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Abstract

Given a matrix A ∈ R
n×n, we present a simple, element-wise sparsification algorithm that

zeroes out all sufficiently small elements of A and then retains some of the remaining elements
with probabilities proportional to the square of their magnitudes. We analyze the approxima-
tion accuracy of the proposed algorithm using a recent, elegant non-commutative Bernstein
inequality, and compare our bounds with all existing (to the best of our knowledge) element-
wise matrix sparsification algorithms.

1 Introduction

Element-wise matrix sparsification was pioneered by Achlioptas and McSherry [AM01, AM07], who
described sampling-based algorithms to select a small number of elements from an input matrix
A ∈ R

n×n in order to construct a sparse sketch Ã ∈ R
n×n, which is close to A in the operator

norm. Such sketches were used in approximate eigenvector computations [AM01, AHK06, AM07],
semi-definite programming solvers [AHK05, d’A09], and matrix completion problems [CR09, CT10].
Motivated by their work, we present a simple matrix sparsification algorithm that achieves the best
known upper bounds for element-wise matrix sparsification.

Our main algorithm (Algorithm 1) zeroes out “small” elements of A and randomly samples the
remaining elements of A with respect to a probability distribution that favors “larger” entries. In
Algorithm 1, we let e1, e2, . . . , en ∈ R

n denote the standard basis vectors for Rn (see Section 3.1 for

more notation). Our sampling procedure selects s entries fromA (note that Â from the description of
Algorithm 1 is simply A, but with elements less than or equal to ǫ/(2n) zeroed out) in s independent,
identically distributed (i.i.d.) trials with replacement. In each trial, elements of A are retained with
probability proportional to their squared magnitude. Note that the same element of A could be
selected multiple times and that Ã contains at most s non-zero entries. Theorem 1 is our main
quality-of-approximation result for Algorithm 1 and achieves sparsity bounds proportional to ‖A‖2F.
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1: Input: A ∈ R
n×n, accuracy parameter ǫ > 0.

2: Let Â = A and zero-out all entries of Â that are smaller (in absolute value) than ǫ/2n.
3: Set s as in Eqn. (1).

4: For t = 1 . . . s (i.i.d. trials with replacement) randomly sample indices (it, jt) (entries of Â),
with

P ((it, jt) = (i, j)) = pij , where pij := Â2
ij/
∥∥∥Â
∥∥∥
2

F
for all (i, j) ∈ [n]× [n].

5: Output:

Ã =
1

s

s∑

t=1

Âitjt

pitjt
eite

T
jt ∈ R

n×n.

Algorithm 1: Matrix Sparsification Algorithm

Theorem 1 Let A ∈ R
n×n be any matrix, let ǫ > 0 be an accuracy parameter, and let Ã be the

sparse sketch of A constructed via Algorithm 1. If

s =
28n ln

(√
2n
)

ǫ2
‖A‖2F , (1)

then, with probability at least 1− n−1,
∥∥∥A− Ã

∥∥∥
2
≤ ǫ.

Ã has at most s non-zero entries and the construction of Ã can be implemented in one pass over
the input matrix A (see Section 3.2).

We conclude this section with Corollary 1, which is a re-statement of Theorem 1 involving the
stable rank of A, denoted by sr (A) (recall that the stable rank of any matrix A is defined as the

ratio sr (A) := ‖A‖2F / ‖A‖22, which is upper bounded by the rank of A). The corollary guarantees
relative error approximations for matrices of – say – constant stable rank, such as the ones that
arise in [Rec09, CT10].

Corollary 1 Let A ∈ R
n×n be any matrix and let ε > 0 be an accuracy parameter. Let Ã be the

sparse sketch of A constructed via Algorithm 1 (with ǫ = ε ‖A‖2). If s = 28nsr (A) ln
(√

2n
)
/ε2,

then, with probability at least 1− n−1,
∥∥∥A− Ã

∥∥∥
2
≤ ε ‖A‖2 .

It is worth noting that the sampling algorithm implied by Corollary 1 can not be implemented in
one pass, since we would need a priori knowledge of the spectral norm of A in order to implement
Step 2 of Algorithm 1.

2 Related Work

In this section (as well as in Table 1), we present a head-to-head comparison of our result with
all existing (to the best of our knowledge) bounds on matrix sparsification. In [AM01, AM07]
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the authors presented a sampling method that requires in expectation 16n ‖A‖2F /ǫ2 + 84n log4 n

non-zero entries in Ã in order to achieve an accuracy guarantee ǫ with a failure probability of at
most e−19 log4 n. Compared with our result, their bound holds only when ǫ > 4

√
n · maxi,j |Aij |

and, in this range, our bounds are superior when ‖A‖2F /(maxi,j |Aij |)2 = o(n log3 n). It is worth
mentioning that the constant involved in [AM01, AM07] is two orders of magnitude larger than
ours and, more importantly, that the results of [AM01, AM07] hold only when n ≥ 700 · 106.

In [GT09], the authors study the ‖·‖∞→2 and ‖·‖∞→1 norms in the matrix sparsification context
and they also present a sampling scheme analogous to ours. They achieve (in expectation) a sparsity

bound of Rn ‖A‖2F maxi,j |Aij |/ǫ2 when ǫ ≥
√
nRmaxi,j |Aij |; here R = maxij |Aij |/minAij 6=0 |Aij |.

Thus, our results are superior (in the above range of ǫ) when R ·maxi,j |Aij | = ω(logn).
It is harder to compare our method to the work of [AHK06], which depends on the

∑n
i,j=1 |Aij |.

The latter quantity is, in general, upper bounded only by n ‖A‖F, in which case the sampling com-

plexity of [AHK06] is much worse, namely O(n3/2 ‖A‖2F /ǫ). Finally, the recent bounds on matrix
sparsification via the non-commutative Khintchine’s inequality in [NDT09] are inferior compared
to ours in terms of sparsity guarantees by at least O(ln2(n/ ln2 n)). However, we should mention
that the bounds of [NDT09] can be extended to multi-dimensional matrices (tensors), whereas our
result does not generalize to this setting; see [NDT10] for details.

Comparison with Prior Results

Sparsity of Ã Failure Citation Comments

Probability

16n ‖A‖2F /ǫ2 + 84n log4 n Expected e−19 log4 n [AM07] ǫ > 4
√
n · b

n ≥ 700 · 106

R · b · n ‖A‖2F /ǫ2 Expected e−Ω(R·n) [GT09] ǫ > c1
√
n ·R · b, n ≥ 1

c2n log2( n

log2 n
) log n ‖A‖2F /ǫ2 Expected 1/n [NDT09] ǫ > 0, n ≥ 300,

c2 ≤ 452

c3n log3 n ‖A‖2F /ǫ2 Expected 1/n [NDT10] ǫ > 0, n ≥ 300
Extends to tensors

c4
√
n
∑

ij
|Aij |/ǫ Exact e−Ω(n) [AHK06] ǫ > 0, n ≥ 1

28n ln
(√

2n
)
‖A‖2F /ǫ2 Exact 1/n Theorem 1 ǫ > 0, n ≥ 1

Table 1: Summary of prior work in matrix sparsification results. Given a matrix A ∈ R
n×n and an

accuracy parameter ǫ > 0, we seek a sparse Ã ∈ R
n×n such that

∥∥∥A− Ã
∥∥∥
2
≤ ǫ. The first column

indicates the number of non-zero entries in Ã, whereas the second column indicates whether this
number is exact or simply holds in expectation. In terms of notation, we let b denote the maxi,j |Aij |
and R denote the maxij |Aij |/minAij 6=0 |Aij |. Finally, c1, c2, c3, c4 denote unspecified constants.
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3 Background

3.1 Notation

We let [n] denote the set {1, 2, . . . , n}. We will use the notation P (·) to denote the probability of the
event in the parentheses and E (X) to denote the expectation of a random variable X . When X is
a matrix, E (X) denotes the element-wise expectation of each entry of X . For a matrix X ∈ R

n×n,
X(j) will denote the j-th column of X as a column vector and, similarly, X(i) will denote the
i-th row of X as a row vector (for any i or j in [n]). The Frobenius norm ‖X‖F of the matrix

X is defined as ‖X‖2F =
∑n

i,j=1 X
2
ij , and the spectral norm ‖X‖2 of the matrix X is defined as

‖X‖2 = max‖y‖
2
=1 ‖Xy‖2 . For two symmetric matrices X,Y we say that Y � X if and only if

Y −X is a positive semi-definite matrix. Finally, In denotes the identity matrix of size n and lnx
denotes the natural logarithm of x.

3.2 Implementing the Sampling in one Pass over the Input Matrix

We now discuss the implementation of Algorithm 1 in one pass over the input matrix A. Towards
that end, we will leverage (a slightly modified version of) Algorithm Select (p. 137 of [DKM06]).

We note that Step 3 essentially operates on Â. Clearly, in a single pass over the data we can run

1: Input: Aij for all (i, j) ∈ [n]× [n], arbitrarily ordered and ǫ > 0.
2: N = 0.
3: For all (i, j) ∈ [n]× [n] such that A2

ij >
ǫ2

4n2

• N = N +A2
ij .

• Set (I, J) = (i, j) and S = Aij with probability
A2

ij

N .

4: Output: Return (I, J), S and N .

Algorithm 2: One-pass Select algorithm

in parallel s copies of the Select Algorithm (using a total of O(s) memory) to effectively return s

independent samples from Â. Lemma 1 (page 136 of [DKM06], note that the sequence of the A2
ij ’s

is all-positive) guarantees that each of the s copies of Select returns a sample satisfying:

P ((it, jt) = (i, j)) =
Â2

ij∑n
i,j=1 Â

2
ij

=
Â2

ij∥∥∥Â
∥∥∥
2

F

, for all t = 1, . . . , s.

Finally, in the parlance of Step 5 of Algorithm 1, (it, jt) is set to (I, J) and pitjt is set to S2/N for
all t ∈ [s].

4 Proof of Theorem 1

The proof of Theorem 1 will combine Lemmas 1 and 4 in order to bound
∥∥∥A− Ã

∥∥∥
2
as follows:

∥∥∥A− Ã
∥∥∥
2
=
∥∥∥A− Â+ Â− Ã

∥∥∥
2
≤
∥∥∥A− Â

∥∥∥
2
+
∥∥∥Â− Ã

∥∥∥
2
≤ ǫ/2 + ǫ/2 = ǫ.
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The failure probability of Theorem 1 emerges from Lemma 4, which fails with probability at most
n−1 for the choice of s in Eqn. (1). The proof of Lemma 4 will involve an elegant matrix-valued
Bernstein bound proven in [Rec09]. See also [Gro09] or [Tro10, Theorem 2.10] for similar bounds.

4.1 Bounding

∥∥∥A− Â

∥∥∥
2

Lemma 1 Using the notation of Algorithm 1,
∥∥∥A− Â

∥∥∥
2
≤ ǫ/2.

Proof: Recall that the entries of Â are either equal to the corresponding entries of A or they are
set to zero if the corresponding entry of A is (in absolute value) smaller than ǫ/(2n). Thus,

∥∥∥A− Â
∥∥∥
2

2
≤
∥∥∥A− Â

∥∥∥
2

F
=

n∑

i,j=1

(
A− Â

)2
ij
≤

n∑

i,j=1

ǫ2

4n2
≤ ǫ2

4
.

⋄

4.2 Bounding

∥∥∥Â− Ã

∥∥∥
2

In order to prove our main result in this section (Lemma 4) we will leverage a powerful matrix-
valued Bernstein bound originally proven in [Rec09] (Theorem 3.2). We restate this theorem,
slightly rephrased to better suit our notation.

Theorem 2 [Theorem 3.2 of [Rec09]] Let M1,M2, . . . ,Ms be independent, zero-mean random
matrices in R

n×n. Suppose maxt∈[s]

{∥∥E
(
MtM

T
t

)∥∥
2
,
∥∥E
(
MT

t Mt

)∥∥
2

}
≤ ρ2 and ‖Mt‖2 ≤ γ for all

t ∈ [s]. Then, for any τ > 0, ∥∥∥∥∥
1

s

s∑

t=1

Mt

∥∥∥∥∥
2

≤ τ

holds, subject to a failure probability of at most

2n exp

(
− sτ2/2

ρ2 + γτ/3

)
.

In order to apply the above theorem, using the notation of Algorithm 1, we set Mt =
Âitjt

pitjt

eite
T
jt
− Â

for all t ∈ [s] to obtain

1

s

s∑

t=1

Mt =
1

s

s∑

t=1

[
Âitjt

pitjt
eite

T
jt − Â

]
= Ã− Â. (2)

Let 0n denote the all-zeros matrix of size n. It is easy to argue that E (Mt) = 0n for all t ∈ [s].

Indeed, if we consider that
∑n

i,j=1 pij = 1 and Â =
∑n

i,j=1 Âijeie
T
j we obtain

E (Mt) =

n∑

i,j=1

pij

(
Âij

pij
eie

T
j − Â

)
=

n∑

i,j=1

Âijeie
T
j −

n∑

i,j=1

pijÂ = 0n.

Our next lemma bounds ‖Mt‖2 for all t ∈ [s].
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Lemma 2 Using our notation, ‖Mt‖2 ≤ 4nǫ−1
∥∥∥Â
∥∥∥
2

F
for all t ∈ [s].

Proof: First, using the definition of Mt and the fact that pitjt = Â2
itjt/

∥∥∥Â
∥∥∥
2

F
,

‖Mt‖2 =

∥∥∥∥∥
Âitjt

pitjt
eite

T
jt − Â

∥∥∥∥∥
2

≤

∥∥∥Â
∥∥∥
2

F∣∣∣Âitjt

∣∣∣
+
∥∥∥Â
∥∥∥
2
≤

2n
∥∥∥Â
∥∥∥
2

F

ǫ
+
∥∥∥Â
∥∥∥
F
.

The last inequality follows since all entries of Â are at least ǫ/(2n) and the fact that
∥∥∥Â
∥∥∥
2
≤
∥∥∥Â
∥∥∥
F
.

We can now assume that

∥∥∥Â
∥∥∥
F
≤

2n
∥∥∥Â
∥∥∥
2

F

ǫ
(3)

to conclude the proof of the lemma. To justify our assumption in Eqn. (3), we note that if it is

violated, then it must be the case that
∥∥∥Â
∥∥∥
F
< ǫ/(2n). If that were true, then all entries of Â

would be equal to zero. (Recall that all entries of Â are either zero or, in absolute value, larger

than ǫ/(2n).) Also, if Â were identically zero, then (i) Ã would also be identically zero and, (ii) all
entries of A would be at most ǫ/(2n). Thus,

∥∥∥A− Ã
∥∥∥
2
= ‖A‖2 ≤ ‖A‖F ≤

√
n2

ǫ2

4n2
=

ǫ

2
.

Thus, if the assumption of Eqn. (3) is not satisfied, the resulting all-zeros Ã still satisfies Theorem 1.
⋄

Our next step towards applying Theorem 2 involves bounding the spectral norm of the expectation
of MtM

T
t . The spectral norm of the expectation of MT

t Mt admits a similar analysis and the same
bound and is omitted.

Lemma 3 Using our notation,
∥∥E
(
MtM

T
t

)∥∥
2
≤ n

∥∥∥Â
∥∥∥
2

F
for any t ∈ [s].

Proof: We start by evaluating E
(
MtM

T
t

)
; recall that pij = Â2

ij/
∥∥∥Â
∥∥∥
2

F
:

E
(
MtM

T
t

)
= E

((
Âitjt

pitjt
eite

T
jt − Â

)(
Âitjt

pitjt
ejte

T
it − ÂT

))

=

n∑

i,j=1

pij

(
Âij

pij
eie

T
j − Â

)(
Âij

pij
eje

T
i − ÂT

)

=

n∑

i,j=1

(
Â2

ij

pij
eie

T
i − ÂijÂeje

T
i − Âijeie

T
j Â

T + pijÂÂ
T

)

=
∥∥∥Â
∥∥∥
2

F

n∑

i=1

mi · eieTi −
n∑

j=1

Âej

n∑

i=1

Âije
T
i −

n∑

j=1

(
n∑

i=1

Âijei

)(
Âej

)T
+

n∑

i,j=1

pijÂÂ
T ,

6



where mi is the number of non-zeroes of the i-th row of Â. We now simplify the above result using a

few simple observations:
∑n

i,j=1 pij = 1, Âej = Â(j),
∑n

i=1 Âijei = Â(j), and
∑n

j=1 Â
(j)
(
Â(j)

)T
=

ÂÂT . Thus, we get

E
(
MtM

T
t

)
=

∥∥∥Â
∥∥∥
2

F

n∑

i=1

mi · eieTi −
n∑

j=1

Â(j)
(
Â(j)

)T
−

n∑

j=1

Â(j)
(
Â(j)

)T
+ ÂÂT

=
∥∥∥Â
∥∥∥
2

F

n∑

i=1

mi · eieTi − ÂÂT .

Since 0 ≤ mi ≤ n and using Weyl’s inequality (Theorem 4.3.1 of [HJ90]), which states that by
adding a positive semi-definite matrix to a symmetric matrix all its eigenvalues will increase, we
get that

−ÂÂT � E
(
MtM

T
t

)
� n

∥∥∥Â
∥∥∥
2

F
In.

Consequently
∥∥E
(
MtM

T
t

)∥∥
2
= max

{∥∥∥Â
∥∥∥
2

2
, n
∥∥∥Â
∥∥∥
2

F

}
= n

∥∥∥Â
∥∥∥
2

F
.

⋄
We can now apply Theorem 2 on Eqn. (2) with τ = ǫ/2, γ = 4nǫ−1

∥∥∥Â
∥∥∥
2

F
(Lemma 2), and

ρ2 = n
∥∥∥Â
∥∥∥
2

F
(Lemma 3) . Thus, we get that

∥∥∥Â− Ã
∥∥∥
2
≤ ǫ/2 holds, subject to a failure probability

of at most

2n exp


− ǫ2s/8

(1 + 4/6)n
∥∥∥Â
∥∥∥
2

F


 .

Bounding the failure probability by δ and solving for s, we get that

s ≥ 14

ǫ2
n
∥∥∥Â
∥∥∥
2

F
ln

(
2n

δ

)
.

Using
∥∥∥Â
∥∥∥
F
≤ ‖A‖F (by construction) concludes the proof of the following lemma, which is the

main result of this section.

Lemma 4 Using the notation of Algorithm 1, if s ≥ 14nǫ−2 ‖A‖2F ln (2n/δ) , then, with probability
at least 1− δ, ∥∥∥Â− Ã

∥∥∥
2
≤ ǫ/2.

5 Acknowledgments

We would like to thank the anonymous reviewers for numerous comments that significantly im-
proved the presentation of our work. This research has been supported by the National Science
Foundation through NSF CCF 1016501, NSF DMS 1008983, and NSF CCF 545538 awards to Petros
Drineas.

7



References

[AHK05] S. Arora, E. Hazan, and S. Kale. Fast Algorithms for Approximate Semidefinite Programming
using the Multiplicative Weights Update Method. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 339–348, 2005. (Cited on page 1)

[AHK06] S. Arora, E. Hazan, and S. Kale. A Fast Random Sampling Algorithm for Sparsifying Matrices.
In Proceedings of the International Workshop on Randomization and Approximation Techniques
(RANDOM), pages 272–279, 2006. (Cited on pages 1 and 3)

[AM01] D. Achlioptas and F. McSherry. Fast Computation of Low Rank Matrix Approximations. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 611–618, 2001. (Cited on
pages 1, 2 and 3)

[AM07] D. Achlioptas and F. McSherry. Fast Computation of Low Rank Matrix Approximations. Journal
of the ACM, 54(2), 2007. (Cited on pages 1, 2 and 3)

[CR09] E. J. Candès and B. Recht. Exact Matrix Completion via Convex Optimization. Foundations of
Computational Mathematics, 9(3):717–772, 2009. (Cited on page 1)

[CT10] E. J. Candès and T. Tao. The Power of Convex Relaxation: Near-optimal Matrix Completion.
IEEE Trans. Inf. Theor., 56(5):2053–2080, 2010. (Cited on pages 1 and 2)

[d’A09] A. d’Aspremont. Subsampling Algorithms for Semidefinite Programming. Available
at arxiv:0803.1990v5, November 2009. (Cited on page 1)

[DKM06] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo Algorithms for Matrices I:
Approximating Matrix Multiplication. SIAM J. Comput., 36(1):132–157, 2006. (Cited on page 4)

[Gro09] D. Gross. Recovering Low-rank Matrices from Few Coefficients in any Basis. Available
at arxiv:0910.1879, December 2009. (Cited on page 5)

[GT09] A. Gittens and J. A. Tropp. Error Bounds for RandomMatrix Approximation Schemes. Available
at arxiv:0911.4108, November 2009. (Cited on page 3)

[HJ90] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990. (Cited on
page 7)

[NDT09] N. H. Nguyen, P. Drineas, and T. D. Tran. Matrix Sparsification via the Khintchine Inequality.
Manuscript, 2009. (Cited on page 3)

[NDT10] N. H. Nguyen, P. Drineas, and T. D. Tran. Tensor Sparsification via a Bound on the Spectral
Norm of Random Tensors. Available at arxiv:1005.4732, May 2010. (Cited on page 3)

[Rec09] B. Recht. A Simpler Approach to Matrix Completion. Available at arxiv:0910.0651, October
2009. (Cited on pages 2 and 5)

[Tro10] J. A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. Available
at arxiv:1004.4389, April 2010. (Cited on page 5)

8

http://arxiv.org/abs/0803.1990v5
http://arxiv.org/abs/0910.1879
http://arxiv.org/abs/0911.4108
http://arxiv.org/abs/1005.4732
http://arxiv.org/abs/0910.0651v2
http://arxiv.org/abs/1004.4389

	1 Introduction
	2 Related Work
	3 Background
	3.1 Notation
	3.2 Implementing the Sampling in one Pass over the Input Matrix

	4 Proof of Theorem ??
	4.1 Bounding "026B30D A - A"0362A"026B30D 2
	4.2 Bounding "026B30D A"0362A - A"0365A"026B30D 2

	5 Acknowledgments

