FPMC significantly
on all datasets, with a large improvement of 6.54 percent on
average, and (2) the improvement is even larger on sparse
datasets like Amazon-Auto, Amazon-Clothes, and Epinions.
The superior performance of Fossil on various datasets
demonstrates its efficacy to handle real-world datasets.
Orders of Markov Chains. Generally, the performance
of Fossil gets better on most datasets when increasing the
order of the Markov Chains involved (from 1 to 3 in our
experiments), indicating that earlier actions are also useful
for prediction. On the other hand, small orders seem to be
enough to achieve good performance, presumably because

sequential patterns do not involve actions from a long time
ago.

Fossil vs. others. The rightmost column of Table [[V|demon-
strates the performance improvement of Fossil versus the
best baseline method in each case. We found that Fossil
outperforms all baselines in all cases with an enhancement
of 2.5 percent on average.

E. Reproducibility

The hyperparameter « in Eq. is set to 0.2 on all
datasets. Regularization hyperparameters are always tuned
with grid search using the validation set V. Ag (in Eq. (I0))
yielded the best performance when set to 0.1 in most cases.
The learning rate € is set to 0.01.

FE. Training Efficiency

All experiments were performed on a single machine with
8 cores and 64GB main memory. The largest dataset—
Amazon Electronics takes around 4 hours to train Fossil
with third-order Markov Chains (i.e., L = 3) and 20 latent
dimensions (i.e., K = 20). It is easy to verify that Eq.
takes O(LK) for prediction. Since L and K are usually
small numbers for sparse datasets, the computational cost is
manageable.

VI. A STUDY ON THE EFFECT OF DATA SPARSITY

We proceed by further studying the effect of dataset
sparsity on different methods. To this end, we perform
experiments on a popular dataset—MovieLens-IME] which
is dense and consists of about 1 million ratings from 6,040
users on 3,706 movies dated from April 2000 to February
2003. Again, we convert all star-ratings to implicit feedback
for our experiments. The number of dimensions K is set to
10.

We construct a sequence of datasets each with a different
threshold N on the number of recent user actions; that is,

7http://grouplens.org/datasets/movielens/1m/

Table V: Statistics of the MovieLens Datasets.

#users #items . ave. ave.

Dataset Threshold #actions #actions #actions

b ((e2) :

/user /item
ML-50 50 6,040 3,467 215,676 35.71 62.21
ML-30 30 6,040 3,391 152,160 25.19 44.87
ML-20 20 6,040 3,324 111,059 18.39 3341
ML-10 10 6,040 3,114 59,610 7.13 19.14
ML-5 5 6,040 2,848 30,175 5.00 10.60

Table VI: AUC on different datasets (higher is better). The
number of latent dimensions K is set to 10. For Fossil, we
test different orders of the Markov Chain (i.e., 1, 2, and 3).

() (b) (©) (d) e (1 (2 (3
POP BPR-MF FISM FMC FPMC Fossil Fossil Fossil

ML-50 0.8032 0.8587 0.8564 0.8566 0.8825 0.8802 0.8837 0.8865
ML-30 0.7980 0.8523 0.8515 0.8463 0.8674 0.8748 0.8794 0.8797
ML-20 0.7919 0.8447 0.8476 0.8357 0.8503 0.8704 0.8735 0.8728
ML-10 0.7722 0.8728 0.8276 0.8026 0.8301 0.8540 0.8546 0.8551
ML-5 0.7352 0.7551 0.7711 0.7275 0.7458 0.7945 0.7940 0.7931

Dataset

a dataset is constructed by taking only the N most recent
actions of each user. Actions beyond this point are dropped.
Note that sampling is not used as it would break the sequen-
tial characteristic exploited by the models. We decrease the
threshold NV from 50 to 5 (leading to a series of increasingly
sparse datasets) and observe the performance variation of all
methods. Statistics of the datasets are summarized in Table
[Vl Experimental results are collected in Table [VI} As we can
see from the table, the accuracy of all methods drops if we
decrease the threshold from 50 to 5. This makes sense since
we have less information regarding both users and transitions
among items. In this section, we compare Fossil with FPMC
to answer a series of questions on their effectiveness based
on the results in Table [V1l

