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Multi-Level Cross-Lingual Attentive Neural Architecture for
Low Resource Name Tagging

Xiaocheng Feng, Lifu Huang, Bing Qin�, Ying Lin, Heng Ji, and Ting Liu

Abstract: Neural networks have been widely used for English name tagging and have delivered state-of-the-art

results. However, for low resource languages, due to the limited resources and lack of training data, taggers

tend to have lower performance, in comparison to the English language. In this paper, we tackle this challenging

issue by incorporating multi-level cross-lingual knowledge as attention into a neural architecture, which guides low

resource name tagging to achieve a better performance. Specifically, we regard entity type distribution as language

independent and use bilingual lexicons to bridge cross-lingual semantic mapping. Then, we jointly apply word-level

cross-lingual mutual influence and entity-type level monolingual word distributions to enhance low resource name

tagging. Experiments on three languages demonstrate the effectiveness of this neural architecture: for Chinese,

Uzbek, and Turkish, we are able to yield significant improvements in name tagging over all previous baselines.

Key words: name tagging; deep learning; recurrent neural network; cross-lingual information extraction

1 Introduction

Name tagging plays a vital role in the overall task
of Information Extraction (IE) and serves as an
intermediate step for subsequent IE tasks, e.g., relation
extraction and entity linking. Name tagging is defined
as the recognition of a contiguous sequence of textual
tokens, which represents the name of an object of
a specified class, such as a person, location, or
an organization. Traditional methods for English
name tagging usually use machine learning algorithms,
e.g., Support Vector Machine (SVM) or Conditional
Random Field (CRF), and build name tagger from
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training data with accompanying entity labels. Since the
performance of a machine learner is heavily dependent
on the choice of data representations[1], a lot of work has
focused on designing effective features[2–4] or automatic
learning features from data with neural networks[5, 6].

In this paper, we focus on low resource language
name tagging. In comparison with English, there are
mainly two challenges for low resource name tagging.
First, for most low resource languages, language-
specific resources, such as gazetteers, Part-of-Speech
(POS) tagger or dependency parser, are not available,
but also costly and time-consuming to develop, which
makes it difficult to adapt English name tagging systems
with such traditional and linguistic features to low
resource languages within a short time. Recently,
deep learning techniques have been proven effective
in many NLP tasks, e.g, English name tagging[6, 7],
relation classification[8, 9], event extraction[10, 11], and
knowledge base representation[12]. Without using any
language-specific resources or hand-craft features,
neural network based methods heavily depend on the
quality of large amount of training data. However, for
low resource languages, the training data for both name
tagging and semantic learning are insufficient. The
modeling of word semantics and tagging process with
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limited available data is another challenge.
Previous studies[13–15] pointed out that different

languages usually contain complementary cues about
entities. Motivated by this, we propose to use cross-
lingual information, especially information from high
resource languages, to improve mono-lingual low
resource name tagging. Specifically, we bridge the
cross-lingual gap by using bilingual lexicons (the word
in Low resource Language (LL) with its translations
in High resource Language (HL)) and their feature
representations, which contain bilingual distributed and
word-formation features. For example, in Fig. 1, the
word “ ,” is common in Chinese but rarely appears
as a translated foreign name. However, an English
translation of “ ,” is “Ben”, which provides a strong
semantic clue that this is a personal name in the English
space. In addition, most English names are capitalized
(word-formation feature), which is an important cue for
name tagging systems. Considering Fig. 1 again, “�T
¨” can be recognized by this feature. These bilingual
cues can help recognize monolingual name.

Although the observations are obvious, there are still
two remaining problems: first, how to identify the
most important target from lexicon-based translation
candidates based on contextual information. For
example, in Fig. 1, the Chinese word “,” has three
candidate translations, namely “Ben”, “books”, and
“originally”, and “Ben” should play a bigger role than
“book” and “originally” for Chinese name tagging.
Second, it is also challenging to effectively map
high resource language distribution to low resource
languages. For instance, if we know that “Ben” has
a high probability to be a personal name, the Chinese
word “,” also has a high probability to be a personal
name.

