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Abstract

This article presents a probabilistic sub-tree alignment model and its application to
tree-to-tree machine translation. Unlike previous work, we do not resort to surface heuris-
tics or expensive annotated data, but instead derive an unsupervised model to infer the
syntactic correspondence between two languages. More importantly, the developed model
is syntactically-motivated and does not rely on word alignments. As a by-product, our
model outputs a sub-tree alignment matrix encoding a large number of diverse alignments
between syntactic structures, from which machine translation systems can efficiently ex-
tract translation rules that are often filtered out due to the errors in 1-best alignment.
Experimental results show that the proposed approach outperforms three state-of-the-art
baseline approaches in both alignment accuracy and grammar quality. When applied to
machine translation, our approach yields a +1.0 BLEU improvement and a -0.9 TER re-
duction on the NIST machine translation evaluation corpora. With tree binarization and
fuzzy decoding, it even outperforms a state-of-the-art hierarchical phrase-based system.

1. Introduction

Recent years have witnessed increasing interest in syntax-based methods for many Artifi-
cial Intelligence (AI) and Natural Language Processing (NLP) applications ranging from
text summarization to Machine Translation (MT). In particular, syntax-based models have
been intensively investigated in Statistical Machine Translation (SMT). Approaches include
string-to-tree MT (Galley, Hopkins, Knight, & Marcu, 2004; Galley, Graehl, Knight, Marcu,
DeNeefe, Wang, & Thayer, 2006), tree-to-string MT (Liu, Liu, & Lin, 2006; Huang, Kevin,
& Joshi, 2006) and tree-to-tree MT (Eisner, 2003; Zhang, Jiang, Aw, Li, Tan, & Li, 2008;
Liu, Lü, & Liu, 2009a; Chiang, 2010), all of which train on tree-string/tree-tree pairs and
seek to model the translation equivalency relations learned from parsed data. As a part of
the focus on syntax-based MT, tree-to-tree models that use synchronous context free gram-
mars or synchronous tree substitution grammars have received growing interest, showing
very promising results on several well-established evaluation tasks (Zhang et al., 2008; Liu
et al., 2009a; Chiang, 2010). For example, recent studies (Chiang, 2010) have demonstrated
that modern tree-to-tree systems can significantly outperform the hierarchical phrase-based
counterpart in large scale Chinese-English and Arabic-English translation.

In tree-to-tree MT, the translation problem can be broadly regarded as transformation
from a source-language syntax tree to a target-language syntax tree. To model this process,
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most tree-to-tree systems resort to the general framework of synchronous grammars, where
a pair of trees is generated with derivations of synchronous grammar rules (or translation
rules). In such a model, the goal of translation is to build the underlying derivations for
all pairs of trees and output the target string encoded in the most likely derivation. Figure
1 shows an intuitive example to illustrate the generation process of a tree pair using a
sample grammar, where both the source and target-language sentences are associated with
the phrase structure trees generated using automatic parsers.1

Previous work has shown that the acquisition of good translation rules is one of the es-
sential factors contributing to the success of syntax-based systems (DeNeefe, Knight, Wang,
& Marcu, 2007). To date, several research groups have addressed the issue of rule acqui-
sition and designed effective algorithms to extract high-coverage grammars from bilingual
parsed data (Zhang et al., 2008; Liu et al., 2009a; Chiang, 2010). Despite their differences
in detailed modeling, all these approaches rely on syntactic alignments that align tree nodes
in the syntactic parse tree in one language to tree nodes in the other, and these alignments
could be employed by standard tree-to-tree rule extraction algorithms (Liu et al., 2009a;
Chiang, 2010).

While current tree-to-tree models heavily depend on syntactic alignments between two
languages, all these alignments are induced indirectly from word alignments and tree-to-tree
systems are very sensitive to the word alignment behavior. Unfortunately, word alignments
are in general far from perfect from the viewpoint of syntactic alignment (Fossum, Knight,
& Abney, 2008). In some cases, even one spurious word alignment can prevent a large
number of desirable rules from extraction. For example, Figure 2(a) shows some tree-to-
tree translation rules extracted using the word alignment produced by GIZA++. This
alignment incorrectly aligns the source word ”了” (a past tense marker in Chinese) to the
target word ”the”. This spurious word alignment produces an incorrect rule ”AS(了) →
DT(the)” and blocks the extraction of more high-level syntactic transfer rules, such as
”IP(NN1 VP2) → S(NP1 VP2)”.

Obviously, a more desirable solution is to directly infer node correspondences from
the source and target parse trees, namely sub-tree alignment. As syntactic parse trees can
explain the underlying structure of sentences well, performing alignment in sub-tree level can
make more benefits from the high-level structural information and syntactic categorization.
For example, consider the alignment in Figure 2(b). It links up the nodes in the two parse
trees (in Chinese and English), rather than aligning them in word level. In this example, it
is very confident to align the VP sub-tree (spanning ”大幅度 减少 了”) in the source tree
to the VP sub-tree (spanning ”have drastically fallen”) in the target tree.2 We therefore

1. In a phrase structure tree, the leaf nodes are words of the sentence. The internal tree nodes followed by
leaf nodes are labeled with Part-Of-Speech (POS) tags, while other tree nodes are labeled with syntactic
categories defined in treebanks (see appendix for meanings of the POS tags and syntactic categories used
in this work). In NLP, many well-developed parsers are available for automatic parsing. Also, several
good-quality phrase structure treebanks across languages can be used to train parsing models, such as
the Penn English and Chinese Treebanks (Marcus, Santorini, & Marcinkiewicz, 1993; Xue, Xia, Chiou,
& Palmer, 2005). Note that in addition to phrase structure syntax, there are other popular formalisms
(e.g., dependency syntax) can be used in syntax-based MT. But the discussion on different formalisms
of syntactic parsing is beyond the scope of this article. We instead focus on tree-to-tree MT based on
phrase structure trees throughout this work.

2. Both Chinese and English follow the subject-verb-object structure. The verb phrases in a Chinese
sentence are frequently aligned to the verb phrases in its English translation.
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ID Source-language Side Target-language Side

r1 NP(PN(他)) NP(PRP(he))

r2 PP(P(对) NN(回答)) PP(IN(with) NP(DT(the) NNS(answers)))

r3 VP(PP1 VP(VV(表示) NN(满意))) VP(VBD(was) VP(VBN(satisfied) PP1))

r4 IP(NP1 VP2) S(NP1 VP2)

Figure 1: Example derivation of tree-to-tree translation rules. All the rules are represented
as aligned pairs of tree-fragments (linked with dotted lines). The subscripts on
both language sides of the grammar rules indicate the alignments of frontier non-
terminals. On each language side of the derivation, the round-head lines link up
the frontier non-terminals that are rewritten during translation.

know that the child nodes in the source-language VP are likely to be aligned with the child
nodes in the target-language VP. This means that once the two VPs are aligned, their
children should not be aligned outside the VP sub-tree structure, i.e., we can prevent the
alignment between the Chinese tree node ”AS” and the English tree node ”DT” due to its
inconsistency with the VP-VP alignment. In this case, ”AS” is correctly aligned to ”VBP”.

735



Xiao & Zhu

S

NP

DT

the

NNS

imports

VP

VBP

have

ADVP

RB

drastically

VBN

fallen

IP

NN

进口

VP

AD

大幅度

VP

VV

减少

AS

了

S

NP

DT

the

NNS

imports

VP

VBP

have

ADVP

RB

drastically

VBN

fallen

IP

NN

进口

VP

AD

大幅度

VP

VV

减少

AS

了

(Minimal) Rules Extracted

r1 AS(了) → DT(the)

r2 NN(进口) → NNS(imports)

r3 AD(大幅度) → RB(drastically)

r4 VV(减少) → VBN(fallen)

r5 IP(NN1 VP(AD2 VP(VV3 AS4))) →
S(NP(DT4 NNS1) VP(VBP(have) ADVP(RB2 VBN3)))

(Minimal) Rules Extracted

r3 AD(大幅度) → RB(drastically)

r4 VV(减少) → VBN(fallen)

r6 AS(了) → VBP(have)

r7 NN(进口) → NP(DT(the) NNS(imports))

r8 VP(AD1 VP(VV2 AS3)) →
VP(VBP3 ADVP(RB1 VBN2))

r9 IP(NN1 VP2) → S(NP1 VP2)

(a) word alignment and extracted rules (b) sub-tree alignment and extracted rules

Figure 2: Tree-to-tree translation rules extracted via word alignment (a) or sub-tree align-
ment (b). The dashed lines represent word alignment links, and the dotted lines
represent sub-tree alignment (or node alignment) links.

As a result, the bad rule ”AS(了) → DT(the)” is ruled out, and a few more desirable rules
are extracted using the sub-tree alignment (including the desirable rules that are blocked
in Figure 2(a)).

Actually, researchers have been aware of the sub-tree alignment problem and tried to
explore solutions (Tinsley, Zhechev, Hearne, & Way, 2007; Sun, Zhang, & Tan, 2010b,
2010a). For example, they proposed to judge whether two nodes should be aligned or not. In
their work, the alignment confidence is first calculated using lexical translation probabilities
or classifiers trained on labeled data, and then the final alignment is determined according to
node-level alignment score. However, the inference of sub-tree alignment in these approaches
relies on heuristic algorithms, and their models are essentially not optimized within a unified
probabilistic framework.