A. How Much do Short-term Dynamics Help?

We begin by investigating the improvements due to mod-
eling sequential patterns on top of BPR-MF and FISM. In
Figure 3] we demonstrate the improvement of FPMC over
BPR-MF, in contrast to that achieved by Fossil (with 1st-,
2nd-, and 3rd-order Markov Chains) over FISM. From the
figure we observe that the improvement of FPMC over BPR-
MF decreases as data become sparser, due to the amount
of additional parameters introduced to model short-term
dynamics. In contrast, Fossil introduces only a small amount
of parameters (i.e., the weighting vectors n and n“), and
thus outperforms FISM more consistently. Additionally, high
orders of Markov Chains appear to help more when the
dataset is dense, e.g., ML-50 vs. others.

B. How Much do Long-term Dynamics Help?

One may consider FPMC and Fossil as two different meth-
ods to enhance Markov Chains by incorporating long-term
user preferences. To demonstrate the benefits of modeling

== FPMC vs. BPR-MF

== Fossil-1 vs. FISM
Fossil-2 vs. FISM

=t~ Fossil-3 vs. FISM

Percentage Improv. (%)

7
ML-50 ML-30 ML-20 ML-10 ML-5
Dataset

Figure 3: Improvement from modeling short-term dynamics.
Such dynamics (with 1st-, 2nd-, and 3rd-order Markov
Chains) are consistently helpful for FISM, in contrast to the
deteriorating improvement of FPMC over BPR-MF when
the dataset is sparse.

. / 8- FPMC vs. FMC
é‘ == Fossil-1 vs. FMC
Eo Fossil-2 vs. FMC
N — Fossil-3 vs. FMC
S
~
< 9 : : :

ML-50 ML-30 ML20 ML-10 ML-5

Dataset

Figure 4: Improvement from modeling long-term dynamics
on top of Markov Chains. The improvement achieved by
Fossil increases as datasets get sparser.

S

§ == Fossil-1 vs. FPMC
= Fossil-2 vs. FPMC
§o == Fossil-3 vs. FPMC
]

3

S

2+ r r r

ML-50 ML-30 ML-20 ML-10 ML-5

Dataset

Figure 5: Improvement achieved by Fossil over FPMC as
dataset sparsity increases.

long-term dynamics, in Figure [we show the amount of
improvement achieved by FPMC and Fossil over FMC. As
datasets become sparser, the performance gap between Fossil
and FMC increases by as much as 9 percent, in contrast to
the relatively ‘flat’ improvement of around 3 percent from
FPMC. This demonstrates the strength of Fossil as well as
the compatibility of FISM and Markov Chains since they
are both ultimately modeling relationships among items.

C. Fossil and FPMC

In Figure [5] we demonstrate the performance gain of our
proposed method over FPMC. Fossil outperforms FPMC
increasingly as sparsity grows. Note that FPMC requires as

K & SR
H--sionnsgl
/Bo=c0B
 ERTN TR
g (@ 2

o a2 =
€ ¢ 6 6 §Q ¢ =

>
<

S00MRMT TR
oA N N

Figure 6: Demonstration of item transitions. On the left are
a few sampled items (or queries) from the Clothing, Shoes
and Jewelry dataset. On the right are the top-ranked items
(from the same dataset) that each query is likely to transition
to, according to arg min; ez (P guery, Q;)-

{
-
O

o 4

many as 50 actions per user in order to achieve comparable
performance with Fossil.

For further investigation, we also performed additional
experiments where we reduced the number of parameters
of FPMC by setting the matrix M = N in Eq. (3), in
the hope that it could favor sparse datasets. However, no
significant improvement (or even worse prediction accuracy)
was observed.

To sum up, the two key components of Fossil, i.e., the
similarity-based method and (high-order) Markov Chains,
both contribute considerably to its performance especially
on sparse datasets. And thus the precise combination of
the two generates strong results for the sparse sequential
recommendation task.

VII. VISUALIZATION AND QUALITATIVE ANALYSIS

In this section, we visualize the learned Fossil model and
qualitatively analyze our findings. We choose to visualize
the results achieved on Clothing, Shoes and Jewelry dataset
from Amazon.com (see Section [V-A) due to its large size,
significant variability, and the convenience to demonstrate
user actions. The model we use for visualization is the first-
order Fossil model trained on the dataset with K set to 10.

A. Visualizing Sequential Dynamics

First, we visualize the transition among items to answer
questions like ‘What kind of outfits are compatible with
this outdoor cap?’. Fossil encodes this dynamic by the
inner product of P; and Q; where ¢ is the item already

1.2

1.0
0.8

0.6

0.2
0.0

—0.2

-0.4

0 50 100 150 200 250
#actions in the training set 7
Figure 7: Demonstration of the importance of short-term

dynamics for different users. Fossil learns to assign higher
weights to cold users to rely more on sequential patterns.

consumed and j the item considered for recommendation.
Quantitatively, given a ‘query’ item ¢ at the current time
step, items that are most likely to appear at next step are
computed according to

argmin (P;, Q;). (12)

JjE€T
For demonstration, we take a few samples from the above
dataset, as shown on the left of the separator in Figure [6]
Next, we use them as queries to get corresponding recom-
mendations according to Eq. (I2). Items retrieved for each
query are shown on the right. We make two observations
from this figure. On the one hand, although the model is
unaware of the identity of items, it learns the underlying
homogeneity correctly, as we see from the first row (i.e., the
Star Wars theme) and last three rows (i.e., watches, shirts
and jewelry respectively). On the other hand, items from
different subcategories are surfaced to generate compatible

outfits, e.g. rows 2 and 5.

B. Visualizing Personal Dynamics

Recall that each user w is parameterized with a vector n*
to model the personalized comparative importance of short-
term dynamics versus long-term dynamics. The scatter plot
in Figure [7] shows such weights (1) learned for users in the
dataset.

From the scatter plot we make a few observations as
follows. (1) Fossil gives ‘cool’ users (users with few ac-
tions) higher weights, which makes sense since sequential
patterns have to carry more weight when we do not have
enough observations to infer users’ preferences. This also
confirms that it is necessary to model short-term dynamics
on sparse datasets in order to enhance the performance
of item recommendation methods like FISM. (2) As we
increment the number of actions, Fossil relies more on long-
term preferences as they become increasingly accurate.

Recommen- | Ground-
User Sequences dation truth
c B M o= &l

B

Figure 8: Demonstration of recommendations made for
users with large 1 values, indicating strong ‘sequential
consistency.’

In Figure [8] we demonstrate recommendations made for a
few users as well as the corresponding ground-truth items
(from the test set £). Here the users are sampled from those
with the largest ¢ and at least 5 actions in the training set
T. The threshold is used so that n{ is forced to capture the
‘sequential consistency’ of user u to some degree, instead
of merely the user sparsity involved. From Figure [8] we can
observe a certain amount of such consistency within each
sequence. E.g., jewelry (row 1), wearables for boys (row 4)
and business men (row 5).

In conclusion, it is precisely the ability to carefully
accommodate multiple types of dynamics as well as person-
alization that makes Fossil a successful method to handle
the sequential recommendation task.

VIII. CONCLUSION

In this paper, we proposed a new method, Fossil, that
fuses similarity-based models with Markov Chains to predict
personalized sequential behavior. We performed extensive
experiments on multiple large, real-world datasets, and
found that Fossil outperforms existing methods considerably.
We studied the effect of sparsity on different methods and
found that Fossil is especially strong when the prediction
task is challenged by sparsity issues. We visualized the
learned Fossil model on a large dataset from Amazon.com
and observed that it captures sequential and personalized
dynamics in a reasonable way, along with the favorable
quantitative results achieved.

Acknowledgments. This work is supported by NSF-IIS-1636879,
and donations from Adobe, Symantec, and NVIDIA.

REFERENCES

[1] F. Ricci, L. Rokach, B. Shapira, and P. Kantor, Recommender
systems handbook. Springer US, 2011.