Considering the first problem, we design a word-
level bilingual attention based recurrent neural network
for ranking the importance of translation candidates.
Specifically, we first employ a standard Bidirectional
Long Short-Term Memory (Bi-LSTM)[16] model to
learn the semantic representation of each word in
the sentence. Then, we build a word-level attention

Bilingual Dictionary

美联储B-Org 主席O 是O 本B-Per 伯南克I-Per 。

FED ; 
Federal Reserve ;

Chinese Sentence:

chairman;
president;

is;
am;
are;
right

Ben;
books;

originally;

Bernanke;

Fig. 1 Example of NER labels with bilingual dictionary.

over all translation candidates, which is expected
to dynamically enhance the weight of meaningful
translation item. For example, our model will give a
higher weight to “Ben” than the weight given to the
two other items. This attention mechanism has also
been successfully applied to different NLP tasks such
as machine translation[17], relation classification[18], and
sentiment classification[19].

For the second challenging problem, we develop
an entity type-level monolingual attention based
neural network for calculating the similarity between
translation candidates and each entity type. Unlike
previous cross-lingual studies[20, 21], we do not need
to project two languages into a common space or map
one language space into the other. In this paper, we
regard entity type distribution as language independent.
For instance, in any languages, the names referring
to the United Nations should be an organization and
Barack Obama should be a person. We first construct
a vector representation of each entity type (person,
organization, and location) in low and high resource
languages, which can be obtained from training data.
Subsequently, we use a cosine measure to calculate
the weight between translation candidates and entity
types in high resource languages. The higher the
attention weight, the higher the probability that the
candidate belongs to the specific entity type. Finally, we
map word-level bilingual attention and entity type-level
monolingual attention weights back to low resource
language space and learn new low resource language
word representations, which could better reflect the
name types.

We combine these two attention models dubbed
Multi-level Cross-lingual Attentive Network (MCAN),
to capture word semantics both in low resource and high
resource simultaneously by bilingual lexicons. Figure 2
shows the work flow of the proposed approach. MCAN
takes a sentence with varied lengths as well as the
translation of each word by a bilingual dictionary, as
input. Then, it outputs a BIO (begin, inside, outside of
a name, see Section 2.4 for details) tag for each word
in a sentence, such as the example shown in Fig. 1.
Our model could be trained in an end-to-end way with
standard back-propagation, where the loss function is
the cross-entropy error of the output BIO labels.

We evaluate MCAN on the name tagging task for
a wide range of languages: Chinese, Uzbek, and
Turkish as low resource languages and English as the
high resource language. We evaluated Chinese name
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Fig. 2 Flowchart of the proposed system.

tagging on the standard OntoNotes Chinese dataset.
Our approach achieved an F-score of 82.13% with
1.64% and 7.11% absolute improvement, compared
to previous neural network based methods and
bilingual name taggers. Furthermore, for Uzbek and
Turkish, experiments show that our bilingual dictionary
based method yields significant improvement (average
4%) over the state-of-the-art neural network based
approaches. The main contributions of this study are
as follows:
� We present a new neural architecture (MCAN) by

leveraging cross-lingual information for sentence-
level name tagging.
� Our model can be easily applied to any other

languages only with bilingual dictionaries.
� We report empirical results on the Chinese

OntoNotes dataset, and show that MCAN
outperforms state-of-the-art methods for name
tagging.
The rest of this paper is organized as follows. In

Section 2, we give a brief description of neural name
tagging. In Section 3, we introduce the details of our
method on how to integrate cross-lingual information
into current neural models. We show our experiments
and results on three languages in Section 4. We
introduce related works in Section 5 and conclude this
paper in Section 6.

2 Background: Neural Name Tagger

In this section, we give a brief overview of neural
name tagging. More specifically, we first describe a bi-
directional LSTM with a sequential conditional random
layer for name tagging[17], which will be used in later
experiments. In addition, we introduce a character-
based model of words which can learn character-level
features instead of hand-engineered prefix and suffix
information about words.

2.1 Bidirectional LSTM

Recurrent Neural Networks (RNNs) are a family of
neural networks operating on sequential data. They
take the sequence of words as input and each token
is assigned a label. Usually, each token will be first
transformed to a vector, which is usually learned by
distributional semantics, e.g., Skip-Gram model[22, 23].
All word vectors are stacked in a word embedding
matrix L 2 Rd�jV j, where d is the dimension of word
vector and jV j is the vocabulary size.

Standard RNNs usually suffer from the problem
of the gradient vanishing or exploding[24]. Long
Short-Term Memory networks (LSTMs) have been
designed to address this issue by incorporating a more
sophisticated and powerful LSTM cell as the transition
function, so that long-distance semantic correlations in
a sequence can be modeled better.

In this paper, we employ a Bi-LSTM[25], which is
composed of two LSTM neural networks, a forward
LSTMF and a backward LSTMB, to model the
preceding and following contexts, respectively. The
input of LSTMF is the preceding context plus the word
as a name candidate, and the input of LSTMB is the
following context plus the word as a name candidate.
We run LSTMF from the beginning to the end of a
sentence, and run LSTMB from the end to the beginning
of a sentence. Afterwards, we concatenate the output Fi

and Bi of LSTMF and LSTMB as the representation of
a word using this model hi D ŒFi ;Bi �, as illustrated in
Fig. 3.

2.2 CRF tagging models

A very simple but surprisingly effective tagging
model consists of using hi as features for making
independent tagging decisions for each output[26].
Despite this model’s success in simple problems like
POS tagging, its independent classification decisions
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Fig. 3 Main architecture of LSTM-CRF model.

are limited, when there are strong dependencies across
output labels. Name is one of such tasks, since the
“grammar” characterizing interpretable sequences of
tags impose several hard constraints (e.g., I-PER cannot
follow B-LOC, see Section 2.3 for details), which
would be impossible to model with independence
assumptions. Therefore, instead of modeling tagging
decisions independently, we model them jointly using
a Conditional Random Field (CRF)[27]. For an input
sentence,

X D .x1; x2; :::; xn/;

we consider P to be the matrix of scores output by the
bidirectional LSTM network. P is of size n � k, where
k is the number of distinct tags, and Pi;j corresponds to
the score of the j -th tag of the i -th word in a sentence.
For a sequence of predictions,

Y D .y1; y2; :::; yn/;

we define its score as

s.X;Y/ D
nX

iD0

Ayi ;yiC1
C

nX
iD0

Pi;yi
(1)

where A is a matrix of transition scores and Aw;v

represents the score of a transition from tag w to tag v,
w; v 2 f1; :::; kg. Y is the set of tags, each of which
corresponds to the specific input word. Thus A is a
square matrix of size kC2. A softmax over all possible
tag sequences yields the probability for sequence Y:

p.YjX/ D
es.X;Y/P
Qy2Yx

es.X; Qy/ (2)

During training, we maximize the log probability of
the correct tag sequence:

log.p.YjX// D s.X;Y/ � log .
X
Qy2Yx

D es.X; Qy// D

s.X;Y/ � log max
Qy2Yx

s.X; Qy/ (3)

where Yx represents all possible tag sequences (even
those which do not verify the BIO format) for a sentence
X. From the above formulation, it is evident that we
encourage our network to produce a valid sequence of

output labels. During decoding, we predict the output
sequence, which obtains the maximum score given by

Y� D arg max
Qy2Yx

s.X; Qy/ (4)

2.3 Character-based models of words

Many languages have orthographic or morphological
evidence about whether the word sequence is a
name or not. Word spellings have been found useful
for morphologically rich languages and for handling
the out-of-vocabulary problem for tasks like part-of-
speech tagging, language modeling[26], and dependency
parsing[28]. To make the word representations sensitive
to their spellings, we introduce a character-based model
for learning character-level features.

Figure 4 describes the neural architecture to generate
an embedding for a word from its characters[6],
A character lookup table is initialized randomly,
and contains an embedding for every character. The
character embeddings corresponding to each character
in a word are given in direct and reverse orders to a
forward and a backward LSTMs. The embedding of a
word derived from its characters is the concatenation
of its forward and backward representations from the
bidirectional LSTM. This character-level representation
is then concatenated with a word-level representation
from a word lookup table.

An advantage of RNNs and LSTMs is the capability
of encoding very long sequences. However, they also
have a bias toward the most recent input. As a
result, the final representation of the forward LSTM
is an accurate representation of the word’s suffix.
The final state of the backward LSTM is a better
representation of its prefix. In addition, other neural
networks, such as convolutional networks, have also

neB

Bi-LSTM

Model

fB fBe fBen

bnbenbBen

bBen fBen Ben

Embedding from
a lookup table

Embedding from
characters

Input
embedding

Characters

Fig. 4 The character embeddings of the word “Ben” are
given as input to a bidirectional LSTM. We concatenate their
final output as an embedding from a lookup table to obtain a
representation of this word.
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been proposed for the learning word representations
from their characters[29, 30]. However, convolutional
networks are designed to discover the position-invariant
features of their inputs. While this is appropriate for
many problems, e.g., image recognition (a cat can
appear anywhere in a picture), we argue that in our task,
the important information is position sensitive (e.g.,
prefixes and suffixes encode different information from
stems). Therefore, we employ a Bi-LSTM model for
learning character-level features for morphologically
rich languages, such as Uzbek and Turkish, rather than
Chinese. In our experiments, the hidden dimensions
of the forward and backward character LSTMs are 25
each. As a result, the dimension of our character-based
representation of words is 50.

2.4 BIO tagging scheme

The task of name tagging is to assign a tag to every
word in a sentence. A single name could contain several
tokens within a sentence, therefore name types are
usually represented in BIO format (beginning, inside,
outside) where every token is labeled as B-label if the
token is the beginning of a name, I-label if it is inside a
named entity but not the first token within the name, or
O, in any other case.

3 MCAN for Name Tagging

In this section, we describe a multi-level cross-lingual
attentive network approach for learning low resource
word representations with cross-lingual information.
We first give an overview of the approach; then, we
present a word-level cross-lingual based and an entity
type-level monolingual based models, to enrich low
resource word representation. Finally, we utilize these
representations in name tagging.

3.1 Approach overview

Given a low resource language sentence fx1;

x2; :::; xi ; :::; xng, by following the setting of Section
2.1, we map each word into its embedding vector
and obtain the contextual-/hidden-representation of
each word fh1; h2; :::;hi ; :::;hng based on the Bi-
LSTM model. In addition, we construct a bilingual
lexicon from an online translator. An example is
given in Fig. 1. The Chinese word “�T¨” has
two translation candidates in English, namely “FED”
and “Federal Reserve”. We also map each English
translation into an English embedding vector. If the
translation is a single word like “FED”, we represent

the translation by its word embedding. For cases
where the translation is a multi-word expression like
“Federal Reserve”, the translation representation is the
average of its continuous word vectors. To simplify the
interpretation, we consider each translation as a single
word. For each low resource word xi , it will have a
translation set fhti1;hti2; :::;htiz; :::;htimg, where m is
the total number of translations.

An illustration of our approach is given in Fig. 2,
we learn the cross-lingual knowledge representation
from a bilingual lexicon. We generate consistent
entity type vectors in high resource and low resource
spaces based on training data. Our joint attention
model contains three computational layers. In the first
bilingual attention layer, we regard the contextual-
representation of each word as input to adaptively
selecting important translations from a lexicon-based
translation list. In the second computational layer,
we build monolingual attention over translations and
high resource language entity type vectors, which are
expected to learn the similarity between translations
and entity types. In the last layer, the output of the
previous two layers and the low resource entity type
vectors are multiplied and the results are considered as
the high resource language entity type distribution of
each word xi , in the low resource space. Figure 5 shows
the structure of our full model.

3.2 Word-level bilingual based attention

In this section, we describe our bilingual-based
attention model. The basic idea of the attention
mechanism is that it assigns a weight/importance to
each lower position when computing an upper level
representationŒ31�. In this study, we use an attention
model to compute the weight of each translation for
learning the representation of a word with cross-lingual
semantic features. The intuition is that translation items
do not contribute equally to the source word in low
resource languages. Furthermore, the meaning of a
low resource language word should be different if it
occurs in different sentences. Let’s take the Chinese
sentence “�T¨;-/,/WK�” (Federal
Reserve chairman is Ben Bernanke.) as an example. The
context word “ ,” is considered as a name and in
its English translation setting, “Ben” is more important
than “books” and “originally” .

By taking a low resource language word embedding
matxix L, a Bi-LSTM hidden layer representation hi 2

Rd , and its high resource language translations htiz 2
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Fig. 5 Main architecture of MCAN model.

Rm�d as input, the attention model outputs a continuous
vector veci 2 Rd . The output vector is computed as
a weighted sum of each piece of translation in htij ,
namely:

veci D

mX
zD1

˛zhtiz (5)

where m is the translation size of word xi , ˛z 2 Œ0; 1�

is the weight of htiz and
P

z ˛z D 1. For each item of
translation htiz , we use a feed forward neural network
to compute its semantic relatedness to the low resource
language word xi . The scoring function is calculated as
follows, where Watt 2 R2d and batt 2 R

gz D tanh.WattŒhtizIhi �C batt/ (6)
After obtaining fg1; g2; :::; gzg, we feed them into
a softmax function to calculate the final importance
scores f˛1; ˛2; :::; ˛mg.

˛z D
exp.gz/Pm

zD1 exp.gz/
(7)

We believe that such an attention model has two
advantages: (1) the model could adaptively assign
an importance score to each translation item htiz ,
according to its semantic relatedness to the low
resource language word xi ; (2) this attention model is
differentiable, such that it could be easily trained along
with other components in an end-to-end fashion.

3.3 Entity type-level monolingual based attention

In this section, we introduce an entity type-level
monolingual based attention, which aims to learn
the probability distribution of high resource language
translation with entity types. One of the significant
advantage for deep learning approaches is that word
embedding can learn similarities between each word.
On this basis, our model is intended to group the vectors
of similar entities in the vector space. The details are
described below.

First, we generate three high resource language entity
type representations, including person, organization,
and location. For each entity type, we select 10 typical
entities and average their embedding as the entity
type representation. Specifically, we aim to generate
a rough vector representation for each entity type.
Later, these entity type vectors will be fine-tuned by
the model. At the same time, we randomly generate
one vector representing non-entity; therefore, we obtain
four entity type vectors T=fTP;TO;TL;TNg, which
representing person, organization, location, and non-
entity, T 2 R4�d , e 2 fP, O, L, Ng, Te 2 R1�d . In
addition, we formalize a scoring function f .htiz;Te/,
which is capable of measuring the semantic relatedness
between the translation item Tiz and the high resource
language entity type Tk . We use standard cosine as the
dissimilarity measure f , namely:

cosize D
htT

iz � Te

jjhtizjj � jjTejj
(8)

In this function, the basic idea of the optimizing
objective is that the angle between the two vectors
should get a low score if the two vectors have high
similarity. On the contrary, the angle gets a high score if
two vectors have low similarity. Using cosine similarity
has two advantages: it does not require other parameters
and it can keep two vectors in common vector space.

3.4 Low resource language name tagging

We have described our word-level bilingual based
model and entity type-level monolingual based model
in previous subsections, and obtained two kinds of
attention weights: one presenting the relatedness
between a low resource language word and its
translation, and the other being the entity type
distribution of translation items. In this section,
we consider the entity type distribution as language
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independent and use a linear model to multiply the
previous attention weights. The result is a new vector
of the low resource language word xi , in high resource
language entity type distributions.

In the first one, we learn an entity type weight
distribution of the low resource language word xi in
high resource language space. This distribution can be
composed by our previous two-level attention weights;
namely,

die D

mX
zD1

˛z � cosize (9)

Furthermore, we use this distribution to generate
a new representation of the low resource language
word xi , by which it is represented in high resource
language entity type distribution. We generate four
low resource language entity type representations
te 2 ftP; tO; tL; tNg, and calculate the new representation
ri with multiplication distribution die :

ri D

4X
eD1

diete (10)

In the last one, we regard the output vector ri as
a feature, and concatenate with the Bi-LSTM hidden
layer output hi , Hi D Œhi I ri �. Equation (10) means
that a semantic representation of the low resource word
in low resource language space based on high resource
entity type weight distribution. Specifically, entity type
weight is language independent. Then, we feed Hi to
an LSTM-CRF model (Section 2.2) for the purpose of
name tagging. In addition, we apply a dropout mask
to the final representation before CRF layer and set the
dropout rate to 0.5. The model is trained in a supervised
manner by minimizing the cross entropy error of output
labels.

We use back propagation to calculate the gradients
of all the parameters, and update them with stochastic
gradient descent. We learn the 100-dimensional hidden
layer of LSTM and attention models, in addition, pre-
train the word embedding using word2vec with default
settings. We randomize other parameters with uniform
distribution U (–0.01, 0.01), and set the learning
rate as 0.01. Table 1 illustrates the word embedding
parameters used in three low resource language
(Chinese (https://catalog.ldc.upenn.edu/Chinese),
Uzbek, and Turkish (Low Resource Languages for
Emergent Incidents (LORELEI), which contain 23 989
Turkish documents and 16 736 Uzbek documents
respectively. http://www.darpa.mil/program/low-
resource-languages-for-emergent-incidents) and one

Table 1 Embedding parameters used in our experiments on
four languages.

Language Embedding Embedding Vocabulary
corpus dimension size

Chinese Gigword V5 300 66 785
Uzbek LORELEI 150 382 974
Turkish LORELEI 300 107 346
English Gigword V5 300 117 473

high resource language (English (https://catalog.
ldc.upenn.edu/LDC2003T05)) in our experiments.

4 Experimental

We apply our neural architecture for name tagging on
various datasets and evaluate the effectiveness with
precision (P), recall (R), and F measure (F1)[32, 33]. In
this section, we will describe the detailed experimental
settings and discuss the results.

4.1 Data set and evaluation

We evaluate the proposed approach on three low
resource languages (including Chinese, Uzbek, and
Turkish). In this paper, we regard English as high
resource language and all the other languages as
low resource, because except for the annotated data,
linguistic tools for these languages are not available or
suffer low performance.