Moreover, when the alignment result is applied to tree-to-tree translation, most systems
suffer from another problem that translation rules are extracted using the 1-best alignment
only (Zhang et al., 2008; Liu et al., 2009a; Chiang, 2010). This problem significantly affects
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the rule-set coverage rate due to alignment errors. A simple solution to this issue is to use
k-best alignments instead. However, k-best alignments often have few variations and many
redundancies. Most of them differ in only a few alignment links. It is obviously inefficient
to extract rules from those similar alignments.

In this article we address the sub-tree alignment issue in a principled way and investigate
methods to effectively apply the sub-tree alignment result to tree-to-tree MT. In particular,

• We develop an unsupervised approach to learning a probabilistic sub-tree alignment
model from bi-lingual parsed data.

• We investigate different methods for integrating sub-tree alignment to tree-to-tree
machine translation. Specifically, we develop a sub-tree alignment matrix encoding
an exponentially large number of diverse sub-tree alignments, and extract multiple
alternative translation rules using alignment posteriors from the sub-tree alignment
matrix.

The advantages of our approach are three-fold. First, our approach does not rely on
heuristic algorithms or labeled data. Second, the developed sub-tree alignment model has
the same structure as the model used in MT, i.e., both are based on synchronous tree
substitution grammars. It means that MT systems can directly make benefits from the sub-
tree alignment model, especially for rule extraction and MT parameter estimation. Third,
by accessing the sub-tree alignment matrix which encodes a large number of alignments,
we can efficiently obtain rules that are often filtered out due to the errors within the 1-
best/k-best alignment result. We experiment with our approach in Chinese-English sub-
tree alignment and translation tasks. For sub-tree alignment, it significantly outperforms
three state-of-the-art baselines. For machine translation, our approach obtains significant
improvements for a tree-to-tree system in both rule quality and translation quality. For
example, it yields a +1.0 BLEU improvement and a -0.9 TER reduction on the NIST MT
evaluation corpora. Finally, our system even outperforms a state-of-the-art hierarchical
phrase-based system when equipped with tree binarization (Wang, Knight, & Marcu, 2007b)
and fuzzy decoding (Chiang, 2010) techniques.

The rest of the article is structured as follows. Section 2 briefly introduces the sub-
tree alignment task. Section 3 describes our unsupervised approach to sub-tree alignment.
Then, Section 4 investigates effective methods for applying our alignment model to tree-to-
tree translation. Then, Section 5 presents experimental evaluation of our approach. After
reviewing the related work in Section 6, some interesting issues are discussed in Section 7.
Finally, the article is concluded with a summary in Section 8.

2. Problem Statement

In general, sub-tree alignment can be defined as a task that we find an alignment from the
nodes in a tree to the nodes of another tree.3 While we restrict ourselves to machine trans-
lation in this article, sub-tree alignment is actually not a task that must be tightly coupled
with specific applications. For example, in addition to machine translation, there are other

3. In this work term tree refers to a data structure that can be defined recursively as a collection of nodes
starting at a root node. Each node has a list of edges pointing to nodes (or its children), with the
constraint that no edge is duplicated or points to the root (Knuth, 1997).
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NLP tasks which can make benefits from sub-tree alignment, including sentence simplifi-
cation (Cohn & Lapata, 2009; Woodsend & Lapata, 2011), paraphrasing (Das & Smith,
2009), question answering (Wang, Smith, & Mitamura, 2007a), and parser adaptation and
projection (Smith & Eisner, 2009).

Ideally, we would like a sub-tree alignment system that is language independent and
application independent. Given a parallel corpus of training examples, we should be able
to learn an alignment model and use it to infer the syntactic correspondence for any tree
pairs. Broadly speaking, any alignments between paired linguistic tree structures can be
regarded as instances of sub-tree alignment. For example, the alignment can be performed
between dependency trees (Eisner, 2003; Nakazawa & Kurohashi, 2011) or phrase structure
trees (Tinsley et al., 2007; Sun et al., 2010b).

Although the sub-tree alignment problem includes a number of tasks that seek align-
ments between syntactic tree structures, we are particularly interested in aligning the tree
nodes of phrase structure trees in this work. We focus on phrase structure sub-tree align-
ment because: 1) phrase structure parsing is one of the most popular syntactic analysis
formalisms. Several state-of-the-art full parsing models/tools have been developed for many
languages; 2) phrase structure trees are the basis of many successful syntax-based MT sys-
tems. While other alternatives, such as dependency trees, can also benefit MT systems,
the constituency-based models are of interest to a relatively larger portion of the MT com-
munity and show state-of-the-art performance in recent tree-to-tree systems (Zhang et al.,
2008; Liu et al., 2009a; Chiang, 2010).

In natural language processing, a phrase structure parse tree is an ordered and rooted
tree. It represents the syntactic structure of a sentence according to some phrase struc-
ture grammars (or constituency grammars) which describe the way words combine to form
phrases and sentences (Chiswell & Hodges, 2007). Generally, phrase structure parse trees
distinguish between terminal and non-terminal nodes. The leaf nodes are labeled by termi-
nal categories (or words), while the internal nodes are labeled by non-terminal categories of
the grammar (or phrasal categories). For example, in the English parse tree in Figure 2(b),
”imports” is a terminal, while nodes ”NP” and ”NNS” are two non-terminals indicating
the noun phrase and the plural form of nouns respectively.4 In the following description
and experiments, we take the Penn Treebank for the standard of tree annotation. Here we
choose the Penn Treebank because it is one of the most popular tree-annotated corpora
used in syntactic parsing and of good quality and quantity for several languages, such as
Chinese and English.

Based on the above definition, a sub-tree alignment can be defined as the alignments
between non-terminals in the source and target-language (phrase structure) parse trees.5

More formally, given a source-language parse tree S and a target-language parse tree T , a
sub-tree alignment (denoted as A(S, T ) or A for short) is a set of node-to-node links between
S and T . For any node pair (u, v) in (S, T ), a good alignment should follow three criteria
(Tinsley et al., 2007):

1. u (or v) can only be aligned once (indicating 1-to-1 alignment).

4. Note that the non-terminals that are always followed by leaf nodes are also called pre-terminals and
labeled by part-of-speech tags. E.g., the ”NNS” node is followed by the terminal node ”imports” and
thus is a pre-terminal.

5. In contrast, a word alignment can be regarded as the alignments between terminals in two languages.
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2. if u is aligned to v, the descendants of u can only be aligned to the descendants of v.

3. if u is aligned to v, the ancestors of u can only be aligned to the ancestors of v.

Such criteria prevent from aligning constituents that cross each other. This property
is very similar to that of some bi-parsing formalisms, such as synchronous context free
grammars and synchronous tree substitution grammars. Its advantage is that it enables the
use of powerful synchronous grammars in modeling the sub-tree alignment problem. As is
shown in the very next section, based on the above constraints we can take synchronous
tree substitution grammars as the basis of our proposed model.

According to Tinsley et al.’s (2007) work, the alignments satisfying the above criteria
are called well-formed alignments. An alignment is ill-formed when it violates any of these
criteria. In this work we focus on the well-formed alignments. Hence the sub-tree alignment
task can be stated as: given a pair of parse trees (S, T ), we search for the most likely well-
formed alignment between S and T

Â = arg max
A∈Ω(S,T )

P(A | S, T ) (1)

where Ω(S, T ) is the set of well-formed alignments, and P(A | S, T ) can be viewed as an
alignment model which predicts the probability for every alignment A given S and T .

In what follows, we describe our approach to sub-tree alignment for tree-to-tree transla-
tion, including the alignment model, the training and inference methods, and the effective
use of our model in tree-to-tree MT systems.

3. Unsupervised Sub-tree Alignment

In this section we present our unsupervised sub-tree alignment model. We first define
the base model of sub-tree alignment in the framework of synchronous tree substitution
grammars, and then describe the model parameterization, training and inference methods.

3.1 Base Model

The fundamental question of sub-tree alignment is how to define the correspondence between
nodes of the source-language parse tree and nodes of the target-language parse tree. Here we
address the issue using Synchronous Tree Substitution Grammars (STSGs) which have been
widely adopted to model the transformation process between source and target-language
parse trees in MT (Zhang et al., 2008; Liu et al., 2009a; Chiang, 2010). In the general
framework of STSGs (Chiang & Knight, 2006), it is assumed that a pair of source and
target parse trees can be simultaneously generated using a derivation of STSG rules (or
tree-to-tree transfer rules). For example, the grammar in Figure 1 is an STSG and the
rules in it can be used to generate a pair of sentences. More formally, an STSG is a system
〈Ns, Nt,Ws,Wt,Ψ〉, where Ns and Nt are sets of non-terminals in the source and target
languages, Ws and Wt are sets of terminals (or words) in the source and target languages,
Ψ is a finite set of productions. Each production is an STSG rewrite rule (denoted as r) for
a pair of source and target-language non-terminals (snt, tnt):

〈snt, tnt〉 → 〈sr, tr, φr〉
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where sr is a source-language tree-fragment, whose frontier nodes are either words in Ws or
non-terminals in Ns (labeled by x); tr is the corresponding target-language tree-fragment;
and φr is a set of 1-to-1 alignments that connect the frontier non-terminals of sr to the
frontier non-terminals of tr. For example, for r5 in Figure 2(a), we have

snt = IP

tnt = S

sr = IP(NN:x VP(AD:x VP(VV:x AS:x)))

tr = S(NP(DT:x NNS:x) VP(VBP(have) ADVP(RB:x VBN:x)))

φr = {1-2, 2-3, 3-4, 4-1}

Note that the non-terminals on the left-hand side of the rule are actually the roots of
the corresponding tree-fragments on the right hand side. This means that the rule contains
exactly the same information no matter whether the root nodes (snt, tnt) are explicitly
represented or not. So in the following parts of this article we use 〈sr, tr, φr〉 for a sim-
pler representation of STSG rules. Beyond this, STSG rules can be written in a more
compact form where the alignment φr is encoded in the numbers assigned to the frontier
non-terminals of sr and tr. For example, in Figures 1 and 2, the subscripts on both language
sides of the STSG rules indicate the aligned pairs of frontier non-terminals.

In the STSG model, frontier non-terminals are also called substitution nodes. When
applying STSGs, we can rewrite an aligned pair of substitution nodes with the tree-fragment
pair encoded in an STSG rule. The only constraint in this operation is that the labels of
the substituted non-terminals must match the root labels of the rewrite rules. For example,
the round-head lines in Figure 1 show the substitution operations used in a derivation.

By using STSG rules, we can parse any tree pair and generate the corresponding deriva-
tions. The generation process is trivial: we start with the pair of root symbols and repeat-
edly rewrite pairs of non-terminal symbols using STSG rules. For example, for the tree pair
in Figure 2(b), we start with the root labels of the source and target-language parse trees
(the superscript indicates the node index in the tree)

〈 IP[1], S[1] 〉

Then we apply rule r9.

IP[1]⇔S[1]

−−−−−−→
r9

〈 IP(NN[2] VP[3]), S(NP[2] VP[3]) 〉

where
IP[1]⇔S[1]

−−−−−−→
r9

represents the operation that rewrites the aligned node pair IP[1] and

S[1] with r9 (denoted as IP[1] ⇔ S[1]). This process proceeds by repeatedly rewriting the
remaining frontier non-terminals until we get the complete source and target-language trees,
like so:
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NN[2]⇔NP[2]

−−−−−−−−→
r7

〈 IP(NN(进口) VP[3]), S(NP(DT(the) NNS(imports)) VP[3]) 〉

VP[3]⇔VP[3]

−−−−−−−−→
r8

〈 IP(NN(进口) VP(AD
[4]

VP(VV
[5]

AS[6]))),

S(NP(DT(the) NNS(imports)) VP(VBP
[6]

ADVP(RB
[4]

VBN[5]))) 〉
AD[4]⇔RB[4]

−−−−−−−−→
r3

〈 IP(NN(进口) VP(AD(大幅度) VP(VV
[5]

AS[6]))),

S(NP(DT(the) NNS(imports)) VP(VBP
[6]

ADVP(RB(drastically) VBN[5]))) 〉
VV[5]⇔VBN[5]

−−−−−−−−−→
r4

〈 IP(NN(进口) VP(AD(大幅度) VP(VV(减少) AS[6]))),

S(NP(DT(the) NNS(imports)) VP(VBP
[6]

ADVP(RB(drastically) VBN(fallen)))) 〉
AS[6]⇔VBP[6]

−−−−−−−−−→
r6

〈 IP(NN(进口) VP(AD(大幅度) VP(VV(减少) AS(了)))),

S(NP(DT(the) NNS(imports)) VP(VBP(have)

ADVP(RB(drastically) VBN(fallen)))) 〉

In the above process, each rewrite rule indicates a node alignment. More importantly,
derivations from this model have two very nice properties: first, for each node u in the
source-language (or target-language) parse tree, there is at most one node of the target-
language (or source-language) parse tree which is aligned with u; second, the hierarchical
structure behind the alignment avoids links between constituents that cross each other.
Consequently, for any well-formed sub-tree alignment A, we can always find a derivation d
that encodes the alignment A. It means that the sub-tree alignment problem is essentially
the same as the problem of finding the most likely STSG derivation. Thus the sub-tree
alignment task (see Equation (1)) can be restated as finding the most likely derivation for
a given pair of parse trees.

To model the derivation probability, we follow the formulation adopted in statistical
word alignment (Brown, Pietra, Pietra, & Mercer, 1993; Vogel, Ney, & Tillmann, 1996).
The transformation from a source-language tree S to a target-language tree T is described
by the following equation.

P(T | S) =
∑

d∈D(S,T )

Pθ(T, d|S) (2)

where D(S, T ) is the set of all derivations transforming S into T (say, aligning the nodes
of S to the nodes of T ), Pθ(T, d|S) is the probability of transforming from S to T using a
derivation d ∈ D(S, T ), and θ is the parameters of the model. Here we use the notation
Pθ(·) to express the dependence of the model on the parameters. In general, the optimal
value of θ is learned from parsed parallel data by some training criteria. For example, in
the context of unsupervised learning, we can optimize the model parameters by maximizing
the probability of the observed data (known as maximum likelihood training).

Given a set of optimal parameters θ̂, the best sub-tree alignment for (S, T ) is determined

by choosing a derivation for which Pθ̂(d | S, T ) is greatest. Since Pθ̂(d | S, T ) =
Pθ̂(T,d|S)

Pθ̂(T |S)
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and Pθ̂(T | S) is a constant for given (S, T ) and θ̂, finding the best derivation d̂ is the same
as finding a derivation so as to make Pθ̂(T, d | S) as large as possible. Hence we reach the
fundamental equation of sub-tree alignment.

d̂ = arg max
d∈D(S,T )

Pθ̂(T, d | S) (3)

The above formulation implies three fundamental issues of sub-tree alignment, including
modeling of derivation probability (i.e., Pθ(T, d|S)), learning of model parameters (i.e., θ̂)
and finding the best alignment given the learned model (i.e., the arg max operation). In
the following parts of this section, we describe our solutions to these issues.

3.2 Parameterization

In the simplest case, our alignment model has one parameter for each instance of derivation.
However, this model would have an unmanageable set of parameters since the number of
derivations is exponential in the length of the input sentences. Here we choose a simple
solution to this issue which decomposes the base model into a product of trainable sub-
models. We start with an assumption that rules are conditionally independent for the given
source-language parse tree S, then the probability P(T, d | S) can be defined as a product
of rule probabilities (for conciseness, we will drop the subscript θ from now on).

P(T, d | S) ≡
∏
r∈d

P(r | S) (4)

Nevertheless complex tree-to-tree mappings still result in an extremely large number of
rules, which causes both the computational problem and the degenerate analysis of the
data.6 To control the number of parameters at a reasonable level, we further decompose
the rule probability into simpler probability factors under independence assumptions.

First we assume that the generation of a rule r is independent of the input tree S, when
conditioned on the source-language side of the rule, that is,

P(r | S) ≡ P(r | sr) (5)

Note that this is a strong assumption that the generation of a synchronous grammar
rule depends only on its source-language side. It is similar to those used in statistical
modeling of machine translation (Brown et al., 1993; Koehn, Och, & Marcu, 2003; Galley
et al., 2004; Chiang, 2005) where the generation of atomic alignment/translation units are
conditioned on the associated source-language words or tree-fragments, rather than the
whole input sentence or tree. In SMT, the independence assumptions based on phrases or
translation rules are generally used to decompose the parallel corpus into manageable units
for parameter estimation. As they have been successfully used in most of modern SMT
systems, we adopt a similar assumption here to ease the parameter estimation process of
our model.

Then we further decompose P(r | sr) with additional assumptions. Since r = 〈sr, tr, φr〉,
P(r | sr) can be written into another form using the chain rule:

6. Here degenerate analysis refers to the case where using models that are too complex results in overfitting
and a poor generalization ability on unseen data.
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P(r | sr) = P(sr, tr, φr | sr)
= P(φr | sr, tr)× P(tr | sr) (6)

Equation (6) indicates two sub-models, including a reordering model of frontier non-
terminals P(φr | sr, tr), and a tree-fragment translation model P(tr | sr).

