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Abstract

Solving constrained combinatorial optimization problems via
MAP inference is often achieved by introducing extra poten-
tial functions for each constraint. This can result in very high
order potentials, e.g. a 2nd-order objective with pairwise po-
tentials and a quadratic constraint over all N variables would
correspond to an unconstrained objective with an order-N po-
tential. This limits the practicality of such an approach, since
inference with high order potentials is tractable only for a few
special classes of functions.
We propose an approach which is able to solve constrained
combinatorial problems using belief propagation without in-
creasing the order. For example, in our scheme the 2nd-order
problem above remains order 2 instead of order N . Exper-
iments on applications ranging from foreground detection,
image reconstruction, quadratic knapsack, and the M-best so-
lutions problem demonstrate the effectiveness and efficiency
of our method. Moreover, we show several situations in which
our approach outperforms commercial solvers like CPLEX
and others designed for specific constrained MAP inference
problems.

Introduction
Maximum a posteriori (MAP) inference for graphical models
can be used to solve unconstrained combinatorial optimiza-
tion problems, or constrained problems by introducing extra
potential functions for each constraint (Ravanbakhsh, Rab-
bany, and Greiner 2014; Ravanbakhsh and Greiner 2014;
Frey and Dueck 2007; Bayati, Shah, and Sharma 2005;
Werner 2008). The main limitation of this approach is that it
often results in very high order potentials. Problems with
pairwise potentials, for example, are very common, and
adding a quadratic constraint (order 2) over N variables
results in an objective function of order N . Optimizing over
such high-order potentials is tractable only for a few spe-
cial classes of functions (Tarlow, Givoni, and Zemel 2010;
Potetz and Lee 2008; Komodakis and Paragios 2009; Mézard,
Parisi, and Zecchina 2002; Aguiar et al. 2011), such as linear
functions.

Recently, Lim, Jung, and Kohli (2014) proposed cutting-
plane based methods to handle constrained problems without
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introducing very high order potentials. However, their ap-
proaches require exact solutions of a series of unconstrained
MAP inference problems, which is, in general, intractable.
Thus their approaches are again only applicable to a particular
class of potentials and constraints.

To tackle general constrained combinatorial problems, our
overall idea is to formulate the unconstrained combinato-
rial problem as a linear program (LP) with local marginal
polytope constraints only (which corresponds to a classical
MAP inference problem), and then add the “real” constraints
from the original combinatorial problem to the existing LP
to form a new LP. Duality of the new LP absorbs the “real”
constraints naturally, and yields a convenient message pass-
ing procedure. The proposed algorithm is guaranteed to find
feasible solutions for a quite general set of constraints.

We apply our method to problems including foreground
detection, image reconstruction, quadratic knapsack, and the
M-best solutions problem, and show several situations in
which it outperforms the commercial optimization solver
CPLEX. We also test our method against more restrictive
approaches including Aguiar et al. (2011) and Lim, Jung, and
Kohli (2014) on the subsets of our applications to which they
are applicable. Our method outperforms these methods in
most cases even in settings that favor them.

Preliminaries
Here we consider factor graphical models with discrete vari-
ables. Denote the graph G = (V,C), where V is the set of
nodes, and C is a collection of subsets of V. Each c ∈ C is
called a cluster. If we associate one random variable xi with
each node, and let x = [xi]i∈V, then it is often assumed that
the joint distribution of x belongs to the exponential family
p(x) = 1

Z exp
[∑

c∈C θc(xc)
]
, where xc denotes the vec-

tor [xi]i∈c. The real-valued function θc(xc) is known as a
potential function. Without loss of generality we make the
following assumption to simplify the derivation:
Assumption 1. For convenience we assume that: (1) C in-
cludes every node, i.e., ∀i ∈ V, {i} ∈ C; (2) C is closed under
intersection, i.e., ∀c1, c2 ∈ C, it is true that c1 ∩ c2 ∈ C.