[2] S. Kabbur, X. Ning, and G. Karypis, “FISM: factored
item similarity models for top-n recommender systems,” in
SIGKDD, 2013.

[3] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Fac-
torizing personalized markov chains for next-basket recom-
mendation,” in WWW, 2010.

[4] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl, “Grouplens: applying collaborative
filtering to usenet news,” Communications of the ACM, 1997.

[5] U. Shardanand and P. Maes, “Social information filtering:
algorithms for automating word of mouth,” in SIGCHI, 1995.

[6] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recom-
mending and evaluating choices in a virtual community of
use,” in SIGCHI, 1995.

[7]1 G. Linden, B. Smith, and J. York, “Amazon.com recommen-
dations: item-to-item collaborative filtering,” Internet Com-
puting, 2003.

[8] M. Deshpande and G. Karypis, “Item-based top-n recommen-
dation algorithms,” TOIS, 2004.

[9] K. Miyahara and M. J. Pazzani, “Collaborative filtering with
the simple bayesian classifier,” in PRICAI, 2000.

[10] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical anal-
ysis of predictive algorithms for collaborative filtering,” in
UAI, 1998.

[11] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltz-
mann machines for collaborative filtering,” in /CML, 2007.

[12] R. M. Bell, Y. Koren, and C. Volinsky, “The bellkor solution
to the netflix prize,” 2007.

[13] J. Bennett and S. Lanning, “The netflix prize,” in KDDCup,
2007.

[14] A. Paterek, “Improving regularized singular value decompo-
sition for collaborative filtering,” in KDDCup, 2007.

[15] X. Ning and G. Karypis, “Slim: Sparse linear methods for
top-n recommender systems,” in /CDM, 2011.

[16] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in /CDM, 2008.

[17] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,
and Q. Yang, “One-class collaborative filtering,” in /ICDM,
2008.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme, “BPR: bayesian personalized ranking from implicit
feedback,” in UAI, 2009.

[19] Y. Koren, “Factorization meets the neighborhood: a multi-
faceted collaborative filtering model,” in SIGKDD, 2008.

[20] ——, “Collaborative filtering with temporal dynamics,” Com-
munications of the ACM, 2010.

[21] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” 2009.

[22] A.Zimdars, D. M. Chickering, and C. Meek, “Using temporal
data for making recommendations,” in UAZ, 2001.

[23] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Using
sequential and non-sequential patterns in predictive web usage
mining tasks,” in /CDM, 2002.

[24] G. Shani, R. I. Brafman, and D. Heckerman, “An mdp-based
recommender system,” in UAI, 2002.

[25] Y. Koren and R. Bell, “Advances in collaborative filtering,”
in Recommender Systems Handbook. Springer, 2011.

[26] J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel,
“Image-based recommendations on styles and substitutes,” in
SIGIR, 2015.

[27] T. Zhao, J. McAuley, and 1. King, “Leveraging social con-
nections to improve personalized ranking for collaborative
filtering,” in CIKM, 2014.

[28] R. He and J. McAuley, “VBPR: visual bayesian personalized
ranking from implicit feedback,” in AAAL 2016.

	I Introduction
	II Related Work
	III Sequential Prediction
	III-A Problem Formulation and Notation
	III-B Modeling User Preferences
	III-C Modeling Sequential Patterns
	III-D The Unified Sequential Prediction Model

	IV The Proposed Fossil Model
	IV-A The Basic Model
	IV-B Modeling Higher-order Markov Chains
	IV-C Inferring Model Parameters

	V Experiments
	V-A Datasets and Statistics
	V-B Evaluation Methodology
	V-C Comparison Methods
	V-D Performance and Quantitative Analysis
	V-E Reproducibility
	V-F Training Efficiency

	VI A Study on the Effect of Data Sparsity
	VI-A How Much do Short-term Dynamics Help?
	VI-B How Much do Long-term Dynamics Help?
	VI-C Fossil and FPMC

	VII Visualization and Qualitative Analysis
	VII-A Visualizing Sequential Dynamics
	VII-B Visualizing Personal Dynamics

	VIII Conclusion

