skip to main content
10.1145/2488388.2488425acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

AMIE: association rule mining under incomplete evidence in ontological knowledge bases

Published:13 May 2013Publication History

ABSTRACT

Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic Programming (ILP) can be used to mine logical rules from the KB. These rules can help deduce and add missing knowledge to the KB. While ILP is a mature field, mining logical rules from KBs is different in two aspects: First, current rule mining systems are easily overwhelmed by the amount of data (state-of-the art systems cannot even run on today's KBs). Second, ILP usually requires counterexamples. KBs, however, implement the open world assumption (OWA), meaning that absent data cannot be used as counterexamples. In this paper, we develop a rule mining model that is explicitly tailored to support the OWA scenario. It is inspired by association rule mining and introduces a novel measure for confidence. Our extensive experiments show that our approach outperforms state-of-the-art approaches in terms of precision and coverage. Furthermore, our system, AMIE, mines rules orders of magnitude faster than state-of-the-art approaches.

References

  1. Z. Abedjan, J. Lorey, and F. Naumann. Reconciling ontologies and the web of data. In CIKM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Ade, L. Raedt, and M. Bruynooghe. Declarative bias for specific-to-general ilp systems. Machine Learning, 20, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In Advances in knowledge discovery and data mining. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DBpedia: A nucleus for a Web of open data. In ISWC, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent Subtree Mining - An Overview. Fundam. Inf., 66(1--2), 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Cimiano, A. Hotho, and S. Staab. Comparing Conceptual, Divisive and Agglomerative Clustering for Learning Taxonomies from Text. In ECAI, 2004.Google ScholarGoogle Scholar
  8. C. d'Amato, V. Bryl, and L. Serafini. Data-driven logical reasoning. In URSW, 2012.Google ScholarGoogle Scholar
  9. C. d'Amato, N. Fanizzi, and F. Esposito. Inductive learning for the Semantic Web: What does it buy? Semant. web, 1(1,2), Apr. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. David, F. Guillet, and H. Briand. Association Rule Ontology Matching Approach. Int. J. Semantic Web Inf. Syst., 3(2), 2007.Google ScholarGoogle Scholar
  11. L. Dehaspe and H. Toironen. Discovery of relational association rules. In Relational Data Mining. Springer-Verlag New York, Inc., 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Dehaspe and H. Toivonen. Discovery of frequent DATALOG patterns. Data Min. Knowl. Discov., 3(1), Mar. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Goethals and J. Van den Bussche. Relational Association Rules: Getting WARMER. In Pattern Detection and Discovery, volume 2447. Springer Berlin / Heidelberg, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. A. Grimnes, P. Edwards, and A. D. Preece. Learning Meta-descriptions of the FOAF Network. In ISWC, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL Class Descriptions on Very Large Knowledge Bases. Int. J. Semantic Web Inf. Syst., 5(2), 2009.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence Journal, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Jozefowska, A. Lawrynowicz, and T. Lukaszewski. The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theory Pract. Log. Program., 10(3), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM. IEEE Computer Society, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Lehmann. DL-Learner: Learning Concepts in Description Logics. Journal of Machine Learning Research (JMLR), 10, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. A. Lisi. Building rules on top of ontologies for the semantic web with inductive logic programming. TPLP, 8(3):271--300, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Maedche and V. Zacharias. Clustering Ontology-Based Metadata in the Semantic Web. In PKDD, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Mamer, C. Bryant, and J. McCall. L-modified ilp evaluation functions for positive-only biological grammar learning. In F. Zelezny and N. Lavrac, editors, Inductive logic programming, number 5194 in Lecture notes in artificial intelligence, pages 176{191. Springer-Verlag, Berlin / Heidelberg, Germany, 2008. Paper originally presented at the 18th International Conference, ILP 2008 Prague, Czech Republic, September 10-12 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Matuszek, J. Cabral, M. Witbrock, and J. Deoliveira. An introduction to the syntax and content of Cyc. In AAAI Spring Symposium, 2006.Google ScholarGoogle Scholar
  24. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging and Testing Large Ontologies. In KR, 2000.Google ScholarGoogle Scholar
  25. S. Muggleton. Inverse entailment and progol. New Generation Comput., 13(3&4), 1995.Google ScholarGoogle Scholar
  26. S. Muggleton. Learning from positive data. In ILP. Springer-Verlag, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  27. N. Nakashole, M. Sozio, F. Suchanek, and M. Theobald. Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules. In Workshop on Very Large Data Search (VLDS) at VLDB, 2012.Google ScholarGoogle Scholar
  28. V. Nebot and R. Berlanga. Finding association rules in semantic web data. Knowl.-Based Syst., 25(1), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. Proc. VLDB Endow., 1(1), Aug. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In AAAI/IAAI. AAAI Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning first-order Horn clauses from web text. In EMNLP, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic Alignment of Relations, Instances, and Schema. PVLDB, 5(3), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. M. Suchanek, J. Hoffart, E. Kuzey, and E. Lewis-Kelham. YAGO2s: Modular High-Quality Information Extraction. In German Database Symposium (BTW), 2013.Google ScholarGoogle Scholar
  35. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In KDD, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Volker and M. Niepert. Statistical schema induction. In ESWC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AMIE: association rule mining under incomplete evidence in ontological knowledge bases

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '13: Proceedings of the 22nd international conference on World Wide Web
      May 2013
      1628 pages
      ISBN:9781450320351
      DOI:10.1145/2488388

      Copyright © 2013 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 May 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WWW '13 Paper Acceptance Rate125of831submissions,15%Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader