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ABSTRACT This paper studies robot manipulation skill acquisition based on a proposed reinforcement
learning framework. Robot can learn policy autonomously by interacting with environment with a better
learning efficiency. Aiming at the manipulator operation task, a reward function design method based on
objects configuration matching (OCM) is proposed. It is simple and suitable for most Pick and Place
skills learning. Integrating robot and object state, high-level action set and the designed reward function,
the Markov model of robot manipulator is built. An improved Proximal Policy Optimize algorithm with
manipulation set as the output of Actor (MAPPO) is proposed as the main structure to construct the robot
reinforcement learning framework. The framework combines with the Markov model to learn and optimize
the skill policy. A same simulation environment as the real robot is set up, and three robot manipulation
tasks are designed to verify the effectiveness and feasibility of the reinforcement learning framework for
skill acquisition.

INDEX TERMS Robot skill acquisition, reinforcement learning, reword function, MAPPO.

I. INTRODUCTION
Due to its unique operational flexibility, robot arm has a wide
range of applications in industrial production and life service.
Currently calibrating robots can perform repetitive tasks well
like object picking and placing, but in many cases, it is still
not flexible to adjust itself for new tasks [1]. With the emer-
gence of advanced robots, the demand for teaching robots
complex skills increases. When a robot is brought into a new
practical general environment to perform complex tasks, and
it has only limited knowledge. One way to further acquire
knowledge is to explore and learn by interacting with the
environment [2]. The current robotic skill acquisition usually
adopts the method of teaching programming, which belongs
to low-level motion planning. While higher-level planning
such as behavior sequence planning and task planning is still
in its infancy, which is one reason for robot difficult to obtain
autonomy in complex dynamic environments.

Making robots have human-like intelligence, and acquire
new skills in dynamic and uncertain environment is a goal
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that the intelligent robot field has been pursuing. Skills
acquisition encompasses various forms of learning. Robots
not only learn by observing the behaviors of other agents,
but also learn new skills through exploring and trying [3].
Reinforcement learning in the field of robotics becomes a
hot research topic because of its successful applications in
recent years [4]. Reinforcement learning method takes the
environmental feedback as input, and achieves strategy opti-
mization using evaluative feedback function through trial-
and-error interaction with a dynamic environment [5], [6].
This is also an instinctive way of learning when human faces
an unknown state in nature. Therefore, applying reinforce-
ment learning for robotic skill acquisition, the robot has the
capacity of human-like learning, which can avoid lengthy
robot programming, while no technical expertise is required
for the operator.

When robot performs reinforcement learning, it has to be
able to generalize to new actions to become autonomous.
Most approaches concern that robots derive efficient rep-
resentations from high-dimensional sensory inputs, and use
these to generalize past experience to new situations [7], [8].
Generally, this is a hard problem, since the search space
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the robot has to explore is potentially huge [9]. The high
dimensional robot joint information and input image will take
a long training time. Thus, the sensory-action space design
is an important issues. Another key part is the design of
reward function since the optimization of strategy is based
on the cumulative reward of each state. How to design the
reward function will affect the efficiency and effectiveness
of skill learning in the framework of robot reinforcement
learning [10]. It is still a difficult task to design a suitable
reward function, since different tasks are often difficult to
have a unified reward function. A suitable reward function
to enable robots to learn efficiently and robustly in different
similar tasks is necessary.

Integrated the sensory-action space and reward func-
tion design, this paper proposes a new reinforcement
learning-based framework for robot Pick and Place skill
acquisition. The primary contributions are summarized as
follows:

1) Considering the features of robot manipulation tasks,
low dimensional state space and higher-level action set
are proposed to overcome the problems arising from
high-dimensional and continuous sensory-action space. The
object pose combines the pose of robot end effector and the
gripper status to form the state of reinforcement learning
model.

2) A reward function which is suitable for the Pick
and Place tasks is designed based on objects configuration
matching (OCM). Euclidean distance is used to calculate
the similarity of the configuration vectors, which focuses
on length property. Pearson coefficient is used to calculate
correlation of the vectors, which focuses on direction prop-
erty. The instant reward is a function of similarity. This
can improve the learning efficiency with a more reasonable
action.

3) Based on robot Markov model, the reinforcement learn-
ing framework is constructed through an improved proximal
policy optimize algorithm as the main structure, which is
called MAPPO. It can autonomously learn and optimize the
manipulation skill policy to accumulate task experience in
new environment.

II. RELATED WORK
The emergence of various reinforcement learning-based
models and algorithms provide theoretical support for more
and more applications. End-to-end training of visuomotor
policies [11] are proposed. They directly input robot joint
information and original image as the state to a deep convolu-
tional neural network (DCNN) with 92,000 parameters. The
policies are trained to output robot motor torque as an action.
The Google team conducted similar researches in the fol-
lowing three directions: 1)Model-free reinforcement learning
from original experience. Depth Determination Strategy Gra-
dient Algorithm (DDPG) is proposed to train robot stacking
blocks in virtual environment [12]. The input is the joint
information of robot arm and gripper, while the output is the
action performed by robot arm; 2) learning internal physical

model of the object. Finn and Levine [13] used end-to-end
learning model to train the robot randomly grabbing objects
in a container; 3) Learning with human assistance. Similar to
the above, Gu et al. [14] added artificial guidance as an initial
strategy to improve learning efficiency.

Some learning algorithms such as Proximal Policy Opti-
mization (PPO) [15] and Critics of Asynchronous Advantage
Actors (A3C) [16] are proposed to make robot learn effi-
ciently. Additionally, the OpenAI team proposed a hierarchi-
cal reinforcement learning algorithm [17] to decompose com-
plex tasks into multiple high-level action sequences, which
is an effective way to solve dimensional disaster. Similarly,
the layered guiding framework [18] divides into several sub-
tasks to learn. Other methods for improving learning ability
include speeding up strategy search through human teaching
actions [19], using the knowledge acquired early in agent
live [20], and parameterizing initial teaching as a dynamic
motion primitive [9], etc.

As reinforcement learning becomes autonomous, the design
of reward function that elicit desired behaviors becomes
important and difficult [21]. Ratner et al [22] derived an
approach to infer a common reward by using inference to
generate a posterior distribution over the true reward from
independently designed rewards. Guo et al. [23] presented
an adaptation of policy-gradient for reward design for learn-
ing a reward-bonus function to improve Monte Carlo Tree
Search algorithm. MacGlasha et, al [24] presented a system
to ground natural language commands to reward functions
that captured a desired task, and used natural language as
an interface for specifying rewards. Palan et al. [25] used
demonstrations to learn a coarse prior over the space of
reward functions, to reduce the effective size of the space
from which queries are generated.

The various reinforcement learning models and algorithms
make the theory of reinforcement learning more mature [14],
[26], [27]. While reinforcement learning is still in its infancy
for robot manipulation skill acquisition. The methods have
struggled due to various practical challenges such as skill rep-
resentation, reward definition and exploration training [28].
In this work, we focus on sensory-action space modelling
and reward function design to build the reinforcement learn-
ing framework through MAPPO for robot manipulation skill
acquisition.

III. ROBOT MARKOV MODEL FOR REINFORCEMENT
LEARNING
A. MARKOV MODELING OF ROBOT MANIPULATOR
The robot manipulator continuously samples in the process
of interacting with the environment, and acquires task skills
through learner training. The Markov model is described by
the tuples < s, a, P, R, γ >:
State (s): The state information includes two parts, which

are the object state information and robot arm and gripper
state information in the environment. According to the learn-
ing task, the poses of all the objects related to the task are
extracted by the RGBD sensor. The manipulated object pose
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FIGURE 1. Action path (a)arm_init, (b)move, (c)pick, (d)place.

combine the post of robot end effector and the gripper status
to form the state of reinforcement learning model. Suppose
the number of objects in the environment is N , which is
represented by the set obj1, obj2, obj3, · · · ,objn. At time step
t we select an object objt and then choose an action which
can be described as:

d (t) = ((sobjt , sr ), at ) (1)

where sobjt is the state of objt which is expressed as the object
pose (xi, yi, zi, orieni) , sr is the state of robot, which is the
end effector pose and the opening and closing status of the
gripper.

Action (a): The action set consists of high-order, discrete
actions designed by MoveIt!, and interacts with the envi-
ronment by selecting actions from the set {arm_init, move,
pick, place· · ·}, as shown in Figure 1. arm_init indicates the
initialization of robot pose, moving from current post to initial
post. At this time, the whole robot manipulator is out of the
camera’s field of view, leaving enough space to obtain the
current status information. move represents robot movement
action that the end effector moves from current post to target
post. pick means robot grasping action. The end effector
moves from current post to pose1 above the object, andmoves
from pose1 to the grab point pose2, then the gripper closes,
and the robot grabs object for a certain distance back to pose1.
pose1 has a certain safety distance from the grab point pose2.
place represents robot placement action. The end effector
moves from current post to pose1 above the object, andmoves
down to pose2, then the gripper opens to place object, and the
end effector rises to pose1 again for keeping a certain safety
distance.

Strategy (P): The strategy is represented by a neural net-
work. It outputs a probability distribution of discrete actions
according to current state, and selects an action from the
action set based on the probability distribution.

Reward (R): The reward is computed according to the
reward function after the robot manipulator performs an
action. It will be discussed next.
γ : Discount factor for calculating cumulative reward.
In the initial state s0, the robot selects an action a0 to inter-

act with the environment, transfers to the next state s1 accord-
ing to state transition probability P[s1|s0, a], and obtains an
immediate reward r0, and then circulates the above process.
In this process, the state-action-reward transfer sequence
(s0, a0, r0, s1, a1, r1, s2, a2, r2 · · · st , at , rt) is collected.

B. REWARD FUNCTION DESIGN BASED ON OCM
According to the tasks of most robot arms interacting with
objects in environment, we propose a reward function design
method based on OCM. Robot operation tasks are often
necessary to configure objects in environment to a target con-
figuration. Here Objects Target Configuration (OTC) indi-
cates that the objects are distributed in space according to a
certain desired pose relationship. For stacking blocks task,
the blocks may need to stack randomly from bottom to top in
a configuration of {blue_cube, red_cube, yellow_cube· · · }.
Therefore, this paper considers giving the OTC for different
tasks, and constructs reward function according to the similar-
ity between OTC and Objects Current Configuration (OCC).

Given the OTC, the mutual pose relationship between the
objects can be known. An object can be regarded as a point,
and each point has its pose information, and then multiple
objects in the environment constitute the point set data. Simi-
larly, the OCC also corresponds to a point set data. The point
cloud matching algorithm is used to calculate the relationship
between two or more frames of point set data, so as to splice
adjacent point set data or calculate the pose transformation
matrix of two point set data. Inspired by this, this paper
calculates the similarity between OTC and OCC based on the
point set matching algorithm. The instant reward is a function
of similarity.

In reinforcement learning model, because the agent needs
to interact with environment at each step, the objects config-
uration will change at different times. In the target config-
uration and the current configuration, the ID of each object
can be obtained through image recognition. Then two point
sets are determined. It is no longer necessary to find the
matching relationship between points. Therefore, we simplify
the point cloud matching, and obtain the similarity between
OTC and OCC based on vector similarity measurement. Iter-
ating all points in the point set, every two points constitute
a vector. Calculating the similarity of the corresponding vec-
tor between target configuration and current configuration,
the similarity combination of all vectors is the similarity
between OTC and OCC. We use Euclidean distance to cal-
culate the similarity of the vectors, which focuses on length
property of the vectors. We use Pearson coefficient to calcu-
late the correlation of the vectors, which focuses on direction
property of the vectors.

Assuming that there are objects 1, 2, and 3 in environment,
and the robot arm needs to interact with the objects to achieve
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FIGURE 2. Similarity measurement of objects configuration.

a target configuration, as shown in Figure 2. Here the target
configuration is given as the dictionary:

targetconf = {1 : (x1, y1, z1, orien1) ,

2 : (x2, y2, z2, orien2) , 3 : (x3, y3, z3, orien3) (2)

where orien represents the object pose, which is quaternion
(w, x, y, z).

