
Influence of weak-layer heterogeneity on snow slab avalanche
release: application to the evaluation of avalanche release depths

Johan GAUME, Guillaume CHAMBON, Nicolas ECKERT, Mohamed NAAIM
Irstea, UR ETGR, Saint-Martin-d’Hères, France

E-mail: johan.gaume@gmail.com

ABSTRACT. The evaluation of avalanche release depths constitutes a great challenge for risk assessment
in mountainous areas. This study focuses on slab avalanches, which generally result from the rupture of a
weak layer underlying a cohesive slab. We use the finite-element code Cast3M to build a mechanical
model of the slab/weak-layer system, taking into account two key ingredients for the description of
avalanche release: weak-layer heterogeneity and stress redistribution via slab elasticity. The system is
loaded by increasing the slope angle until rupture. We first examine the cases of one single and two
interacting weak spots in the weak layer, in order to validate the model. We then study the case of
heterogeneous weak layers represented through Gaussian distributions of the cohesion with a spherical
spatial covariance. Several simulations for different realizations of weak-layer heterogeneity are carried
out and the influence of slab depth and heterogeneity correlation length on avalanche release angle
distributions is analyzed. We show, in particular, a heterogeneity smoothing effect caused by slab
elasticity. Finally, this mechanically based probabilistic model is coupled with extreme snowfall
distributions. A sensitivity analysis of the predicted distributions enables us to determine the values of
mechanical parameters that provide the best fit to field data.

1. INTRODUCTION
The evaluation of avalanche release depths is of great
importance for all applications related to hazard mapping or
zoning. In particular, avalanche release depths represent a
crucial input ingredient for dynamical runout models
(Barbolini and others, 2000; Naaim and others, 2003) and
are required for implementing statistical–dynamical simula-
tions (Meunier and Ancey, 2004; Eckert and others, 2010). It
has been shown in various studies (Hutter, 1996; Bartelt and
others, 1999; Jamieson and others, 2008) that the outputs of
these models in terms of runout distances and impact forces
are strongly dependent on the release mass, as well as on
other terms, such as friction, deposition and erosion.

It is commonly accepted that dry-snow slab avalanches
are initiated by a shear failure in a weak snow layer (or at a
weak interface) followed by tensile crown failure of the
overlying slab (McClung, 1979; Schweizer and others,
2003). The shear failure is caused by a local loss of cohesion
inside the weak layer, that may be due to (1) a localized
surface loading, such as skiers or explosives (artificial
release), (2) uniform loading due to a new snowfall (natural
release) or (3) changes in the snowpack properties due to
weather changes (natural release).

Most of the existing avalanche release models are based
on the assumption first made by Palmer and Rice (1973) for
an overconsolidated clay and then taken up for snow by
McClung (1979), that a weak spot or shear band, i.e. a zone
of zero shear strength, pre-exists inside the weak layer.
Fracture mechanics is then applied to study the conditions
for shear-band propagation. Based on an energy budget at
the tip of the band, rapid propagation occurs when a critical
length is reached after a phase of slow strain-softening.
Schweizer (1999) produced a complete review of these
fracture mechanics models and gave critical length values as
a function of snow characteristics. More recently, Chiaia and
others (2008) showed that a simple stress failure criterion

from equilibrium equations could also be sufficient to
predict shear-band propagation with good accuracy. Never-
theless, as already noted by Schweizer (1999), the very
concept of a weak spot is questionable since, even if we can
imagine how local weak zones could appear (e.g. around
rocks, where the snow depth is reduced and thus the
temperature gradient is increased), it is probably too
simplistic, in general, to represent the complex heterogene-
ity of weak-layer mechanical properties.

Several studies (Conway and Abrahamson, 1988; Jamie-
son and Johnston, 2001; Birkeland and others, 2004;
Kronholm, 2004; Schweizer and others, 2008; Bellaire and
Schweizer, 2011) have shown that snow mechanical proper-
ties present considerable spatial variability. From field data,
this variability is generally described as following Gaussian
distributions with spatial correlations. Hence, the concept of
weak spot may be replaced by mechanical models that take
into account spatial stochastic processes to represent the
heterogeneity. Such models would explain not only failure
initiation in weak zones, but also fracture arrest in stronger
zones (Schweizer, 1999). Recently, several studies have
attempted to include this heterogeneity in mechanical
models. These studies can be classified as follows, according
to the numerical method used:

1. Fiber bundle models (FBM) are simple statistical fracture
models that are well adapted for representing spatially
heterogeneous systems, including possible time-depend-
ent effects, such as sintering. Using this framework,
Reiweger and others (2009) model the weak snow layer
as a discrete set of parallel brittle–elastic fibers. Spatial
variability is accounted for by assigning each fiber an
initial strength taken within a Weibull distribution.
Despite the simplicity of the model, these authors are
able to quantitatively reproduce laboratory shearing
experiments on homogeneous snow samples. However,
complex stress redistribution effects from elasticity of the
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slab cannot be taken into account in such models, which
are therefore unable to reproduce full-scale avalanche
release.

2. Cellular-automata models (CAM) consist of a regular grid
of cells, characterized by a state that can change over
time and as a function of the state of neighboring cells.
Fyffe and Zaiser (2004, 2007) and Kronholm and
Birkeland (2005) applied such an approach to slab
avalanche release with a heterogeneous shear strength of
the weak layer represented by Weibull or Gaussian
distributions. Using neighboring elements, their models
account for stress redistribution between weak and
strong regions. They also included mode II (shear)
rupture of the weak layer with a strain-softening law,
and mode I (tensile) rupture of the slab, as did Failletaz
and others (2004). These studies demonstrated the
influence of spatial variability characteristics (variance,
nugget effect, etc.) on release depth distributions. Fyffe
and Zaiser (2007) were also able to reproduce (under
certain conditions) release depth distributions following
power laws, as in field studies (Rosenthal and Elder,
2002; McClung, 2003; Failletaz and others, 2004).
However, stress elastic redistribution effects are over-
simplified in these models, and their applicability is
limited to the case of a shear strength correlation length
lower than the slab depth.

3. Finite-element models (FEM) rely on the resolution of the
complete mechanical equations of the problem. One of
the main advantages of FEM compared to CAM is that
they are able to capture large-scale stress redistribution
effects due to elasticity. FEM has been successfully
applied to modeling the mechanical response of
sandwich specimens, including weak-snow layers with
homogeneous properties (e.g. Bader and Salm, 1990;
Stoffel, 2005; Mahajan and Joshi, 2008; Mahajan and
others, 2010). However, only a few studies coupled FEM
with a stochastic representation of the spatial variability.
Recently, such a model was introduced by Griffiths and
Fenton (2004) to study soil stability. To our knowledge,
the same type of approach has not yet been undertaken
for snow.

