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Prognostic and Health Management (PHM) systems are some of the main protagonists
of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has
deviated from its normal operating condition or predicting when a fault will occur are the
main challenges these systems aim at addressing. Efficient PHM methods promise to
decrease the probability of extreme failure events, thus improving the safety level of industrial
machines. Furthermore, they could potentially drastically reduce the often conspicuous
costs associated with scheduled maintenance operations. The increasing availability of data
and the stunning progress of Machine Learning (ML) and Deep Learning (DL) techniques
over the last decade represent two strong motivating factors for the development of data-
driven PHM systems. On the other hand, the black-box nature of DL models significantly
hinders their level of interpretability, de facto limiting their application to real-world scenarios.
In this work, we explore the intersection of Artificial Intelligence (AI) methods and PHM
applications. We present a thorough review of existing works both in the contexts of fault
diagnosis and fault prognosis, highlighting the benefits and the drawbacks introduced by the
adoption of AI techniques. Our goal is to highlight potentially fruitful research directions along
with characterizing the main challenges that need to be addressed in order to realize the
promises of AI-based PHM systems.

Keywords: prognostic and health management, predictive maintenance, industry 4.0, artificial intelligence, machine
learning, deep leaning

1 INTRODUCTION

Supporting the constant growth of modern industrial markets makes the optimization of operational
efficiency and the minimization of superfluous costs essential. A substantial part of these costs often
derives from the maintenance of industrial assets.

Recent studies1 show that, for the average factory, inefficient maintenance policies are responsible
for costs ranging from 5 to 20% of the plant’s entire productive capacity. Furthermore, according to
the International Society of Automation (ISA)2, the overall burden of unplanned downtime on
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industrial manufacturers across all industry segments is estimated
to touch the impressive figure of $647 billion per year.

If, on one hand, the above considerations highlight the
fundamental impact of maintenance operations on
manufacturers’ balances, on the other hand a large number of
companies are still not satisfied with their maintenance strategies.
According to a recent trend study gathering interviews with more
than 230 senior European business3, roughly 93% of them deem
their maintenance policy inefficient.

As discussed later, the current most popular approaches to
maintenance are divided into two categories, namely reactive
maintenance and scheduled maintenance. Roughly speaking, the
first implements maintenance operations immediately after a
system failure occurs, whereas the second is based on
scheduling maintenance operations at regular time intervals.
These strategies naturally introduce significant extra costs due
to machine downtime, component replacement or unnecessary
maintenance interventions.

On the other hand, Predictive Maintenance (PM) represents a
completely different paradigm that holds the promise of
overcoming the inefficiencies of the aforementioned methods.
PM is one of the hallmarks of the so-called Industry 4.0
revolution, i.e., the process of modernization of the industrial
world induced by the advent of the digitalization era. The goal of
PM systems is to implement a smarter and more dynamical
approach to maintenance leveraging recent advances in sensor
engineering and data analysis. The health state of a machine is
now constantly monitored by a network of sensors and future
maintenance operations are based on the analysis of the resulting
data. An increasing number of organizations, motivated by their
need for reducing costs and by the potential of PM, are starting to
invest significant amounts of resources on the modernization of
their current maintenance strategies1.

One natural question arising now is to what extent PM
solutions can actually improve a company’s efficiency in terms
of reduction of downtime, cost savings and safety. A recent PWC
study4 investigates the actual potential of PM beyond the hype
generated around it in the last few years. The results are quite
impressive: 95% of the interviewed organizations claim that the
adoption of PM strategies contributed to the improvement of
several key performance indicators. Roughly 60% of the involved
companies report average improvements of more than 9% of
machines uptime, and further enhancements in terms of cost
savings, health risks, assets lifetime.

As mentioned above, as a key player in the fourth industrial
revolution, PM exploits some of the most recent advances
introduced in the last few years in computer science and
information engineering. Among them, ML is arguably one of
the technologies that is experiencing the most impressive growth
in terms of investments and interest of the private sector. This
increasing attention in AI technologies is mainly due to the

tremendous contributions they have brought in fields such as
Computer Vision (CV), Natural Language Processing (NLP) and
Speech Recognition in the last decade.

PM approaches are heavily based on ML techniques. The
increasing availability of relatively cheap sensors has made much
easier to collect large amounts of data, which are in turn the main
ingredients ML systems necessitate.

However, AI-based technologies should not be considered as a
“silver bullet” capable of immediately addressing all the issues
affecting current maintenance strategies. ML and DL, in
particular, are constantly evolving fields and, despite their
significant achievements, a number of drawbacks still limit
their wide application to real-world scenarios. It is, therefore,
necessary to be cautious and try to understand the limitations of
current AI approaches in the context of PM and drive further
research toward the resolution or the alleviation of these
shortcomings.

The goal of this manuscript is to provide an updated critical
review of the main AI techniques currently used in the context of
PM. Specifically, we focus on highlighting the benefits introduced
by modern DL techniques along with the challenges that these
systems are not yet able to solve. Furthermore, we present a
number of relatively unexplored solutions to these open problems
based on some of the most recent advances proposed in the AI
community in the last few years.

This manuscript is structured as follows: Section 2 briefly
describes classic maintenance strategies and introduces the core
ideas from Prognostic and Health Management (PHM). Section
3 discusses the benefits of data-driven approaches and presents
some of the most popular AI-based methods used in PHM.
Section 4 summarizes the main open challenges in PHM and
presents some of their possible solutions. Finally, Section 5
concludes the paper.

2 ELEMENTS OF PROGNOSTIC AND
HEALTH MANAGEMENT

Prognostic and Health Management (PHM) is an engineering
field whose goal is to provide users with a thorough analysis of the
health condition of a machine and its components (Lee et al.,
2014). To this extent, PHM employs tools from data science,
statistics and physics in order to detect an eventual fault (anomaly
detection) in the system, classify it according to its specific type
(diagnostic) and forecast how long the machine will be able to
work in presence of this fault (prognostic) (Kadry, 2012).

First, we present the most popular maintenance approaches,
highlighting the advantages and disadvantages of these different
methods in terms of costs and overall machine downtime. Then,
we describe the entire PHM process by describing the role of its
main sub-components in the context of the previously introduced
maintenance approaches.

2.1 Different Approaches to Maintenance
The choice of an efficient maintenance strategy is crucial for
reducing costs and minimizing the overall machine’s downtime.
The adoption of a particular maintenance strategy primarily

3https://www.ge.com/uk/sites/www.ge.com.uk/files/PAC-Predictive-Maintenance-
GE-Digital-Full-report-2018.pdf
4https://www.pwc.be/en/documents/20180926-pdm40-beyond-the-hype-report.
pdf
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depends on the needs and the characteristics of the company’s
production line. Indeed, each maintenance policy introduces some
benefits and disadvantages directly impacting costs in different
modalities. In this review, we identify four distinct approaches to
maintenance, namely: Reactive Maintenance (RM), Scheduled
Maintenance (SM), Condition-Based Maintenance (CBM), and
Predictive Maintenance (PM) (Fink, 2020).

2.1.1 Reactive Maintenance
RM consists of repairing or substituting a machine component
only once it fails and it can no longer operate. The immediate
advantage of this approach is that the amount of maintenance
manpower and expenses related to keeping machines running are
minimized (Swanson, 2001). Furthermore, since machines are
active until they break, their utilization time is maximized. On the
other hand, this approach is risky from many perspectives. First
and foremost, it is potentially dangerous from the point of view of
safety. Waiting for a machine to reach its maximum stress level
can result in catastrophic failures. Moreover, this type of failures
usually introduce larger costs and need a significant amount of
time to be repaired. Therefore, by adopting this maintenance
strategy, one might expect conspicuous costs arising both from
reparations of severe failures and from relatively large unplanned
machines downtimes.

2.1.2 Scheduled Maintenance
SM is based on maintenance interventions carried out at regular
time intervals. The goal is to minimize the probability of failures
and thus avoid costly unplanned downtimes by performing
maintenance activities even when the machine is still
operating under normal conditions. SM strongly relies on a
meaningful schedule that has to be tailored to the specific
properties of the equipment. In particular, experts have to
provide a detailed evaluation of the failure behavior of the
machines and of their components in order to maximize the
level of accuracy on the prediction of the next failure time. This
analysis typically results in the so-called “bathub” curves
(Mobley, 2002), as shown in Figure 1.

The bathtub curve illustrated in Figure 1 shows that a machine
component presents a high risk of failure right after it is installed
(because of installation errors or incompatibility issues with other
components) and after its normal operation interval (because of
natural degradation and wear out.). Between these two phases, the
machine is supposed to work properly and its failure probability
is low and constant.

The main advantage of SM is that it significantly reduce
unplanned downtime. Furthermore, the reparation costs are
generally less dramatic than those encountered in RM, since,
now, machines are not allowed to operate until their breaking
point. On the other hand, a SM approach presents the concrete
risk of carrying out several relatively expensive maintenance
interventions even when the equipment is still working
properly. Sticking to a fixed degradation model of a certain
machine might lead maintenance operators to miss anomalies
caused by external factors or internal malfunctions that make
the machine’s degradation pattern deviate from its
predicted trend.

2.1.3 Condition Based and Predictive Maintenance
CBM and PM differ from the types of maintenance strategies
previously described in that they employ data-driven techniques
to assist technicians to efficiently set times for maintenance
activities. The goal of these methods is to provide a good
compromise between maintenance frequency and its relative
costs (Ran et al., 2019).

The difference between CBM and PM lies entirely in their
different responses when a defective system condition is detected.
In this case, a CBM approach would intervene on the system
immediately after the detection time. This method could lead to
the replacement or repair of a component of the equipment even if
it could have continued its normal routine for a longer time
without affecting other parts of the machine. Furthermore,
intervening immediately after the fault has been detected might
result in stopping the machines’ working cycle at an inconvenient
stage from the point of view of production efficiency.