The OCC is obtained through the sensor:

currentconf = {1 :
(
x ′1, y

′

1, z
′

1, orien
′

1
)
,

2 :
(
x ′2, y

′

2, z
′

2, orien
′

2
)
, 3 :

(
x ′3, y

′

3, z
′

3, orien
′

3
)

(3)

Tacking object 1 as a reference, the configuration vectors
for object 1 and object 2, object 1 and object 3 are constructed
as:

target_v12 = (x2 − x1, y2 − y1, z2 − z1, orien2 − orien1)

target_v13 = (x3 − x1, y3 − y1, z3 − z1, orien3 − orien1)

current_v12 = (x2 − x1, y2 − y1, z2 − z1, orien2 − orien1)

current_v13 = (x3 − x1, y3 − y1, z3 − z1, orien3 − orien1)

(4)

The configuration vector reflects the relative pose rela-
tionship of two objects. Here we only give the configuration
vector of object 1 to other objects. The Euclidean distance
and Pearson coefficient of the corresponding vectors are com-
puted as:

d12 =

√∑n

k=1
(target_v12k − current_v12k )

2 (5)

d13 =

√∑n

k=1
(target_v13k − current_v13k )

2 (6)

Among them, the rewards in intermediate process appear
in the form of negative rewards, avoiding the robot arm
making unnecessary actions in the interaction process in
order to retrieve reward [14]. The reward range associated
with the Euclidean distance is (−m, 0). The smaller the
distance, the greater the similarity, and the bigger the reward.
The reward range associated with the Pearson coefficient is
(−1, 0). The greater the relevance, the bigger the reward.
Rfinal is the final reward received by the robot after complet-
ing task. When the task is not completed in previous period,
the reward value of each step is small. When the task is finally
completed, the robot manipulator will get a larger reward.
The specific values given in the formula need to be adjusted
according to the task (7) and (8), as shown at the bottom of

FIGURE 3. The MAPPO model for robot reinforcement learning.

the next page. Then the reword function is computed as (9),
as shown at the bottom of the next page:

IV. MAPPO FOR ROBOT REINFORCEMENT LEARNING
Here we propose an improved PPO algorithm with manipula-
tion set as the output of Actor to construct the reinforcement
learning framework for robot manipulation skill learning,
calledMAPPO. PPO algorithm [15], [29] has lower complex-
ity with using first-order optimization, and can attain the data
efficiency and reliable performance. As shown in Figure 3,
the Actor acts on the environment according to the state and
output a manipulation set: {a, obj} with selected action a and
the specific object obj that to be operated. The instant reward
r is obtained by comparing the similarity between OTC and
OCC. A batch of [s, {a, obj}, r] is stored in the replay buffer.
The Critic calculates an estimator of the advantage function
according to the r and s sampled from buffer, which is used
to update itself and Actor.
The Critic in this paper is a state value function v (s;w) .

Here a neural network is used to construct the Critic, and w
is the network parameter. The input of the neural network is
the state st sampled from replay buffer and the output is state
value V (st). The updating of Critic takes the form of a policy
gradient method with st and rt which sampled from buffer:

minimize(−
∑T

t=1

(
Ât
)2
) (10)

Ât =
∑

t ′>t
γ t
′
−trt ′ − Vφ(st ) (11)

where Ât is an estimator of the advantage function at timestep

t , and T is the length of samples.−
∑T

t=1

(
Ât
)2

is used as the
loss function of the neural network, and the BP algorithm is
used to update the network parameters.
Actor and Actorold are strategy learning networks

π ({a, obj}|s; θ) and π ({a, obj}|s; θold ), respectively. θ and
θold are the network parameters. The input is state st , and
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the output is action at and the object objt to be operated
in the next step. The Actor selects actions by the outputting
probability of each action, as Gibbs softmax:

πt (s, a) = Pr {at = a|st = s} =
ep(s,a)∑
b e

p(s,b) (12)

where p (s, a) is the strategy parameter of Actor at time t ,
indicating the probability of selecting each action under
state s.
When constructing the Actor network, the softmax layer

is added after the output layer to obtain the probability of
each action and the operated object, which is expressed by
p (s, a) and p (s, obj). In order to balance the exploration and
utilization in reinforcement learning, the action is selected
based on its probability distribution. Actions with high prob-
ability are more likely to be selected. It can not only make the
best decision of current state, but also try different actions to
collect more information.
Actor and Actorold are two neural networks which have

the same structure but different parameters. The updating of
Critic takes the form of a policy gradient method:

maxmize(−
∑T

t=1
min(rt (θ) Ât ,

2

clip (rt (θ) , 1−ε, 1+ε) Ât )) (13)

rt (θ) =
πθ
(
(a, obj)t | st

)
πold

(
(a, obj)t | st

) (14)

where π and πold are policies of Actor and Actorold ,
respectively. The parameter θ is passed to Actorold
after Actor updates for several times. The second term,
clip (rt (θ) , 1− ε, 1+ ε) Ât ), is added as a constrain to avoid
an excessively large policy update. Algorithm 1 shows the
process of acquiring skills through MAPPO for robot rein-
forcement learning.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT ESTABLISHMENT
In order to reduce the training cost and hardware damage
of physical robots in training process, we built the same

Algorithm 1 Skills Acquiring Through Robot Reinforcement
Learning
for i ∈ {1, . . . ,N } do
Run policy πθ for T timesteps, collecting {st , (a, obj)t , rt }
Estimate advantages Ât =

∑
t ′>t γ

t ′−trt ′ − Vφ(st )
πold← πθ
for j ∈ {1, . . . ,M} do
J (θ) =

∑T
t=1min[(rt (θ) Ât ,

clip (rt (θ) , 1− ε, 1+ ε, ) Ât ]
Update θ by a gradient method w.r.t. J (θ )

end for
for j ∈ {1, . . . ,B} do
LBL (φ) = −

∑T
t=1 (Ât )

2

Update φ by a gradient method w.r.t. LBL(φ)
end for

end for

simulation environment of the real robot to test algorithm
feasibility. The real robot system includes a UR5 robot,
a Kinect2 camera and a pneumatic gripper. The simulation
environment is built in Gazebo physical engine. By combin-
ing all the hardware, the same simulation model as the real
robot system is obtained, as shown in Figure 4. The way
to control robot in the simulation environment is the same
as the way to control robot in real environment. Therefore,
tasks such as low-level action planning, high-level teaching
and strategy learning can be used in the simulation envi-
ronment. Since we only consider the poses of objects and
end-effector, the differences of camera and gripper does not
affect experiment performance. When we unify the robot
basic coordinate system of the simulation environment and
real environment, both data can be used universally, including
object state information and robot state information after
coordinate transformation.

However, since the long training time that the moving of
robot takes, we build a virtual environment for the learn-
ing process. The virtual environment and the simulation

ρ12 =

∑n
k=1

(
targetv12k − targetv12

)
·
(
currentv12k − currentv12

)√∑n
k=1

(
targetv12k − targetv12

)2
·
∑n

k=1
(
currentv12k − currentv12

)2 (7)

ρ12 =

∑n
k=1

(
targetv12k − targetv12

)
·
(
currentv12k − currentv12

)√∑n
k=1

(
targetv12k − targetv12

)2
·
∑n

k=1
(
currentv12k − currentv12

)2 (8)

R =


−
(
d0.512 + d

0.5
13

)
+


((

ρ12 + 1
2

)0.5

− 1

)

+

((
ρ13 + 1

2

)0.5

− 1

)
 , if OTC 6= OCC

Rfinal, if OTC = OCC

(9)
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FIGURE 4. Experiment setup.

environment have the same state information of objects and
robot. We only consider the results of operation and omit
the action process of robot, which reduces the time spent in
learning process. The parameters of Actor and Critic neural
network will be saved after being trained in virtual environ-
ment, and they will be used in simulation environment for
testing.

B. TASKS SETTING AND SKILLS ACQUISITION
EXPERIMENTS
The goal of Block Stacking task is to stack a set of blocks
into a target configuration. Because of its moderate difficulty
and logic, it is widely used in learning experiments. We use
a number of wooden blocks with different colors and sizes
of 5 cm × 5 cm as the task objects. The blocks are randomly
placed on desktop. Three tasks related to Block Stacking are
designed to prove the proposed methods.

1) Task a: Robot moves to target location from initial
location, and stays until this episode ends. Here blue
cube is set as the target location, and other blocks are
environmental interference.

2) Task b: A red cube and a yellow cube are placed on
table. Robot picks yellow cube and places it on the red
cube. Other blocks are environmental interference.

3) Task c: Simulate the sorting task. Three cylinders of
different colors and three cubes with holes are placed
on table. Robot picks the cylinders and then places
them in the cubes of corresponding color.

4) Task d : Four cubes are placed on table. Robot picks
red cube and places it on the blue cube, and then picks
yellow cube and places it on the red cube, and finally
picks green cube and places it on the yellow cube. Other
blocks are environmental interference.

The proposed algorithm is feasible for all objects in the
working space of the robot arm. The MAPPO algorithm only
receives state information of the environment, and outputs
actions and objects to be operated. For some special cases,
the intermediate rewards are added. For example, when the
gripper is closed, if the Actor outputs a pick action, it should
be punished. When the gripper is open, if the Actor out-
puts a place action, it should also be punished. The experi-
ment is terminated when task is completed, object leaves the
workspace of robot arm, robot joint motion planning fails,
or the episode ends.

Parts of the learning process for task c and task d
are shown in Figure 5. The video is available online:
https://youtu.be/psQLtW0wgZo. During the experiments, the
reset function is firstly executed to initialize environment, and
the environment state is s0. The Actor takes state s0 as input,
and outputs action a0 and object obj0. The reset (a0, obj0)
function is executed, the robot arm operates the object obj0
with action a0, and the function returns a new environment
state s1, instantaneous reward r0 and the flag of whether
the task is completed. The Actor performs this operation for
several times and stores [st ,

{
at , objt

}
, rt ] in replay buffer.

The Actor and Critic learning function update the network
parameters with [st ,

{
at , objt

}
, rt ] stored in buffer, and iter-

ate until the termination condition is reached.

C. PERFORMANCE DISCUSSION
Two experiments are utilized to demonstrate the feasibility
and efficiency of the proposed approaches. Task b, c and d are
carried out based on the proposed OCM reward function and
linear reward function respectively to verify the performance
of OCM method. Meanwhile, task a is performed through
MAPPO, PPO [15] and A3C [16] algorithm respectively to
verify the performance of MAPPO.

Figure 6 shows the cumulative reward curves of MAPPO
algorithm using OCM reward function and linear reward
function for task b, task c and task d . The abscissa and
ordinate of task b are on the left and below, while task c
and task d are on the above and right, which are repre-
sented by green curve and blue scales respectively. For linear
reward function, when the task is not completed, the instant
reward of task b, c and d are set to −1, −10 and −20
respectively, while set to 1, 10 and 20 after the task is
completed. A total of 900 episodes are conducted in task b,
while 5000 and 10000 episodes are conducted in task c and
task d respectively. We can see that the solid curves have
a faster ascent rate in the early period and less time con-
sumption to reach convergence, which demonstrate the OCM
reward function can reduce the exploration in the early period
of reinforcement learning and accelerate the convergence
speed.

Figure 7 shows the cumulative reward curves for task a.
The abscissa and ordinate of MAPPO is on the left and blew,
while PPO and A3C algorithm are on the right and above,
indicated by yellow and blue scales respectively. We have
total 300 episodes performed byMAPPO, while 450 episodes
performed by PPO and 650 episodes performed by A3C.
The maximum step in each episode is set to 40. In the early
exploration period, the more steps an agent attempts in the
environment, the more negative cumulative rewards it gets.
It takes far less time to reach convergence using OCM reward
function than linear reward function, which we believe it is
because the OCM reward function based learning method
greatly reduces unnecessary and ineffective explorations in
the early period.