MAP and its LP relaxations The goal of MAP inference
is to find the most likely assignment of values to the random
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variable x given its joint distribution, which is equivalent to
x∗ = argmaxx

∑
c∈C θc(xc). The MAP inference problem

is NP-hard in general (Shimony 1994). Under Assumption
1, by introducing μ = [μc(xc)]c∈C corresponding to the
elements of C one arrives at the following LP relaxation
(Globerson and Jaakkola 2007):

max
μ∈L

∑
c∈C

∑
xc

μc(xc)θc(xc), (1)

L =

{
μ

∣∣∣∣ ∀c ∈ C,xc, μc(xc) � 0,
∑

xc
μc(xc) = 1,

∀c, s ∈ C, s ⊂ c,xs,
∑

xc\s
μc(xc) = μs(xs)

}
.

The Problem

We consider the following constrained combinatorial problem
with K constraints:

max
x

∑
c∈C

θc(xc), s.t.
∑
c∈C

φk
c (xc) � 0, k ∈ K . (2)

where K = {1, 2, . . . ,K}, and φk
c (xc) are real-valued func-

tions. Since θc(xc) and φk
c (xc) can be any real-valued func-

tions, problem (2) represents a large range of combinatorial
problems. We now provide a few examples.
Example 1 (�0 norm constraint). Given b ∈ R+, ‖x ‖0 � b
can be reformulated as∑

i∈V

φi(xi) � 0, φi(xi) = 1(xi �= 0)− b/|V |, (3)

where 1(S) denotes the indicator function (1(S) = 1 if S
is true, 0 otherwise). This type of constraint is often used in
applications where sparse signals or variables are expected.
Example 2 (Sparse gradient constraint). Some approaches
to image reconstruction (e.g. Maleh, Gilbert, and Strauss
(2007)) exploit a constraint reflecting an expectation that
image gradients are sparse, such as

∑
{i,j}∈C ‖xi − xj‖0 �

b, where b is a threshold. The constraint can be rewritten as∑
i∈V

φi(xi) +
∑

{i,j}∈C

φi,j(x{i,j}) � 0, (4)

φi(xi) = −b/|V |, φi,j(x{i,j}) = 1(xi = xj).

Example 3 (Assignment difference constraint). Image seg-
mentation (Batra et al. 2012) and the M-best MAP solutions
problem (Fromer and Globerson 2009), often require the dif-
ference between a new solution x and a given assignment a
to be greater than a positive integer b, i.e. ‖x−a ‖0 � b.
This can be reformulated as∑

i∈V

φi(xi) � 0, φi(xi) = −1(xi �= ai) + b/|V |. (5)

For b = 1, it can also be reformulated as∑
i

φi(xi) +
∑

{i,j}∈T

φi,j(xi, xj) ≤ 0, (6)

φi(xi)=

{
1− di, xi=ai,

0, xi �=ai,
φij(xi, xj)=

{
1, xij =aij ,
0, xij �=aij ,

where T is an arbitrary spanning tree of G, and di is the
degree of node i in T (Fromer and Globerson 2009).

Example 4 (QKP). The Quadratic Knapsack Problem with
multiple constraints (Wang, Kochenberger, and Glover 2012)
is stated as

max
x∈{0,1}|V |

∑
i,j∈V

xicijxj , s.t.
∑
i∈V

wk
i xi � bk, k ∈ K,

where all cij and wk
i are non-negative real numbers. The

above QKP can be reformulated as

max
x

∑
i∈V

θi(xi) +
∑

{i,j}∈E

θij(xi, xj),

s.t.
∑
i∈V

φk
i (xi) � 0, φi(xi) = wk

i xi − b/|V |, k ∈ K

where θi(xi) = ciixi, E = {{i, j}|cij + cji > 0} and
θij(xi, xj) = (cij + cji)xixj .

Belief Propagation with Constraints without

the High Order Penalties
Problem (2) is NP hard in general, thus we first show how to
relax the problem.

LP Relaxations

We consider the following LP relaxation for (2),

μ∗ = argmax
μ∈L

∑
c∈C

∑
xc

μc(xc)θc(xc), (7)

s.t.
∑
c∈C

∑
xc

φk
c (xc)μc(xc) � 0, k ∈ K .

The key trick here is to reformulate the general constraint in
(2) as a constraint linear in μ.

In previous belief propagation schemes (e.g. Potetz and
Lee (2008), Tarlow, Givoni, and Zemel (2010), Duchi et al.
(2006)) for constrained MAP inference problems, extra po-
tential functions as well as clusters are introduced for each
constraint. However, this approach only works for very spe-
cific classes of constraints. For general constraints, for some
k from K, the max-marginal between an introduced cluster
and a node requires solving an integer program as follows:

max
x∈{x′ |x′

i=x̂i}
I∞(

∑
c∈C

φk
c (xc)) � 0) +

∑
i∈V

ϑi(xi), (8)

where ϑi(xi) is an arbitrary real-valued function, and I∞(S)
maps the statement S to zero if S is true, and −∞ otherwise.
Unfortunately, even under quite strong assumptions (e.g. C
only involves nodes), (8) is challenging to solve due to its
NP-hardness.

The Dual Problem

Letting γ = [γk]k∈K be the Lagrange multiplier correspond-
ing to the additional constraint in (7), the LP relaxation (7)
has the following dual problem,

min
θ̃∈Λ(θ),γ�0

∑
c∈C

max
xc

[
θ̃c(xc)−

∑
k∈K

γkφ
k
c (xc)

]
, (9)

Λ(θ) =

{
ϑ

∣∣∣∣∣
∑
c∈C

ϑc(xc) =
∑
c∈C

θc(xc)

}
,
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γmin γ∗ γmaxγ̂

δg(γ)

γ
γmin γ∗ γmaxγ̂

0

Figure 1: Illustration of one iteration of BP for one constraint.
Given γmin and γmax, we can conveniently determine if γ̂ =
1/2(γmin + γmax) is greater or less than the unknown γ∗.
Here δg(γ̂) � 0, thus γ̂ � γ∗. Hence we update γmin = γ̂.

where θ̃ = [θ̃c(xc)]c∈C, which is known as ‘reparametriza-
tion’ (Kolmogorov 2006) of θ = [θc(xc)]c∈C, and Λ(θ) is
the set of all reparametrizations of θ.

To derive the belief propagation scheme, we first consider
MAP inference with a single constraint. Later we show how
to generalize to multiple constraints. With only one constraint,
(9) becomes

min
θ̃∈Λ(θ),γ�0

∑
c∈C

max
xc

[
θ̃c(xc)− γφc(xc)

]
. (10)

The optimization problem (10) can be reformulated as:

min
γ�0

g(γ) = min
θ̃∈Λ(θ)

∑
c∈C

max
xc

[
θ̃c(xc)− γφc(xc)

]
. (11)

Problem (11) can be efficiently optimized, due to the property
of g(γ) below:
Proposition 1. g(γ) is piecewise linear and convex.

Belief Propagation for One Constraint

In this section, we show how (11) can be efficiently solved
via belief propagation. For convenience in derivation, we
define

bγc (xc) = θ̃c(xc)− γφc(xc), ∀c ∈ C,xc ∈ Xc . (12)

We can perform the following procedure to compute a sub-
gradient of g(γ):1

θ̃�,γ = argmin
θ̃∈Λ(θ)

∑
c∈C

max
xc

bγc (xc), (13a)

xγ,�
c = argmax

xc

bγ,�c (xc); δg(γ) = −
∑
c∈C

φc(x
γ,�
c ), (13b)

where for all c we use the notation bγ,�c (xc) = θ̃�,γc (xc) −
γφc(xc). Then for δg(γ) the following proposition holds:
Proposition 2. δg(γ) is a sub-gradient of g(γ).

Computing δg(γ) requires the optimal reparametrization
θ̃
�
. It can be obtained via sub-gradients (Schwing et al. 2012)

or smoothing techniques (Meshi, Jaakkola, and Globerson
1When there are multiple maximizers (or minimizers), randomly

picking one suffices.

Algorithm 1: BP for one Constraint
input : G = (V,C), θc(xc), φc(xc), c ∈ C, γmin, γmax and

ε.
output : γ̂,x∗.

1 fmax = −∞;
2 repeat

3 γ̂ = 1
2
(γmin + γmax);

4 Approximately Compute θ̃
�,γ̂

in (13) by BP with
updating rules in (15) ;

5 x∗,γ̂
c = argmaxxc

[
θ̃�,γ̂c (xc)− γ̂φc(xc)

]
;

6 δg(γ̂) = −∑
c∈C φc(x

∗,γ̂
c );

7 if δg(γ̂) > 0 then γmax = γ̂, else γmin = γ̂;
8 Decode x̂i = argmaxxi

b�,γ̂i (xi);
9 If x̂ is feasible, and

∑
c∈C θc(x̂c) � fmax;

10 Then x∗ = x̂, fmax =
∑

c∈C θc(x̂c);
11 until |γmin − γmax| < ε or δg(γ̂) = 0;

2012; Meshi and Globerson 2011). However, these methods
are often slower than belief propagation (BP) on non-smooth
objectives, e.g. Max-Product Linear Programming (MPLP)
(Sontag, Globerson, and Jaakkola 2011). For the best perfor-
mance in practice we use BP on non-smooth objectives to
approximately compute θ̃

�2.

Reparametrization Update Rules For a fixed γ, (10) be-
comes a standard dual MAP inference problem. Thus we pro-
pose a coordinate descent belief propagation scheme that is a
variant of MPLP (Globerson and Jaakkola 2007) to optimize
over (13). In each step, we make θ̃c(xc) and θ̃s(xs), s ≺ c
for some c ∈ C flexible and the others fixed (s ≺ c denotes
s ∈ {s′|s′ ∈ C, s′ ⊂ c, �t′, s.t. s′ ⊂ t ⊂ c}), using bγc (xc)
defined in (12), the sub-optimization problem becomes

min
θ̃γ
c ,θ̃

γ
s

max
xc

bγc (xc) +
∑
s≺c

max
xs

bγs (xs), s.t. θ̃ ∈ Λ(θ). (14)

Fortunately, a closed-form solution of (14) exists as follows,

bγ,�s (xs) = max
xc\s

[
bγc (xc) +

∑
s′≺c

bγs′(xs′)
]
/|{s′|s′ ≺ c}|,

bγ,�c (xc) = bγc (xc) +
∑
s≺c

bγs (xs)−
∑
s≺c

bγ,�s (xs), (15)

θ̃∗s(xs) = bs(xs)+γφs(xs), θ̃
∗
c (xc) = bc(xc)+γφc(xc).

We iteratively update θ̃c(xc) and θ̃s(xs) to θ̃∗c (xc) and
θ̃∗s(xs), s ≺ c for all c ∈ C in order to approximately op-
timize θ̃

�
.

By Proposition 2, we can apply (approximate) projected
sub-gradient descent to optimize g(γ). However, it is known
that sub-gradient descent is very slow—usually with a con-
vergence rate of O(1/ε2). The next proposition will enable
us to optimize g(γ) much more efficiently:
Proposition 3. Let γ∗ = argminγ g(γ). For any γ � 0, we
have that (1) if δg(γ) � 0, then γ � γ∗; (2) if δg(γ) � 0,
then γ � γ∗.

