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Abstract: Since emerging in 2012, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has
been a global public health threat with a high fatality rate and worldwide distribution. There are
no approved vaccines or therapies for MERS until now. Passive immunotherapy with neutralizing
monoclonal antibodies (mAbs) is an effective prophylactic and therapeutic reagent against emerging
viruses. In this article, we review current advances in neutralizing mAbs against MERS-CoV.
The receptor-binding domain (RBD) in the spike protein of MERS-CoV is a major target, and
mouse, camel, or human-derived neutralizing mAbs targeting RBD have been developed. A major
problem with neutralizing mAb therapy is mutant escape under selective pressure, which can be
solved by combination of neutralizing mAbs targeting different epitopes. Neutralizing mAbs are
currently under preclinical evaluation, and they are promising candidate therapeutic agents against
MERS-CoV infection.

Keywords: Middle East Respiratory Syndrome Virus; MERS-CoV; neutralizing
monoclonal antibodies

1. Introduction

Middle East Respiratory Syndrome (MERS) emerged in 2012 in Saudi Arabia with the death
of a man with pneumonia; the causative agent was subsequently identified as MERS-CoV, which
belonged to lineage C betacoronaviruses [1]. With dromedary camels (Camelus dromedarius, also known
as Arabian camel) as direct sources and bats as potential reservoirs [2], MERS-CoV has been frequently
introduced into human populations. Once MERS-CoV is introduced into a person, person-to-person
transmission might occur, and is responsible for approximately 40% of MERS cases globally [3].
MERS-CoV has been a consistent threat to humans. As of October 2018, MERS-CoV has caused 2254
laboratory-confirmed human cases, including 800 deaths in 27 countries, with the fatality rate as
high as 35% (http://www.who.int/emergencies/mers-cov/en/). Although MERS cases are primarily
reported in the Middle East, facilitated by international travelling, MERS-CoV can also be a worldwide
threat, which is well illustrated by the MERS outbreak in South Korea in 2015 [4]. Given the potential
risk of causing worldwide public health emergencies and the absence of licensed vaccines and antiviral
therapeutics, the World Health Organization has listed MERS-CoV in the “List of Blueprint priority
diseases” (http://www.who.int/blueprint/priority-diseases/en/).

Vaccines are the most important approach against viral infections, but usually take a long time to
develop. They are also unable to provide either immediate prophylactic protection or treat ongoing
viral infections. Neutralizing monoclonal antibodies (mAbs) have recently emerged as a powerful tool
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to provide prophylactic and therapeutic protection against emerging viruses [5]. Potent neutralizing
mAbs can be achieved by various technologies, such as hybridoma technology, humanized mouse,
phage or yeast display, and single B cell isolation [5].

2. Spike (S) Protein of MERS-CoV as Target for Neutralizing mAbs

MERS-CoV is a single, positive-stranded RNA virus of about 30 kb, which encodes four major
viral structural proteins—including spike (S), envelope (E), membrane (M) and nucleocapsid (N)—as
well as several accessory proteins [6]. The S protein (1353 aa) plays an important role in virus infection
and consists of a receptor-binding subunit S1 (aa 18–751) and a membrane-fusion subunit S2 (aa
752–1353). S1 mediates viral attachment to host cells and S2 mediates virus-cell membrane fusion [7].
The S1 subunit contains a receptor-binding domain (RBD) (aa 367–606) [8] that can bind to cell receptor
dipeptidyl peptidase 4 (DPP4, also known as CD26), and mediates viral attachment target cells [9].
The RBD consists of a core subdomain and a receptor-binding motif (RBM) (aa 484–567). The schematic
representation of MERS-CoV S protein is shown in Figure 1A.

Figure 1. (A) Schematic representation of MERS-CoV S protein. (B) Residues on RBD critical for mAb
neutralization. SP: signal peptide; NTD: N-terminal domain; RBD: receptor-binding domain; RBM:
receptor-binding motif. Conserved residues on RBM critical for hDPP4 binding are shown in red.