According to the four tasks, the learning time and average
reward are utilized as evaluation indicators for performance
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FIGURE 5. Training process of task c and task d .

FIGURE 6. Learning convergence curves of MAPPO using OCM reward
function and linear reward function for task b, c and d .

comparison. We use the episode steps taken when the reward
first reached 95% of the maximum reward as the learning
rate in each task. The performances evaluation using three
different algorithms is shown in Table 1. All the tasks with
different algorithm have been performed five times, and the
average value is taken as the final result. Compared with the
linear reward method, the OCM reward method improves
the learning rate by 257.4, 1336, 1752 episodes for task b,
c and d respectively based on MAPPO algorithms, and the
average reward increases by 3.17, 55.9 and 139 respectively.
For task a, the OCM reward method improves the learning
rate by 174.6, 133, and 301.6 episodes for MAPPO, PPO
and A3C algorithm respectively, and the average reward
increases by 12.05, 23.68 and 27.15 respectively. Meanwhile,

FIGURE 7. Learning convergence curves of MAPPO, PPO and A3C using
OCM reward function and linear reward function for task a.

theMAPPO algorithm has 178.8 episodes (137.2 episodes for
linear reward method) less consumption than PPO algorithm
and 344.8 episodes (471.8 episodes for linear reward method)
less than A3C algorithm for OCM rewardmethod. It indicates
that the proposed reinforcement learning framework for robot
manipulation skill acquisition is feasible and has better learn-
ing efficiency.

The statistical performance analysis of the six different
methods for task a is shown in Figure 8. All the tasks with
different algorithm have been performed five times. The
statistical test includes the average learning rate and the
average reward. As can be seen from the figure, the MAPPO
algorithm with OCM reward method has the fastest learning
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TABLE 1. The performances evaluation using three different algorithms.

FIGURE 8. Statistical performance analysis of the six different methods
for task a.

FIGURE 9. The implementation results of the test process on real robot.

rate, biggest average reward and the lowest standard deviation
(12.14 for learning rate and 0.75 for average reward). For all
the three RL algorithms, there are significant improvement
for OCM reward method compared with linear reward
method. The proposed framework is tested on the UR5 robot.
The implementation results of the test process is shown
in Figure 9. The results on the real robot system and the
simulation platform are the same.

VI. CONCLUSION
In this paper, a robot reinforcement learning framework for
acquiring manipulation skill is proposed. Aiming at the robot
manipulation task, the reward function is designed based
on OCM. Through integrating robot and object state with
high-level action set, the MAPPO algorithm is presented for
robot reinforcement learning. The Actor in MAPPO algo-
rithm outputs an action and an object from the manipulation
set. The learning framework can largely reduce the early
exploration process of robot skill acquisition, and has a better
learning efficiency. We think that the performance improve-
ment of the framework comes from two parts. First, the OCM
reward function points out the learning direction for the rein-
forcement learning algorithm rather than the aimless attempt.
Second, the proposed Actor of MAPPO algorithm greatly
reduces the useless attempt in the learning process. Thus,
the MAPPO algorithm is suitable for other actor-critic based
reinforcement learning algorithms. We verified the effective-
ness and feasibility of the proposed methods according to
four different manipulation tasks. The learning rate of OCM
reward based learning increases 34.22% (for task a), 30.14%
(for task c) and 19.20% (for task d) compared to linear
reward based learning using MAPPO algorithm. Compared
with PPO and A3C algorithms, MAPPO algorithm improves
the learning rate by 33.27% and 41.07%.

In the future work, we plan to extend the framework to con-
tinuous multi-task scenarios for robot manipulation, which
will further increase the universality of the method. Since
all the tasks used in this paper are all independent. At the
same time, robot experience will be considered in the learning
framework to further increase the learning efficiency and
robotic intelligence.
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