2Detailed comparison is provided in the supplementary file.
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Algorithm 2: BP for K constraints
input : G = (V,C); θc(xc), c ∈ C;

φk
c (xc), k ∈ K, c ∈ C; γ, γ0, k ∈ K, ε.

output : x∗.
1 Initialize θ̃ = θ,γ = 0, fmax = −∞;
2 repeat

3 For c ∈ C, update θ̃c(xc) and θ̃s(xs) as (15);
4 for k ∈ K do

5 Repeat γk = (γmin
k + γmax

k )/2;
6 If δhk(γk) < 0, then γmin

k = γk, else
γmax
k = γk;

7 until |γmin
k − γmax

k | � ε;
8 x̂i = argmaxxi

[θ̃i(xi) +
∑K

k=1 γiφi(xi)];
9 If x̂ is feasible and

∑
c∈C θc(x̂c) > fmax;

10 Then x∗ = x̂, fmax =
∑

c∈C θc(x̂c);

11 until Dual Decrease less than 1e− 6;

Proposition 3 allows us to determine if a given γ is greater
or less than the unknown γ∗, which determines the search
direction when optimizing g(γ). Thus given search boundary
γmin and γmax, we can use a binary search procedure in Algo-
rithm 1 to determine the optimal γ∗. Figure 1 illustrates one
iteration of Algorithm 1.

Decoding and Initializing We decode an integer solution
by x̂i = argmaxxi

b∗,γi (xi) due to Assumption 1. In practice,
we initialize γmin = 0 and γmax = 0.1. If δg(γmax) < 0,
we update γmin = γmax, and increase γmax by a factor of
2. We iterate until we find some γmax s.t. δg(γmax) > 0.
Since binary search takes logarithmic time, performance is
not sensitive to the initial γmax Although our decoding and
initialization scheme is quite simple, it is guaranteed that
Algorithm 1 will return feasible solutions for a quite general
set of constraints:

Proposition 4. For constraints of the form
∑

i∈V φi(xi) � 0,
if the feasible set is nonempty, then with the above initializa-
tion strategy Algorithm 1 must return some feasible x∗.

The approximate b∗,γ is computed via Max-Product Lin-
ear Programming (MPLP)(Sontag et al. 2008). In the compar-
ison, we find that in Algorithm 2 approximate δg(γ) results in
the same solution as exact δg(γ), but with much higher speed.
For projected sub-gradient methods, similar phenomenon are
also observed.

Belief Propagation for K Constraints

With K constraints, optimizing (9) amounts to finding opti-
mal {γk}Kk=1 and their reparametrizations. Naively applying
Algorithm 1 to (9) by iterating through all K constraints can
be expensive; to overcome this, we use coordinate descent to
optimize over (9). Fixing all θ̃ and γ except for a particular
γk, the sub-optimization becomes

min
γk�0

hk(γk) =
∑
c∈C

max
xc

[
θ̃c(xc)−

∑
k′∈K

γk′φk′
c (xc)

]
. (16)

Similar to g(γ) for one constraint, the sub-gradient of hk(γk)
can be computed via:

δhk(γk) = −
∑
c∈C

φk
c (x̂c), (17)

x̂c = argmax
xc

[θ̃c(xc)−
∑
k′∈K

γk′φk′
c (xc)].

Thus the sub-problem (16) can be solved via a binary search
in Algorithm 2, which is a variant of Algorithm 1. When
updating reparametrizations, the reparametrizations updating
scheme for one constraint can be directly applied. As a result,
we run one iteration of BP to update θ̃ and then update γ by
binary search. Both updates result in a decrease of the dual
objective, and thus the proposed algorithm will produce an
convergent sequence of dual values. The following proposi-
tion provides the condition under which Algorithms 1 and 2
obtain exact solutions:
Proposition 5. Let θ̂ and γ̂ be the solution provided by
Algorithm 2 or 1. The solution is exact if (1) ∃x̂, s.t. ∀c ∈
C, x̂c ∈ argmaxxc

[θ̂c(xc)+
∑K

k=1 γ̂kφ
k
c (xc)], and (2) ∀k ∈

K, γ̂k
∑

c∈C φk
c (x̂c) = 0.

