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Abstract
Background: Identification of gene and protein names in biomedical text is a challenging task as
the corresponding nomenclature has evolved over time. This has led to multiple synonyms for
individual genes and proteins, as well as names that may be ambiguous with other gene names or
with general English words. The Gene List Task of the BioCreAtIvE challenge evaluation enables
comparison of systems addressing the problem of protein and gene name identification on common
benchmark data.

Methods: The ProMiner system uses a pre-processed synonym dictionary to identify potential
name occurrences in the biomedical text and associate protein and gene database identifiers with
the detected matches. It follows a rule-based approach and its search algorithm is geared towards
recognition of multi-word names [1]. To account for the large number of ambiguous synonyms in
the considered organisms, the system has been extended to use specific variants of the detection
procedure for highly ambiguous and case-sensitive synonyms. Based on all detected synonyms for
one abstract, the most plausible database identifiers are associated with the text. Organism
specificity is addressed by a simple procedure based on additionally detected organism names in an
abstract.

Results: The extended ProMiner system has been applied to the test cases of the BioCreAtIvE
competition with highly encouraging results. In blind predictions, the system achieved an F-measure
of approximately 0.8 for the organisms mouse and fly and about 0.9 for the organism yeast.

Background
The correct identification of biological entities in scientific
text is a fundamental requirement for information
retrieval and information extraction in the biomedical
domain. Using the extracted identifiers, facts from the lit-
erature can be efficiently organized, e.g. in the form of a
graph [2], and linked to experimental data, such as expres-
sion measurements.

The task of biological name identification is difficult as
the employed nomenclature is highly variable and ambig-
uous. During the long history of biomedical research, the
use of phenotypical descriptions as protein names, the
definition of gene aliases as convenient abbreviations of
corresponding protein names and the parallel naming of
genes and proteins have all influenced the nomenclature.
Consequently, multiple synonyms often exist for the same
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entity. Identical names are used to identify different bio-
logical entities depending on their context and, in some
cases, a significant overlap between gene names and com-
mon English words exists. Every organism has its own
research history which is reflected in the nomenclature.
The yeast organism, for example, has a relatively stringent
nomenclature. Mouse proteins often have several similar,
slightly varying multi-word names. The fly organism
poses the most difficult problem due to the significant
overlap of fly gene names with common English words.
Furthermore, a number of gene names differ only in their
case.

Several systems address the problem of name detection
without identifying the corresponding protein and gene
identifiers. This is accomplished using features mainly
derived from lexical considerations and natural language
processing techniques such as part-of-speech tagging.
Methods vary in the details of feature computation and
their combination. Rule-based approaches [3,4] as well as
machine-learning based techniques [5,6] have been pro-
posed. Task 1A of the BioCreAtIvE challenge evaluation
addresses this problem [7,8].

The arguably more difficult task of also identifying the
corresponding protein and gene name identifiers was the
focus of Task 1B of BioCreAtIvE [9]. It has been discussed
in the literature to a lesser extent. The first suggestion in
that domain was to treat protein name detection as an
alignment problem and use the BLAST algorithm to effi-
ciently solve it [10]. Jenssen et al. [2] composed a diction-
ary of gene names and used simple string matching for
name detection to annotate microarray data. We pro-
posed the ProMiner system [1] which consists of two
parts. First, a dictionary is generated from several protein
and gene databases. As the name and synonym fields in
these databases often contain physical descriptions
(cDNA clone, RNA, 5'end), family names (membrane pro-
tein) or other annotation remarks, the dictionary is
cleaned in an automated process. Based on this diction-
ary, a string match procedure is used for name detection
in the text. The system was initially designed for human
protein and gene names, which often consist of multiple
words. In that setting, name variants, e.g. permutations,
insertions or deletions of words, were observed. For exam-
ple, the name "Interleukin type 1 beta" is a spelling vari-
ant of "Interleukin-1 beta". However, "Interleukin 1" is a
different protein entity than "Interleukin-1 receptor". The
ProMiner match procedure assigns weights to different
classes of words to reflect their importance for name
detection. These are termed token classes. The complete
system is described in more detail in the Implementation
section. Besides customization for the BioCreAtIvE evalu-
ation, extensions for synonym classification, match dis-
ambiguation, and organism specificity have been added.