To the contrary, PM tries to predict the useful lifetime of a
component at a certain time step in order to indicate the point in
the future where maintenance has to be performed. This last
approach inevitably results in lower maintenance costs compared
to CBM, since each component can be fully exploited without
sacrificing safety and efficiency (Fink, 2020).

Figure 2 summarizes the maintenance strategies presented
above by illustrating the costs resulting from their different
approaches.

2.2 Prognostic and Health Management
Process
As mentioned before, PHM makes use of information extracted
from data to assess the health state of an industrial component
and driving maintenance operations accordingly. Figure 3
illustrates the main components constituting the typical PHM
pipeline, from data acquisition to decision making.

The very first step of the PHM process consists of selecting a
suitable set of sensors and devices, setting them up in the most
appropriate location and deciding on an optimal sampling

FIGURE 1 | The bathub curve shows that the most likely times for a
machine to break are right after the installation and after its normal
operating time.
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frequency for data collection. The communication system
between sensors and databases must be implemented in order
to allow for both real-time machine health monitoring and offline
data handling. To this extent, a widely adopted solution by
industries is the Open Platform Communication Unified
Architecture (OPC UA), a popular communication protocol
that allows information to be shared across sensors, industrial
assets and the Cloud in a highly secure way (Bruckner et al.,
2019).

Once the sensor array is in place, data can be acquired. These
data are typically in forms that are not compatible with the input
shape requested by AI algorithms. Therefore, a data pre-
processing step must be implemented in order to clean the
data, mitigate the effects induced by noise or simply reshape

them so that their new format can be interpreted by data analysis
techniques.

The resulting data are cleaner than the original ones but can
still contain a substantial amount of redundant information. This
motivates the application of feature extraction techniques to
reduce the dimensionality of the data and retain only the most
meaningful pieces of information. As we see in the next section,
most modern AI techniques are designed to automatically extract
informative features without any need for expert knowledge and
manual feature engineering.

2.2.1 Condition-Based Maintenance
CBM consists of two main elements: anomaly detection and
diagnosis [see Figure 3 (left)]. Both these processes immediately

FIGURE 2 | Scheme of the behavior of the different maintenance approaches described above. Figure adapted from Fink (2020).

FIGURE 3 |Main steps of the typical PHM process. This can be divided into CBM (left) and PM (right). RUL estimation is enhanced by information extracted at the
CBM level, such as the time step where degradation starts to show its effects. Figure adapted from Khan and Yairi (2018).
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follow the data extraction and data pre-processing pipelines
described above and aim at supporting the decision making
step with meaningful information about the state of the
system. The information extracted by the anomaly detection
and diagnosis modules can subsequently be exploited at the
PM level in order to provide an even richer description of the
machine’s health state [see Figure 3 (right)].

2.2.1.1 Anomaly Detection
Anomaly detection is responsible for automatically establishing
whether the input data present any discrepancy compared to
some internal model of the normal machine’s behavior (Khan
and Yairi, 2018). This internal representation can be learned by
extracting and storing representative features from data gathered
from healthy machines. It is important to note that, in general,
healthy data, i.e., data gathered from machines working under
normal working conditions, are much more abundant than faulty
data. This is because, typically, a machine can incur in several
different types of faults, each of which is, luckily, relatively rare.
As a conclusive remark, we highlight that the detection of an
anomaly does not necessarily imply that it corresponds to a fault.
It might be, for instance, that it represents a new healthy feature
that does not have any representatives into the historical data or
has not been modeled by the anomaly detection algorithm’s
internal model.

2.2.1.2 Fault Diagnosis
Fault diagnosis moves one step forward with respect to anomaly
detection since, besides detecting that an outlier is present, it also
identifies the cause at the basis of that anomaly (Hess, 2002). Fault
diagnosis models are based on historical data representing
different faulty conditions. These data are used to characterize
each type of fault and allow the models to classify new previously
unseen data within a predefined set of fault cases.

2.2.2 Predictive Maintenance
Themain difference between CBM and PM is that PM algorithms
deal with the problem of predicting the Remaining Useful Life
(RUL) of an industrial component before a complete failure
occurs and the machine is no longer able to operate
(Medjaher et al., 2012; Fink, 2020). Therefore, the key enablers
of PM strategies are algorithms capable of efficiently forecasting
the future state of a machine, i.e., provide prognostic information
about its RUL.

2.2.2.1 Fault Prognosis
As mentioned before, fault prognosis is about providing an as
accurate as possible prediction of the RUL of a certain machine
component. The RUL estimation process starts from the
identification of a time-step where a fault begins to show its
effects. The final goal is to infer how long the machine can
continue operating even in the presence of a degradation trend
due to the previously detected fault.

Contrarily to diagnosis, time plays a crucial role in prognosis,
since the objective is now to provide an estimate of the future time
step when a certain event will occur (Lee et al., 2014). It is
important to note that RUL predictions are strongly affected by

various sources of noise. These can arise from noisy sensor
readings, the inherent stochasticity of the RUL forecasting
problem and the choice of an imperfect model for the
machine degradation process.

3 ARTIFICIAL INTELLIGENCE-BASED
PROGNOSTIC AND HEALTH
MANAGEMENT
The attempt of devising artificial agents with the ability to
emulate or even improve some aspects characterizing human
intelligence is what makes AI an extremely exciting field of
research both from a fundamental and a practical points of
view. ML, as a branch of AI, studies the problem of designing
machines capable of learning through experience and by
extracting information from data (Mitchell, 1997). “Learning
from experience” represents a distinctive human feature that
enables us to actively interact with the world we live in. It
allows us to build a progressively more accurate internal
model of the surrounding environment by processing and
interpreting the external signals our body is able to perceive.

Similarly to humans, intelligent systems can process the
information perceived by an array of sensors about a given
industrial component and provide a model of its operating
condition and its health status. The increasing availability of
data and the high level of computational power reached by
modern hardware components make the application of AI
techniques even more appealing.

ML has witnessed an increasing interest in the last few
decades. A turning point has been set by the introduction of
the first state-of-the-art DL technique almost 10 years ago by
Krizhevsky et al. (2012) in the context of Image Recognition (IR).
This event has triggered a new era in the field of data analysis
characterized by a plethora of new applications of DL to a series of
disparate engineering fields, ranging from NLP to CV.

The goal of this section is to give the reader an insight into the
intersection of ML and PHM and the progress made by the
scientific community hitherto. First, we present the main steps
involved in the application of “traditional” ML techniques to
PHM and we discuss how these can be utilized in the contexts of
diagnosis and prognosis. Then, we present a number of popular
DL techniques and we review some of their most interesting
applications in this context.

3.1 “Classical” Machine Learning Methods
Before the explosion of DL almost one decade ago, the typical
process followed by the majority of data-driven approaches to
PHM is illustrated in Figure 4. The raw measurements provided
by a battery of sensors can not be straightforwardly linked with
the health state of the machine or its RUL. Indeed, they are often
affected by a significant amount of noise that can be introduced
by either external factors, such as a sudden temperature increase,
or imperfect signal transmissions. Furthermore, often these data
are represented by complex time-series or images, that are
typically characterized by a highly redundant information
content that tends to hide the relatively limited discriminative
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features of interest. For the above reasons, once data are acquired,
a set of candidate features have to be extracted and then, only the
most informative among them have to be properly selected. Once
these steps are completed, the final set of extracted features can be
used to train a ML algorithm to perform the desired diagnosis or
prognosis task.

In the following, we briefly go through all the aforementioned
steps, discussing some of the main techniques involved in each
of them.

3.1.1 Feature Extraction and Feature Selection
3.1.1.1 Feature Extraction
According to Yu (2019), feature extraction can be defined as the
task of transforming raw data into more informative features that
serve the need of follow-up predictive models and that help in
improving performances on unseen data.

A general recipe for the feature extraction task does not exist
and a set of key context-dependent factors must be taken into
account. Some of these are, for example, the specific type of task
to be performed, the characteristics of the data, the application
domain and the algorithmic and efficiency requirement (Guyon

et al., 2006). For instance, traditional choices of features in the
context of IR are those obtained by the SIFT (Lowe, 2004) and
SURF (Bay et al., 2008) algorithms, whereas mel-cepstral
coefficients (Davis and Mermelstein, 1980; Kopparapu and
Laxminarayana, 2010) are typically chosen in speech
recognition applications.

In the context of PHM, data recorded for the purpose of
equipment maintenance come often in the form of time-series.
Therefore, an opportune set of features must be chosen according
to the properties of the signals under consideration, e.g., its
physical nature (temperature, pressure, voltage,
acceleration,. . .), its dynamics (cyclic, periodic, stationary,
stochastic), its sampling frequency and its sample value
discretization (continuous, discrete)5. Typical examples of
features extracted from raw time-series data can be divided
into three categories (Lei et al., 2020): time domain, frequency
domain and time-frequency domain. The first includes statistical

FIGURE 4 | Main steps characterizing the approaches based on traditional ML algorithms. Adapted from Zhao et al. (2016).

5https://www.phmsociety.org/sites/phmsociety.org/files/Tutorial_PHM12_Wang.
pdf
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indicators such as mean, standard deviation, root mean square,
skewness, kurtosis, crest factor, signal-to-noise ratio. Other
standard time-domain feature extraction methods are
traditional signal processing techniques such as auto and
cross-correlation, convolution, fractal analysis (Yang et al.,
2007) and correlation dimension (Logan and Mathew, 1996).
Finally, model-based approaches such as autoregressive (AR,
ARMA) or probability distribution models where features
consist of the model parameters (Poyhonen et al., 2004) are
also commonly used.

Features extracted from the frequency domain are typically
obtained through spectral analysis of the signal of interest. Fast-
Fourier-Transform is applied to raw data to extract the power
spectrum and retrieve information about the characteristic
frequencies of the signal. Finally, time-frequency domain
feature extraction techniques include short-time Fourier
transform, wavelet transform and empirical mode
decomposition, among others. The goal of these methods is to
capture how the frequency components of the signal vary as
functions of time and are particularly useful for non-stationary
time-series analysis.

3.1.1.2 Feature Selection
The goal of feature extraction is to obtain a first set of candidate
features that are as informative as possible for the problem under
consideration. Feature selection aims at reducing the dimension
of the feature space by individuating a subset of features that are
maximally relevant for a certain objective. According to the
pioneering work of Guyon et al. (2006), feature selection
methods can be divided into three categories: filters, wrappers
and embedded methods. The first class of approaches consists of
finding a subset of features that is optimal according to a specified
objective measuring the information content of the proposed
candidates. This objective is independent of the particular ML
algorithm used to perform the PHM task and therefore the
resulting features will be typically more general and potentially
usable by different ML algorithms. Several feature selection
techniques are based on the calculation of information-
theoretic quantities such as the Pearson coefficient or the
information gain. For instance, the Minimum-Redundancy-
Maximum-Relevance (mRMR) technique is based on the idea
that the optimal subset of features should be highly correlated
with the target variable (which might be, for example, the
classification label indicating a specific fault type) and
mutually far away from each other.

Wrapper-based methods differs from their filter-based
counterpart in the criteria they use for assessing the
“goodness” of a specific set of features. Specifically, they
directly employ the ML algorithm to get feedback, usually
in form of accuracy or loss function, about the selected
candidates. Wrappers are usually able to achieve better
performances than filters since they are optimized with
respect to a specific ML algorithm which is in turn tailored
for a specific task. On the other hand, wrappers are biased
toward the ML algorithm they are based on and therefore the
resulting feature subset will not be generally adequate for
alternative ML techniques.

The final class of feature selection methods is represented by
the so-called embedded approaches. These techniques integrate
the feature selection process directly into the ML algorithm in an
end-to-end fashion. A popular example of embedded approach is
the LASSO (Least Absolute Shrinkage and Selection Operator)
(Tibshirani, 1996) which is a method for linear-regression that
solves the following optimization problem:

min
w,b

1
n
∑n
i�1

(yi − wTxi − b)2 + λw1 (1)

with

||w||1 � ∑d
j�1

∣∣∣∣∣∣∣∣∣∣w(j)
∣∣∣∣∣∣∣∣∣∣ (2)

The L1 norm forces the learnt solution ŵ to be sparse and
therefore, only the least redundant features are selected. Other
methods used for end-to-end feature selection are, for instance,
the Akaike Information Criterion (AIC) (Sakamoto et al., 1986)
and the Bayesian Information Criterion (BIC) (Neath and
Cavanaugh, 2012) which are both based on finding features
that are generalizable and not problem-specific.

As a conclusive remark, it is worth mentioning that, similarly
to feature selection approaches, also dimensionality reduction
methods aim at reducing the level of redundancy andmaximizing
the amount of informativeness present among the feature
candidates. Techniques such as Principal Component Analysis
(PCA) (Jolliffe, 1986) are used to project data onto a lower-
dimensional linear subspace perpendicular to the feature
removed. Other popular dimensionality reduction techniques
are Linear Discriminants Analysis (LDA) (McLachlan, 2004),
Exploratory Projection Pursuit (EPP) (Friedman, 1987),
Independent Component Analysis (ICA) (Hyvärinen and Oja,
2000) and T-distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten and Hinton, 2008), among others.

3.1.2 Traditional Machine Learning Algorithms
As shown in Figure 4, once features are extracted and properly
selected, they can be used as input for a ML algorithm responsible
for performing the diagnosis or prognosis task we are interested
in. In this section, we focus on “traditional” ML algorithms,
i.e., popular AI methods widely employed before the advent of
DL. These techniques can be divided into four main sub-
categories, namely: (shallow) Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), Decision Trees
(DTs), and K-Nearest Neighbor (KNN).

3.1.2.1 Diagnosis
All the aforementioned classes of algorithms have been applied to
fault diagnosis in several different contexts. In the following, we
first briefly discuss the basic principles of these methods and then
we list some of their most interesting applications.

3.1.2.1.1 Artificial Neural Networks. ANNs are popular ML
algorithms whose design draws inspiration from the biological
mechanism at the basis of neural connections in the human brain.
They consist of elementary processing units, called neurons,
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connected to each other by means of dynamic weights of variable
magnitudes, whose role is meant to emulate the behavior of
synaptic connections in animals’ brains. Different types ANNs
topologies can be constructed by differently organizing the
neurons and their relative connections. The choice of the
specific ANN architecture crucially depends on the nature of
the task to be performed, the data structure under consideration
and the availability of computational resources.

Over the last two decades, ANNs have been used to detect and
classify faults incurring in several diverse types of machines. For
instance, they have been applied to fault diagnosis of rolling
element bearings (Samanta and Al-Balushi, 2003), induction
motors (Ayhan et al., 2006), gears (Samanta, 2004; Abu-
Mahfouz, 2005), engines (Lu et al., 2001), turbine blades (Kuo,
1995; Ngui et al., 2017), electrical (Moosavi et al., 2016) and
photovoltaic (Chine et al., 2016) devices, among others.

The choice of output layer directly reflects the kind of task we
are interested in. For instance, for fault detection tasks, two
neurons can be used to output the probability that the input
corresponds to a healthy instance or a faulty one. On the other
hand, if we are interested in fault diagnosis, the number of
output neurons is equal to the number of faults affecting the
machine under consideration. A typical example of ANNs
application to fault detection is provided by Samanta and Al-
Balushi (2003). In this work, five time-domain features (RMS,
skewness, variance, kurtosis, and normalized sixth central
moment) are extracted from raw vibration signals. These
features are then used as inputs to a shallow ANN consisting
of two hidden layers with 16 and 10 neurons respectively and
one output layer with two neurons (indicating if the input
corresponds to normal or failed bearing).

3.1.2.1.2 Support Vector Machines. Given a dataset {xi, yi}Ni�1,
where xi ∈ Rd and y � ± 1, SVMs aim at separating the two
classes of data by finding the optimal hyperplane with the
maximum margin between them. The margin is the distance
between the nearest training data points of any class. In most real-
world problem, data are not linearly separable. In these cases, the
so-called kernel trick (Hofmann et al., 2008) can be used to tackle
nonlinear classification tasks by implicitly mapping the data into
a high-dimensional feature space.

Standard SVMs, along with a number of improved variants,
have been extensively applied to fault diagnosis. For example,
they have been used for assessing the health state of rolling
element bearings (Yang et al., 2005; Abbasion et al., 2007; Gryllias
and Antoniadis, 2012; Fernández-Francos et al., 2013; Islam et al.,
2017; Islam and Kim, 2019b), induction motors (Widodo and
Yang, 2007), gearboxes (Liu et al., 2013), engines (Li et al., 2012),
wind turbines (Santos et al., 2015) and air conditioning systems
(Sun et al., 2016a).

In order to perform fault diagnosis tasks, SVMs are typically
employed alongside One-Against-One (OAO) (Yang et al., 2005;
Islam et al., 2017) or One-Against-All (OAA) (Abbasion et al.,
2007; Gryllias and Antoniadis, 2012) strategies. Furthermore,
SVMs can also be applied to anomaly detection. For example,
Liu et al. (2013) train a one-class SVM only on healthy data to
detect anomalies in bearings vibrational data.

Generally, SVMs are particularly well suited for problems
characterized by high-dimensional features. On the other
hand, the computation of the N × N kernel matrix can be
highly expensive when the number of data instances is
relatively large.

3.1.2.1.3 Decision Trees. Decision trees (DTs) represent a class
of non-parametric supervised ML algorithms commonly used for
regression and classification. DTs are trained to infer a mapping
between data features and the corresponding output values by
learning a set of relatively simple and interpretable decision rules.
As the name suggests, these classification rules correspond to
paths linking the root node to the leaf nodes. Indeed. each internal
node can be seen as a condition on a particular attribute. The
different outcomes of this test are represented by the branches
generated from that node. The C4.5 algorithm (Quinlan, 2014) is
one of the most popular approaches to learn a DT.

DTs have been widely employed in the context of fault
diagnosis over the last two decades. For example, they have
been applied to process data gathered from rolling element
bearing systems (Sugumaran and Ramachandran, 2007;
Sugumaran, 2012), gearboxes (Saravanan and Ramachandran,
2009; Praveenkumar et al., 2018), wind turbines (Abdallah et al.,
2018), centrifugal pumps (Sakthivel et al., 2010), and photovoltaic
systems (Benkercha and Moulahoum, 2018).

Multiple DTs can be employed jointly to form a random forest
(RF), an ensemble learning algorithm capable of overcoming
some shortcomings of single decision trees, such as limited
generalization and overfitting. RFs have been successfully
applied to fault diagnosis of induction motors (Yang et al.,
2008), rolling bearings (Wang et al., 2017), and aircraft
engines (Yan, 2006) among others.

The main advantages provided by DTs stand in their high level
of interpretability, resulting from the easily decipherable decision
rules they implement. Moreover, they often achieve reasonably
high accuracies in most of the classification problems they are
applied to. On the other hand, these methods are often prone to
overfitting and therefore tend to provide poor generalization
performances.

3.1.2.1.4 K-Nearest Neighbor. KNN is non-parametric
algorithm widely used for classification tasks. Given a set of
input-output pairs {xi, yi}Ni�1 and a test datum x̂, the KNN
algorithm searches the k closest training inputs to x̂ in the
feature space and label the test datum with the label having
more representatives among the k selected training data.
Closeness can be measured by an arbitrary similarity measure,
such as the Euclidean distance. Due to its simplicity and its high
level in interpretability, KNN-based approaches have found
many applications in fault diagnosis. For example, the
literature includes example of applications in the context of
rolling element bearings (Mechefske and Mathew, 1992;
Moosavian et al., 2013; Tian et al., 2016) and gears (Lei and
Zuo, 2009; Gharavian et al., 2013).

Enhanced versions of the basic KNN algorithms have been
gradually introduced to boost its classification performances and
to overcome some of its limitations, such as the computational
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load it requires to process large-sized datasets. For instance,
Appana et al. (2017) introduce a new type of metric which
augments the information provided by the distance between
sample pairs with their relative densities. Also, Lei et al. (2009)
apply a combination of weighted KNN (WKNN) classifiers to
fault diagnosis of rolling bearings in order to cope with the
problem of data instances belonging to different classes
overlapping in the feature space. Finally, in Dong et al. (2017)
and (Wang and Ma, 2014), KNN was optimized with the particle
swarm algorithm (Kennedy and Eberhart, 1997) to alleviate the
storage requirements of the former.

Overall, KNN and its enhanced versions can be considered as
relatively effective algorithms for fault diagnosis, especially
because of their simplicity and interpretability. Their main
limitations stand in the high computational cost and their
considerable sensitivity to noise.

3.1.2.2 Prognosis
Generally, prognosis is a more challenging problem than
diagnosis and therefore effective methods in this context are
less simple to find. Below, we list some of the most interesting
applications of ANNs, SVMs, and DTs to fault prognosis. KNNs
are not as widespread as in fault diagnosis and their application is
not common in RUL estimation.

3.1.2.2.1 Artificial Neural Networks. Two of the first attempts
of applying ANNs to fault prognosis problems are introduced in
Shao and Nezu (2000) and Gebraeel et al. (2004). Both approaches
are proposed in the context of bearings RUL prediction. In Shao and
Nezu (2000), a three-layer neural network is used to forecast the
value of the bearing health indicator. In Gebraeel et al. (2004)
several fully-connected models are trained on either individual or
on clusters of similar bearing features. Both methods use manually
extracted statistical features as input of the corresponding ANNs.
More recent approaches include, for example, Elforjani and Shanbr
(2018) and Teng et al. (2016). The first work proposes a comparative
study of the performance of SVM, Gaussian Processes (Rasmussen,
2003) and ANNs for RUL estimation from features extracted from
acoustic emission signals. The study reveals that the proposedANN is
the best performing model for the RUL prediction task under
consideration. In Teng et al. (2016), ANNs are used to provide
short-term tendency prediction of a wind turbine gearbox
degradation process. The approach is validated by a series of
experiments on bearing degradation trajectories datasets, showing
good RUL prediction performances.

3.1.2.2.2 Support Vector Machines. SVM-based methods have
been extensively applied to fault prognosis tasks. Huang et al.
(2015) provide an extensive review of the most relevant
techniques employing SVM-related approaches in the context
of RUL prediction. Application examples include RUL
estimation of bearings (Sun et al., 2011; Chen et al., 2013; Sui
et al., 2019), lithium-ion batteries (Khelif et al., 2017; Wei et al.,
2018; Zhao H. et al., 2018; Zhao Q. et al., 2018) and aircraft
engines (Ordóñez et al., 2019). For instance, in Wei et al. (2018)
Support Vector Regression (SVR) is used to provide a state-of-
health state-space model capable of simulating the battery aging

mechanism. Comparison of the performances provided by an
ANN-based model of the same type shows the superiority of the
proposed approach over its neural network-based counterpart.
In the context of bearings fault prognosis, Sun et al. (2011)
introduce a multivariate SVM for life prognostics of multiple
features that are known to be tightly correlated with the bearings’
RUL. The proposed method shows good prediction performance
and leverages the ability of SVM of dealing with high-
dimensional small-sized datasets.

3.1.2.2.3 Decision Trees. DTs and RFs have also been applied to
fault prognosis, in particular in the contexts of RUL estimation of
bearings (Satishkumar and Sugumaran, 2015; Patil et al., 2018;
Tayade et al., 2019), lithium-ion batteries (Zheng H. et al., 2019;
Zheng Z. et al., 2019) and turbofan engines (Mathew et al., 2017).
In Patil et al. (2018), the authors train a RF to perform RUL
regression by using time-domain features extracted from the
bearings vibration signals. The model is evaluated on the
dataset provided by IEEE PHM Challenge 2012 (Ali et al.,
2015), showing improved results than previous benchmarks.
One further example is provided by Satishkumar and
Sugumaran (2015), who cast the RUL estimation problem into
a classification framework. In particular, statistical features in the
time domain are extracted from five different temporal intervals
from normal condition to bearing damage. A DT is then used to
classify new data into one of these intervals, resulting in about
96% accuracy.

3.1.3 Discussion
3.1.3.1 Dependency on Feature Extraction
Traditional ML algorithms have been widely applied both to fault
diagnosis and fault prognosis tasks. They present the relevant
advantage of combining rather good performances and a
relatively high degree of interpretability. On the other hand,
most of them rely on good quality features that have to be
carefully extracted and selected by human experts. This
dependency on the feature extraction step limits the potential
of traditional ML methods and imposes a strong inductive bias in
the learning process. As we discuss in the next section, “deep”
algorithms can extract information directly from raw data and
can often improve the generalization performances of traditional
ML approaches.

3.1.3.2 Model Selection
It is important to observe that it is not possible to identify a
specific algorithm, among those discussed above, that clearly
outperforms the others in all possible settings. Selecting a
specific technique highly depends on the requirements and
characteristics of the PHM problem at hand. For example, a
black-box ANN approach might be more suitable when one is
mainly interested in performances and less in interpretability,
SVMs can be useful in the low-data regime and DTs can be a
sensible choice if interpretability is prioritized. Ultimately, the
final algorithm is often chosen by calculating a set of performance
metrics for each candidate technique and selecting the method
providing the highest scores. Some standard example of these
measures are accuracy, precision, Recall, F1 Score, Cohen Kappa
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(CK), and Area Under Curve (AUC). A description of these
metrics can be found, for instance, in Bashar et al. (2020).

3.1.3.3 Overfitting
The long-standing problem of overfitting (or over-training) is a
well-known pathology affecting data-driven approaches. In
essence, it stems from the imbalance between model capacity
and data availability. If on one hand, the adoption of ML
techniques can be significantly beneficial in PHM, on the
other hand, it also requires to think about effective solutions
to contrast overfitting in order to fully exploit the advantages of
data-driven approaches. In the context of PHM applications, a
key requirement for the deployment of a given ML algorithm
stands indeed in the robustness of its performances when data
different from the training ones kick in. Although algorithm-
specific techniques exist to tackle overfitting, held-out-cross
validation (Hastie et al., 2001) is probably the most popular
one and can be used independently on the particular ML
algorithm (see, for instance, Gebraeel et al., 2004), for ANNs
(Islam et al., 2017), for SVMs (Abdallah et al., 2018), for decision
trees and (Tian et al., 2016) for KNN).

As regards DTs, overfitting is typically tackled by pruning the
tree in order to prevent it to merely memorize the training set and
improve performances on unseen data (Praveenkumar et al.,
2018). Random forests have also been used for the same
purpose (Yang et al., 2008). They consist of ensembles of DTs
and one of their main benefits is to mitigate the overfitting
tendency of standard DTs.

A widely used strategy to contrast over-training in SVMs is to
introduce a set of so-called slack variables in order to allow some
data instances to lie on the wrong side of the margin (Hastie et al.,
2001). The extent to which this class overlapping effect is
permitted is regulated by a regularization constant C.
Furthermore, the smoothness of the margin can be adjusted
by appropriately tuning the hyperparameters of the kernel.
Sun et al. (2016a), for instance, use cross validation to find
optimal values of the constant C and of the gaussian kernel
width parameter.

In ANNs, the effects of overfitting get increasingly more
pronounced as the number of hidden layers increases
(Samanta, 2004). Two typical strategies to alleviate its impact
are early stopping and regularization. The first consists in
stopping the training phase once the first signs of over-
training kick in. The second introduces a penalizing term in
the loss function (typically in the form of L2 or L1 norms on the
network weights) to keep the values of the weights as small as
possible. In Ayhan et al. (2006) for instance, the authors use early-
stopping by arresting the training phase once the validation error
keeps increasing for a specific number of epochs.

Finally, the KNN algorithm yields different performances
depending on the value of k. Small values of k result in very
sharp boundaries and might lead to overfitting. On the other
hand, large ks are more robust to noise but might result in poor
classification performances. This hyperparameter is then typically
chosen via cross-validation by selecting the best performing value
among a set of candidates. In Gharavian et al. (2013), for instance,
K is varied from 1 to the number of the training samples.

3.2 The Deep Learning Revolution
Most of the methods we have discussed so far are characterized
by relatively “shallow” architectures. This aspect results in two
main consequences: first, their representational power can be
fairly limited and second, their input often consists of high-
level features manually extracted from raw data by human
experts.

DL is a quite recent class of MLmethods that provide a new set
of tools that are able to cope with the aforementioned
shortcomings of traditional approaches. Essentially, DL
techniques arise as an extension of classical ANNs. DL
models, in their simplest form, can be seen as standard ANNs
with the addition of multiple hidden layers between the network’s
input and output. An increasingly large corpus of empirical
results has shown that these models are characterized by a
superior representational power compared to shallow
architectures. Once deep networks are trained, their inputs
pass through a nested series of consecutive computations,
resulting in the extraction of a set of complex features that are
highly informative for the task on interest. This characteristic is
one of the hallmarks of DL and can be seen as one of the key
factors of its success.