Note that the condition takes into account the functions
from the constraints φk

c (x̂c), which is different from the result
for standard MAP inference problems. Furthermore, when
exact solutions are not attained, the gap between dual optimal
and true MAP can be estimated by the following proposition.

Proposition 6. Let θ̂ and γ̂ be the solution provided by
our algorithm. If there exists some feasible x̂, s.t. x̂c ∈
argmaxxc

[θ̂c(xc) +
∑K

k=1 γ̂kφc(xc)], then the integral-
ity gap of the proposed relaxation (7) is less than
−∑K

k=1 γ̂k
∑

c∈C φk
c (x̂c).

Experiments

We consider four applications: foreground detection, image
reconstruction, diverse M-best solutions, and quadratic knap-
sack. We compare against four competitors: Lim’s Method
(Lim, Jung, and Kohli 2014), Alternating Directions Dual
Decomposition (AD3) (Aguiar et al. 2011), the commer-
cial optimizer CPLEX, and the approximate projected sub-
gradient method, which is a byproduct of Proposition 2 and
is often very slow. For Lim’s cutting-plane method (Lim,
Jung, and Kohli 2014), we have two variants. One version re-
quires exact solutions, and we use branch and bound methods
by Sun et al. (2012) to exactly solve the series of MAP in-
ference problems.3 Another version works on the relaxed
problem (7), and we use the belief propagation scheme
in (15) inside the cutting-plane scheme. The former is re-
ferred to as Lim and the latter as Lim-Relax. To implement
the approximate projected sub-gradient method, we sim-
ply replace the update scheme for γ in Algorithm 1 with
γt+1 = (γt + α δg(γt)

t‖δg(γt)‖2
)+, where (·)+ denotes projection

to the non-negative reals. The maximum number of iterations
for sub-gradient descent is 200 and α = 10. We use the AD3

3For submodular potentials, using graph-cuts instead of branch
and bound would be significantly faster.
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Figure 2: Foreground detection results. Left two images:
Background image and image with foreground object. Right
two images: Results from MRF without and with constraint
(3). Bottom: Running time vs. grid size (CPLEX ran out of
memory for all n � 20).

package released by its authors, and set η = 0.1 according
to the example provided in the package. All other methods
except CPLEX are implemented in single-threaded C++ with
a MATLAB mex interface. For CPLEX, we use the interior
point algorithm. Since the solution for the relaxed problem
(7) may not be an integer, an integer solution is decoded
via x̂i = argmaxxi

μ∗(xi), where μ∗ = [μ∗
c(xc)]c∈C is the

solution from CPLEX.

Evaluation We are primarily interested in the speed and
accuracy of the proposed algorithms. Thus we compare the
run time and the normalized decoded primal. Letting x̂ be a
decoded solution from our methods (or its competitors), the
normalized decoded primal is defined as∑

c∈C

θc(x̂c)/
∑
c∈C

max
xc

[θ̃∗c (xc)−
∑
k∈K

γ∗
kφ

k
c (xc)], (18)

where θ̃
∗

and γ∗ is a solution of (9). Experimentally, since the
dual optimal might not be attained, we choose the minimum
dual objective value among all algorithms as the dual optimal
value in (9).

Foreground Detection

Here the task is to distinguish a foreground object from the
reference background model. The problem can be formulated
as a MAP inference problem of the form

∑
i∈V θi(xi) +∑

{i,j}∈E θij(xi, xj). Since the foreground object is often
assumed to be sparse, we add constraint (3) with b = 1300.
We tested on the Change Detection dataset (Goyette et al.
2012). Potentials θi and θij are obtained as in (Schick, Bauml,
and Stiefelhagen 2012).