To model P(φr | sr, tr), we view frontier non-terminal reordering as a problem of aligning
the elements between two vectors of non-terminals. Let vnt(·) be a function that returns
the vector of leaf non-terminals for a given tree-fragment. φr defines a 1-to-1 alignment
between the non-terminals in vnt(sr) and vnt(tr). For example, for r5 in Figure 2(a), the
frontier non-terminal vectors of sr5 and tr5 are:

vnt(sr5) = (NN, AD, VV, AS)

vnt(tr5) = (DT, NNS, RB, VBN)

Then φr5 = {1-2, 2-3, 3-4, 4-1} indicates an alignment between vnt(sr5) and vnt(tr5), say,
NN is aligned to NNS, AD is aligned to RB and so on. Here we opt for a simple model
for selecting φr. It models the non-terminal reordering probability on the condition of the
frontier non-terminal vectors on both language sides, as follows7

P(φr | tr, sr) ≡ Preorder(φr | vnt(sr), vnt(tr)) (7)

We then turn to the problem of modeling the tree-fragment translation P(tr | sr) (i.e.,
the second sub-model defined in Equation (6)). We define that a tree-fragment α consists of
two parts: words lex(α) (i.e., terminals of α) and a tree structure tree(α) without lexicons
involved. For example, for r5 in Figure 2(a), the target-language tree-fragment contains
two elements lex(tr5) and tree(tr5):

lex(tr5) = have

tree(tr5) = S(NP(DT:x NNS:x) VP(VBP ADVP(RB:x VBN:x)))

Let root(·) be a function that returns the root for a given tree-fragment. We can write
P(tr | sr) as:

P(tr | sr) = P(lex(tr), tree(tr) | sr)
= P(root(tr) | sr)×

P(tree(tr) | root(tr), sr)×
P(lex(tr) | tree(tr), root(tr), sr) (8)

It is worth noting that Equation (8) is not an approximation. Here we just choose
one of the many ways in which P(tr | sr) can be written as the product of a series of

7. The reordering model defined here ensures that arbitrary 1-to-1 alignments can be handled. But it might
result in a very large model with sparse parameter distributions if big tree-fragments are involved. In
considering this issue, we choose several pruning methods for better control of rule size in our sub-tree
alignment system. See Section 5.2.2 for the pruning settings in this work.
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conditional probabilities. We simply assert this equation that when generating a target-
language tree-fragment for a source-language tree-fragment, first we can choose the root
symbol of the target-language tree-fragment given the source-language tree-fragment (in
probability of P(root(tr) | sr)). Then we can choose the tree-structure of the target-language
tree-fragment given its root symbol and the source-language tree-fragment (in probability of
P(tree(tr) | root(tr), sr)). Then we can choose the target-language terminals associated with
the tree-fragment given the target-language tree-structure, target-language root symbol and
source-language tree-fragment (in probability of P(lex(tr) | tree(tr), root(tr), sr)).

Another note is that Equation (8) actually does not reduce the model complexity. For
example, P(lex(tr) | tree(tr), root(tr), sr) essentially indicates all the combinations of source
and target-language tree-fragments. A simpler model is required for a feasible solution
for parameter estimation. To do this, we introduce additional assumptions to relax the
conditions of these probabilities and reduce the number of parameters to a reasonable level.

1. P(root(tr) | sr) depends only on root(sr), i.e.,

P(root(tr) | sr) ≡ Pnt(root(tr) | root(sr)) (9)

This assumption implies the node correspondence between the source and target-
language parse trees.

2. P(tree(tr) | root(tr), sr) depends only on root(tr), i.e.,

P(tree(tr) | root(tr), sr) ≡ Ptree(tree(tr) | root(tr)) (10)

The second assumption results in a monolingual model of generating target-language
tree-structures, where the generation of a tree-fragment is only conditioned on its
root. It can be viewed as an analogy to the generative model used in standard TSGs.

3. P(lex(tr) | tree(tr), root(tr), sr) only depends on source words lex(sr), i.e.,

P(lex(tr) | tree(tr), root(tr), sr) ≡ Plex(lex(tr) | lex(sr)) (11)

This allows us to directly model the terminal correspondence between the two lan-
guages.

Then, we substitute Equations (9)-(11) into Equation (8), and get

P(tr | sr) ≡ Pnt(root(tr) | root(sr))×
Ptree(tree(tr) | root(tr))×
Plex(lex(tr) | lex(sr)) (12)

By using Equations (6), (7) and (12), Equation (4) can be finally written as:
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id rule probability

r3 AD(大幅度) → RB(drastically) Pnt(RB | AD) · Plex(drastically |大幅度)

r4 VV(减少) → VBN(fallen) Pnt(VBN | VV) · Plex(fallen |减少)

r6 AS(了) → VBP(have) Pnt(VBP | AS) · Plex(have |了)

r7 NN(进口) → Pnt(NP | NN) · Plex(the imports |进口)·
NP(DT(the) NNS(imports)) Ptree(”NP(DT NNS)” | NP)

r8 VP(AD1 VP(VV2 AS3)) → Pnt(VP | VP) · Ptree(”VP(VBP ADVP(RB VBN))” | VP)·
VP(VBP3 ADVP(RB1 VBN2)) Preorder(”1-2, 2-3, 3-1” | (AD,VV,AS), (VBP,RB,VBN))

r9 IP(NN1 VP2) → S(NP1 VP2) Pnt(S | IP) · Ptree(”S(NP VP)” | S)·
Preorder(”1-1, 2-2” | (NN, VP), (NP, VP))

Table 1: Rule probabilities for the sample derivation d = {r3, r4, r6, r7, r8, r9} in Figure 2(b)

P(T, d | S) ≡
∏
r∈d

Pnt(root(tr) | root(sr))×

Ptree(tree(tr) | root(tr))×
Plex(lex(tr) | lex(sr))×
Preorder(φr | vnt(sr), vnt(tr)) (13)

This is a simplified model for the generative story described in this section. It takes
the rule generation probability as a product of four probability factors: Pnt(·) is the non-
terminal mapping probability, which roughly captures the syntactic correspondence of sub-
trees between the two languages; Ptree(·) is the probability of generating the tree structure
of T ; Plex(·) is the probability of the terminal mappings between the two language sides of
a rule; and Preorder(·) is the probability of the frontier non-terminal reordering encoded in
a rule. See Table 1 for rule probabilities of a sample derivation.

In our model all parameters are assumed to be multinomial distributions. The cal-
culation of Pnt(·), Ptree(·) and Preorder(·) is straightforward: they can be directly used
without any further decompositions and assumptions. To calculate Plex(·), we choose the
form adopted in the popular models of word alignment (Och & Ney, 2004; Thayer, Ette-
laie, Knight, Marcu, Munteanu, Och, & Tipu, 2004), where the probability is defined as a
product of word-based translation probabilities:

Plex(t1...tl | s1...sm) ≡ Plength(l | m)

l∏
i=1

1

m

m∑
j=1

Pw(ti | sj) (14)

where ti is a target word, and sj is a source word. Plength(·) is used to control the number of
target words produced from a given number of source words. Pw(·) is the word translation
probability. This sub-model is in principle doing something rather similar to conventional
word-based translation tables, as in IBM Models (Brown et al., 1993).

3.3 Node Deletion and Insertion

Word (or sub-tree) deletion/insertion is common in real-world alignment and translation
tasks. To add flexibility to modeling this problem, we allow for the production of empty
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sub-trees on either source or target-language side of a rule in our model. More formally, for
a rule whose target-language side is an empty sub-tree, its probability is defined as:

P(r | S) ≡ Pnt(root(ε) | root(sr))×
Ptree(tree(ε) | root(ε))×
Plex(lex(ε) | lex(sr))×
Preorder(φε | vnt(sr), vnt(ε)) (15)

where ε is a special symbol that indicates nothing. Factors Pnt(root(ε) | root(sr)) and
Plex(lex(ε) | lex(sr)) model the deletion probability at different levels of a tree-fragment.
Ptree(tree(ε) | root(ε)) is the probability of generating an empty tree-fragment. Factor
Preorder(φε | vnt(sr), vnt(ε)) regards ε as a special reordering pattern φε which aligns all
frontier non-terminals on the source side to a virtual node NULL. Obviously, the values of
Ptree(tree(ε) | root(ε)) and Preorder(φε | vnt(sr), vnt(ε)) are both simply 1.

Similarly, for a rule whose source side is an empty sub-tree, its probability is defined as:

P(r | S) ≡ Pnt(root(tr) | root(ε))×
Ptree(tree(tr) | root(tr))×
Plex(lex(tr) | lex(ε))×
Preorder(φε | vnt(ε), vnt(tr)) (16)

where the value of Preorder(φε | vnt(ε), vnt(tr)) is also 1.
It is worthwhile to note that word deletion and insertion problems are very important

in MT in spite of relatively less discussion in recent studies on tree-to-tree translation.
What we are doing here is actually an analogy to the NULL-alignment used in IBM Models
(Brown et al., 1993). For word/phrase-based models, removing some words from alignment
can leave more space for correctly aligning other words in the sentence.8 This is even more
necessary for (1-to-1) sub-tree alignment because the alignment has to respect the syntactic
constraints on both language sides, e.g., sub-tree alignments are not allowed to break the
constraints imposed by neighbouring parts of the tree. In some cases, we cannot obtain a
correct 1-to-1 alignment for the tree pair due to only one or two ”bad” nodes which are not
necessarily to be aligned with a valid node in the counterpart tree. Instead, some nodes
can be ”skipped” in alignment and thus do not impose ”bad” constraints to other parts of
the tree if node deletion/insertion is allowed. This is especially true when we align sentence
pairs with very flat tree structures or free translations. In this work we found that node
deletion and insertion operations were necessary to achieve satisfactory sub-tree alignment
result. We therefore used them in our implementation by default.

3.4 Training

We now turn to the training problem. As discussed in Section 3.1, we focus on unsupervised
learning of model parameters, that is, the optimal values of parameters are estimated given

8. Note that current phrase-based approaches (Koehn et al., 2003; Och & Ney, 2004) allow NULL-aligned
words to appear at the boundary of a phrase, which can be viewed as a way of implicit modeling of the
word insertion/deletion problem
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a collection of tree pairs without any annotation of sub-tree level alignment. In this work we
choose two approaches for estimating parameters of the sub-tree alignment model, including
the Maximum Likelihood Estimation (MLE) approach and the Bayesian approach.