In addition, some recent studies (Johnson and others, 2004;
Van Herwijnen and Heierli, 2009) relying on field data show
that the shear failure of the weak layer tends to be
systematically accompanied by a normal collapse. These
authors argued that slope-normal and slope-parallel dis-
placements occur simultaneously during release. Anticrack
analytical models have been developed and have proved
capable of reproducing these data (Heierli and Zaiser, 2008;
Heierli and others, 2008). However, the issue of the influence
of normal collapse on avalanche release is still a matter of
debate. Some authors (Jamieson and Schweizer, 2000;
Johnson and others, 2004) suggest that the simultaneous
occurrence of weak-layer collapse and shear failure may
facilitate fracture propagation due to bending effects.
McClung (2011), however, showed that a model that does
not account for slope-normal failure can reasonably repro-
duce critical length measurements obtained in field saw-cut
tests. Hence, he argued that the slope-parallel propagation is
very little influenced by the interaction between slope-
normal displacement and stress. In the present study, the
effect of normal collapse is not considered.

Here we use a finite-element method to build a
mechanically based probabilistic model of the slab/weak-
layer system, taking into account the two key ingredients:
the redistribution effects by elasticity of the slab and the
heterogeneity of weak-layer mechanical properties. The
objective of this study is the evaluation of avalanche release
depth statistical distributions, distributions that could be later
coupled to propagation models for hazard mapping and
zoning. In Sections 2 and 3, we present the system and
validate the model using the well-known weak-spot case.
This validation is also used to highlight a characteristic length
of the system associated with the elastic redistribution of
stresses. In Section 4, results obtained with a realistic spatial
heterogeneity based on field data are presented. We analyze,
in particular, how slab stability depends on slab depth and on
the spatial correlation length of weak-layer properties.
Finally, in Section 5, the obtained release depth distributions
are combined with snowfall extreme value distributions and
compared with field data of avalanche crown depths.

2. MECHANICALLY BASED PROBABILISTIC MODEL
2.1. Objectives
As mentioned above, the objective of the model developed
in this study is the evaluation of probability distributions of
avalanche release depths, in particular in the context of
absent or scarce data. More precisely, the aim is to produce
a tool capable of predicting release depth distributions that
are meaningful over relatively long timescales (typically
several decades), and that could be used as input for hazard
mapping procedures, such as statistical–dynamical ap-
proaches (Keylock and others, 1999; Eckert and others,
2008, 2010). Hence, the objective is not to develop a
complete mechanical model of slab avalanche release
accounting for all the complex processes at play. Both the
geometry and the mechanical behavior of the system are
greatly simplified, to reduce the number of poorly known
parameters, while keeping the ingredients essential to
describe the mechanics of slab release. Moreover, to be
compared with field data, the predictions of this model then
need to be coupled with a description of snowfall
distributions, as shown by Gaume and others (2012). In
the present paper, we focus only on the formulation and
validation (numerical consistency) of the mechanical part of
the model. In Section 5, however, the sensitivity of the
predicted distributions (after coupling with snowfalls) to
several mechanical parameters is presented.

2.2. Formulation of the model
The model is based on the finite-element code Cast3M
(Verpeaux and others, 1988). The resolution procedure used
(‘Pasapas’; Charras and Di Paola, 2011) enables the
consideration of nonlinear models with an implicit inte-
gration scheme based on the weighted-residuals method.
The momentum conservation equations, including inertial
terms, are solved under the small deformations hypothesis:

M � €u þD � _u þ divð�Þ ¼ F , ð1Þ
ee ¼ 1

2
gradðuÞ þ gradtðuÞ� �

, ð2Þ

with M the mass matrix, u the node displacement vector, �
the stress tensor, ee the deformation tensor, F the integrated
force vector at nodes and D the damping matrix. In our
study, the matrix D is taken as zero.

Gaume and others: Slab avalanche release depth424

https://doi.org/10.3189/2013JoG12J161 Published online by Cambridge University Press

https://doi.org/10.3189/2013JoG12J161


The system considered is a two-dimensional (plane stress
conditions) uniform slope inclined at an angle �, of length
L ¼ 50m (Fig. 1). The x-axis is in the slope-parallel direction
and the z-axis is orthogonal to the slope. The system consists
of a slab of thickness h overlying a weak layer, modeled as
an interface of zero thickness. The mesh is composed of 100
elements in the slope-parallel direction, x, and six elements
in direction z. We used quadrilateral elements for the slab
(QUA4: four nodes with two degrees of freedom per node)
and joint elements for the weak-layer interface (JOI2: four
nodes with two degrees of freedom per node). We checked
that the mesh resolution is fine enough not to influence the
results presented (Section 3.1).

The boundary conditions applied to the slab are as
follows: at the upper end of the slope (BC1) a shear stress,
�xz ¼ ��gðz þ hÞsin �, is applied in order to avoid bending
of the slab linked to finite-size effects; at the lower end (BC2),
a nil displacement in the slope-parallel direction, x, is
imposed. The upper surface of the slab is free and the base is
subjected to an interface law, i.e. a law relating shear stress to
tangential displacement, which represents the weak layer.

2.3. Constitutive relationships
Snow is a very complex material whose mechanical
behavior is still not fully understood. In the present model,
only the ingredients necessary to produce realistic instability
of the system, namely strain-softening of the weak layer and
elasticity of the slab, are taken into account. Table 1
summarizes the values of the different mechanical par-
ameters used in this study.

Weak layer
Various studies (McClung, 1979; Föhn and others, 1998;
McClung and Schweizer, 2006) have shown that weak snow

layers behave as strain-softening (or quasi-brittle) materials.
The softening is caused by the break of ice bridges at the
microscopic scale. In existing mechanical models (McClung,
1979; Baz̆ant and others, 2003; Fyffe and Zaiser, 2004, 2007;
Mahajan and Joshi, 2008; Mahajan and others, 2010; Gaume
and others, 2011), weak layers are generally characterized by
a rupture displacement, up, and a critical softening displace-
ment, �. The pre-peak behavior is considered to be elastic,
but stiffness values are very difficult to obtain, since these
layers are generally very thin and unstable.

In the present study, the weak layer is modeled as a
displacement-softening interface with a simple, linear
piecewise relationship between shear stress, � , and tangen-
tial displacement, u (Fig. 2). The value of the shear stress
peak, �p, is governed by the Mohr–Coulomb criterion:
�p ¼ c þ �n tan�, with c the weak-layer cohesion, �n the
normal stress and � the friction angle. The friction angle is
chosen as constant, � ¼ 308 (De Montmollin, 1978; Van
Herwijnen and Heierli, 2009), and the cohesion, c, is
spatially heterogeneous, as described below. The tangential
stiffness of the weak layer during the pre-peak phase is given
by ks ¼ �p=up (Fig. 2). After the peak, the shear stress
decreases (shear softening), until reaching a residual value,
�r ¼ �n tan�. This residual value corresponds to the situ-
ation where ice bridges are completely broken and only the
friction between the slab and the underlying layer remains.
Following McClung (1977), both the characteristic peak and
softening displacement, up and �, are taken equal to 2mm
(Baz̆ant and others, 2003; Fyffe and Zaiser, 2004, 2007).
Hence, the displacement to reach the residual stress
ur ¼ up þ � ¼ 4mm. Note that, according to recent studies
(McClung, 2009, 2011), the softening displacement, �,
under high loading rates tends to be smaller than the value
assumed in this study, 0.1–0.3mm. However, as shown

Table 1. Mechanical parameters used in this study and typical ranges of variation

Parameter Typical value Range Source

Slab density, � 250kgm�3 100–300kgm�3 Schweizer (1999)
Slab Young’s modulus, E 1MPa 0.2–12MPa Schweizer (1999)
Slab Poisson’s ratio, � 0.2 0.1–0.4 Schweizer (1999)
Slab viscosity, � 108 Pa s 0:2–5� 108 Pa s Mellor (1975); Camponovo and Schweizer (2001)
Weak-layer cohesion, c 1 kPa 0.5–2.5 kPa Föhn and others (1998); Jamieson and

Johnston (2001)
Weak-layer friction angle, � 308 20–408 De Montmollin (1978); Van Herwijnen and

Heierli (2009)
Weak-layer displacement to failure, up 2mm 1–10mm McClung (1977)
Weak-layer residual displacement, ur 4mm 1–10mm McClung (1977)
Correlation length, 	, of weak-layer cohesion variations 0.5–40m 0.5–10m Schweizer and others (2008)
Coefficient of variation, CV ¼ �c=hci 30% 15–50% Schweizer and others (2008)

Fig. 1. Geometry of the system: a weak-layer interface under a cohesive slab of depth h.
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below, the precise value of this parameter does not influence
the outcomes of our model.

Slab
At high loading rates, such as those characteristic of slab
avalanche release, laboratory experiments (Mellor, 1975;
McClung, 1977; Narita, 1980; Navarre and others, 1992;
Schweizer, 1998) and field measurements (Roch, 1966; De
Montmollin, 1978; Jamieson and Johnston, 1990; Föhn and
others, 1998; McClung and Schweizer, 2006) have shown
that cohesive snow behaves as a brittle–elastic material. In
the present study (as explained in Section 2.6) the possible
tensile rupture of the slab is not directly modeled. Therefore,
the mechanical behavior of the slab is modeled by an
isotropic elastic law:

ee ¼ 1
E
�� �

E
tr �ð Þ � �ð Þ, ð3Þ

where E is the Young’s modulus and � the Poisson’s ratio.

The following values have been used: E ¼ 1MPa, � ¼ 0:2
and � ¼ 250 kgm�3 for the slab density. In addition, in order
to stabilize the computations, it has been necessary to
slightly enrich the above constitutive law by the addition of a
viscous term. All viscosity values within the range 104–
109 Pa s have been found to yield satisfactory results. We
retain the value � ¼ 108 Pa s, which is in agreement with real
snow viscosity measurements (Mellor, 1975; Camponovo
and Schweizer, 2001; Schweizer, 1999).

2.4. Spatial heterogeneity
The spatial heterogeneity of the weak layer is modeled
through a stochastic distribution of cohesion, c. Following
Jamieson and Johnston (2001) and Kronholm and Birkeland
(2005), we consider a Gaussian distribution of average hci
and standard deviation �c , with a spherical covariance
function CðdÞ:

CðdÞ ¼ �2
c 1� 3

2
d
	
þ 1

2
d
	

� �3
" #

I 0, 	½ �ðdÞ, ð4Þ

where d is the distance between two points, 	 is the spatial
correlation length and the IAðdÞ function is 1 if d 2 A, 0
otherwise. The correlation length, 	, represents the distance
over which the cohesion values are significantly correlated.
Note that in the present model, no nugget effect is
considered (i.e. CðdÞ ! 0 when d ! 0). The effect of the
nugget on avalanche size has been investigated by
Kronholm and Birkeland (2005) using a CAM.

Figure 3 shows examples of cohesion field realizations
with different values of the correlation length, 	. These fields
were generated using the turning bands method (Chilès and
Delfiner, 1999) and we checked that, with the used mesh
size, the obtained empirical covariance functions are in
good agreement with the predictions of Eqn (4) for all values
of 	 investigated. Existing studies are not conclusive on the
typical correlation length scale (Jamieson and Johnston,
2001; Schweizer and others, 2008; Bellaire and Schweizer,

Fig. 3. Left: examples of the heterogeneity of the cohesion for different values of the correlation length, 	. Right: comparison between the
empirical normalized covariance function of the cohesion fields (computed from 100 independent realizations: circles) and the theoretical
expression given by Eqn (4) (lines).

Fig. 2. Weak-layer constitutive law.
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2011) relevant for weak-snow layers. Schweizer and others
(2008) recommended spacing snow pits at least 10m apart
in order to have independent results, thus suggesting that the
correlation length, 	, varies approximately within the 0.5–
10m range. In our study, 	 was varied between 0.5 and 40m
(the lower limit, 	 ¼ 0:5m, being imposed by our mesh
size), but, due to finite-size effects, only the results with
	 � 10m can be cross-compared (for 	 > 10m, the average
cohesion, hci, begins to evolve with 	). Lastly, the average
cohesion, hci, was taken equal to 1 kPa and cohesion
standard deviation, �c , to 0.3 kPa.

2.5. Loading
Gravity is the only applied external force and the system is
loaded by progressively increasing the slope angle, �, at
constant slab depth until rupture. As will be shown, this
loading procedure is equivalent to a progressive increase of
the slab depth, h, at constant slope angle. The loading curve
is shown in Figure 4. After an initial stage during which
gravity is increased from 0 to 9.81m s�2, the loading is
applied in two phases (Fig. 4).

First, the slope angle is increased from 0 to �1 ¼ �=308
with a fast loading speed of 0.48 per time-step, since no
failure can occur during this stage (� < �p). The loading
speed is then reduced to 0:048 per time-step until rupture
occurs. We checked that, with this two-phase procedure, the
chosen loading speed values do not influence the results
presented. This simple loading is sufficient to study ava-
lanche releases triggered by a progressive accumulation of
snow. We emphasize that our model is not meant to account
for the slow processes (snow metamorphism, viscous stress
redistributions) active during the formation of the snowpack.