For Chinese, we aim to verify the effectiveness of
our approach on the language, which is distinct from
Latin-based languages. We utilize the Ontonotes 4.0
corpus as a Chinese benchmark dataset. OntoNotes
annotates 18 named entity types, such as person,
location, date, and money. In this paper, we selected
the three most common entity types, i.e., PER (person),
LOC (location), ORG (organization). For Uzbek and
Turkish, we used a data set from the DARPA program,
namely, Low Resource Languages for Emergent
Incidents (LORELEI). The LORELEI program released
the labeled corpora for a bunch of low resource
languages, including Uzbek and Turkish. We chose
Uzbek and Turkish because most LORELEI related
publications are based on these two languages. In this
dataset, we also focus on four entity types (Person,
Location, Organization, Others). These four entity
types are commonly adopted in previous name tagging
studies[14, 15], especially for low resource language
name tagging[34]. In addition, we fed low resource
language words to Bing (http://cn.bing.com/dict/) and
two online translators (http://www.translatos.com/en/)
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and obtained their translations.
Table 2 shows the detailed descriptions of the

data sets used in our experiments. Specifically, we
follow the settings in previous studies[15] and do not
perform parameter tuning on the dev set, to optimize
performance. Instead, we fix the initial learning rate as
0.01 and maximum iterations as 50.

4.2 Chinese name tagging results

We compare with the following baseline methods on the
Chinese dataset.

4.2.1 Baseline methods
� Stanford NER. This is a CRF-based NER tagger

(using Viterbi decoding) as our baseline monolingual
NER tool. English features were taken from Finkel
et al.[35] Table 3 lists the basic features of Chinese
NER, where ı means string concatenation and yi

is the named entity tag of the i -th word wi .
Moreover, shape(wi ) is the shape of wi , such as
date and number. prefix/suffix(wi ; k) denotes the k-
character’s prefix/suffix of wi . radical(wi ; k) denotes
the radical of the k-th Chinese character wi (the
radical of a Chinese character can be found at
www.unicode.org/charts/unihan.html). len(wi ) is the
number of Chinese characters in wi .
� Integer Linear Program (ILP) was proposed by Roth

Table 2 Number of sentences used in our experiments on
three languages.

Language Train Test
Chinese 22 761 2746
Uzbek 8298 3040
Turkish 3622 2121

Table 3 Basic features of Chinese name tagging.

Chinese NER Templates
00:1(class bias param)
01: wiCk , �1 6 k 6 1

02: wiCk�1 ı wiCk , �1 6 k 6 1

03: shape(wiCk), �4 6 k 6 4

04: prefix(wi ; k), 1 6 k 6 4

05: prefix(wi�1; k), 1 6 k 6 4

06: suffix(wi ; k), 1 6 k 6 4

07: prefix(wi�1; k), 1 6 k 6 4

08: radical(wi ; k), �1 6 k 6 len(wi )
Unigrams Features
yiı 00-08
Unigrams Features
yi�1 ı yiı 00-08

and Yih[36]. This algorithm can capture more task-
specific and global constraints than the vanilla Viterbi
algorithm. In this task, we re-define the conditional
probability as PMAR.yjx/ D

Q
iD1 P.yi jx/, where

P.yi jx/ is the marginal probability given by an
underlying CRF model computed using forward-
backward inference.
� Soft-Align. Che et al.[14] proposed a novel ILP-

based inference algorithm with bilingual constraints
for NER. This method can jointly infer bilingual
named entities without using any annotated bilingual
corpus.
� Joint Model. Wang et al.[15] introduced a graphical

model, which combines two Hidden Markov
Model (HMM) word aligners and two CRF NER
taggers into a joint model, and presented a dual
decomposition inference method for performing
efficient decoding over this model.
Our model has several variations, which are detailed

below.
� Recurrent Neural Network (RNN) is a standard

recurrent neural network, which is used for learning
sequence representation and the representation of
these words can be naturally considered as the
features to identity and classify the named entity.
� LSTM-CRF. This model is proposed by Lample et

al.[6], which is introduced in Section 2.2. It is an
update version of RNN. We replace the standard
recurrent neural network with LSTM and add a
CRF layer to impose several hard constraints of the
“grammar”.
� MCAN� adds one-dimensional word-formation

feature in the last hidden layer, which means that, if
a translation item is capitalized, the value is 1, else
the value is 0.
� MCAN� is a variant version of our approach, which

replaces Hi D Œhi I ri � with Hi D Œhi I xi I ri �.
4.2.2 Results and analysis
Table 4 shows the empirical results of the baseline
methods and our approach on the Chinese dataset.
Compared with feature-based methods, such as
Stanford NER, ILP, Soft-align, and Joint Model, neural
network based methods (including RNN, Bi-LSTM,
MCAN) perform better because they can make better
use of word semantic information and avoid the errors
propagated from NLP tools which may hinder the
performance for entity recognition. In addition, the
performance of ILP with only monolingual constraints
is quite lower with the CRF results. The better Stanford
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Table 4 Comparison of different methods on Chinese name
tagging.