3.4.1 Maximum Likelihood Training

MLE is one of the most popular methods of parameter estimation for statistical models. Its
basic idea is that, given a model and a set of parameters, the MLE method selects the values
of parameters to generate a distribution that gives the highest probability to the observed
data. MLE is a general approach to parameter estimation which has been widely adopted in
many AI and NLP tasks, such as part-of-speech tagging. In the case of sub-tree alignment,
MLE can be simply described as finding the optimal values of parameters that lead to the
maximum probability of aligning the tree nodes from a source-language parse tree to a
target-language parse tree. More formally, given a set of tree pairs {(S1, T1), ..., (Sn, Tn)},
the objective of the MLE-based training is defined to be:

θ̂ = arg max
θ

n∏
i=1

∑
d∈D(Si,Ti)

Pθ(Ti, d | Si) (17)

We choose here Expectation Maximization (EM, Dempster, Laird, & Rubin, 1977) as
the algorithm to solve the above optimization problem. Basically the EM algorithm is an
iterative training method for finding the maximum likelihood estimates of model parameters,
where it is assumed that the observed data depends on some latent variables. The algorithm
performs by iteratively calling two sub-routines, namely the Expectation (E)-step and the
Maximization (M)-step. In the E-step, it calculates the expected value of the likelihood
function associated with the parameters and observed data, with respect to the distribution
of latent variables given the observed data and current estimates of parameters. In the
M-step, it seeks for the parameters that maximize the expected likelihood found in the
E-step.

When applying the EM algorithm to our case, we can view the input pairs of parse
trees {(S1, T1), ..., (Sn, Tn)} as observed data, the underlying derivations of rules as latent
variables, and the distributions Pnt(·), Ptree(·), Preorder(·) and Plex(·) (i.e., Plength(·) and
Pw(·)) as unknown parameters. See Figure 3 for the pseudo-code of the training algorithm
for Pnt(·) (denoted as θtnt|snt). Because this algorithm is directly applicable to the estimation
of all parameters in our model, we skip the description of learning the remaining parameters
here. For a more detailed description of the EM-based training of all model parameters we
refer the reader to the appendix.

In the algorithm, snt and tnt represent a source-language non-terminal symbol and a
target-language non-terminal symbol, u and v represent a source-language tree node and
a target-language tree node, EC(·) represents the expected count of the given variable,
Pθ(k)(T, d | S) represents the derivation probability based on the parameters obtained in
the k-th round. In each EM iteration, the E-step of the algorithm accumulates the expected
count over all pairs of parse trees. Then, the M-step finds the maximum likelihood estimate
using this quantity. The only nontrivial part in this algorithm is the computation of the
expected count in the E-step. Roughly speaking, the physical meaning of the right-hand
side of line 9 is the relative probability that a derivation contains rule r (with root node
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1: Function TrainModelWithEM ({(S1, T1), ..., (Sn, Tn)})
2: Set {θ(0)

tnt|snt} = an initial model
3: For k = 0 to K − 1 do
4: Foreach non-terminal symbol pair (snt, tnt) do
5: EC(θtnt|snt) = 0
6: E-step:
6: Foreach tree pair (S, T ) in sequence {(S1, T1), ..., (Sn, Tn)} do
7: Foreach node pair (u, v) with symbol pair (tnt, snt) in (S, T ) do
8: Foreach rule r rooted at (u, v) do

9: EC(θtnt|snt) + =
∑
d: r∈d∧ r is rooted at (u,v) P

θ(k)
(T,d|S)∑

d′ Pθ(k) (T,d′|S)

8: M-step:
10: Foreach non-terminal symbol pair (snt, tnt) do

11: θ
(k+1)
tnt|snt =

EC(θtnt|snt )∑
t′nt

EC(θt′nt|snt
)

12: return {θ(K)
tnt|snt}

Figure 3: The EM-based training algorithm (for Pnt(·))

pair (u, v)). The numerator
∑

d: r∈d∧ r is rooted at (u,v) Pθ(k)(T, d | S) is the probability sum

over all the derivations that involve r , while the denominator
∑

d′ Pθ(k)(T, d
′ | S) is the

overall probability of the alignment from S to T . However, the brute-force computation of
expected counts is very inefficient because it requires the sum over all possible derivations
whose number is exponential in the length of the input sentences.

In this work we use the bilingual version of the inside and outside probabilities (Manning
& Schütze, 1999) to avoid the naive enumeration of all possible derivations in computing
various probabilities. The inside probability of (u, v) (denoted as β(u, v)) measures how
likely we generate the sub-tree pair inside the node pair (u, v). The outside probability
(denoted as α(u, v)) is a dual of the inside probability. It measures how likely we generate
the remaining parts of the tree pair (S, T ) from the start symbols. Like the formulation
used in monolingual parsing (Manning & Schütze, 1999), β(u, v) and α(u, v) can be defined
using the following recursive forms:

β(u, v) =
∑

∀r:root(r)=(u,v)

(
P(r | S)×

∏
(p,q)∈yield(r)

β(p, q)
)

(18)

α(u, v) =
∑

∀r:(u,v)∈yield(r)

(
α(root(r))× P(r | S)×

∏
(p,q)∈yield(r)
∧ (p,q)6=(u,v)

β(p, q)
)

(19)

where root(r) is the abbreviation of the node pair (root(sr), root(tr)), and yield(r) is the
set of the aligned frontier non-terminal pairs yielded by r. Based on the above recursive
definitions, both β(u, v) and α(u, v) can be efficiently computed with dynamic programming.

By using the inside and outside probabilities, it is easy to address the computation
problem mentioned above. Let γ(u, v) denote the probability that the tree node u is aligned
with the tree node v. This probability can be expressed in an inside-outside fashion:
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γ(u, v) =
∑

∀d: (u,v) is
aligned in d

P(T, d | S)

= β(u, v)× α(u, v) (20)

In this way, the overall alignment probability from S to T (i.e., the denominator of the
right-hand side of line 9) can be simply written as:∑

d

P(T, d | S) = β(root(S), root(T ))× α(root(S), root(T )) (21)

For the numerator of the right-hand side of line 9, let us view it in another angle. In the
E-Step of the algorithm, the expected count is accumulated over rules whose root is (u, v).
As all the rules rooted at (u, v) indicate the same node alignment between u and v, lines
8-9 in principle imply the probability of all derivations aligning u to v, or more precisely
the node alignment probability of (u, v). This probability can be written in a very simple
form using the inside and outside probabilities:∑

r: r is rooted
at (u,v)

∑
d: r∈d

P(T, d | S) = γ(u, v)

= β(u, v)× α(u, v) (22)

Together with the result in Equation (21), the E-step can be efficiently implemented by
replacing lines 8-9 with the following equation

EC(θtnt|snt) + =
β(u, v)× α(u, v)

β(root(S), root(T ))× α(root(S), root(T ))
(23)

where (snt, tnt) is the symbol pair of (u, v). Note that for each (snt, tnt), the E-step step

increases EC(θtnt|snt) by the sum of β(u,v)×α(u,v)
β(root(S),root(T ))×α(root(S),root(T )) over all node pairs (u, v)

whose symbols are snt and tnt. This means that if (snt, tnt) is aligned at different positions
in the input tree pair, the above method considers the alignment of (snt, tnt) for multiple
times and updates EC(θtnt|snt) accordingly.

It is also worth noting that there are several methods for initializing the model param-
eters before the EM-style training begins. For example, the model can be initialized by
uniform or random distributions. In this work we initialize all parameters in our sub-tree
alignment model by the model obtained using the word alignment result. This is a stan-
dard way adopted in many unsupervised models where a ”simpler” model is used for a good
starting point in the training process. It is very helpful when the optimization procedure is
sensitive to the initial setting of model parameters (e.g., EM for non-convex objective func-
tions). In our experiments we found that using the GIZA++ word alignment for parameter
initialization resulted in better performance and fewer iterations for convergence than the
uniform initial distributions. As the word alignment can be obtained in an unsupervised
manner, it does not change the training condition of our approach. Thus we chose this
method for initializing the model parameters in our implementation.
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3.4.2 The Bayesian Approach

While MLE is one of the standard approaches to training unsupervised models, it is well
known for its tendency to overfit the data. The overfitting problem becomes more severe
for complex models since they have more parameters and fit the training data better. In
the case of STSGs, this is likely to result in the degenerate analysis of the data, i.e., rare
and big rules dominate the ML solution of STSGs, while they are considered to be noisy
and generalize poorly on the unseen data (Cohn & Blunsom, 2009; Liu & Gildea, 2009).
A natural solution to this problem is to incorporate constraints or proper priors into the
training process. Here we take the Bayesian approach as an alternative solution for the
training problem.

Unlike MLE, the Bayesian approach does not plug a single optimum point estimate of
the parameter into the distribution of a data point, but instead account for any uncertainty
in the value of the parameter. In Bayesian models, the parameters are assumed to be
drawn from some probability distributions or priors. The parameters of these extra prior
distributions are called hyperparameters, and are denoted by ω. As the parameters of
our model are viewed mathematically as multinomials, we choose Dirichlet distributions
(Ferguson, 1973) for the prior over model parameters. The advantage of using Dirichlet
distributions is that they are conjugate to multinomial distributions and inference with
such priors is easier.