2.6. Rupture mechanism
Avalanche releases observed in our simulations are always
induced by a local shear rupture inside the weak layer, which
then propagates to both extremities of the slope. With
reference to real avalanche releases, this corresponds to the
case where the weak-layer heterogeneity is not sufficient to
induce a tensile rupture within the slab, and slab rupture is
thus triggered by morphological features, such as ridges,
slope breaks, rocks, trees or other defects within the slab. We
also performed simulations using a brittle–elastic constitutive
law for the slab. These simulations showed that for a realistic
tensile strength value (�t ¼ 2 kPa; Mellor, 1975; Jamieson and
Johnston, 1990; Sigrist, 2006), effectively no tensile failure
occurred within the slab (the slab remained elastic) and the
rupture mechanism was identical to that reported in this
study. Note, however, that other sets of parameters may lead
to tensile ruptures within the slab, which constitutes the
subject of a further study (Gaume and others, 2011).

2.7. Avalanche release criterion
We consider that an avalanche occurs in our simulations
when the following kinematic release criterion is met:

Release , vi
x � N � vxi,m ¼ N

m

Xm
k¼1

vi�k
x : ð5Þ

Hence, an avalanche is detected at time-step i when the
velocity, vi

x , of any node of the weak layer is higher than N
times the average velocity recorded over m previous time-
steps, vxi,m. Values of N ¼ 10 and m ¼ 10 were chosen in
order to ensure that the criterion is not sensitive to small

velocity variations triggered by potential precursor events
(Fig. 4), which could lead to incorrect release angle values.

3. MECHANICAL VALIDATION
In this section, the finite-element model presented above is
validated against the classical case of release induced by a
single weak spot. For this simple case, analytical solutions
can be derived, following the approach of Chiaia and others
(2008). The interaction between two weak spots is also
considered, in order to illustrate the influence of an
important characteristic length of the system that emerges
from the analysis.

3.1. A single weak spot
Analytical solution
Here we follow the approach of Chiaia and others (2008),
but considering a nonzero residual stress inside the weak
spot due to friction (Fig. 2). Let us consider a weak spot of nil
cohesion (c ¼ 0), half-length a, inside a weak layer of
homogeneous cohesion, c ¼ 1 kPa, underlying a cohesive
slab of depth h (Fig. 5). The equilibrium equation in the
slope-parallel direction integrated over the slab depth is

@

@x

Z 0

�h
�xx dz � � ¼ ��g, ð6Þ

with �g ¼ �gh sin � the body weight shear stress, �xx the
normal stress in the slope-parallel direction and � the shear
stress in the weak layer. The shear stress, � , is related to the
tangential displacement, u, according to the interface con-
stitutive law (Fig. 2). Two cases have to be distinguished:
� < � for which the shear stress, � , depends on the
tangential displacement, u, both inside and outside the
weak spot; and � > � for which the shear stress, � , depends
on the tangential displacement, u, only outside the weak
spot.

Case 1: � < �
For � < �, the shear stress is �ðxÞ ¼ �pu=up outside the weak
spot (jxj > a) and �ðxÞ ¼ �ws ¼ �ru=up inside the weak spot
(jxj < a). Equation (6) and the linear elastic behavior of the
slab lead to

@2u
@x2

� u

�ðxÞ2 ¼ � �g

E 0h
, ð7Þ

Fig. 4. Applied loading curve. The time-step (t.s.) is 0.1 s. The blue
curve represents a typical velocity evolution showing a marked
precursor event.
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with E 0 ¼ E=ð1� �2Þ (plane stress hypothesis) and

�ðxÞ ¼ �ws ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E 0hup
�r

s
for jxj � a, ð8Þ

�ðxÞ ¼ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E 0hup
�p

s
for jxj > a: ð9Þ

Considering, in addition, the continuity of displacement and
velocity at the interface between the weak layer and the
weak spot, and the fact that the slope-parallel normal stress,
�xx , vanishes far away from the weak spot, displacement and
stress profiles can be determined by integrating Eqn (7).

Outside the weak spot (jxj > a):

uðxÞ ¼ �2�g

E 0h
1� re

�jxj�a
�

� �
�ðxÞ ¼ �g 1� re�

jxj�a
�

� �
:

8><>: ð10Þ

Inside the weak spot (jxj � a):

uðxÞ ¼ �2
ws�g

E 0H
1þ r 0 
ex=�ws þ �e�x=�ws

� �h i
�ðxÞ ¼ �g 1þ r 0 
ex=�ws þ �e�x=�ws

� �h i
,

8><>: ð11Þ

with expressions for the constants r, r 0, 
 and � given in
Appendix A.

Case 2: � > �
If � > �, the shear stress inside the weak spot (jxj � a) meets
the frictional criterion and thus no longer depends on
displacement, u: �ðxÞ ¼ �r ¼ �N tan�. Equation (6) then
becomes

@2u
@x2 ¼ �r � �g

E 0h
, ð12Þ

for jxj � a and Eqn (7) remains valid for jxj > a. Similarly to
the previous case, the displacement and stress profiles can
be determined.

Outside the weak spot (jxj > a):

uðxÞ ¼ �2�g

E 0h
1� r2e�

jxj�a
�

� �
�ðxÞ ¼ �g 1� r2e�

jxj�a
�

� �
:

8><>: ð13Þ

Inside the weak spot (jxj � a):

uðxÞ ¼ �2�g

E 0h
1
2
�

a
r2

x
�

� �2
� a

�

� �2
	 


þ 1� r2

� �
�ðxÞ ¼ �r,

8><>: ð14Þ

with the expression for the constant r2 given in Appendix A.
We note that both the shear stress and the displacement

present decreasing exponential profiles outside the weak
spot (Eqns (10) and (13)). The characteristic length associ-
ated with these exponential decreases is the parameter �,

which depends both on the slab and weak-layer character-
istics (Eqn (9)). Far from the weak spot (jxj � a � �), the
shear stress tends to its body weight value, �g, and the
displacement tends to u ¼ up�g=�p (elastic behavior).

The shear band becomes unstable when the maximum
stress, �max, at jxj ¼ a reaches �p ¼ c þ �Ntan�. Using
Eqn (13), the theoretical critical stress �g, s for weak spot
propagation can thus be expressed as

�g, s ¼ 1

1þ a
�

c þ �N tan� 1þ a
�

� �h i
: ð15Þ

From this expression, the critical release angle, �r, s, can then
be derived using

�g, s ¼ �gh sin �r, s: ð16Þ

Fig. 5. Geometry of the system with one weak spot of half-length a with nil cohesion.

Fig. 6. Displacement (u) and apparent friction coefficient
(� ¼ �=�n) profiles for a slab depth h ¼ 1m and a weak-spot half-
length a ¼ 4:5m for (a) the case � < � and (b) the case 
 < � < �r,
where �r is the release angle. Symbols: finite-element results (u and
�). Solid curves: analytical model (uth and �th).
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Comparison with simulations
As shown in Figure 6a and b, the overall agreement between
theoretical predictions and FEM numerical results is very
satisfactory, both for � < � and for � > �. In particular, the
stress concentration at the weak-spot tip and the exponential
decrease of stress outside the weak spot are very well
reproduced. Similarly, the displacement profiles, which
present a maximum at the center of the weak spot, are also
well captured. Note, however, that the numerical model
indicates the existence of slight variations with x of the
normal stress, �n, which are not accounted for in the
theoretical analysis.

Figure 7 shows a comparison between the release angles
obtained by the FEM calculations and those predicted by the
stress rupture criterion (Eqns (15) and (16)). Here also, the
agreement between the theory and numerical results is
excellent for all values of weak-spot half-lengths. This
agreement also holds for all tested values of slab depth, h.
Globally, the results shown in Figures 6 and 7 constitute a
validation of the various mechanical ingredients taken into
account in our finite-element model. In particular, these
results prove that the used mesh size is fine enough to
account for cohesion heterogeneities with typical length
scales (in this case, the weak-spot half-length) as small as
0.5m.

3.2. Two weak spots
In order to illustrate the influence of the characteristic
length, �, introduced above, we conducted simulations to
investigate the interaction between two weak spots of length

a separated by a distance d (Fig. 8). Different values of d
were simulated and the effect of this parameter on the
release angle was examined. (Note that for d ¼ 0 the
problem is the same as that presented previously with one
weak spot of half-length a.)

Figure 9 shows the evolution of the release angle as a
function of distance, d . Typical displacement profiles
illustrating the behavior for different values of d=� are also
shown. If the distance between the weak spots is high
compared with � (typically for d=�>	10), then the displace-
ment profiles generated by the weak spots do not interact.
The release thus occurs for the same angle as for the case of
only one weak spot of total length a. If the distance, d ,
between weak spots decreases to values of the same order as
� (i.e. if 1 < d=�<	10), the displacement profile retains a
bimodal shape but the two peaks progressively coalesce. As a
consequence of this interaction, the release angle, �r,
progressively decreases as d decreases. Empirically, the
evolution of �r for d=� > 1 can be adjusted by an exponential
function: �r ¼ �1ð1� �e�d=ðk�ÞÞ. As expected, the values of
�1 and � depend on the slab depth, h, and weak-spot length,
a (�1 
 39:18 and � 
 0:17 in the present case), but the
constant, k, is independent of these parameters (k 
 3).
Finally, if the distance between weak spots is less than the
characteristic length (d=� < 1), the release angle increases as
d decreases and the displacement profile becomes unim-
odal. This indicates that, in this case, the slab does not ‘feel
the effect’ of the cohesive zone between the two weak spots
and only ‘sees an equivalent weak spot’ of length L 
 2aþ d .

Hence, it appears that the interaction and progressive
bridging between the two weak spots is primarily controlled
by the characteristic length, �. Physically, this characteristic
length represents the typical distance over which the stress
redistribution induced by slab elasticity is felt. As illustrated
in Figure 9, this stress redistribution actually amounts to
smoothing out the effect of the structural heterogeneity of
the weak layer as soon as the typical variations of this
heterogeneity occur over distances less than �. Hence, �
can be viewed as a characteristic smoothing length associ-
ated with slab elasticity. More generally, it should be noted
that this parameter � appears to be the main length scale of
the system. In particular, we checked that the softening
length, �, involved in the quasi-brittle weak-layer constitu-
tive law, has essentially no influence on the results as long as
it remains much smaller than �.

4. RESULTS: INFLUENCE OF WEAK-LAYER
HETEROGENEITY
4.1. Simulation protocol
We now consider the case of a spatially heterogeneous weak
layer, as described in Section 2.4. We conducted simulations

Fig. 7. Evolution of the release angle, �r, as a function of the half-
length, a, of the weak spot. Black squares: finite-element results.
Red dashed curve: theoretical stress rupture threshold.

Fig. 8. Geometry of the system with two weak spots of length a separated by a distance d .
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for different values of the slab depth, h, varying between
0.25 and 4m and different values of the correlation length, 	,
varying between 0.5 and 40m. For each couple, ðh, 	Þ, 100
simulations with different realizations of the heterogeneity
were performed. In each of the simulations, the release
angle, �r, was determined according to the release criterion
given by Eqn (5). For reasons that are developed below, the
results are primarily presented in terms of the release factor,
F , defined as

F ¼ sin �r � � cos �r: ð17Þ

4.2. Release angle and release factor distributions
Figure 10 shows the influence of slab depth, h, and
correlation length, 	, on the cumulative distributions of the
release factor, F . Note that these distributions can also be
interpreted in terms of the release angle, �r. First we observe
that all the distributions obtained can be well represented by
Gaussian laws, which can be interpreted as a consequence
of the Gaussian nature of the cohesion heterogeneity. As
shown in Figure 10a, the average and the variance of the
release factor distributions decrease with the slab depth, h.
In addition, the average appears to be approximately
independent of the correlation length, 	, while the variance
increases with 	 (Fig. 10b). These results will now be
described in more detail.

4.3. Average release factor
In a homogeneous case, the release factor, Fh, is expected to
decrease with h according to Fh ¼ hci= �ghð Þ. As shown in
Figure 11a, the numerical results appear to closely follow
this prediction. In detail, however, it can be noted that the
average release factor is always slightly lower than Fh, the
difference tending to vanish as the slab depth, h, increases.
The same slight difference with Fh is seen in Figure 11b,
where it appears to increase with increasing correlation
length 	 for 	 < 10m. Recall that for 	 > 10m the results
begin to be influenced by finite-size effects. These small
discrepancies between the results and the theoretical
homogeneous value, Fh, are due to the heterogeneity and
the presence of local cohesion minima. However, globally,
we can conclude that the average release factor hFi (and the
average release angle h�ri) is almost unaffected by the weak-
layer heterogeneity.

Fig. 9. Evolution of the release angle, �r, with the inter-distance between the two weak spots, d (normalized by the characteristic length, �),
for weak-spot lengths a ¼ 4:5m. The black dots are the results of the finite-element model. The red curve is an exponential adjustment for
d=� > 1. Three different zones are distinguished: d < �, � < d <	10� and d >	10�, and the typical displacement profiles, recorded a few
time-steps before release, in each of these zones are represented.

Fig. 10. Cumulative distributions of release angle �r (top scale) and
release factor F (bottom scale). (a) 	 ¼ 0:5m and various values of
slab depth, h; (b) h ¼ 1m and various values of 	. Note that
according to Eqn (17), the top scale represented is nonlinear in
terms of release angle, �r.
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4.4. Variability and heterogeneity smoothing
Figure 11a shows that the release factor variance decreases
with slab depth, h, as a power law. The associated exponent
is slightly smaller than �2 (	�2:16). In addition, this
variance appears to be significantly smaller than the
variance, �21 ¼ �2

cð�ghÞ�2, that would be observed if the
stress field in the weak layer exactly followed the hetero-
geneity variations (the case of a completely rigid slab). This
illustrates the smoothing of the heterogeneity due to the
elastic redistribution of stresses in the slab.