Neutralizing mAbs binding to the S protein of MERS-CoV can prevent viral attachment to the
cell receptor and inhibit viral entry [7]. The S protein of MERS-CoV is a key target for antivirals, and
RBD is the most popular focus. In this study, we review the current knowledge on neutralizing mAbs
targeting the RBD of MERS-CoV.
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3. Mouse Neutralizing mAbs

3.1. 4C2 and 2E6

Stable hybridoma cell lines were generated by fusing myeloma cells with splenocytes of mice that
were immunized with MERS-RBD protein. Two neutralizing mAbs, 4C2 and 2E6, had high affinity
for the RBD of MERS-CoV and blocked both pseudovirus and live MERS-CoV entry into cells with
high efficacy [10]. Humanized 4C2 showed similar neutralizing activity in cell entry tests. In vivo tests
indicated that 4C2 could significantly reduce the virus titers in the lungs of Ad5-hCD26-transduced
mice which were infected with MERS-CoV, highlighting its potential application in humans not only
for preventing but also treating MERS-CoV infection. Crystallization of the 4C2 Fab/MERS-RBD
complex showed that the 4C2 recognized conformational epitopes (Y397-N398, K400, L495-K496,
P525, V527-S532, W535-E536, and D539-Q544), which were partially overlapped the receptor-binding
footprint in the RBD of MERS-CoV. The 4C2 complex interfered with MERS-CoV binding to DPP4 by
both steric hindrance and interface-residue competition. 2E6 competed with 4C2 to bind to MERS-RBD,
indicating that they recognized proximate or overlapping epitopes [10].

3.2. Mersmab1

Neutralizing mAb Mersmab1 was obtained by fusing myeloma cells with splenocytes of a mouse
that was immunized with recombinant MERS-CoV S1 [11]. Mersmab1 effectively blocked the entry
of pseudovirus and live MERS-CoV into cells. Structural analysis showed that Mersmab1 bound to
the RBD of MERS-CoV through recognizing conformational epitopes, and all of the residues critical
for Mersmab1 binding were located on the left ridge of RBM. Mersmab1 neutralized MERS-CoV by
competitively blocking the binding of MERS-CoV RBD to DPP4. Based on escape mutant analysis of
the key residues on the RBD, it was found that residue L506, D510, R511, E513, and W553 were critical
for Mersmab1 binding to the RBD, while mutation of E536, D539, or E565 did not affect the interaction
of Mersmab1 and the RBD at all [11].

4. Human Neutralizing mAbs

4.1. 3B11

An ultra-large nonimmune human antibody-phage display library was constructed with B cells
of unimmunized donors. With a unique spanning strategy, seven human neutralizing mAbs with
varying neutralization efficacy to MERS-CoV were identified [12]. Binding detection demonstrated
that the epitopes of these mAbs lay within aa 349–590 of the S protein, which overlapped a large part
of the RBD of MERS-CoV. Binding competition assays showed that these mAbs recognized at least
three distinct epitope groups, which was further confirmed by escape studies. With no cross-epitope
resistance, these mAbs neutralized MERS-CoV by competitively blocking the binding of the RBD of
MERS-CoV to DPP4. Escape mutant assays showed that five residues were critical for neutralization
of these mAbs, namely L506, T512, Y540, R542, and P547. Of the seven mAbs, 3B11 exhibited the best
neutralization activity against both pseudovirus and live MERS-CoV infectivity in cells. Moreover,
under the selective pressure of these mAbs, the IgG form of 3B11 was superior, since it did not induce
neutralization escape [12]. In vivo tests demonstrated that 3B11 reduced lung pathology in rhesus
monkeys infected with MERS-CoV [13]. With its high neutralizing activity and suppression of mutant
escape, 3B11 in the IgG form is a promising therapeutic mAb against MERS-CoV.

4.2. m336

Three human mAbs—m336, m337, and m338—were identified from a large naïve human phage
display antibody library, which was constructed with peripheral blood mononuclear cells from healthy
volunteers [14]. The binding sties of the three mAbs were within the RBD of MERS-CoV (aa 377–588),
therefore they neutralized MERS-CoV by competing with DPP4 binding to the RBD. The three mAbs
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also competed with each other to bind to the RBD of MERS-CoV, and mutant analysis showed that the
three mAbs possessed overlapping but distinct epitopes. Of the three mAbs, m336 neutralized both
pseudovirus and live MERS-CoV infectivity in cells with exceptional potency (m336 inhibited 90%
MERS-CoV pseudovirus infection at a concentration of 0.039 g/mL, and neutralized live MERS-CoV
with IC95 of 1 g/mL and IC50 of 0.07 g/mL). Residues in the RBD crucial for m336 binding were L506,
D510, E536, D539, W553, and V555 [14]. In vivo study demonstrated that prophylaxis with m336
reduced virus titers in the lung of rabbits infected with MERS-CoV [15], and m336 also provided
transgenic mice expressing human DPP4 with full prophylactic and therapeutic protection from
MERS-CoV [16]. However, another study with a non-human primate, the common marmoset showed
that m336 could only alleviate the severity of the disease, and did not provide complete protection
against MERS-CoV [17].