The original ProMiner system was tested on a small
benchmark set of Human gene and protein names, show-
ing promising performance. Due to the lack of large, inde-
pendent benchmark sets, comparisons to other systems
were difficult. The Gene List Task (Task 1B) of the BioCre-
AtIvE challenge evaluation provides such evaluation data
sets and, for the first time, enables researchers to evaluate
and compare their protein and gene name recognition
systems in blind predictions. The task focused on three
organisms (fly, mouse, and yeast) for each of which a
training and a test data set was provided. After the training
phase, each participant had to submit blind predictions
for an independent set of 250 biomedical abstracts. After
assessment of the results, the two measures of precision
and recall, and a balanced combination of these, the F-
measure, have been reported by the task organizers to com-
pare the performance of the submissions. Furthermore,
the gold standard for the data set was published for error
analysis. A detailed description of the task and all
involved data sets is given in [9].

Implementation
The extended ProMiner system consists of three parts: dic-
tionary generation, occurrence detection and filtering of
matches. The first part covers the generation and curation
of a name dictionary, which associates each biological
entity with all known synonyms. As part of this step, each
synonym is classified into one of several classes which are
associated with specific parameter settings in the subse-
quent search runs. The second part of the system consists
of an approximate search procedure which is geared
towards high sensitivity. It accepts different parameter set-
tings for each of the synonym classes. This procedure is
applied to detect all potential name occurrences on basis
of the constructed dictionary. For disambiguation of
found protein and gene name matches, names from exter-
nal dictionaries are detected in the text. These external dic-
tionaries contain acronyms, organism names, cell types,
and other biological entities. In a last step, filters are
applied to increase specificity of the search results. The
disambiguation filter attempts to resolve ambiguous
matches. Such matches exist because two or more proteins
might share a synonym, acronyms are common in differ-
ent contexts, or synonyms are also used as regular English
words. Finally, an organism filter uses co-occurring
matches of organism names to accept or reject organism-
specific name occurrences.

The ProMiner system treats each synonym as a string of
letters which can be split into several tokens. These tokens
generally corresponds to words or numbers. For instance,
the string "interleukin-1 receptor" would be split into four
tokens: "interleukin","-","1","receptor". The detection
problem is addressed on the level of such tokens. Tokens
are equivalent if their strings match exactly. Depending on
Page 2 of 9
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S14
the parameter setting, the case of the strings has to match
as well. Furthermore, the set of all tokens is categorized
according to token classes which vary in significance for
occurrence detection. For example, the token "receptor" is
of higher relevance for a match than the token "type".

Dictionary generation: construction and curation
In Task 1B of the BioCreAtIvE competition, dictionaries
for each test organism were provided defining the set of
objects for detection. The ProMiner dictionaries for mouse
and yeast were created on the basis of these provided lists.
The fly dictionary was obtained directly from the FlyBase
http://flybase.bio.indiana.edu/ database due to format
problems with the provided list. Entries were explicitly
limited to D. melanogaster genes. All dictionaries have
been processed using the following steps. First, subtype
specifiers are expanded to equivalent other specifiers, e.g.
a is expanded to alpha. Similarly, common acronyms are
expanded to their equivalent long forms, e.g. IL is treated
equivalently to Interleukin. Spaces are inserted or removed
between words and digits, e.g. Igf1 and Igf 1 are consid-
ered equivalent. In a next step, all synonyms of the dic-
tionary are tagged with a corresponding string of token
classes. Regular expressions defined on these token classes
allow for detection of unspecific synonyms. For example,
let M describe the token class subsuming all measurement
units and let d be the token class of all numeric tokens.
Then a regular expression of the form d* M would detect
all synonyms consisting of an optional number and a
measurement unit, such as 22 kDA. The detected syno-
nyms are either pruned from the dictionary (mouse) or
marked for later processing (fly, yeast). Furthermore,
manually derived lists of family names and physical
descriptions are also used to filter out unspecific
synonyms.

These general curation steps are followed by organism
dependent ones. In yeast, the only modification was the
addition of the letter 'p' to each gene name. For the fly dic-
tionary, we manually removed 10 synonyms and added 6
synonyms from specific dictionary entries on the basis of
the training set. The curation steps for the mouse diction-
ary are described in Fundel et al. [11]. In that work, name
detection is accomplished using a simpler matching pro-
cedure. Therefore, the curation is geared towards genera-
tion of a comprehensive dictionary including many
feasible spelling variants and strict removal of unspecific
synonyms.

Dictionary generation: rule-based classification of 
synonyms
For each pre-processed dictionary, a partition of the set of
synonyms into three classes is determined. First, frequen-
cies of occurrence of all stemmed words in all abstracts of
the MEDLINE database are computed using the Porter

stemmer [12]. Based on this data set, all frequently occur-
ring one-word synonyms are assigned to the class of unspe-
cific synonyms. The rationale is that frequently occurring
words are unlikely to be used as protein names only. The
frequency threshold was estimated based on the training
set for the fly organism and remained unchanged for the
other organisms. In addition, synonyms detected via the
regular expressions in the previous curation steps are
assigned to this class. Synonyms in the class of unspecific
synonyms are used for disambiguation of other matches
only. In addition, these synonyms are augmented with
specific context words (e.g. protein, gene, transcripts) and
added as additional synonyms. Context words are
appended to ensure that a synonym occurrence refers to a
gene or protein name, e.g. the detection of the fly diction-
ary name clipped alone would not result in a match, the
detection of the term clipped gene would. In the search run,
only exact matches are accepted for these augmented
synonyms.

Synonyms which must be searched in a case-sensitive
manner constitute the class of case-sensitive synonyms. If a
synonym can only be distinguished from a synonym of
another dictionary entry when the case of the letters is
considered, it is assigned to the class of case-sensitive syno-
nyms. This is tested with respect to names from the protein
dictionaries as well as external dictionaries, e.g. contain-
ing anatomical terms.

All other synonyms are part of the class of case-insensitive
synonyms and are detected in the text using an approxi-
mate matching procedure in a case-insensitive manner.

Occurrence detection: efficient gene and protein name 
detection
The search procedure [1] works by sweeping over the
abstract, processing one token at a time and keeping a set
of candidate solutions for the present position. Each can-
didate solution is associated with two scoring measures.
One scoring measure, the boundary score controls the end
of the extension of a candidate match and is increased on
a token mismatch. If this score rises above a threshold, i.e.
if a certain number of mismatches has occurred, the can-
didate is pruned from the candidate set and checked for
reporting. Then, the second score measure, the acceptance
score, determines whether the candidate is reported as a
match. The acceptance score is a linear combination of
token class specific match- and mismatch terms. A match
term is defined as the percentage of matched tokens of the
respective token class. A mismatch term counts for each
token class the number of tokens additionally found in the text
during this candidate extension and, thus, mismatched in
the candidate synonym. With appropriate weighting, the
acceptance score makes it possible to accept variations of
synonyms and, at the same time, disregard false substring
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matches. To illustrate this, consider the example depicted
in Figure 1. Candidate synonym I is a correct synonym
match, whereas candidate II is not. Exact string matching
would find none of the candidates. In both cases, one
token in the text excerpt ("type") and one token of each
candidate is not matched. The situation can be distin-
guished if weights for match terms are set to a small value
for non-descriptive tokens, such as "-" or "type" and a
high one for modifier token, such as 'receptor'. Now con-
sider a reversed situation as shown in Figure 2. Here, both
candidates are wrong matches because the significant
token "receptor" is present in the text. Naive matching
would accept both candidates. Setting the mismatch
weight for the modifier class to a high value, however, will
lead to the rejection of both candidates.

Synonyms can be treated differently, depending on their
synonym class. In the exact search, which is used for unspe-
cific synonyms, no deletion, insertion or permutation of
tokens is allowed. The approximate search allows for dele-
tion, insertion or permutation of tokens if the synonym

consists of more than 2 tokens. Depending on the class of
the synonym, the search is executed in a case-sensitive or
case-insensitive manner. The weighting of the acceptance
score components has remained unchanged and is based
on the small benchmark set as described in [1]. Generally,
it penalizes the deletion or insertion of modifier token
such as "receptor" heavily and allows the deletion and
insertion of non-descriptive tokens such as "-" or "type".

Occurrence detection: inclusion of external dictionaries
For match disambiguation, we detected occurrences
according to additional external dictionaries containing
biological processes and cellular component names from
the Gene Ontology http://www.geneontology.org/, fly
body parts from FlyBase http://flybase.bio.indiana.edu/
and cell types. In addition, an abbreviation dictionary
containing abbreviations and their long forms, which do
not correspond to protein or gene names, is compiled
from two sources. First, we extracted short uppercase syn-
onyms from the employed dictionaries and queried the
Biomedical Abbreviation Server [13] for potential long

First example of impact of token classesFigure 1
First example of impact of token classes. Candidate synonym I is a correct synonym match, whereas candidate II is not. 
Appropriate weighting of tokens allows to detect the differences correctly.

Second example of impact of token classesFigure 2
Second example of impact of token classes. Both candidates are wrong matches because the significant token "receptor" 
is present in the text. Naive matching would accept both candidates.
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forms. Secondly, we extracted from all abstracts all short
expressions in parentheses as possible abbreviations of
long forms mentioned directly ahead of the parentheses,
e.g. "... respiratory distress syndrome (RDS) ...". An abbre-
viation is accepted, if for each letter in the abbreviation a
corresponding word in the preceding expression is found.
A similar approach has been described in [14]. Finally, the
long forms of all abbreviations are checked against each
protein and gene name dictionary in order to prune long
forms which correspond to protein names of the consid-
ered organism.

Filtering of matches: match disambiguation
The search procedure based on all constructed dictionar-
ies results in a set of synonym occurrences for each bio-
medical abstract. If only one corresponding identifier is
detected at a certain position in the text, the match is
accepted. If matches overlap, the match with the higher
acceptance score, the larger fraction of matches or the larg-
est number of matched tokens is accepted. In conjunction
with the controlled vocabulary, this leads to the removal
of unspecific synonyms. For example, the gene furrow is
often found as a substring match of the term morphogenetic
furrow describing a fly body part. As the second term will
attain a higher score, it will be accepted, preventing the
erroneous detection of the gene name.

In case of an ambiguous synonym that is used for two or
more different genes or proteins, only those matches are
accepted for which most additional synonym occurrences
can be found in the abstract. A threshold defining a max-
imal number of resulting ambiguous matches in one posi-
tion can be set and has been varied in the three submitted
runs of the competition. This parameter is named 'D#' in
the Results section, where '#' stands for the maximal
number of ambiguous matches.

Filtering of matches: organism filter
To account for required organism specificity of matches,
we constructed a filter based on the NCBI taxonomy
(NCBI Taxonomy database, http://
www.ncbi.nlm.nih.gov/Taxonomy/tax.html). Organism
name occurrences were detected using exact matching in
the given text corpus. For each search run, a set of relevant
organisms has to be defined. Basically, abstracts are
rejected if they contain only organism names currently
considered irrelevant or their generalizations in the taxon-
omy. If only relevant organism names or their generaliza-
tions are found, the abstract is accepted and all detected
protein and gene occurrences reported. In cases where rel-
evant and irrelevant organism names occur, the decision
is left to the user. For the competition, we chose to accept
abstracts in those cases. As an example, consider a search
run for D. melanogaster. An abstract mentioning only the
organism name 'D. yakuba' would be rejected. An addi-

tional occurrence of the concept 'Drosophilae' in the
abstract would also lead to rejection, as this is a generali-
zation of 'D. yakuba' in the taxonomy. In contrast, an
abstract mentioning the term 'Drosophilae' only would be
accepted, as this is also a generalization of the relevant
organism D. melanogaster and no evidence of another
more specific organism was found. This simple strategy
will fail if genes and proteins from diverse organisms are
discussed in one abstract, requiring more involved analy-
sis of the reference structure in the abstract. However, in
the context of the BioCreAtIvE competition, it improved
the performance for the fly organism significantly.

Results and Discussion
We computed three search runs for each organisms which
differed with respect to the intended precision-recall
tradeoff (cf. Table 1). The values of three parameters were
changed.

The Disambiguation threshold (D#) controls the size of the
result set, when ambiguous synonyms are detected. If the
size of the result set exceeds this threshold after applica-
tion of the disambiguation filter, none of the putative
name occurrences will be reported. The use of the organism
filter (O+/O-) should increase precision of matches. How-
ever, performance did not improve for the mouse organ-
ism based on the training set. Significance of '-' at the end of
a synonym (S+/S-) can prevent erroneous matches such as
'protein name – induced'. Here, S+ disallows matches end-
ing in a dash, S- denotes that a dash can be ignored.