Following the previous description, we use θ to denote the model parameters which are
multinomial with outcomes {1, ...,K} (i.e., θk is the probability of outcome k ∈ {1, ...,K}).
From this multinomial distribution we sample a set of outcomes {x1, ..., xn} with probability
P(xi = k) = θk. As the Dirichlet prior is a distribution over multinomials, each sample
from the prior is actually a set of parameter values θ. Therefore the distribution can be
modeled as:

xi | θ ∼ Multinomial(θ) (24)

θ | ω ∼ Dirichlet(ω) (25)

Here Equation (24) means that xi is distributed according to a multinomial with parameters
θ. Similarly, Equation (25) can be read as θ is distributed according to a Dirichlet distribu-
tion with parameters ω. ω = {ω1, ..., ωK} is the hyperparameter vector corresponding to the
outcomes. In this work we use a symmetric Dirichlet prior ( i.e., ω1, ..., ωK share the same
value), and use ω to represent the single hyperparameter instead of the hyperparameter
vector.

Using this model, we can compute the conditional distribution of a new observation
xn+1 given previous observations {x1, ..., xn} and the hyperparameter ω, as follows:

P(xn+1 | x1, ..., xn, ω) =

∫
P(xn+1 | x1, ..., xn, θ) P(θ | ω) dθ (26)

The big advantage of the Bayesian approach is to introduce a prior distribution over
the unknown parameters of the model, which is meant to capture the knowledge and beliefs
about the model before seeing the data (Neal, 1998). It is especially important in our case
where we need a ”bias” towards some preferred situations. For example, we expect that
our model can favor high frequency rules and dislike rare and big rules. This goal can be

750



Unsupervised Sub-tree Alignment for Tree-to-Tree Translation

easily achieved by using the Bayesian approach and an appropriate choice of priors, say, a
Dirichlet prior with a low concentration parameter ω. However, the introduction of priors
generally makes it intractable to estimate the posterior analytically. In practical systems
based on the Bayesian approach, a widely-used solution is to use approximate methods to
seek a compromise between exact inference and computational resources. In this work we
choose Variational Bayes for approximate inference. Variational Bayes is a good method
that preserves the benefits of introducing the prior but with a tractable inference procedure
(Attias, 2000; Beal, 2003). It has been successfully applied to several NLP-related models,
such as Hidden Markov Models (HMMs) and IBM Models (Beal, 2003; Riley & Gildea,
2010). One more good thing is that Variational Bayes can be seen as an extension of the
EM algorithm and resembles the usual forms used in EM. The resulting procedure looks a lot
like the EM algorithm with a modified M-step, which is very convenient for implementation.
Here we follow the approach presented in previous work (Beal, 2003; Riley & Gildea, 2010)
where variational Bayesian algorithms are applied to similar tasks. All we need is only a
very slight change to the M-step of the original EM algorithm presented in Section 3.4.1.
In the original EM algorithm (see Figure 3), the M-step normalizes the expected counts
collected in the E-step as standard MLE. The variational Bayesian version of the M-step
slightly modifies this formula and performs an inexact normalization by passing counts
through function f(x) = exp(ψ(x)).

θtnt|snt =
f(EC(θtnt|snt) + ω)

f(
∑

t′nt
(EC(θt′nt|snt) + ω))

(27)

where ψ(x) is the digamma function (Johnson, 2007). It has an approximate effect of
subtracting 0.5 from its argument. The choice of ω controls the behavior of this estimation.
When ω is set to a low value, it performs estimation as a way of ”anti-smoothing”. As
about 0.5 is subtracted from the rule counts, small counts corresponding to rare events are
penalized heavily, while large counts corresponding to frequent events are not be affected
very much. For example, low values of ω make Equation (27) favor the non-terminal pairs
which are aligned frequently and distrust the non-terminal pairs which are aligned rarely.
In this way, the variational Bayesian method could control the overfitting caused by abusing
rare events. On the other hand, a larger ω can be used when smoothing is required.

The above method is applicable to training all the parameters in our model. It only
requires a replacement of the M-step in Figure 3 with the variational Bayesian M-step (as
in Equation (27)). In our implementation, after the variational Bayes-based training, we
perform an additional round of normalization without variational Bayes to normalize rule
probabilities to sum to one.9

9. The additional normalization process makes the posterior probabilities directly comparable with those
obtained in other training methods, such as the EM-based training. Note that here we convert the result
of Bayesian inference into some probability distributions for a good explanation of various probability
factors in our model. On the other hand, this technical trick results in a pseudo-Bayesian procedure
that is not doing Bayesian inference exactly though it shows good results in our empirical study. One
can remove the additional round of normalization for a pure Bayesian approach. But all these changes
do not affect the overall pipeline of our approach (from a practical standpoint).
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1: Function Decode (S, T )
2:

(
β[·], α[·]

)
= GetInsideOutsideProbabilities (S, T )

3: Foreach node u in S in bottom-up order do
4: Foreach node v in T in bottom-up order do
5: γ[u, v] = β[u, v]× α[u, v]
6: Foreach tree-fragment sr rooted at u do
7: Foreach tree-fragment tr rooted at v do
8: Foreach frontier non-terminal alignment a between sr and ts do
9: r = CreateRule(sr, tr, a)
10: score = P(r | S) ·

∏
(p,q)∈yield(r) P(d[p, q])

11: If score > P(d[u, v]) then
12: d[u, v] = CreateDerivation(r, {d[p, q] : (p, q) ∈ yield(r)})
13: return (d[·], γ[·])
14: Function GetInsideOutsideProbabilities (S, T )
15: Foreach node u in S in bottom-up order do
16: Foreach node v in T in bottom-up order do
17: Set β[u, v] according to Equation (18)
18: Foreach node u in S in top-down order do
19: Foreach node v in T in top-down order do
20: Set α[u, v] according to Equation (19)
21: return (β[·], α[·])

Figure 4: Decoding algorithm of the proposed sub-tree alignment model for both 1-best
and posterior-based outputs

3.5 Decoding

Inference with our model is straightforward. The simplest case is inferring the 1-best sub-
tree alignment. Given a set of learned parameters, we first visit every node pair (u, v) in
a bottom-up fashion, and compute the posterior probability of aligning the sub-tree pair
rooting at (u, v). This procedure is the same as the dynamic program used in the trainer.
We then select the derivation with the maximum sub-tree alignment probability for the
input tree pair. Also, we can generate a list of k-best derivations in a similar manner.

In addition to the 1-best/k-best output, our model is able to output the alignment
posterior probability for every pair of tree nodes. To do this, we only need to record the
probability γ(u, v) for each node pair after we obtain the inside and outside probabilities.
Note that outputting alignment posterior probabilities is also commonly used in statistical
word and phrasal aligners. It provides a flexible way of making use of the alignment result
for the downstream components, such as the rule extraction system. As is presented in the
very next sections, tree-to-tree MT systems can make great benefits from the posterior-
based alignment output, which results in a very effective rule extraction method as well as
better translation results.

Figure 4 depicts the pseudo-code of the decoding algorithm for both 1-best and posterior-
based outputs. In this algorithm, d[x, y] is a data structure that records the best deriva-
tion rooted at (x, y). β[x, y], α[x, y] and γ[x, y] are data structures that record the inside
probabilities, output probabilities and alignment posterior probabilities, respectively. Cre-
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ateRule(·) creates a rule with a pair of tree-fragments (sr, tr) and a frontier non-terminal
alignment a, and calculates the rule probability. CreateDerivation(·) builds a derivation
using the input rules. For output, we can access the 1-best alignment by traversing from
d[root(S), root(T )], and access the alignment posterior through γ[·].

Given a pair of trees (S, T ), the outer two loops of the algorithm iterates over each pair
of nodes in the two trees, resulting in time complexity of O(|S| · |T |) where | · | represents the
size of the input tree. Generating all pairs of tree-fragments requires O(N2

tree), where Ntree

is the maximum number of tree-fragments given a tree node. Computing the alignment
between (sr, tr) requires O(L!) where L is the maximum number of leaf non-terminals in a
rule. Therefore the time complexity of this algorithm is O(|S| · |T | · N2

tree · L!), quadratic
in the size of the input trees. Note that the actual time complexity of this algorithm could
be very high if all potential alignments are considered. For example, Ntree is generally an
exponential function of the depth of the input tree-fragment, and a very deep tree could
results in an extremely large space of alignments. To make practical sub-tree alignment
systems, pruning techniques are taken into account in this work. For example, in our
implementation, we restrict the depth of tree-fragment to a reasonable number (see Section
5.2.2). In addition, as is commonly-used in phrasal alignment and related tasks, we consider
word alignments in pruning and discard the sub-tree alignments which violate a certain
number of word alignments. For example, we throw away the sub-tree alignments if there
are more than two word alignment links outside the spans covered by the aligned sub-trees.

4. Applying Sub-tree Alignment to Tree-to-Tree Translation

Once sub-tree alignment is obtained, current tree-to-tree systems can directly learn trans-
lation rules from node-aligned tree pairs. In this section we investigate methods of applying
sub-tree alignment to tree-to-tree rule extraction.