In light of its improved representational power, its ability to
automatically extract complex features, its dramatic achievements
across different engineering fields and its multiple dedicated
freely available software libraries (Jia et al., 2014; Abadi et al.,
2016; Theano Development Team, 2016; Paszke et al., 2019), DL
has the potential to provide effective solutions also in the context
of PHM applications. Big data handling, automated end-to-end
feature extraction from different data structures (e.g., images,
time-series) and improved generalization are some of the targets
on which DL models can make a difference compared to
traditional ML approaches.

In the following, we introduce some of the most popular DL
techniques used in PHM. Specifically, we focus on Autoencoder
(AE) architectures, Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) and some of their
variants and combinations. For each model, we list some
interesting applications both in the context of fault diagnosis
and prognosis.

3.2.1 Methods and Techniques
3.2.1.1 Autoencoders
AEs, in their simplest form, consist of feed-forward neural
networks that are trained to output a reconstructed version of
their input. They are composed of two sub-networks, namely an
encoder and a decoder. The encoder, h, implements a mapping
from the input space to a typically lower-dimensional space.
More concretely, we have:

h � ψ(W1x + b1) (3)

where x ∈ Rd is the input vector, ψ is the activation function and
W1 ∈ Rq×d and b1 ∈ Rq are the parameters of the encoder. The
decoder implements a mapping from the embedding to the input
space in order to reconstruct the original input vector. In
formulas:
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~x � ψ(W2h + b2) (4)

where ~x ∈ Rd is the reconstructed input vector and W2 ∈ Rd×q
and b2 ∈ Rd are the parameters of the decoder. Given a dataset of
N data instances {xi}Ni�1, the accuracy of the model can be
measured with, for example, the Root-Mean-Squared-Error
(RMSE), which evaluates the reconstruction error made by the
autoencoder:

RMSE(θ) �

���������������
1
N

∑N
i�1

(xi − ~xi(θ))2
√√

(5)

In the equation above, the symbol θ has been used to indicate the
parameters of the network, i.e., W1, W2, b1, b2. The value of the
parameters is found byminimizing the RMSEw. r.t the parameter
θ of the model. Figure 5 shows an illustration of the typical AE
architecture.

Note that the model assumes a so-called bottle-neck shape,
characterized by an embedding space with a lower dimension
than the input space. By setting q< d, we can force the
algorithm to find a more expressive representation of the
input by getting rid of redundant pieces of information and
keep only the most relevant ones for the reconstruction
purpose. It is important to point out that here we have
limited our description to a one-hidden-layer architecture
for the sake of simplicity. However, deep models can be
simply obtained by consecutively stacking multiple hidden
layers. following the bottle-neck architecture.

There exists several more powerful extensions of the basic AE
discussed before. Some examples include Sparse AEs (SAEs) (Ng
et al., 2011), denoizing AEs (DAEs) (Vincent et al., 2008) and
variational AEs (VAEs) (Kingma and Welling, 2013). Sparse AEs
regularize the standard AE loss function with an additional term
that forces the model to learn sparse features. This regularization
term can be, for instance, the L1 norm of the activations:

Loss(θ) � RMSE(θ) + λ∑
i

∣∣∣∣∣∣∣∣∣hi∣∣∣∣∣∣∣∣∣, (6)

where hi is the ith component of the embedding h. Alternatively,
one can consider the KL divergence between the average ith
activation and a small sparsity parameter α, yielding the following
loss:

Loss(θ) � RMSE(θ) + λ∑
i

KL(α∣∣∣∣∣∣∣∣ρi), (7)

where ρi � ∑ m
j hi(xj) and m is the number of training examples.

DAEs take as input corrupted version of the data and aim to
output a reconstructed version of the original uncorrupted data.
The assumption is that the algorithm is forced to select only the
most informative part of the input distribution in order to recover
the uncorrupted data instance.

VAEs differ from the previous AE techniques since they
belong to the class of generative models. They aim at learning
a parametric latent variable model through the maximization of a
lower bound of the marginal log-likelihood of the training data.

The goal of these approaches is to provide a way to learn a so-
called disentangled representation of the latent space, i.e., a
representation where the most relevant independent factors of
variations in the data are decoupled amd clearly separated. To
conclude this part it is worth mentioning that it is possible to
design autoencoders where the encoder and the decoder are not
limited to simple feed-forward neural networks but can also
assume the form of CNNs and RNNs. We discuss these
methods later within the section.

3.2.1.2 Convolutional Neural Networks
CNNs are some of the most successful and widely applied DL
models. They reached the peak of their popularity thanks to their
state-of-the-art performances in CV tasks, such as IR, pose
estimation and object tracking. They have also been
successfully applied in the contexts of NLP, Reinforcement
Learning and time-series modeling. Their design draws
inspiration from the organization of animal visual cortex
(Hubel and Wiesel, 1968). Indeed, it turns out that single
cortical neurons fire in response of stimuli received from
relatively narrow regions of the visual field called receptive
fields. Furthermore, neurons that are close to each other are
often associated with similar and partially overlapping receptive
fields, allowing them to map the whole visual field. These
properties are useful to recognize specific features in natural
images independently of their location.

CNNs implement these concepts by modifying the way
computations are usually performed in standard feed-forward
neural networks. In particular, CNNs convolve the input image
with filters composed of learnable parameters. These parameters
are trained to automatically extract features from the image in
order to perform the task specified by a final loss function.

The standard CNNmodel shown in Figure 6 is composed of a
set of elementary consecutive blocks. First, the input layer defines

FIGURE 5 | Typical Autoencoder architecture.
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the data structure. A convolutional layer follows the input layer
and performs the convolution operation over the input data. The
size of the filters depend on the input structure. Two-dimensional
filters are used for grid-like inputs, whereas, one-dimensional
filters are used for time-series. Each filter has a user-specified size,
which defines its receptive field. Batch normalization (Ioffe and
Szegedy, 2015) is often applied right after the convolutional
module in order to reduce the so-called covariate shift
phenomenon and introduce a regularization effect. Then, a
point-wize nonlinear activation function (e.g., ReLU) is applied.

The convolutional layer is then followed by a so-called pooling
layer, whose role is to reduce the number of parameters by sub-
sampling the filtered signals. One common strategy to perform
this operation is called max-pooling and consists of extracting
only the maximum value of a fixed-sized batch of consecutive
inputs.

Several instances of convolutional and pooling layers are
typically alternated through the network. The final filtered
signals are then flattened and fed into a sequence of fully-
connected layers that map them into the output layer. The
dropout (Srivastava et al., 2014) technique can be used both
between the fully connected and the convolutional layers in order
to contrast overfitting.

3.2.1.3 Recurrent Neural Networks
RNNs form another class of DL methods that has achieved
impressive results in a wide variety of ML fields. In particular,
RNNs are particularly effective in processing data characterized by
a sequential structure. These types of data are widespread in fields
such as NLP, Speech Recognition, Machine Translation, Sentiment
Analysis to name a few, where recurrent architectures have been
employed successfully. Given their particular suitability in
analyzing sequential data, it is not surprising that RNN models
have been widely applied in the context of PHM applications. We
review some of these applications later in this section.

The architecture of the simplest possible recurrent model is
shown in Figure 7.

Given a sequential input vector x � [x1, . . . , xt , . . . , xT], where
xt ∈ Rd at each time-step the RNN shown above performs the
following operations:

ht � ψ1(W1xt +W2ht−1 + b1)
ot � ψ2(W3ht + b2) (8)

where,W1,W2,W3, b1, b2 are the parameters of themodel, ψ1 and
ψ2 are activation functions, ht is the so-called hidden state at time
t and ot is the output at time t. Predictions are performed at each
time step by mapping the current hidden state to the output. ot ,
through a nonlinear activation. The hidden state is constantly
updated at each iteration by combining the previous hidden state
and the current input. This allows us to store past information
and propagate it over time through the network. The basic

FIGURE 6 | Typical 1D-CNN architecture. Adapted from Jiao et al. (2020).

FIGURE 7 | Most elementary RNN architecture.
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architecture described above, however, suffers from the so-called
vanishing gradient problem. This phenomenon is caused by the
structure of simple RNNs which typically perform the
composition of the same function sequentially at each time
step. As shown by Bengio et al. (1994), this results in
increasingly small magnitudes associated with the gradients of
long term interactions. To cope with this problem, a number of
refinements have been introduced to the elementary architecture
discussed before. The most popular ones are arguably the Long-
Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber,
1997), Bidirectional RNNs (Bi-RNN) (Schuster and Paliwal,
1997) and Gated-Recurrent Units (GRUs) (Cho et al., 2014).
These techniques have been largely applied, over the last few
years, to PHM, both for diagnosis and prognosis tasks. Current
state-of-the-art methods in NLP complement the
aforementioned recurrent architectures with the so-called
attention mechanism (Devlin et al., 2018), which has resulted
in significant performance improvements. Despite its success in
NLP and related fields, attention-based networks do not find
many applications in PHM, indicating a probably fruitful
research direction.

3.2.2 Diagnosis
3.2.2.1 Autoencoder
AEs provide a first example of how DL methods can overcome
some of the limitations of classical approaches. Indeed, typically
AEs are used to automatically extract complex and meaningful
features from raw data or to obtain more informative
representations of a set of already extracted features. AEs have
been applied to data gathered from several machines and
industrial components, such as rolling element bearings (Jia
et al., 2016; Liu et al., 2016; Lu et al., 2016; Jia et al., 2018),
gearboxes (Jia et al., 2018), electrical generators (Michau et al.,
2017; Michau et al., 2019), wind turbines (Yang et al., 2016),
chemical industrial plants (Lv et al., 2017), induction motors (Sun
et al., 2016b), air compressors (Thirukovalluru et al., 2016),
hydraulic pumps (Zhu et al., 2015), transformers (Wang et al.,
2016), spacecrafts (Li and Wang, 2015) and gas turbine
combustors (Yan and Yu, 2019).