The example given in Figure 2 shows that the constraint
(3) significantly reduces false positives. For this problem,
Lim and Lim-Relax are equivalent. The running times are
19s for our method, 55s for sub-gradient, 33s for Lim et
al.’s method, 24s for AD3 and 73.9 seconds for CPLEX on
a 320 × 240 image. All methods find the optimal solution
of the relaxed problem. Furthermore, our method generates

10 20 30 40 50
n
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5000

Ti
m

e

10 20 30 40 50
n
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0.99
1.00
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im

al

Ours Sub-gradient Lim Lim-Relax

Figure 3: Image reconstruction results. Left: Part of the
ISO12233 Chart with noise; reconstruction results without
constraints; and reconstruction results from our algorithm
with constraints (19). Right: Running time and normalized
decoded primal vs. grid size n (i.e., Decoded Primal/Dual
optimal vs. n; higher is better).

the best decoded integer solution, followed by Lim et al.’s
method and CPLEX. The sub-gradient method and AD3 do
not find a feasible integer solution.

To further investigate, we generate synthetic data at dif-
ferent scales. Several n × n grids are generated (n ∈
{10, 20, . . . , 50}). b in the constraints (3) is set to n2/10.
All unary and pairwise potentials are sampled from [0, 1]
uniformly. For each n, we use 6 different random seeds to
generate instances. Furthermore, to tighten the LP relaxation,
square clusters with all-zero potentials are added as in Fromer
and Globerson (2009). Running time comparison is shown
in Figure 2, which shows that our method performs the best
in terms of speed. In terms of solution quality, all algorithms
except AD3 (Aguiar et al. 2011), converge to exact solutions
for 26 problems out of 30. The AD3 solver often failed to
obtain feasible solutions, which might be caused by the fact
that its LP relaxation (Eq. (5) in Aguiar et al. (2011)) is looser
than that of other methods.

Image Reconstruction

The task here is to reconstruct an image from a corrupted
measurement. The problem can be formulated as a MAP
inference problem (Li 2009),∑

i∈V

[−(xi − di)
2] + λ

∑
{i,j}∈E

[−(xi − xj)
2],

where di is the observed grayscale value of pixel i, E is the
edge set, and each xi takes one of 16 states. As in Maleh,
Gilbert, and Strauss (2007), we use the constraint∑

{i,j}∈E

‖xi − xj‖0 � b (19)

to smooth the image. Here λ = 0.25, and b = 3000.
An example reconstruction result is shown in Figure 3.

AD3 is unable to handle constraints like (19), and is ex-
cluded. The running time for our algorithm is 338s, 546s for
Lim-Relax, 680s for CPLEX, and 2051s for sub-gradient.
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Figure 4: Left: Running time comparison for 100-Best so-
lutions side-chain problems (Yanover, Meltzer, and Weiss
2006). For each method m we report fastest method

m , so that the
fastest method always has a normalized running time of 1.0.
Right: Average normalized decoded primal vs. average run-
ning time for the series of constrained inference problems
with K = 1, 2, 3, 4 constraints in the diverse M-best solu-
tions problem. Error bars are standard derivations.

Lim et al.’s method did not return a feasible solution after 1
hour. All methods attain similar dual objectives (the relative
error is within 0.07%). For the decoded primal, our method
and sub-gradient yield similar results (the relative error is
within 0.15%). The decoded primal of Lim-Relax is about
1.2% larger than ours, and CPLEX fails to obtain a feasible
solution.

To further investigate, we test on synthetic data as in the
previous Section with constraint (19). CPLEX ran out of
memory for all n ≥ 20, thus its results are excluded. Other
algorithms converge to similar dual objective values (with
a relative error less than 0.23%), and thus we compare run-
ning times and normalized decoded primals in Figure 3. Our
method always outperforms the others in running time. For
solution quality, our method attains a similar decoded pri-
mal to the sub-gradient method, and the other two methods
converge to worse decoded primals.

Diverse M-best Solutions problem

Diverse M-best Solutions (Batra et al. 2012) is a variant of
the M-best solutions problem in which we require that the �0
norm of the difference between the mth and the top (m− 1)
solutions to be larger than a threshold b � 1 (setting b = 1
recovers the original M-best solutions problem).