The results obtained with the ProMiner approach are also
summarized in Table 1. Overall, our approach received
highly encouraging results. For the mouse organism as
well as for the fly organism, the best F-measures of all par-
ticipants were obtained. The yeast results were also above
average, although we did not extend the dictionary pro-
vided by the task organizers with yeast protein names. Pre-
sumably, such an extension could further increase
performance for the yeast organism.

Analysis of results
The published gold standard makes it possible to deter-
mine the impact of the various components of the
ProMiner approach. The evaluation of the different
parameter settings in the three different organisms shows
that the best results are achieved setting the disambigua-
tion threshold to one (D1) and treating a dash as signifi-
cant (S+). Not in all cases was the best possible parameter
combination submitted, however. In general, the
disambiguation threshold D1 leads to higher precision
with a minor loss in recall. The influence of the dash on
the F-measure is not clear, however. The impact of the
organism filter differs for the organisms fly and mouse. In
the case of fly, the filter enhances precision without
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incurring a loss in recall, for the mouse data, however, the
filter reduces recall without gaining precision. Possible
reasons for that are discussed in the mouse section. Anal-
ysis of results with respect to each organism is presented
in the following.

Fly
For fly, all three submitted ProMiner runs outperform the
results of the other participants. The best result was
achieved setting the disambiguation threshold to one
(D1), enabling the organism filter (O+) and treating a
dash as significant (S+).

The fly organism probably poses the most severe prob-
lems to name detection as common English words occur
frequently as parts of protein/gene names. Figure 3 shows
results for different parameter settings which have been
computed after the gold standard for the test set was
released. Naïve string search with the provided dictionary
is infeasible for fly and will result in unacceptable preci-
sion (approximately 0.06, data not shown). The detection
of unspecific synonyms will alleviate this problem. A
search based on the ProMiner core algorithm using only
synonyms not in the unspecific class and no further dis-
ambiguation leads to high recall but low precision
('approximate search, no unspecific synonyms'). Using
the maximal disambiguation strategy with a threshold of
one already provides acceptable performance (F-measure:
0.762, '+ disambiguation to 1 (D1)'), although the recall
is decreased. The incorporation of unspecific synonyms
improves recall considerably (F-measure: 0.787, '+ unspe-
cific synonym class'). The additional detection of case-
sensitive genes improves recall further, but impacts preci-
sion (F-measure: 0.789, '+ case sensitivity class'). An
increase in recall is observed as previously ambiguous
occurrences can now be assigned to one synonym with the
correct case. However, false positives also occur in this set
decreasing precision. The organism disambiguation for
the fly organism seems to work well as only subspecies

differentiation was needed in the test set (F-measure: 0.80,
'+ organism filter (O+)'). A final gain in precision is
obtained through incorporation of external dictionaries
for disambiguation purposes. This results in the submit-
ted run with maximum F-measure (F-measure: 0.816, '+
external vocabulary (best search, submitted)').

For comparison, the disambiguation thresholds D3 and
D5 (F-measure: 0.787/0.788, 'best search, but disam-
biguation set to D3/5') negatively impact precision and
recall. A-priori this was unclear as the training set con-
tained examples, where (1) different allelic variations of
the same gene or (2) members of a complex were anno-
tated as true positives. These cases profit from a higher

Table 1: Results of the BioCreative competition. Summary of submitted search runs. The table contains details of parameter sets (D# 
denotes disambiguation threshold, O(+/-) use of organism disambiguation, S(+/-) significance of dash at end of synonym) and resulting 
performance. Values where ProMiner achieved the best rank of all participants are printed in bold.

Fly Mouse Yeast
1 2 3 1 2 3 1 2

Disambiguation (D#) D3 D1 D3 D3 D1 D5 D3 D1
Organism O(+/-) O+ O+ O+ O- O+ O- O- O-
Dash significance S(+/-) S- S+ S+ S- S+ S+ S- S-
F-measure 0.781 0.816 0.787 0.771 0.776 0.79 0.897 0.899
Precision 0.728 0.831 0.744 0.752 0.809 0.766 0.951 0.966
Recall 0.841 0.8 0.834 0.79 0.746 0.814 0.848 0.84

Impact of ProMiner components for the fly organismFigure 3
Impact of ProMiner components for the fly organ-
ism. For each result, the F-measure as determined from the 
published gold-standards is given in brackets. Details on this 
figure are provided in the Results and Discussion section.
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(1) approximate search,  no unspecific synonyms    [0.604]
(2) + disambiguation to 1  (D1)    [0.762]
(3) + unspecific synonym class    [0.787]
(4) + case sensitivity class    [0.789]
(5) + organism filter   (O+)    [0.8]
(6) + external vocabulary (best search, submitted)    [0.816]
best search, but disambiguation to 3 (D3)    [0.787]
best search, but disambiguation to 5 (D5)    [0.788]
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disambiguation threshold. In the test set, however, the dis-
ambiguation to one strategy (D1) provided the best results.

Concluding, all components of the ProMiner framework
improve overall performance to various degrees. The most
important steps for the fly organism are the detection and
sensible incorporation of unspecific synonyms and the
'disambiguation to 1 (D1)' setting.

Yeast
The results for yeast exhibit good performance for submit-
ted runs of most participants reflecting the quite stringent
terminology followed for that organism. In this setting,
simpler name recognition approaches seem to suffice to
obtain satisfactory results. Probably, the incorporation of
multi-word protein names into the synonym list would
improve recall for our approach. Such improvements
should be pursued in future work.

Mouse
The mouse nomenclature is not dominated by common
word names as for fly nor is it as stringent as in the case of
yeast. Multi-word protein names are frequent for the
mouse organism. In general, overall results of all
participants are better than for the fly organism but worse
than for yeast. The ProMiner submissions achieved the
best F-measures.

A detailed analysis of the ProMiner approach is given in
Figure 4. All runs were computed without organism dis-
ambiguation (O-) and treating a dash as significant (S+),
if not stated otherwise. For mouse, an exact, case-insensi-
tive search and no further disambiguation is feasible,
although results are mediocre (F-measure: 0.655, 'exact
search'). In this setting, no insertion, deletions or permu-
tations of tokens were allowed. Disambiguation to one
allowed object impacts recall, but increases precision to
acceptable values (F-measure: 0.748, '(1) + disambigua-
tion to 1 (D1)'). The incorporation of case-sensitive and
unspecific synonyms improves both precision and recall
(F-measure: 0.786, '(3) + disambiguation to 1 (D1)'). A
final gain of overall performance stems from the approxi-
mate search as described in the Implementation section
(F-measure: 0.799, '(4) but approximate search'). This last
gain in performance is only slight. This might indicate
that spelling variants of multi-word names not contained
in the dictionary were not frequent in the BioCreAtIvE test
set. This optimal search run was not submitted, however,
because the impact of the organism disambiguation
procedure was unclear from the training set. Using the
same search parameters including organism disambigua-
tion leads to worse recall (F-measure: 0.779, '(6) + organ-
ism filter (O+)'). The first thirty false positive matches of
the best submitted result for mouse (run number 3) have
been analyzed in more detail (cf. Table 2). Undetected
ambiguities are the dominant reasons for false positive
matches (18 cases, 60%). This includes synonyms which
have neither been detected during curation nor marked as
unspecific synonyms, synonyms detected in wrong con-
texts and abbreviations unknown to the system. Errone-
ous detection of genes from other organisms accounts for
4 false matches (13%). In eight cases (27%), the reason
for exclusion from the gold-standard remained unclear.

To assess the impact of the stringent dictionary curation
procedure applied in the case of mouse [11], we com-
puted the performance of the ProMiner system based on
the dictionary as provided by the task organizers. Interest-
ingly, the classification of synonyms into different classes
and the associated disambiguation strategy were sufficient
to achieve a good result. Using the parameters leading to
the best result for the cleaned dictionary (D1, O-, S+; F-
measure 0.799) gives an F-measure of 0.78 (data not
shown). This indicates that the ProMiner framework
provides good performance even on dictionaries of
medium quality without manual curation due to its auto-
matic detection of unspecific and case sensitive syno-
nyms. An analysis of the organism disambiguation
performance revealed that the disambiguation failed
when genes from different organisms are mentioned in
one abstract. Also, disambiguation failed because of miss-
ing synonyms, e.g. "vertebrate". For several cases, how-
ever, the provided gold standard might be incorrect as

Impact of ProMiner components for the mouse organismFigure 4
Impact of ProMiner components for the mouse 
organism. For each result, the F-measure as determined 
from the published gold-standards is given in brackets. 
Details on this figure are provided in the Results and Discus-
sion section.
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(8): (6) but no external vocabulary [0.789]
(9): (6) + organism filter (O+) [0.779]
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occurrence considered as true positives describe findings
in rat or human instead of mouse. For a more comprehen-
sive evaluation of such disambiguation strategies, a more
specific benchmark set is required.