4.3. LCA60

IgG+ memory B cells were isolated from a MERS patient, and were subsequently immortalized
with Epstein–Barr virus. A neutralizing mAbs, LCA60, was identified, and was the first fully
human neutralizing mAb with naïve heavy and light chain pairs [18]. LCA60 efficiently neutralize
MERS-CoV infectivity in cells. In vivo study showed that LCA60 provided BALB/c mice transduced
with adenoviral vectors expressing human DPP4 (hDPP4) with both prophylactic and postexposure
protection against MERS-CoV. Furthermore, the neutralizing efficacy of LCA60 was evaluated in
IFN-α/β receptor-knockout mice that were more stringent models of MERS-CoV infection. After
transducing with hDPP4, these mice showed more profound clinical symptoms when challenged with
MERS-CoV [19]; administration of LCA60 reduced MERS-CoV titer in the lungs of these mice more
effectively (lung viral titer reduced by three logs in one day for IFN-α/β receptor-knockout mice vs.
three days for BALB/c mice) [18]. With naïve heavy and light chain pairs, LCA60 was more potent than
3B11 and comparable to m336. Cross-competition experiment demonstrated that LCA60 competed
with 3B11 to bind to the RBD. LCA60 interacted with RBD residues around K493, and the LCA60
footprint on the RBD was partially overlapped with that of DPP4. Four residues in the RBD affected
the binding of LCA60—namely T489, K493, E536, and E565—which were conserved in all MERS-CoV
isolates. Moreover, compared with DPP4, the binding affinity of LCA60 to RBD was significantly
higher (~500-fold). Therefore, one major neutralization mechanism of LCA60 was to competitively
inhibit the interaction of the RBD with DPP4. Interestingly, virus escape studies demonstrated that
under the selective pressure of LCA60, a mutant variant (V33A) in the N-terminal domain (NTD)
of MERS-CoV S1 subunit was also generated [18]. A GMP-approved cell line (LCA60.273.1) that
expresses LCA60 in high concentrations has been established, highlighting its application as promising
therapeutics against MERS-CoV infection [20].

4.4. REGN3051 and REGN3048

Hybridoma B cells producing neutralizing mAbs against the S protein of MERS-CoV were
generated by immunizing humanized transgenic mice (VelocImmune mice) with DNA encoding
the MERS-CoV S protein. Two fully human neutralizing mAbs, REGN3051 and REGN3048, were
obtained [21]. The two mAbs bound with high affinity to distinct epitopes on the RBD of MERS-CoV,
which were conserved during the natural evolution of MERS-CoV. Mutation as a result of selective
pressure by one mAb should not affect the binding of the other mAb. REGN3051 neutralized a broad
range of MERS-CoV isolates, the prototype EMC/2012 strain and all clinical mutants including A431P,
S457G, S460F, A482V, L506F, D509G, and V534A. With the exception of V534A variant, REGN3048
achieved similar neutralizing activity. In vivo study demonstrated that REGN3051 and REGN3048
reduced MERS-CoV replication in humanized DPP4 mice in both prophylactic and therapeutic
settings [21]. When evaluated in the common marmoset, both mAbs seemed to be more effective for
prophylaxis rather than for treatment of MERS-CoV infection [22].
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4.5. MCA1

An anti-MERS-CoV phage display antibody library was constructed with the peripheral B cells of a
MERS survivor, and a human neutralizing mAb against MERS-CoV, MCA1, was identified [23]. MCA1
showed potent neutralizing activity against MERS-CoV in cell entry tests. In vivo, MCA1 completely
inhibited the replication of MERS-CoV in common marmosets when administrated prophylactically or
therapeutically. Structure analysis of the MCA1 Fab-RBD complex showed that MCA1 formed direct
contacts with the receptor-binding site (RBS) subdomain on the RBD. Epitopes on the RBS critical for
MCA1 binding were D510, W535, E536, D539, Y540, R542, and Q544. Superimposed structure analysis
of MCA1-RBD and hDPP4-RBD complexes showed that the binding interface of MCA1 was largely
overlapped with that of hDPP4. Therefore, the neutralizing mechanism of MCA1 was achieved by
competing with DPP4 for binding to the RBD [23].