Here we consider 30 inference problems from the side-
chain dataset (Yanover, Meltzer, and Weiss 2006). As in
Fromer and Globerson (2009), we add dummy higher order
clusters to tighten the LP relaxation for MAP inference. We
use Spanning Tree Inequalities and Partitioning for Enumer-
ating Solutions (STRIPES) (Fromer and Globerson 2009),
where the M-best solutions problem is approached by solving
a series of second-best-solution problems. For each second-
best problem, one inequality constraint (as in (6)) is added to
ensure that the solution differs from the MAP solution. We
refer to Fromer and Globerson (2009) for details.

Batra (2012) provides another fast M-best solver via be-
lief propagation, though their approach does not handle the
added higher order clusters. Lim, Jung, and Kohli (2014)
is proved to be slow for M-best solutions problems in the
side-chain dataset (it didn’t finish after several days). AD3
is also excluded, as it is unable to handle constraints like (6).

Among all 30 side-chain problems, CPLEX fails for two, and
all other methods find the top 100 solutions. A Running time
comparison is shown in Figure 4, from which we can see our
method achieves the best running time for 28 problems, and
the second best on two.

Again we test on synthetic data and again dummy higher-
order clusters are added to tighten the LP relaxation. We
consider the diverse 5-best solutions problem with parameter
b = 12. In contrast to M-best problems, constraints (5) can
be handled by AD3. However, the addition of higher order
clusters significantly increases the running time of AD3, and
thus we only consider n = 10. The diverse 5-best solutions
problem reduces to a series of constrained inference problems
with K many constraints where K = 1 to 4. The running time
and solution quality is compared in Figure 4. Our method
always outperforms the others in speed, and achieves solution
quality similar to sub-gradient and Lim-Relax. The method
from Lim, Jung, and Kohli (2014) is excluded, since it did not
return a result after 24 hours. CPLEX often failed to obtain a
feasible decoded solution and is excluded from Figure 4.

Quadratic Knapsack Problem

We consider the Quadratic Knapsack Problem (QKP) with
multiple constraints with 40k, 160k, 360k variables. Vari-
ables are organized as an n × n grid, with entry cij > 0
only if i and j are adjacent in the grid (we consider i to
be adjacent with itself). All non-zero cij are sampled from
[0, 1] uniformly. In each problem, 5 constraints are added,
where wk

i are sampled from [0, 1], and bk are sampled from
[
∑

i∈V wk
i /2,

∑
i∈V wk

i ]. We use 6 different random seeds to
generate the data.

In QKP problems, Lim and Lim-Relax are equivalent, thus
we only report Lim. From Table 5, our method usually per-
forms the best in speed. In terms of the normalized decoded
primal, our method performs the best in 2 cases, and second
best in 1 case. CPLEX and AD3 often fail to find a feasible
decoded integer solution. Typical objective plots are shown in
Figure 5. The scalability of the proposed approach w.r.t. the
number of constraints K is also investigated by adding differ-
ent numbers of constraints to QKP problems. Typical results
are shown in Figure 5.

Conclusion and Future Work

Solving constrained combinatorial problems by MAP infer-
ence is often achieved by introducing an extra potential func-
tion for each constraint, which results in very high order
potential functions. We presented an approach to solve con-
strained combinatorial problems using belief propagation in
the dual without increasing the order, which not only reduces
the computational complexity but also improves accuracy.

Currently the theoretical guarantees for our local decoding
scheme are still loose, though in practice our simple scheme
often provides feasible solutions with moderate accuracy. In
our future research, we plan to provide tighter theoretical
guarantees for our local decoding scheme, and provide better
decoding schemes for multi-constraint problems.
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Figure 5: Experimental results on QKP. Left plot: Decoded primal (dashed) and dual (solid) vs. time for QKP with 160K variables.
AD3 and CPLEX do not decode a primal in every iteration, and plots for their primal are excluded . Right plot: Typical running
time vs. number of constraints K for QKP with 160K variables. Bottom table: Comparison of running time and normalized
decoded primal on QKP.
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