4.1 Rule Extraction Using 1-best/k-best Sub-tree Alignments

To data, several methods have been developed for tree-to-tree rule extraction (Zhang et al.,
2008; Liu et al., 2009a; Chiang, 2010). The most popular of these is the GHKM-like
method which extends the idea of extracting syntactic translation rules from string-tree pairs
(Galley et al., 2004). In GHKM-like extraction, we first compute the set of the minimally-
sized translation rules that can explain the mappings between the source-language tree
and the target-language tree while respecting the alignment and reordering between the
two languages. Larger rules are then learned by composing two or more minimal rules. For
example, in Figure 2(b), r7 and r9 are two minimal rules extracted according to the sub-tree
alignment. We can compose these rules to form a larger rule, like this:

IP(NN(进口) VP1) → S(NP(DT(the) NNS(imports)) VP1)

In this work we use the tree-to-tree version of GHKM-like extraction which is described
in Liu et al.’s (2009a) work. See Figure 5(a) for the pseudo-code of rule extraction with
1-best sub-tree alignment. We choose this method because it has been widely used in
most tree-to-tree systems. Note that rule extraction in tree-to-tree translation is generally
not restricted to be performed on the 1-best sub-tree alignment result. The GHKM-like
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1: Function OneBestExtract (S, T , A)
2: Foreach node u in S do
3: Foreach node v in T do
4: Foreach tree-fragment pair (sr, tr)
4: rooted at (u, v) do
5: a = OneToOneAlign(sr, tr, A)
6: If a is not empty then
7: r = CreateRule(sr, tr, a)
8: rules.Add(r)
9: return rules
10: Function OneToOneAlign(sr, tr, A)
11: If frontier non-terminals of (sr, tr) have
11: 1-to-1 alignments in A then
12: return frontier alignment of (sr, tr)
13: Else
14: return φ

1: Function MatrixExtract (S, T , M)
2: Foreach node u in S do
3: Foreach node v in T do
4: If IsExtractable({(u, v)}, M) do
5: next loop
6: Foreach tree-fragment pair (sr, tr)
6: rooted at (u, v) do
7: Foreach frontier alignment a
7: between (sr, tr) do
8: If IsExtractable(a, M) then
9: r = CreateRule(sr, tr, a)
10: rules.Add(r)
11: return rules
12: Function IsExtractable(a, M)
13: Foreach alignment (p, q) in a do
14: If probability of (p, q) in M < Pmin then
15: return false
16: return true

(a) 1-best Extraction (b) Matrix-based Extraction

Figure 5: The 1-best and matrix-based rule extraction algorithms

extraction method can be employed when a list of k-best sub-tree alignments is provided.
In k-best extraction we only need to repeat the procedure of 1-best extraction for each
sub-tree alignment in the k-best list.

4.2 Rule Extraction Using Sub-tree Alignment Matrices

Previous work has pointed out that current MT systems suffer from error propagation due
to the alignment errors made within 1-best alignment (Venugopal, Zollmann, Smith, &
Stephan, 2008). As sub-tree alignment is an early-stage step in the training pipeline, the
errors in 1-best alignment are likely to be propagated to translation rule extraction and
parameter estimation of the translation model. Though this problem can be alleviated by
using k-best alignments, the limited scope of k-best alignments still results in inefficient
learning of translation rules. For example, our preliminary experiment shows that 95.8% of
the extracted rules are redundant when 100-best alignments are involved.

Here we instead present a simple but efficient method, namely matrix-based rule extrac-
tion. In this method, we use the posterior-based output of our aligner and represent the
sub-tree alignment with a compact structure - call it sub-tree alignment matrix or alignment
matrix for short (Liu, Xia, Xiao, & Liu, 2009b; de Gispert, Pino, & Byrne, 2010).

See Figure 6(a) for two example sub-tree alignment matrices made from a pair of sen-
tence segments. In the matrices, each entry is indexed by a pair of source and target nodes.
The score in an entry is the posterior probability of the alignment between the correspond-
ing node pair, i.e., the γ(u, v) probability defined in Equation (20). This probability is
straightforwardly accessible in the output of the inference algorithm described in Section
3.5. In principle γ(u, v) can be viewed a measure of sub-tree alignment confidence: a higher
value indicates a more confident alignment between the two nodes. In this way we can
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(a) Sub-tree alignment matrices for a sample sub-tree pair

Minimal Rules

Extracted from Matrix 1 (1-best)

r3 AD(大幅度) → RB(drastically)

r4 VV(减少) → VBN(fallen)

r6 AS(了) → VBP(have)

r8 VP(AD1 VP(VV2 AS3)) →
VP(VBP3 ADVP(RB1 VBN2))

Minimal Rules

Extracted from Matrix 2 (posterior)

r3 AD(大幅度) → RB(drastically)

r4 VV(减少) → VBN(fallen)

r6 AS(了) → VBP(have)

r8 VP(AD1 VP(VV2 AS3)) →
VP(VBP3 ADVP(RB1 VBN2))

r10 VP(VV(减少) AS(了)) → VBN(fallen)

r11 VP(AD1 VP2) → VP(VBP1 ADVP2)

...

(b) Rules extracted using 1-best alignment and alignment posterior

Figure 6: Matrix-based representation of sub-tree alignment and sample rules extracted.
Matrix 1 shows the case of 1-best sub-tree alignment, and Matrix 2 shows the
case of sub-tree alignment posterior.

access all possible sub-tree alignments (with different probabilities), rather than a limited
number of them.

We then extract rules using the sub-tree alignment matrix. The method is simple: we
collect the rules associated with each entry from the matrix. The core algorithm of this
method is in essential the same as that used in 1-best/k-best extraction. The only difference
from 1-best/k-best extraction is that the matrix-based method considers all possible node
pairs for extraction, rather than visiting some of them only. See Figure 5(b) for the pseudo-
code of the sub-tree alignment matrix-based rule extraction algorithm, where M represents
a sub-tree alignment matrix for the pair of trees (S, T ). Compared to extracting rules from
k-best alignments, this method can efficiently obtain additional rules whose extraction is
blocked in k-best extraction. For example, on the right side of Figure 6(b) two new rules
r10 and r11 are extracted, which cannot be obtained from the 1-best alignment result. To
prevent the extraction of a great number of noisy rules with low alignment probabilities, we
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prune away those rules whose alignment probabilities are below a pre-specified threshold.
More formally, given a pair of nodes (u, v), rule extraction can be executed at (u, v) only
when it satisfies:

γ(u, v)

γ(root(S), root(T ))
< Pmin (28)

This expression measures the relative probability of alignment (u, v) with respect to the
sum of probabilities over all possible derivations. Pmin is an empirical threshold to control
how often rules to be pruned (a larger Pmin means more rules are thrown away). In this
work, it is set to 10−7 by default. Therefore, all those entries with a zero score in Figure
6(a) (denoted as a dot) are excluded in rule extraction.

However, discarding rules with relatively low probabilities in turn results in an incom-
pleteness problem, that is, the extracted rules might be unable to transform a given source
parse-tree, even in the training set. Nonetheless, this problem is not very severe in our
case. In our experiments we observed that most parse-tree pairs (over 90%) in the training
corpus could be recovered by the extracted rules when Pmin chose its default value, and
the contribution to translation accuracy from those low confidence rules was very limited
(generally less than 0.1 BLEU points).

Another note on sub-tree alignment matrix-based extraction. The advantage of this
method is that it follows the general and well-developed framework of syntax-based MT,
i.e., word/syntactic alignment + rule extraction/parameter estimation + MT decoding. All
we need is to replace the rule extraction component with our sub-tree alignment matrix-
based system, while preserve other components of the pipeline. This means that we can still
use some heuristics to obtain additional useful rules from the result of sub-tree alignment
matrix-based extraction, such as rule composing (Galley et al., 2006) and SPMT extraction
(Marcu, Wang, Echihabi, & Knight, 2006). Also, the posterior probability encoded in the
matrix can be used for better estimation of various MT-oriented features.10

Note that the basis of our approach is the STSG model, and all rules in the sub-tree
alignment model resemble the general forms of the translation rules used in tree-to-tree MT
systems. So, as an alternative but simple way of rule induction, we can directly infer transla-
tion rules from our sub-tree alignment model and take the corresponding rule probabilities
as features of the translation model for MT decoding. However, in tree-to-tree MT this
method suffers from several problems. First, our sub-tree alignment model requires com-
putation of all possible aligned tree-fragments, which results in very high time complexity
for both training and decoding procedures. As a result, aggressive pruning has to be used
for a reasonable size of search space, e.g., we consider only relatively small tree-fragments
in our implementation for acceptable running speed. As a side effect, many relatively large
rules (e.g., composed rules and SPMT rules) are absent in our sub-tree alignment model,
while they are available if we use the traditional alignment + extraction heuristics pipeline.
From an engineering standpoint, it is not efficient to directly infer translation rules from
the sub-tree alignment model, compared to inferring rules using a pruned and fixed sub-
tree alignment matrix plus some heuristics. Second, the rule probability and optimization
objective for sub-tree alignment is very different from those used in MT systems. For exam-
ple, we use a generative model and a maximum-likelihood/Bayesian approach in sub-tree

10. See Section 4.3 for more detailed discussion of the parameter estimation issue.
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alignment, but use a discriminative model and minimum error rate training in MT. Many
features employed in the MT decoder are not considered in our sub-tree alignment model.
All the above issues might lead to unsatisfactory MT performance. As shown in our exper-
iments (see Section 5.3.5), directly inferring translation rules from the sub-tree alignment
model does not achieve promising results.