Method Precision (%) Recall (%) F-score (%)
Stanford NER 82.50 66.58 73.69
ILP 76.2 63.06 69.01
Soft-Align 77.71 72.51 75.02
Joint Model 76.43 72.32 74.32
RNN 78.69 70.54 74.39
LSTM-CRF 79.56 81.44 80.49
MCAN 85.02 78.56 81.66
MCAN� 82.38 81.89 82.13
MCAN� 79.92 80.94 80.42

NER performance on Chinese is probably due to
more accurate marginal probabilities estimated by the
CRF model. What is more, for the soft-align model,
which contains more word alignment pairs and uses
probabilities to cut wrong word alignments, both the
recall and precision are improved in comparison to
ILP. The joint model can acquire the best performance
among feature-based methods. The reason may be that
the joint decoding algorithm promotes an effect of
“soft-union”, by encouraging the two unidirectional
aligners to agree more often.

For neural network based methods, MCAN� can
achieve 1.7% performance improvement on the name
tagging’s F-measure over the LSTM-CRF. This is
due to MCAN� incorporating high resource language
semantics to low resource language. Compared to
standard RNN, LSTM-CRF does not suffer from
the same problem of the gradient vanishing or
exploding[24]. The reason lies in that LSTM uses a more
sophisticated and powerful LSTM cell as the transition
function, for the long-distance semantic correlations
in a sequence to be modeled better. Compared
with MCAN, MCAN� gets better recall. This is
because MCAN� considers character-level information
(e.g., capitalization). Considering Fig. 1 again, the
Chinese word “;-” has two translation items and
both “chairman” and “president” are not capitalized.
Therefore the value is 0. However, for Chinese word
“,”, the value is 1 because the translation is “Ben”,
which is capitalized. Specifically, we do not use
character-level features on Chinese, because the number
of Chinese characters is very large, which seriously
affects the speed of computing the model.

4.3 Uzbek and turkish NER results

In this section, we compare MCAN model and
LSTM-CRF model, the latter uses only monolingual

information. Tables 5 and 6 present the results regarding
NER for Uzbek and Turkish, in comparison to LSTM-
CRF models. In these two languages, the MCAN model
outperforms the LSTM-CRF model, which shows that
adding cross-lingual information is useful for low
resource language name tagging. For Turkish, we
provide the true example of the sentence “Sudan’ da
kolera salgn.”, which means “Sudan cholera outbreak.”
Our model can recognize “Sudan” as a location, while
LSTM-CRF cannot. This is because the training data
do not contain “Sudan” as a positive instance. However,
MCAN can transfer the English semantics of “Sudan”
to Turkish and guide the Turkish name tagger to make a
correct decision.

4.4 Comparison on three languages

In this part, we consider our method (MCAN) as
an example and conduct a horizontal comparison on
Chinese, Uzbek, and Turkish.

Figure 6 shows the experimental results of MCAN
and LSTM-CRF for three languages. We can see that
both models achieve better precision, recall, and F-
score on Chinese, in comparison to the other two
languages, and the result of Uzbek is better than
Turkish. For this observation, we believe that the reason
is caused by the size of training data. It is well accepted
that the performance of a machine learner depends on
feature representation and size of training data. In
addition, we can find that the MCAN model gains
reduced gradually with the growth of training data.

4.5 Visualize attention models

We visualize the attention weight of each translation
items to obtain a better understanding of the mechanism
attention approach. The results of word-level bilingual
attention model are given in Fig. 7.

The x-axis and y-axis of each plot correspond to
the words in the low resource language sentence
(Chinese) and compared translation items in high
resource language (English), respectively. Each pixel

Table 5 Results on Uzbek name tagging.

Method Precision (%) Recall (%) F-score (%)
LSTM-CRF 69.14 68.13 68.63
MCAN 74.31 68.03 72.45

Table 6 Results on Turkish name tagging.

Method Precision (%) Recall (%) F-score (%)
LSTM-CRF 67.59 64.11 65.80
MCAN 75.89 65.71 70.44
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Fig. 6 The comparison of three languages.