In conclusion, the ProMiner method provides high recall
using approximate matching and retains high precision
due to sensible incorporation of unspecific synonyms for
mouse protein and gene name recognition.

Discussion and future work
Further reduction of false positive matches might be
achieved with a sensitive prior tagging of all putative pro-
tein occurrences in a given text as a first step, and assign-
ment to objects from a dictionary in a second step. The
best participants in Task 1A, concerned with name tagging
only, obtain a recall and F-measure of about 0.83 [7]. This
level of performance might allow slight improvements for
Task 1B. One group, pursuing this strategy and participat-
ing in both tasks, reached high precision but considerably
lower recall in Task 1B [15]. This indicates that either a
higher recall in the tagging step is necessary or the assign-
ment of objects to tagged names needs to be improved to
reach better overall performance. In future work, the per-
formance of the ProMiner framework will be tested as part
of such a strategy.

Highly sensitive detection of the dictionary synonyms and
subsequent filtering of false positives on the basis of
machine learning methods seems also feasible. This
approach led to good results even for the fly organism
[16]. While the rule-based ProMiner system can be
adapted quickly to a new settings by human experts, a
machine-learning based approach requires a comprehen-
sive training set of high quality to obtain good results. If
such training sets become readily available through a
community effort, however, machine-learning based
approaches might be superior to rule-based systems.

Another approach to solve the name recognition problem
is the generation of a comprehensive and stringently

cleaned dictionary, which contains many spelling vari-
ants. This dictionary can be used in conjunction with a
simpler matching procedure [11]. This strategy works well
for the mouse and yeast organisms, but is not feasible for
organisms with high prevalence of unspecific names, such
as fly. The introduction of post-filters might render this
approach feasible in most cases. In its current form, the
approach seems to rely even more on expert curation than
the ProMiner framework. Also, the size of the dictionary
might grow quickly, if automatically generated spelling
variants are included, which might adversely impact the
running time of the search.

Conclusion
The named entity recognition task of the BioCreative chal-
lenge was ideally suited for independent evaluation of the
ProMiner method. The task required the customization of
the framework to the organisms of fly, mouse and yeast,
each of which exhibits specific naming characteristics.
After incorporation of the extensions, the ProMiner
method could be quickly adapted to the characteristics of
each organism using parameter settings and customized
dictionary curation. For the mouse organism, the compar-
ison with a simpler name matching procedure [11] has
shown that the same level of performance can be reached
when the dictionary used is cleaned more stringently. The
ProMiner system was able to obtain a high level of per-
formance based on the classification of synonyms into
several search classes. The results of the competition were
highly encouraging and indicate that approximate match-
ing in conjunction with rule-based pre- and post-process-
ing is well suited for protein and gene name recognition.
The ProMiner method obtained F-measures of 0.899 for
yeast, 0.816 for fly, and 0.79 for mouse.

Interestingly, the organizers estimated the quality of the
initial gold standard by comparing annotations provided
by different experts. On a sample of 30 abstracts, the
disagreement was 9% for yeast, 13% for fly, and 31% for
mouse [17] reflecting the different degree of uncertainty
of nomenclature in the various organism. According to

Table 2: Examples for false positive matches in the BioCreative competition. Samples of false positive matches in the best submitted 
mouse search run. Detected matches are printed in bold.

Description Examples

Unspecific synonym growth retarded, perinatal lethality, long lived
Wrong context TGF-beta superfamily, c-myc tumors
Unknown ambiguity high dose set at MTD or MFD
Unclear, why marked as incorrect interleukin-2, H-2 locus, c-Jun
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these results, the automatic annotation methods already
achieve a level of performance comparable to the initial
annotations by biological experts.

Given the good performance of the ProMiner framework
in the domain of protein and gene name detection, a
venue of future work will be its extension to other bio-
medical entities. Adaptation of the system to the
recognition of phenotypic descriptions or functional cate-
gories is a next step in the development of an application
which efficiently detects a multitude of biologically rele-
vant named entities in biomedical text.
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