4.6. MERS-4 and MERS-27

Two potent human neutralizing mAbs, MERS-4 and MERS-27, were derived from a nonimmune
human yeast display antibody library, which was constructed with spleen and lymph node
polyadenylated RNA from normal humans [24]. MERS-4 and MERS-27 inhibited the entry of both
pseudovirus and live MERS-CoV into cells. Mutant analysis suggested that MERS-4 and MERS-27
recognized distinct epitopes in the RBD of MERS-CoV, and the epitopes of MERS-27 might be located
away from those that recognized by MERS-4. Mutant analysis also demonstrated that residues D455,
L507, E513, R542, L545, S546, P547, G549, and S508 in the RBD were critical for MERS-4 binding, while
only S508 was important for MERS-27 binding. Combined use of MERS-4 and MERS-27 demonstrated
a synergistic effect against pseudotyped MERS-CoV. MERS-4 bound to the RBD with about 45-fold
higher affinity than DPP4. The primary neutralizing mechanism of MERS-4 and MERS-27 was
through blocking the binding of the RBD to DPP4 [24]. Further structural analysis showed that
MERS-4 bound to unique epitopes and caused conformational changes in the RBD interface critical
for accommodating DPP4, therefore indirectly disrupting the interaction between the two. Moreover,
MERS-4 also demonstrated synergistic effects with m336 and 5F9 (a NTD-specific mAb). The special
neutralizing mechanism made MERS-4 a valuable addition for the combined use of mAbs against
MERS-CoV infection [25].

4.7. MERS-GD27 and MERS-GD33

Thirteen ultrapotent neutralizing mAbs, which all targeted the RBD of MERS-CoV were
generated following a protocol for the rapid production of antigen-specific human mAbs [26]. Briefly,
antibody-secreting B cells were isolated from the whole blood of a MERS patient, and the antibody
genes were amplified and cloned into vectors to transfect human cell lines for mAb production. Of
the 13 mAbs, MERS-GD27 and MERS-GD33 exhibited the strongest neutralizing activity against both
pseudovirus and live MERS-CoV in cell infection tests. MERS-GD27 directly competed with DPP4
to bind to the RBD to DPP4, and the crystal structure of MERS-GD27 showed that its epitopes were
almost completely overlapped with DPP4-binding sites. MERS-GD27 and MERS-GD33 recognized
distinct epitopes on the RBD, and had a low level of competing activity. The combined use of the two
mAbs demonstrated synergistic effects in neutralization against pseudotyped MERS-CoV. Mutant
analysis demonstrated that residues L506, D509, V534, E536, and A556 on RBD were important for the
neutralizing activity of MERS-GD27, and residue R511was critical for MERS-GD33 [26]. Moreover,
In vivo study found that MERS-GD27 could provide both prophylactic and therapeutic protection for
hDPP4-trangenic mice against MERS-CoV infection [27].

5. Camel Neutralizing mAbs

Dromedary camels exposed to MERS-CoV showed mild clinical signs but developed exceptionally
potent neutralizing antibodies. Camelid species naturally produced heavy chain-only antibodies
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(HCAbs) [28], which are dimeric and devoid of light chains, and their antigen recognition region is
solely formed by the variable heavy chains (VHHs) (also called nanobodies, Nbs). VHHs or Nbs
have long complementarity-determining region 3 (CDR3) loops and are capable of binding to unique
epitopes not accessible to conventional antibodies [29]. Notably, camelid VHHs are relatively stable
and can be produced with high yields in prokaryotic systems [30]. Because of their small size; good
tissue permeability; and cost-effective production, storage, and transportation [31–33], VHHs or Nbs
have been gaining acceptance as antiviral agents.

5.1. Chimeric Camel/Human HCAb-83

A VHH complementary DNA library was constructed with the bone marrow of dromedary
camels infected with MERS-CoV. Four VHHs (VHH-1, VHH-4, VHH-83, and VHH-101) with high
neutralizing activity were identified by direct cloning and screening of the phage display antibody
library [34]. The four VHHs competed for a single epitope that partially overlapped with the RBD-DPP4
interface. Mutant analysis showed that the four VHHs did not bind to the D539N variant, which was a
critical residue on the RBD for DPP4 binding [8,35]. Therefore, these VHHs most likely neutralized
MERS-CoV by blocking its binding to DPP4. Of the 4 VHHs, VHH-83 showed the best neutralizing
activity and epitope recognition. VHH-83 efficiently blocked the entry of MERS-CoV into cells, and it
also prophylactically protected K18 transgenic mouse expressing hDPP4 from MERS-CoV infection.
To extend the half-life of VHH-83 in serum, it was linked to a human Fc domain lacking the CH1
exon to construct the chimeric camel/human HCAb-83, which showed similar neutralizing activity as
VHH-83. The chimeric camel/human HCAb-83 was highly stable in mice and provided K18 mice with
fully prophylactic protection against MERS-CoV infection [34].