Following Section 3, the stress redistribution effects
induced by slab elasticity are characterized by the smooth-
ing length, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 0hup=�p
p

. Hence we can assume that the
ratio �2

F=�
2
1, can be expressed only in terms of the ratio 	=�.

As shown in Figure 12a, all the data points corresponding to
�2
F=�

2
1 obtained from the simulations effectively collapse on

a single master curve when plotted in terms of 	=�. The
following power-law expression provides a good fit to the
data:

�2
F

�21
¼ �

	

�

� �2
3
, ð18Þ

with � ¼ 5:45� 10�2. Note, however, that one can expect

�2
F=�

2
1 ! 1 if 	=� ! 1. Hence, the power law given by

Eqn (18) is not expected to remain valid in this limit. In
addition, Figure 12b shows that the elastic smoothing
length, �, slightly increases with slab depth, h, in our
simulations. This is consistent with the slightly less than �2
power-law exponent observed for the evolution of �2

F with h
in Figure 11.

We can thus conclude that, at the limit of low values of
correlation length, 	, and/or high values of the smoothing
length, � (and thus high values of slab depth, h), �2

F ! 0 and
the system behaves as in a homogeneous case. This also
explains why the difference between the average release
factor, hFi, and the theoretical homogeneous value, Fh,
decreases when h increases or 	 decreases, as noted in
Figure 11a and b. For large correlation lengths, since the
effect of 	 dominates the effect of h in Eqn (18), very thick
slabs can be released even for moderate slope angles, which
corresponds to the so-called knock-down effect (Kronholm
and Schweizer, 2003; Schweizer and others, 2008).

5. COMPARISON WITH FIELD DATA
5.1. La Plagne release depth data
La Plagne, in the French Alps, is one of the largest ski areas
in the world, covering 100 km2 with 225 km of ski tracks. Ski
patrollers provided us with release depth data from 14391
avalanches collected during the winters of 1998–2010.
Since avalanche depths cannot always be directly measured,
data come from a mix of visual estimates and precise
measurements. From the complete database, 369 naturally
released slab avalanches were extracted. These data have
been analyzed in detail by Gaume and others (2012). Note
that the same data were also used by Failletaz and others
(2004), but with fewer avalanches (only three winters). These
analyses showed that the release depth cumulative distri-
bution at La Plagne seems to decrease as a power law for
large slab depths (h > 0:7m, corresponding to cumulative
exceedance probability lower than 	10%). Similar power-
law trends have also been reported at other locations
(Rosenthal and Elder, 2002; McClung, 2003). We note

Fig. 12. Ratio between release factor variance, �2
F , and infinitely

rigid slab variance �21 ¼ �2cð�ghÞ�2, as a function of the ratio
between correlation length, 	, and elastic smoothing length, �, for
all (h, 	) couples (	5000 simulations). (b) Evolution of the elastic
smoothing length, �, with slab depth, h.

Fig. 11. Evolution of the average release factor, hFi, and release
factor variance, �2

F , as functions of (a) slab depth, h, for 	 ¼ 0:5m
and (b) heterogeneity correlation length, 	, for h ¼ 1m. �2

1
represents the release factor variance that would be obtained in
the case of a completely rigid slab.
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however that, due to the error associated with the data, the
value of the power-law exponent is poorly constrained and
strongly dependent on the cut-off considered for the power
law. Typically, in agreement with McClung (2003), expo-
nents in the ½�3; � 5� range provide a good fit to the data.

Our objective here is to examine whether our mechanical
model is capable of reproducing these release depth data for
both the core and the tail of the distribution. This com-
parison first requires computing the release depth distri-
bution predicted by the model, which can be obtained in
two phases: (1) the release factor distributions presented
above have to be inverted to obtain release depth distribu-
tions for fixed angle values; (2) these release depth
distributions must then be integrated over all slopes, since
data mix avalanche paths of various slope angles. Lastly, to
be compared with data, the release depth probability
obtained from the mechanical model has to be combined
with the local snowfall probability.

5.2. Release depth distributions obtained from
mechanical model
Inversion of release factor distributions
We have shown that the distributions of the release factor, F ,
are normally distributed with mean hFi 
 hci=ð�ghÞ and
variance �2

F ¼ f ð	=�Þ�2
c=ð�ghÞ2, with f ð	=�Þ given by

Eqn (18). In addition, since � varies only slightly in our
results (see Fig. 12b), we assume it to be constant in the
following. This approximation does not significantly influ-
ence the results to be presented, but it allows us to obtain
analytical solutions. Hence, the variance, �2

F , can be written
as

�2
F ¼ f ð	Þ�2

c

ð�ghÞ2 , ð19Þ

with f ð	Þ 
 �	2=3, and � ¼ ���2=3 assumed constant. Finally,
the probability density of having a release factor, F , for a
given slab depth, h, is given by

pðF jhÞ ¼ h
C�

ffiffiffiffiffiffi
2�

p e�
1
2

hF�C�
C�


 �2

, ð20Þ

with C� ¼ hci=ð�gÞ and C� ¼ �c
ffiffiffiffiffiffiffiffi
f ð	Þp

=ð�gÞ.
The Mohr–Coulomb rupture criterion, which controls

avalanche release in the simulations, can be written in terms
of the release factor, F ¼ sin �r � �cos �r, as

�ghF ¼ c: ð21Þ
Hence, slab depth, h, and release factor, F , play similar roles
in this criterion. Consequently, it can be shown that, if the
probability density of release factor F for a given slab depth
h is pðF jhÞ ¼ gðF , hÞ, then the probability density of h for a
given value of F is pðhjFÞ ¼ gðh, FÞ. Equation (20) can thus
be inverted to

pðhjFÞ ¼ F

C�

ffiffiffiffiffiffi
2�

p e�
1
2

hF�C�
C�


 �2

: ð22Þ

A more detailed and rigorous demonstration of this
inversion is provided in Appendix B.

Integration over all slopes
For the sake of simplicity, we chose, in this study, to consider
a uniform probability distribution for the slope factor,
F ¼ sin �� � cos �, between Fmin and Fmax: pðFÞ ¼ 1=
ðFmax � FminÞ. Once again, this assumption enables us to
obtain analytical expressions for the integrated release depth

distribution, pmðhÞ:

pmðhÞ ¼
Z Fmax

Fmin

pðhjFÞpðFÞ dF : ð23Þ

From Eqn (22), we obtain

pmðhÞ ¼ 1
h

ffiffiffi
�

p g1ðhÞ þ g2ðhÞ½ �, ð24Þ

with

g1ðhÞ ¼
Z Umax

Umin

ue�u2
du

¼
ffiffiffi
2

p
C�

2h
e�

1
2Umin

2 � e�
1
2U

2
max

h i
ð25Þ

and

g2ðhÞ ¼
Z Umax

Umin

e�u2
du

¼
ffiffiffi
�

p
C�

2h
Erf

Uminffiffiffi
2

p
� �

� Erf
Umaxffiffiffi

2
p

� �	 

, ð26Þ

where we define Umin ¼ hFmin � C�


 �
=C� and Umax ¼

hFmax � C�


 �
=C�. In the following, without loss of general-

ity, we assume Fmin ¼ 0 and Fmax ¼ 1.

5.3. Coupling mechanical and snowfall distributions
Gaume and others (2012) have shown that the global
avalanche release depth probability, prðhÞ, resulting from the
coupling between the mechanical model presented above
and snowfall distributions, can be related to pmðhÞ as
follows:

) prðhÞ 
 pmðhÞ psfðhsf � hÞ
C

, ð27Þ
where psfðhsf � hÞ is the probability of having a snowfall
whose thickness, hsf, is higher than the depth, h, and C a
normalization constant given by C ¼R1

0 pmðhÞ psfðhsf �
hÞ dh. This coupling relation expresses that the amount of
snowfall represents a limiting factor weighting the mechan-
ical probability density, pmðhÞ, derived from the stability
criterion.

To define the snowfall distribution, psfðhsf � hÞ, Gaume
and others (2012) considered the 3 day snowfall annual
maxima in La Plagne (MeteoFrance data: daily measure-
ments from 1966) at the average altitude of 2200m. These
maxima follow a generalized extreme value (GEV) distri-
bution so that

psfðhsf � hÞ ¼ 1� exp � 1þ �sf
h � �sf

�sf

� ��1=�sf
" #

, ð28Þ

where �sf, �sf and �sf are, respectively, the location, scale
and form parameters. These parameters assume the values
�sf ¼ 0:98m, �sf ¼ 0:21m and �sf ¼ 0:214.

5.4. Result of the coupling and sensitivity analysis
As shown by Gaume and others (2012) (see also Fig. 13), it is
possible to find a set of mechanical parameters for which the
coupledmodel described by Eqns (24), (27) and (28) provides
a very good adjustment to La Plagne release depth data. The
model effectively predicts a power-law behavior of the
cumulative exceedence distribution for large slab depths, in
good agreement with the empirical distribution, and also
accounts well for the data corresponding to lower release
depths. In spite of the various assumptions involved, this
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model is, to our knowledge, the first capable of reproducing
release depth data with such good accuracy. To complement
the results shown by Gaume and others (2012), we present
below a detailed sensitivity analysis of the predicted distri-
bution of the main mechanical parameters of the model.

Figure 13 shows the comparison between data and the
coupled model for different values of the average cohesion,
hci. The goodness of fit (Fig. 13b) shows a pronounced
minimum for hci ¼ 0:6 kPa, which indicates that the
agreement between model and data strongly depends on
this average cohesion value. In particular, the depth, hm,
below which no avalanche can occur is strongly dependent
on hci. This depth can be approximated by (Gaume and
others, 2012)

hm 
 hci � 2�cf ð"Þð Þ=ð�gFmaxÞ: ð29Þ
With the value hci ¼ 1 kPa retained in Sections 3 and 4, hm
is slightly overestimated compared to the data. For hci=
0.6 kPa, a value still fully consistent with existing studies
(Föhn and others, 1998; Jamieson and Johnston, 2001), an
excellent agreement between the coupled model and the
data is obtained.

The influence of the cohesion standard deviation, �c , is
presented in Figure 14. First, it can be noted that �c plays a
less significant role than hci in the goodness of the fit. As
shown in Figure 14b, values of �c in the 300–500Pa range
give similar results for constant values of the other par-
ameters. In fact, the standard deviation, �c , mainly
influences the curvature of the coupled cumulative exceed-
ence distribution around the cut-off, hm. Figure 14a also
displays the distribution that would be obtained in the case
of a completely rigid slab, which poorly reflects the data.
Even if the tail of this distribution could be fitted to the data
by tuning the other parameters, there would be no way to
properly fit the core of the distribution. This highlights the

major importance of the elasticity of the slab and of stress
redistribution effects.

Finally, the influence of the correlation length, 	, is shown
in Figure 15. As with the standard deviation, �c , the
correlation length, 	, mainly modifies the curvature of the
coupled cumulative exceedence distribution around hm.
Globally, the fit to the data remains good for correlation
length values in the 0.5–15m range.

To conclude, in the range of realistic mechanical
parameters for snow (for which stress redistribution effects

Fig. 13. Slab release depth distributions predicted by the coupled
model (Eqn (27)) for different values of average cohesion, hci, and
comparison with field release depths from La Plagne. The numer-
ical results have been obtained for a cohesion standard deviation
�c ¼ 0:3 kPa, a correlation length 	 ¼ 2m, Fmin ¼ 0 and Fmax ¼ 1,
the other parameters being the same as in Section 4. (a) Cumulative
exceedance probability on logarithmic scale; (b) �2 of the model
(�2 ¼ Pðpdata � pmodelÞ2=pmodel, where pdata and pmodel are the
cumulative exceedance probabilities derived from the data and
from the model, respectively).

Fig. 14. Slab release depth distributions predicted by the coupled
model (Eqn (27)) for different values of the standard deviation, �c ,
and comparison with field release depths from La Plagne. The
numerical results have been obtained for a cohesion hci ¼ 0:6 kPa,
a correlation length 	 ¼ 2m, Fmin ¼ 0 and Fmax ¼ 1, the other
parameters being the same as in Section 4. (a) Cumulative
exceedance probability on logarithmic scale; (b) �2 of the model.

Fig. 15. Slab release depth distributions predicted by the coupled
model (Eqn (27)) for different values of the correlation length, 	, and
comparison with field release depths from La Plagne. The numer-
ical results have been obtained for a cohesion hci ¼ 0:6 kPa, a
cohesion standard deviation �c ¼ 0:3 kPa, Fmin ¼ 0 and Fmax ¼ 1,
the other parameters being the same as in Section 4. (a) Cumulative
exceedance probability on logarithmic scale; (b) �2 of the model.
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play an important role), it turns out that the average
cohesion, hci, has the most significant influence on slab
avalanche release distributions predicted by the coupled
model. Hence, provided GEV parameters are known, the
adjustment of the model to the data essentially amounts to a
one-parameter fit. Note also that the value of Fmax which has
been set to 1 in the previous results, in fact plays a role
essentially similar to that of hci (see Eqn (29)). Hence,
changing the value of Fmax would result in straightforward
modifications of the best-fit value found for hci.