As mentioned before, AEs are often used in combination with
other classifiers, such as simple softmax classifiers (Liu et al.,
2016), feed-forward neural networks (Sun et al., 2016b), RFs
(Thirukovalluru et al., 2016) and SVMs (Sun et al., 2016b; Lv
et al., 2017). In Sun et al. (2016b), feed-forward NNs trained on
top of the features learned by the AE model provide excellent
classification results in terms of fault diagnosis accuracy. An SVM
trained on the same features performs only slightly worse. Liu
et al. (2016) propose a combination of stacked SAEs and a
softmax classifier for element bearings fault diagnosis. Short-
time-Fourier transformed raw inputs undergo several nonlinear
transformations implemented by the sparse AEs. The resulting
features are fed into a softmax classifier which outputs the
classification results.

Lu et al. (2016) compare the features extracted by stacked
DAEs with some manually extracted features. The comparison is
based on the fault classification accuracies provided by an SVM
and a RF model trained on top of the two classes of features. The

results show that the first set of features possess a larger
discriminative power for the task under consideration.

Another interesting application of AEs is shown in the work of
Jia et al. (2016). Here, the nonlinear mapping implemented by
deep AEs is exploited to pre-train an ANN which is in turn used
to perform fault diagnosis both on rolling element bearings and
planetary gearboxes. More specifically, the weights between two
hidden layers are initialized by training an AE to minimize the
reconstruction error of the input values specified by the first
hidden layer. With this pre-training strategy, the feature
extraction ability of AEs is used to encode relevant properties
of the data directly into the ANN weight configuration.

AE architectures can also be used to estimate a health indicator
which measures the “distance” of a test data point to the training
healthy class (Michau et al., 2017; Michau et al., 2019; Wen and
Gao, 2018). For example, in the work of Michau et al. (2019) a
system comprising of an AE and a one class-classifier is trained
with only healthy data to assess the health state of a complex
electricity production plant. In this work, both AE and one-class
classifier have the structure of a particular type of neural network
called Extreme Learning Machine (ELM). ELM-based AEs have
been also successfully employed in Michau et al. (2017) and Yang
et al. (2016), among others.

3.2.2.2 Convolutional Neural Networks
CNNs are particularly advantageous in the context of fault
diagnosis since they implement the feature extraction and
classification tasks in an end-to-end fashion. Moreover, they
can be applied to several data structures, including both time-
series and images (Jiao et al., 2020). A common strategy to
employ 2D-CNNs6 in PHM applications is to feed these
models with image-like data. This poses the problem of
how to convert sensor measurements, which are typically in
the form of multivariate time-series, into a grid-like structure.
Examples of this procedure can be found, for example, in Ding
and He (2017), Sun et al. (2017), Guo et al. (2018b), Wen et al.
(2018), Cao et al. (2019), Islam and Kim (2019a), Li et al.
(2019a), Wang et al. (2019). Most of these works employ
popular signal processing techniques to perform the two-
dimensional mapping. In particular, Li et al. (2019a) use the
S-transform to map bearing vibrational data into a time-
frequency representation. Similarly, in Ding and He (2017),
Sun et al. (2017), Guo et al. (2018b), Cao et al. (2019), Islam
and Kim (2019a) transformations based on the wavelet
transform are used to process data gathered from bearings,
rotating machinery and gears. An additional strategy is
proposed in Wen et al. (2018), where the following
mapping is applied to convert time-series data into two-
dimensional images:

P(j, k) � round{L((j − 1) ×M + k) −Min(L)
Max(L) −Min(L) × 255}, (9)

6We use the notation “(1D)2D-CNN” to indicate a CNN architecture with (one)
two-dimensional filters.
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where the input signal is a vector of size M2, L(j) is signal
magnitude at the jth time step and P(j, k) is the intensity of the
(j, k) pixels in the output image. This technique has been applied
to data extracted from rolling element bearings and hydraulic and
centrifugal pumps resulting in nearly optimal fault classification
accuracy in all three cases.

Another class of methods applies CNNs directly to image data,
thus leveraging the great success of these architectures in CV
tasks. For example, Janssens et al. (2018); Jia et al. (2019) use
CNNs to perform fault diagnosis of rotating machinery based on
infrared thermal videos and images respectively. Yuan et al.
(2018) propose a method that fuses features extracted from
different data structures, including infrared images, for CNN-
based fault classification of a rotor system.

Alternatively to 2D-CNNs, 1D-CNNs can be used to directly
process time-series data. The literature contains a large number of
examples that propose to apply 1D-CNN to bearing (Eren, 2017;
Chen et al., 2018; Eren et al., 2019; Qin et al., 2019; Xueyi et al.,
2019) and gears (Jing et al., 2017; Yao et al., 2018; Han et al., 2019b)
fault diagnosis. Chen et al. (2018), for instance, propose a novel DL
model, based on the popular Inception architecture (Szegedy et al.,
2015) and a particular type of dilated convolution (Holschneider
et al., 1990). The model is trained with data generated from
artificial bearing damages and achieves very good performances
on real data. The proposed method is pre-processing-free since it
takes as input raw temporal signals directly.

The ability of CNN architectures to extract features in an end-to-
endmanner is tested in Jing et al. (2017). Here, the authors compare
the quality of these features with a number of benchmarks
consisting of conventional feature engineering approaches. The
results show the superiority of the feature-learning pipeline
implemented by CNNs over manual feature extraction.

Finally, CNN have also been applied to generate health
indicators and to estimate the degradation trend of rolling
bearings (Guo et al., 2018a; Yoo and Baek, 2018). In Yoo and
Baek (2018), for instance, the authors apply a continuous wavelet
transform to the data and feed the resulting two-dimensional
images into a 2D-CNN which, in turn, outputs the health
indicator.

3.2.2.3 Recurrent Neural Networks
RNNs have been mainly used for fault prognosis and only a
relatively small number of works focus on their application to
fault diagnosis. Some examples are (Li et al., 2018a; Li et al., 2018b
Qiu et al., 2019) for bearings (Zhao H. et al., 2018; Zhao Q. et al.,
2018 Yuan and Tian, 2019), for chemical processes control [see
Tenessee Eastman dataset (Chen, 2019)] and (Lei et al., 2019) for
wind turbines.

These methods can be divided into two categories: “RNN +
classifier” and end-to-end approaches. The works of Li et al.
(2018a, 2018b) and Yuan and Tian (2019) belong to the first
category. The first employs an LSTM-based architecture to
extract informative features from the input data. The so-
obtained features are then fed into a softmax classifier that
performs fault classification. Yuan and Tian (2019) use a GRU
network to obtain dynamic features from several sub-sequences
extracted from the raw signals. Multi-class classification is

performed by a final softmax layer fed with the features
obtained by the GRU module.

Zhao H. et al., 2018; Zhao Q. et al., 2018 Qiu et al. (2019); Lei
et al. (2019) use RNN architecture in an end-to-end manner. For
instance, Qiu et al. (2019) use a variant of Bi-LSTMs specifically
designed to process long-term dependencies, to directly classify
fault types. The network is trained with a set of features extracted
by means of wavelet packet transform and employs softsign
activation functions to contrast the vanishing gradient problem.
Another end-to-end approach is proposed in Lei et al. (2019) where
the authors use an LSTM-based model for fault diagnosis of a wind
turbine. In this work, features are directly extracted by the network
and there is no need for manual feature extraction. The proposed
method is shown to outperform existing fault diagnosis techniques,
such as ANNs, SVMs and CNNs.

3.2.2.4 Hybrid
With hybrid approaches we mean all those methods that combine
the benefits provided by AEs, CNNs and RNNsmodels into single
powerful systems.

For example, Li et al. (2019d); Park et al. (2019) propose
techniques leveraging the efficacy of AEs in extracting valuable
features and the advantages provided by RNN-architectures in
analyzing time-dependent data. In Li et al. (2019d), first stacked
AEs generate a latent representation of the raw input rotary
machinery data. An LSTM network is then used to predict the
value corresponding to the 10-th time step in the feature sequence
given the previous 9. The reconstruction error between prediction
and ground truth value is used to determine if the datum is
anomalous or not.

An alternative approach consists in using recurrent models in
the form of AEs to better deal with time-series data. In Liu et al.
(2018), for instance, a GRU-based DAE is proposed for rolling
bearing fault diagnosis. Specifically, the proposed GRU model is
used to predict the next period given the previous one. As many
such models as the number of faults are trained and classification
is performed by selecting the model providing the lowest
reconstruction error.

CNN-based architectures can also be combined with other
types of networks for the purpose of fault diagnosis. In Liu et al.
(2019b), for instance, a one-dimensional convolutional-DAE is
proposed to extract features from bearing and gearbox data. This
model is given corrupted time-series as input and its goal is to
clean and reconstruct them at the output level. The so-learned
features are then fed into an additional CNNmodel that performs
the classification task.

In Zhao et al. (2017), Pan et al. (2018), Xueyi et al. (2019), the
combination of CNNs and RNNs is investigated. For example, in
Xueyi et al. (2019) a 1D-CNN and a GRU network are used to
extract discriminative features from acoustic and vibration
signals respectively. The so-obtained features are then
concatenated and fed into a softmax classifier which performs
gear pitting fault diagnosis. This hybrid method is shown to
outperform CNN and GRU applied individually to the same data.

Pan et al. (2018), instead, proposes a method fusing a 1D-CNN
and an LSTM network into a single structure. The LSTM takes as
input the output of the CNN and performs fault diagnosis over
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bearing data. The proposed algorithm provides nearly optimal
performances on the test set.