5.2. NbMS10 and NbMS10-Fc

Alpacas were immunized with recombinant MERS-CoV RBD-containing a C-terminal human
IgG1 Fc tag, and VHHs were amplified from their peripheral blood mononuclear cells to construct a
VHH phage display library. A neutralizing Nb, NbMS10, which bound with high affinity to the RBD of
MERS-CoV and blocked the binding of RBD to DPP4, was identified [36]. To extend its in vivo half-life,
the human-Fc-fused version, NbMS10-Fc, was constructed. NbMS10 competed with DPP4 to bind to
RBD, indicating that the binding site of NbMS10 on RBD overlapped with that of DPP4. The binding
site of the NbMS10 on the RBD was mapped to be around residue D539, which is part of a highly
conserved conformational epitope at the receptor-binding interface in almost all the natural MERS-CoV
published to date. NbMS10 did not neutralize psuedotyped MERS-CoV bearing a mutation in D539,
confirming that residue D539 was critical for NbMS10 binding. NbMS10 efficiently neutralized the cell
entry of live MERS-CoV. Moreover, NbMS10 showed potent prophylactic and therapeutic efficacy in
protecting hDPP4-transgenic mice against MERS-CoV infection [36].

6. Discussion

For their exceptionally high neutralization activity in vitro and in vivo, these newly identified
neutralizing mAbs are promising candidate therapeutics against the infection of MERS-CoV. However,
the use of a single neutralizing antibody bears the risk of selecting escape mutants, a fact that has
been observed for LCA60 and other described antibodies [12,18,37]. Notably, the majority of these
escape mutations had little impact on viral fitness and the interaction of DPP4 with the RBD [12].
Moreover, mutants of MERS-CoV during natural infection have also been reported [38]. Escape
from neutralization is a major concern with therapeutic neutralizing mAbs, however, this potential
problem can be solved by combining mAbs that target distinct epitopes and show different neutralizing
mechanisms [37]. This strategy can take advantage of the synergistic effects while decreasing the
possibility of viral escape.

Currently, most of the MERS-CoV neutralizing mAbs compete with DPP4 binding to the RBD,
and residues on the RBD critical for mAb neutralization are identified by mutant analysis. Almost
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all of the residues identified critical for mAb neutralization are located in RBM, and overlap with
those critical for DPP4 binding (Figure 1B). With the availability of crystal structure of mAb Fab-RBD
complex, the neutralization mechanism of these mAbs will be better illustrated.

Based on the crystal structure of RBD-DPP4, it was found that several conserved residues in
the RBD are critical for the interaction of the RBD with DPP4 (Y499, L506, D510, E513, E536, D537,
D539, Y540, R542, W553, and V555) [35,39]. Development of therapeutic neutralizing mAbs targeting
those critically conserved residues might be important for combating MERS-CoV. Moreover, a study
found a mouse-derived neutralizing mAb, 5F9, which bound to a possible linear epitope in the NTD
of the MERS-CoV S1 subunit, exhibited efficient neutralizing activity against pseudovirus and live
MERS-CoV in cell entry tests. This study highlighted the important role of NTD during the infection
process of MERS-CoV. NTD might have significant implications for the development of prophylactic
and therapeutic mAbs against MERS-CoV infection [40]. Although the in vitro neutralizing potency of
5F9 was approximately 10-fold lower than that of the RBD-targeting neutralizing mAbs [40], it may
provide an alternative for the immunotherapy against MERS-CoV, once the virus mutates and is no
longer susceptible to RBD-specific mAbs.

So far, there is a lack of appropriate animal models to mimic the pathology of MERD-CoV
in humans. Commonly-used laboratory animals—such as wild-type mouse, ferret, hamster, and
guinea pig—are not susceptible to MERS-CoV infection due to differences in critical amino acids in
the S-binding domain of their DPP4 [41–43]. New Zealand rabbits, hDPP4-transduced/transgenic
mice, camelids and non-human primates (rhesus macaque and common marmoset) are susceptible
to MERS-CoV infection, however, rabbits showed asymptomatic infection [44]; dromedary
camels displayed different clinical manifestations to that of humans [45]; rhesus macaque only
showed transient lower respiratory infection [46], while common marmoset developed progressive
pneumonia [47]; hDPP4-trangenic mouse expressed hDPP4 extensively, and resulted in multiple organ
damage [48]; hDPP4-transduced mouse only exhibited mild transient clinical diseases [19]. With robust
animal models, the protective effects of these neutralizing mAbs will be better evaluated. Furthermore,
ongoing efforts on developing therapeutic neutralizing mAbs against MERS-CoV should also consider
the different target populations (dromedary camels and humans) and their protective efficacy.
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