6. CONCLUSION AND PERSPECTIVES
This paper investigates the influence of weak-layer hetero-
geneity on slab avalanche release using a finite-element
model. A shear-softening interface underlying an elastic slab
is modeled and the system is loaded by increasing the slope
angle until failure and avalanche release. After validating the
model for the case of a nil-cohesion weak spot, the effect of
a heterogeneous weak-layer cohesion field was studied. The
heterogeneity is represented through a Gaussian distribu-
tion, with a spherical covariance function characterized by a
spatial correlation length. Release angle distributions were
analyzed and a heterogeneity smoothing effect due to
redistributions of stresses by elasticity of the slab was
highlighted. This smoothing effect induces a reduction of the
release angle variance compared to the case of a fully rigid
slab. However, the average release angle is almost un-
affected by this effect. The presented results show that the
smoothing intensity critically depends on the ratio between
the correlation length, 	, and a characteristic elastic length of
the system, �. Further work is required, however, to fully
unravel the possible interplay between 	 and the cohesion
variance, �2

c , on this smoothing effect. To be compared with
field data, the obtained release angle distributions were
inverted, yielding a release depth distribution integrated
over all slopes. Coupling this mechanical distribution with
the distribution of 3 day extreme snowfalls, we were able to
reproduce with excellent accuracy field data from 369
natural slab avalanches. A detailed sensitivity analysis
showed that this agreement is obtained with only one
adjustable parameter, namely the average cohesion, hci. The
mechanically based probabilistic model thus fulfills the
objectives of the study, namely the evaluation of avalanche
release depth distributions in any potential release zone, as
soon as meteorological data are available. In the future, a
straightforward extension to the three-dimensional case will
be developed to predict distributions of avalanche release
volumes. However, before being used in an operational
context, additional tests on other datasets and in other
locations need to be performed to further validate the
model. Finally, let us recall that, with the parameters used in
our model, the crown fracture always occurs at particular
morphological features (e.g. ridges, rocks and trees) since
the heterogeneity is not sufficient to directly trigger tensile
rupture within the slab. Thus, another interesting perspective
for future work is to study the release depth distributions
obtained with different sets of parameters leading to other
types of failure mechanisms.
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la neige. In Brugnot G, Brun E, Gubler H, Norem H and
Reynaud L eds. Symposium de Chamonix CISA-IKAR. Les
apports de la recherche scientifique à la neige, glace et
avalanches, 4–8 Juin 1991, Chamonix, France. Actes du
Symposium. Association Nationale pour l’Étude de la Neige et
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APPENDIX A. MODEL VALIDATION: EXPRESSION
OF THE PARAMETERS
We give here the expressions of the parameters involved in
the weak-spot analytical solution derived in Section 3.1:
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APPENDIX B. INVERSION OF RELEASE FACTOR
DISTRIBUTIONS
The objective is to deduce from the distributions, pðF jhÞ,
derived from the simulations, the distributions, pðhjFÞ, that
would be obtained in the ‘dual’ experiment (much more
difficult to perform numerically) consisting of fixing the
slope angle and gradually increasing the slab depth, h, until
rupture. The principle of this inversion lies in that, for a given
realization of heterogeneity, the rupture is achieved under
the same conditions in both experiments. Hence, the couple
ðF , hÞ obtained in both cases must be the same.

It is thus possible to obtain pðhjFÞ from pðF jhÞ by
generating a large number of couples ðF , hÞ in drawing in
pðF jhÞ distributions for several values of h, and then to
reclassify data obtained as a function of F . To this end,
values of h can be drawn from a random distribution, pðhÞ.
Instead of applying this protocol empirically, one can notice
that the knowledge of pðhÞ allows us to consider the couple
ðF , hÞ as a random vector, and to compute pðhjFÞ using
Bayes’s formula:

pðhjFÞ ¼ pðF jhÞ pðhÞRþ1
�1 pðF jhÞ pðhÞ dh : ðB1Þ

Then, to avoid biasing the result, it is necessary to sample
uniformly all possible values of h. In other words, pðhÞ has
to be chosen as constant. Equation (B1) therefore simplifies
to

pðhjFÞ ¼ pðF jhÞRþ1
�1 pðF jhÞ dh : ðB2Þ

Knowing the expression for pðF jhÞ,

pðF jhÞ ¼ 1ffiffiffiffiffiffi
2�

p
�F

e
�1

2
F�hFi
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with
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and
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where � is the elastic characteristic length of the system, the
inverse distribution, pðhjFÞ, can be obtained numerically by
applying Eqn (B2). In the present case, in which pðF jhÞ is
Gaussian, it is possible to analytically integrate the
denominator, assuming that � ¼ �0 is a constant inde-
pendent of h. As already mentioned, this assumption is not
completely fulfilled, but the error made is negligible, since
the influence of h on the function �F�gh=�c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð	=�Þp
remains low.

For homogeneity reasons, we also define bh ¼ �gh=hci
(dimensionless variable). We can then write

pðF jbhÞ ¼ bhffiffiffiffiffiffi
2�

p
CV

e
�1

2
bhF�1
CV

� �2

, ðB6Þ

Fig. 16. Comparison between the exact expression (Eqn (B7)) and
the Gaussian approximate expression (Eqn (B8)) of the inverted

probability, pðbhjFÞ (case F = 0.5): (a) CV = 0.1; (b) CV = 0.3.
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with CV ¼ ð�c=hciÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð	=�0Þ

p
. We thus obtainZ þ1

�1
pðF jbhÞ dbh ¼ 1ffiffiffi
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Finally, from Eqn (B2):

pðbhjFÞ ¼ F2bhffiffiffiffiffiffi
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bhF�1
CV
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Hence, strictly, the inverted probability distribution,

pðbhjFÞ, is not Gaussian. However, as shown in Figure 16,
if the Gaussian contribution to Eqn (B7) is sufficiently sharp,

i.e. if CV is sufficiently small, the variation of bh in the

prefactor remains negligible. We can then replace bh in the
prefactor by the mode of the Gaussian, i.e. 1=F , which leads

to the following approximate expression:

pðbhjFÞ ¼ Fffiffiffiffiffiffi
2�

p
CV

e
�1

2
bhF�1
CV

� �2

, ðB8Þ

which is a Gaussian. This approximation is well justified in
our case, since for 	 < 10m we have CV < 10% (Fig. 16a).
Note that in the case of a completely rigid slab, the
coefficient of variation, CV, would be equal to that of the
cohesion, �c=hci ¼ 30%, a value for which the Gaussian
approximation is less valid (Fig. 16b). The role of the
variance reduction by elastic effects (i.e. the role of
the function f ð	=�Þ) is thus crucial for this Gaussian
approximation of pðhjFÞ to be valid. Returning to the
physical variable h, we finally obtain Eqn (22), which simply
corresponds to the expression of pðF jhÞ in which the
variables F and h have been inverted (again under the
assumption that � ¼ �0 ¼ constant).
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