3.2.3 Prognosis
3.2.3.1 Autoencoder
AEs are typically used in combination with other regression
techniques for the purpose of fault prognosis. The literature
contains examples of AE-based techniques applied to RUL
estimation of bearings (Ren et al., 2018; Xia et al., 2019),
machining centers (Yan et al., 2018), aircraft engines (Ma
et al., 2018) and lithium-ion batteries (Ren et al., 2018b). The
role of AEs in all the above references is to perform automatic
feature extraction to facilitate the work of regression or
classification methods used for health state assessment or RUL
estimation. Xia et al. (2019), for example, utilize a DAE and a
softmax classifier trained on top of the AE embedding to classify
the inputs into different degradation stages. Then, ANN-based
regressors are used to model each stage separately. The final RUL
is obtained by applying a smoothing operation to all the
previously computed regression models.

In Ma et al. (2018), AEs are used in a similar manner. The
authors propose a system composed of a DAE, a SAE and a
logistic regressor to predict the RUL on an aircraft engine. The
first AE module generates low-level features which are in turn fed
into the second AE model which outputs a new set of high-level
features. Finally, the logistic regressor predicts the RUL based on
the features extracted by the second AE.

3.2.3.2 Convolutional Neural Networks
CNN architectures have been extensively explored also for fault
prognosis. These methods have been mainly applied to open-
source evaluation platforms such as the popular NASA’s
C-MAPSS dataset (Saxena and Goebel, 2008) for aero-engine
unit prognostics (Babu et al., 2016; Li et al., 2018a; Li et al., 2018b
Wen et al., 2019a) and the PRONOSTIA dataset (Ali et al., 2015)
for bearings health assessment (Ren et al., 2018a; Zhu et al., 2018;
Li et al., 2019c; Wang et al., 2019b; Yang et al., 2019).

In Li et al., 2018a; Li et al., 2018b a 1D-CNN model is used to
predict the RUL on the C-MAPSS dataset. Data are first chunked
in fixed-length windows and then directly fed into the network
without any pre-processing step. Despite the relative simplicity
of the employed architecture, the proposed technique is able to
provide pretty good prediction results, especially in proximity of
the final failure.

In Wen et al. (2019a) the authors build upon the work of Li et
al., 2018a; Li et al., 2018b and propose a novel CNN model for
RUL estimation which draws inspiration from the popular
ResNet architecture (He et al., 2016). The proposed technique
is shown to outperform traditional methods such as SVMs,
ANNs, LSTM and the model proposed by Li et al., 2018a; Li
et al., 2018b in terms on RULmean and standard deviation on the
C-MAPSS dataset.

In the context of bearing fault prognosis, Ren et al. (2018a)
propose a new approach based on manual feature extraction and
CNNs for RUL estimation. First, a new method for feature
extraction is proposed to generate a feature map which is
highly correlated with the decay of bearing vibration over

time. This feature map is then fed into a deep 2D-CNN which
outputs the RUL estimate. Linear regression is then used as a
smoothing method to reduce the discontinuity problem in the
final prediction result. Experiments show that the proposed
method is able to provide improved prediction accuracy in
bearing RUL estimation.

3.2.3.3 Recurrent Neural Networks
The application of RNN architectures to fault prognosis have
been explored on various industrial components such that
lithium-ion-batteries (Zhang et al., 2018), gears (Xiang et al.,
2020), fuel cells (Liu et al., 2019a), and on the C-MAPSS dataset
(Yuan et al., 2016; Zheng et al., 2017; Wu et al., 2018a; Wu et al.,
2018b; Chen et al., 2019; Elsheikh et al., 2019; Wu et al., 2020).
One of the most popular RNN-based approaches proposed in the
literature is the work of Wu et al. (2018b). The authors first
extract dynamic features containing inter-frame information and
then use these features to train a vanilla-LSTM model to predict
the RUL. An SVM model is employed to detect the degradation
starting point. The proposed technique is shown to consistently
outperform a standard RNN and a GRU model trained on the
same dataset. The remarkable performances of LSTM networks
on the RUL estimation task are further confirmed by the work of
Zheng et al. (2017). The authors combine LSTM layers with a
feed-forward neural network, showing that the proposed
approach provides better performances than ANNs, SVM and
CNNs. In Xiang et al. (2020), the attention mechanism is used to
enhance the performances of an LSTM network on the prediction
of the RUL on gears. The aforementioned model, named LSTMP-
A, is trained with time-domain and frequency-domain features
and its comparison with other recurrent models shows that it
provides the best prediction accuracy.

3.2.3.4 Hybrid
Hybrid approaches have been also applied in the context of fault
prognosis. For instance, the literature contains examples of AE +
RNN (Lal Senanayaka et al., 2018; Deng et al., 2019) and CNN +
RNN (Zhao et al., 2017; Mao et al., 2018; Li et al., 2019b)
combinations. In Zhao et al. (2017) sensory data from milling
machine cutters are processed by a novel technique combining a
CNN component and an LSTM network. The CNN is used to
extract local features, whereas a bi-LSTM captures long-term
dependencies and take into account both past and future
contexts. A sequence of fully connected layers and a linear
regression layer takes as input the output of the LSTM and
predicts the tool-wear level.

Similarly, Mao et al. (2018) combine LSTM and CNN models
for feature extraction and RUL prediction. In particular, time-
series from the C-MAPPS dataset are first sliced by applying a
time-window. The resulting data are then independently fed into
an LSTM network and a CNN. The features extracted by these
two networks are then combined and further processed by an
additional LSTM network and a fully connected layer which
predicts the RUL.

Deng et al. (2019) propose amethod based on the combination
of stacked SAEs and a GRU model. The AE is used for automatic
feature extraction and the GRU is used to model the mapping

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 57861315

Biggio and Kastanis PHM: Progress and Road Ahead

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


from the features extracted by the AE to the RUL values. The
proposed method is applied to the C-MAPPS dataset, showing
satisfactory results.

3.2.4 Discussion
3.2.4.1 Dependency on Feature Extraction
One of the key advantages of DL algorithms over traditional ML
approaches stands in their lower degree of dependence on the
feature extraction step. Their input can consist of either raw data
or a set of manually extracted features, depending on the amount
of prior information available to the user about the task under
consideration.

3.2.4.2 Model Selection
As already discussed for traditional ML algorithms, a universal
approach valid for all possible application scenarios does not
exist. In general, the nature of the problem dictates which method
to utilize. For instance, when the PHM problem at hand involves
image data, the usage of 2D CNN might be preferred. On the
other hand, when sensor measurements consisting of time-series
data have to be analyzed, 1D CNN and RNN architectures are
more sensible choices. Ultimately, the final model can be selected
by evaluating each candidate on the same metrics mentioned at
the end of paragraph 3.1.3.2 and comparing the corresponding
scores.

3.2.4.3 Overfitting
As already mentioned before, a larger number of hidden layers is
often associated with a higher risk of overfitting. Beyond the
techniques already discussed for ANNs (e.g., cross-validation,
early-stopping and regularization), deep models can be equipped
with more advanced tools to contrast over-training. A popular
example is the Dropout technique (Srivastava et al., 2014) which
randomly drops neurons from the neural network at training
time. Intuitively, this prevents the network to specialize on a
particular set of data. Dropout is used, for instance, in Han et al.
(2019b) andWang et al. (2019) with the corresponding parameter
fixed at 0.5. Finally, data augmentation can be also used to
generate new images by applying simple transformations (e.g.,
rotation, mirroring, cropping, padding) to the training data. For
instance, this technique is applied in Wang et al. (2019) to time-
frequency images obtained from bearing accelerometers, in order
to increase the size and the level of diversity of the training set.

4 CRITIQUE AND FUTURE DIRECTIONS

In the previous section, we have discussed some of the most
popular DL techniques that have been applied to PHM problems
over the last few years. We have compared traditional ML
approaches with DL techniques, trying to highlight the
strengths of both methods and emphasizing the change of
paradigm introduced by the so-called DL revolution.

The goal of this section is to shed some light over a number of
open challenges that need to be addressed to bridge the gap
between research and industrial applications. We start by briefly
discussing some of these open questions and some limitations of

DL models that hinder their solution. Then, we discuss some first
attempts to cope with these challenges along with some proposals
of future investigations. Our goal is to provide the reader with a
set of possible fruitful research directions that we consider as
valuable candidates to further increase the impact of DL to PHM.

4.1 Open Challenges
4.1.1 Reliability and Interpretability
One of the most common criticisms to DL models arises from
their black-box nature, i.e., the sometimes opaque mechanism by
which they make their decisions. This characteristic of deep
models derives from one of the properties that allows them to
successfully tackle several different tasks: the complex sequence of
nonlinear operations they implement across their deep
architectures. A complete mathematical characterization of the
behavior of DL models in light of their inherent complexity is
very hard to obtain. This negative property of deep networks
represents a significant limitation to their deployment in areas
such as healthcare, finance, and PM. In these delicate contexts,
humans need to have control over their tools and it is not always
possible to sacrifice trust and transparency for better
performances. It is therefore urgent to enhance the level of
interpretability of these models in order to make them fully
deployable while minimizing the risks.

However, it is not straightforward to provide a unique
definition of the concept of interpretability (Lipton, 2018). DL
models can be, for instance, enhanced with complementary
functionalities responsible for providing a post-hoc
explanation of their actions. Alternatively, one can build some
notion of interpretability directly into the models in order to
constrain their learning process to align with some inductive
biases that we might deem trustworthy. The strategy of providing
post-hoc explanations of the model behavior have been widely
investigated in CV (Ribeiro et al., 2016; Zhou et al., 2016;
Lundberg and Lee, 2017). Few attempts, however, have been
made to extend these approaches to time-series data [see for
example (Fawaz et al., 2019), (Guillemé et al., 2019)].

Imposing appropriate inductive biases on DL models have
been recently identified as a key step to perform unsupervized
learning tasks (Locatello et al., 2019a; Locatello et al., 2019b).
Some possible inductive biases can derive from a-priori available
physical knowledge of the problem under consideration. This
complementary information can be incorporated directly into the
network architecture or can be used to drive a model towardmore
meaningful output decisions. We discuss some of these
approaches later in this section.

To conclude this discussion, it is worth mentioning that
another important requirement for interpretable and
transparent models stands in their ability to provide
uncertainty estimates about their predictions. Uncertainty can
derive both from the intrinsic stochasticity of the task (aleatoric
uncertainty) and from the approximations introduced by our
imperfect model (parametric uncertainty). Bayesian approaches
can in principle deal with uncertainty estimation and their
combination with DL methods is a hot research area
(Damianou and Lawrence, 2013; Blundell et al., 2015; Garnelo
et al., 2018).
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4.1.2 Highly Specialized Models
An increasing amount of experimental evidence (Zhang et al.,
2017; Beery et al., 2018; Arjovsky et al., 2019) has recently
attracted the attention of the scientific community on an
additional relevant limitation of deep models: they often
tend to learn “shortcuts” instead of the underlying physical
mechanisms describing the data. For instance, let’s consider
the task of classifying cows and camels based on a training set
containing labeled images where cows are mostly found in
green pastures and camels in sandy deserts (Beery et al., 2018).
Testing our model on images of cows taken in a different
environment, such as beaches, leads to a wrong classification
decision. Similar generalization deficiencies can be also
observed in the context of PHM applications. Typically,
labeled data are available only for a single machine;
training a model on these data can lead to good
performances on a test set extracted from the same
machine but to very disappointing results on a similar
machine operating at slightly different operating
conditions. The variability in the machines’ operational
modes can arise from differences in specific choices in their
design, or to external factors (e.g., environmental variables
such as humidity, temperature, seasonality). Ideally, an
efficient model should be able to deal with these factors of
variability and provide predictions that are robust to changing
operating conditions. On the other hand, the majority of the
DL approaches proposed in the literature do not address this
point and focus on relatively narrow systems without taking
generalization into account. If we really aim at designing
“Intelligent” systems that can take decisions following
similar cognitive patterns as those characterizing human
decision making, we have to provide new solutions to the
aforementioned shortcomings.

4.1.3 Data Scarcity
An immediate consequence of using DL models is that, by
increasing the depth of the network, the number of parameters
associated with it grows accordingly. As a result, finding an
optimal weight configuration requires training these networks
with very large datasets. In particular, supervised learning
approaches are based on the availability of large numbers of
labeled data instances for each class under consideration. This
aspect poses a significant practical limitation on the application
of DL models to the industry domain. In the case of fault
diagnosis, for example, it is difficult to find an adequately large
number of data for each possible fault. This is mainly because,
luckily, faulty data tend to be relatively rare compared to
healthy ones. Furthermore, it might also be the case that
some faults are not even a-priori known and it is, therefore,
impossible to precisely characterize them. This lack of
representativeness (Michau et al., 2018) of the training data
delineates a very common scenario in practical applications.
Two possible alternative approaches can be adopted to cope
with it: the first is to design algorithms that are less data-
intensive, whereas the second is to generate artificial data that
strongly resemble real ones. We discuss some of these methods
in the next section.

4.2 Possible Solutions
4.2.1 Fusing Deep Learning With Physics
One possible way to cope with the aforementioned challenges is
to incorporate information about the physics of the system
under consideration into the learning process. DL algorithms,
in and of themselves, are not able to capture the primitive
causal mechanisms at the basis of the input observations (Pearl,
2019). On the other hand, physical models of complex systems
are built from fundamental laws of physics but often rely on
relatively strong approximations which result in poor predictive
power. Taking prior physics knowledge into account can be helpful
in inducing a higher level of interpretability into deepmodels and in
improving their generalization performances. Hybrid models
integrating the flexibility of modern data-driven techniques and
the transparency of physics models have the potential of
overcoming the limitations of the two stand-alone approaches by
exploiting their individual strengths.

In the context of PHM, a relatively small number of works have
been proposed in this direction. For example, in Chao et al. (2019), a
high-fidelity performance model of an aircraft engine is first
calibrated on real data by using an Unscented Kalman Filter
(Julier and Uhlmann, 1997) and then used to generate
unobserved physical quantities that are in turn employed to
enhance the input space of a DL model. The results show that the
new input space including both observed and virtual measurements
contributes in significantly improving the performances of themodel.

An alternative way to fuse physics knowledge and data-driven
methods is described in Dourado and Viana (2020) and
Nascimento and Viana (2019). In these works, well-known
physics-based cumulative damage models are complemented
by data-driven techniques whose goal is to explain some
additional phenomena that the original model is not able to
accurately describe. The final model has a sound physical
interpretation and provides refinements over the original
physics model thanks to its data-driven component.

We conclude this part by noticing that physics knowledge
could also be incorporated into deep models directly at the
architecture level. Recent research in Graph Neural Networks
(Sanchez-Gonzalez et al., 2018; Cranmer et al., (2020)) shows that
these kind of models are particularly suitable to encode and
exploit prior physics knowledge, for instance, given in the form of
Partial Differential Equations over space and time. An example of
an industrial application of these models is provided by Park and
Park (2019) who use a specific type of GNN to estimate the power
generated by a wind farm by modeling the physics interactions
between the individual turbines.

4.2.2 Domain Adaptation
The high variability of machines’ operating conditions and the
problem of data scarcity motivate the introduction of
techniques capable of transferring the knowledge gained
from a well-known machine to another for which data are
not as abundant. Transfer Learning (TL) is a class of ML
methods whose goal is to address this problem. Traditional
TL approaches (Yosinski et al., 2014) are based on the following
rationale: first, a deep network is trained on a large dataset to
perform a specific task. Then, the same network is used to
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perform a similar task simply by fine-tuning its final layers on a
few instances from the new dataset. Recent works in the context
of fault diagnosis and fault prognosis have successfully applied
this idea on datasets from induction motors (Shao et al., 2019a;
Shao et al., 2019b), gearboxes (Cao et al., 2018; He et al., 2019;
Shao et al., 2019a; Shao et al., 2019b), bearings (Shao et al.,
2019a; Shao et al., 2019b Wen et al., 2019b) and centrifugal
pumps (Wen et al., 2019b).

Besides traditional TF methods, unsupervized Domain
Adaptation (DA) techniques have also been recently applied to
PHM tasks. DA is a sub-field of TF, whose goal is to maximize the
performances on the target domain for which only few unlabeled
data are available by exploiting a labeled data from the so-called
source domain. The two domains are commonly assumed to share
similar features even though a model trained on the source
domain will usually provide poor performances on the target
domain. This is typically due to a distributional shift between the
marginal distributions describing the two sets of data. DA
techniques have witnessed an increasing attention since the
introduction of the so-called adversarial DA methods (Ganin
and Lempitsky, 2014; Ganin et al., 2016; Tzeng et al., 2017).
These approaches draw inspiration from the training procedure
used by the popular Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) to efficiently align source and target
domain features in a common latent-space. Several new
techniques (Han et al., 2019a; Wang et al., 2019a; Wang and
Liu, 2020) based on this class of DA approaches have been recently
proposed in the PHM literature. Other references on DA and TF
approaches in the context of fault diagnosis can be found in the
recent review works of Li et al. (2020) and Zheng H. et al., 2019;
Zheng Z. et al., 2019.

4.2.3 Artificial Data Generation
Generative models such as GANs and VAEs have achieved
impressive results in generating photo-realistic artificial data in
the context of CV. However, the task of generating realistic
problem-specific time-series data is still relatively unexplored
compared to artificial image generation. Unsurprisingly,
existing approaches in this context make large use of GANs.
In Donahue et al. (2018), for instance, GANs are used for music
and speech synthesis. In Nik Aznan et al., (2019), Haradal et al.
(2018), and Hyland et al., (2017) the authors propose new GAN-
based methods that generate medical data such as
electroencephalographic (EEG) brain signals, and time-
dependent health parameters of patients hospitalized in the
Intensive Care Unit (ICU). The recent method proposed by
Yoon et al. (2019) provides new state-of-the-art performance
for realistic time-series generation.

The benefits of such approaches in the context of PHM
could be significant. One of their most direct application is to

perform data augmentation in order to tackle to problem of
lack of representativeness and therefore improving the
performance of data-intensive DL models. To the authors’
knowledge, only a small number of works have started
exploring this idea and some first interesting results have
already been produced (Mao et al., 2019; Shao et al., 2019a;
Shao et al., 2019b Wang et al., 2019).

5 DISCUSSION

PM, as a key player in the Industry 4.0 paradigm, strongly relies
on some of the most recent advances in hardware technology,
communication systems and data science. Among them, DL
techniques have gained popularity over the last few years in
light of their excellent performances in processing complex data
in an end-to-end fashion. In this review, we have described
several applications of these methods to PHM. In particular,
we have discussed the advantages they introduce over traditional
ML techniques, stressing on their improved representational
power and their ability to automatically extract informative
features from data. Despite its great success, DL presents some
shortcomings that limit its large-scale deployment in industrial
applications. Its low level of interpretability, its generalization
deficiencies and its data-intensive nature are some of the main
weaknesses DL needs to overcome to close the gap between
academia and industrial deployment. In this review, we
identified three research areas that we believe could address or
alleviate the aforementioned open challenges, namely: physics-
enhanced techniques, domain adaptation and artificial data
generation. The first aims to improve interpretability by
grounding data-driven methods on well-understood physics
models of the system under consideration. Furthermore,
incorporating prior physics knowledge into DL algorithms can
be seen as imposing meaningful inductive biases into the learning
process, resulting in improved generalization and reasoning.
Domain adaptation provides a set of tools to transfer the
knowledge acquired on a well-known industrial component to
other similar assets for which data are less abundant. Finally,
artificial data generation techniques can be used to cope with the
lack of representativeness problem and the data-intensive nature
of DL algorithms. Some of these lines of research have already
shown interesting results, while others, although very promising,
are only in their infancy.
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