美联储 主席 是 本 伯南克

FED
Federal Reserve

chairman
president

is
am
are

right
books
Ben

originally
Bernanke

Fig. 7 A sample important weights found by MCAN.

shows the weight ˛ij of the important weight of the
translation item word j -th for the i -th low resource
language word (see Eq. (3)), in gray scale (0: gray,
1: blue). Furthermore, we can see from the alignments
in Fig. 7 that the alignment of words between Chinese
and English is largely monotonic. We see strong
weights along the diagonal of each matrix. For instance,
attention model is able to correctly attend the Chinese
word [“�T¨”] with translation [“FED”].

5 Related Work

In this section, we briefly review existing studies
on cross-lingual name tagging and neural network
approaches to name tagging.

5.1 Cross-lingual name tagging

The idea of utilizing cross-lingual resources to improve

monolingual name tagger systems has been studied
extensively. Li et al.[13] presented a cyclic CRF model
and performed approximate inference using loopy be-
lief propagation. The feature-rich CRF formulation of
bilingual edge potentials in their model is powerful;
however, a big drawback of this approach is that training
such a feature-rich model requires manually annotated
bilingual NER data, which can be prohibitively
expensive to generate. How and where to obtain
the training signals without manual supervision is an
interesting and open question. In addition to bilingual
corpora, bilingual dictionaries are also useful resources.
Huang and Vegel[37] and Chen et al.[38] proposed
approaches to extracting bilingual named entity pairs
from unannotated bitext, in which verification was
based on bilingual named entity dictionaries. Our
approach differs in that it does not acquire any
unannotated bitext and hand-craft features.

In this regard, one of the most interesting papers
is Burkett et al.[39], which explored an “up-training”
mechanism by using the outputs from a strong
monolingual model as ground-truth, and thereby
simulated a learning environment, where a bilingual
model is trained to help a “weakened” monolingual
model recover the results of the strong model. Kim
et al.[40] proposed a method of labeling bilingual
corpora with named entity labels automatically based
on Wikipedia. However, this method is restricted to
topics covered by Wikipedia.

Chen et al.[38] tackled the problem of jointly
recognizing and aligning bilingual named entities.
Their method employs a set of heuristic rules to
expand a candidate named entity set generated by
monolingual taggers, and then rank those candidates by
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using a bilingual named entity dictionary. In addition,
Wang et al.’s approach[15] differs in that it provides
a probabilistic formulation of the problem and does
not require pre-existing NE dictionaries. Che et
al.[14] proposed a novel ILP-based inference algorithm
with bilingual constraints for NER. This method can
jointly infer bilingual named entities without using any
annotated bilingual corpus. In addition, Zhang et al.[34]

conducted a thorough study for low resource language
name tagging and on various ways of acquiring,
encoding and composing expectations from multiple
non-traditional sources. Experiments demonstrate that
this framework can be used to build a promising name
tagger for a new IL within a few hours.

5.2 Neural network for name tagging

Neural network approaches have shown promising
results with regard to English name tagging. The
power of the neural model lies in its ability of
learning continuous text representation from data
without any feature engineering. As for the named
entity recognition, most of the previous studies consist
of two steps. First, they learn the continuous word
vector embeddings from the data[23, 41]. Afterwards,
sequential compositional approaches are used to
compute the vector of each word, with context
information. The representative sequential approaches
to learning word representation include convolutional
neural network[42, 43] and long short-term memory[26].

Gillick et al.[44] modeled the task of sequence-
labeling as a sequence to sequence learning problem
and incorporated character-based representations into
their encoder model. Chiu and Nichols[45] developed
a Bi-LSTM architecture to learn word representation
in context. They used CNNs to learn character-level
features which replace previous word embeddings.
Lample et al.[6] employed an architecture similar to
Chiu and Nichols[45], but using Bi-LSTM to learn
character-level features, in a way similar to the work
by dos Santos and Guimarães[7].

6 Conclusion

Low resource name tagging is a very important yet
challenging problem in natural language processing.
In this work, we designed a multi-level cross-lingual
attentive neural architecture, which incorporates both
the language independent entity type distribution and
bilingual lexicons, to guide low resource name tagging
as consistently as in high resource language tagging;

namely, English name tagging. Experiments on three
low resource languages, namely, Chinese, Uzbek, and
Turkish, demonstrate the effectiveness of our neural
architecture for name tagging. In the future, we will
explore more methods of transferring knowledge from
high resource language to low resource languages and
mutually improving their name tagging performances.
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