4.3 Learning Features for Machine Translation

In previous work on syntax-based MT, it is proved that syntax-based systems can make great
benefits from MT-oriented features, even some of them are not necessarily well explained
in the syntactic parsing viewpoint (e.g., phrase-based translation probabilities). However,
most of these features are not available in the word/sub-tree alignment model. Instead we
need to learn these features using an additional step of parameter estimation for MT. To
do this, we follow the commonly-used framework which estimates values of various MT-
oriented features on the extracted rule set using MLE. This procedure is simple: once all
translation rules are extracted, we obtain the maximum-likelihood (or relative-frequency)
estimate of parameters according to the definition of each feature function.

However, in traditional tree-to-tree systems each rule extracted from a tree pair has
a count of unit one, which is then used to calculate the values of various features. Such
a approach might enlarge the influence of noisy rules extracted from sub-tree alignment
matrices. E.g., a rule with a high alignment probability has an equal weight as a rule with
a low alignment probability, and thus has a unreasonably large impact on MT systems. A
more desired solution is that a rule extracted from a derivation having a low probability is
penalized accordingly in feature learning. Motivated by this idea, we use fractional counts
to estimate the appearance for each rule (Mi & Huang, 2008). Given a node pair (u, v) in
(S, T ), the alignment probability of a rule r rooted at (u, v) is defined to be (denoted as
γ(r;u, v)):

γ(r;u, v) =
∑

d∈D(S,T )
∧ r∈d

P(T, d | S) (29)

where γ(r;u, v) is regarded as the probability sum over all derivations involving r at (u, v).
Also, we can rewrite Equation (29) in an inside-outside fashion:

γ(r;u, v) = α(u, v)×
∏

(p,q)∈yield(r)

β(p, q)× P(r | S) (30)

Then we define the probability that r is involved in the derivations of (S, T ) as:

γ(r) =
∑
u,v

γ(r;u, v) (31)

Equation (31) is the sum of probabilities of r over all node pairs. This means that the
rule probability can be considered for multiple times if some particular derivations contain
r more than once. By using γ(r), the fractional count of r is defined to be:

c(r) =
γ(r)

γ(root(S), root(T ))
(32)
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Equation (32) reflects the probability how likely r is involved in a derivation given a
pair of trees. For a set of bilingual parse trees, c(r) can be accumulated over each tree pair.

Obviously, c(r) can be used to estimate the parameters of the MT model, that is, once
translation rules are weighted, the parameter estimation procedure can proceed as usual,
but with weight counts. In this work c(r) is employed to learn five features used in the
MT decoder, including the bi-directional phrase-based conditional translation probabilities
(Marcu et al., 2006) and three syntax-based conditional probabilities (Mi & Huang, 2008).
Let ϕ(·) be a function that returns the sequence of frontier nodes for an input tree-fragment.
These probabilities can be computed by the following equations:

Pphrase(tr | sr) =

∑
r′′:ϕ(sr′′ )=ϕ(sr)∧ϕ(tr′′ )=ϕ(tr)

c(r′′)∑
r′:ϕ(sr′ )=ϕ(sr)

c(r′)
(33)

Pphrase(sr | tr) =

∑
r′′:ϕ(sr′′ )=ϕ(sr)∧ϕ(tr′′ )=ϕ(tr)

c(r′′)∑
r′:ϕ(tr′ )=ϕ(tr)

c(r′)
(34)

P(r | root(r)) =
c(r)∑

r′:root(r′)=root(r) c(r
′)

(35)

P(r | sr) =
c(r)∑

r′:sr′=sr
c(r′)

(36)

P(r | tr) =
c(r)∑

r′:tr′=tr
c(r′)

(37)

5. Experiments

For evaluation, we first experimented with our approach on a Chinese-English sub-tree
alignment task, then tested its effectiveness in a state-of-the-art tree-to-tree MT system.

5.1 Baselines

Three unsupervised sub-tree alignment methods were chosen as baselines in our experiments.

• WordAlign-1 : WordAlign-1 is based on a GHKM-like method (Galley et al., 2004)
that uses word alignments to infer syntactic correspondences. In our implementation,
both the GIZA++ toolkit and the ”grow-diag-final-and” method were used to obtain
the symmetric word alignment from sentence pairs. The sub-tree alignments were
then heuristically induced by selecting those node correspondences that are consistent
with the word alignment result (i.e., sub-tree alignments that do not violate any word
alignments). We chose this method because it has been widely adopted in modern
tree-to-tree systems.

• WordAlign-2 : the second baseline is essentially the same as WordAlign-1. The only
difference from WordAlign-1 is that we improved the word alignment system using
link-deletion techniques (Fossum et al., 2008). The basic idea is to delete harmful
alignment links from an initial word alignment result (e.g., deleting the link between
”了” and ”the” in Figure 2(a)). In our experiments we only considered the most likely
deletion between the top-10 most common Chinese words (including {的, 在, 和, 是,
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了, 一, 对, 有, 中, 也}) and the top-10 most common English words (including {the,
of, and, to, in, a, is, that, for, on}).

• HeuristicAlgin: HeuristicAlgin is a re-implementation of the approach proposed in
Tinsley et al.’s (2007) work. In this method the alignment confidence of every node
pair is first computed with lexical translation probabilities, and then used to obtain
node correspondences via a heuristic algorithm. Because this method does not require
a training process and has been successfully adopted in several translation tasks, such
as French-English translation, it was chosen as another baseline for comparison.

5.2 Experimental Setup

The settings of our experiments are described as follows.

5.2.1 Data Preparation

Our bilingual corpus consists of 1.06 million sentence pairs.11 As mentioned above, we
used GIZA++ and the ”grow-diag-final-and” heuristics to generate 1-best/k-best word
alignments, which were then used as our baseline word alignment results. The parse trees in
both Chinese and English were generated using the Berkeley Parser.12 A publicly available
corpus was used to evaluate the sub-tree alignment result.13 It consists of 736 node-aligned
sentence pairs (with gold-standard parse trees on both language sides) in LDC2003E07
which is also included in our bilingual data. This corpus was divided into two parts: a
held-out set used for finding an appropriate setting of hyperparameters (99 sentences in
articles 301-309), and a test set used for evaluating the sub-tree alignment systems (637
sentences in articles 001-066). For MT experiments, a 5-gram language model was trained
on the Xinhua portion of the Gigaword corpus in addition to the English part of the LDC
bilingual training data.14 We used the NIST 2003 MT evaluation corpus as our development
set (919 sentences) and the newswire portion of the NIST 2004-2006 MT evaluation corpora
as our test set (3,486 sentences).

5.2.2 Sub-tree Alignment

All parameters of the sub-tree alignment model were initialized with the add-one smoothing
on the rule-set extracted using word alignments (i.e., the WordAlign-1 baseline). Then, the
model was trained on the parse trees of the bilingual corpus using the EM algorithm or
the Variational Bayes (VB) approach. In our implementation of the VB-based training, all
hyperparameters are assumed to share the same value.15 This leads to a setting of ω = 0.01

11. LDC category: LDC2003E14, LDC2005T10, LDC2003E07, LDC2005T06, LDC2005E83, LDC2006E26,
LDC2006E34, LDC2006E85, LDC2006E92 and LDC2004T08. See http://www.ldc.upenn.edu/ for more
details.

12. Note that for the LDC2003E07 corpus we reused the gold-standard parse trees provided in the Chinese
and English treebanks.

13. Available from http://www.nlplab.com/resources/nodealigned-bitreebank.html
14. LDC category of the English Gigaword corpus: LDC2003T05
15. Although we could adopt different hyperparameters for finer control over the priors of model param-

eters, we found that setting those hyperparameters to the same value could also lead to satisfactory
performance.
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which is an optimal value on the held-out set. By default, we trained our model for 5 EM or
Variational EM iterations. To speed-up the training process and further avoid degenerate
analysis caused by too large rules, we restricted ourselves to rules with reasonable sizes -
rules with at most five frontier non-terminals and depth of three. For rules having more
than five frontier non-terminals, we only considered the tree-fragments of depth one but did
not restrict the number of frontier non-terminals involved, that is, for flat tree structures,
we only used the associated height-one tree-fragments. Besides, we discarded the sub-tree
alignment between every node pair whose terminals are aligned outside the corresponding
spans for more than two times in WordAlign-1.

5.2.3 Machine Translation

We used the NiuTrans open-source toolkit (Xiao, Zhu, Zhang, & Li, 2012) to build our
tree-to-tree MT system. For rule extraction, we used an extension of the GHKM method
to extract minimal tree-to-tree transformation rules (Liu et al., 2009a) and obtained larger
rules by composing two or three minimal rules (Galley et al., 2006). We used a CKY-style
decoder with cube pruning (Huang & Chiang, 2005) and beam search to decode Chinese
sentences. By default the beam size was set to 50. In addition to the features described in
Equations (33)-(37), we also used several other features in our MT system, including the
5-gram language model, the rule number bonus, the target length bonus and two binary
features - lexicalized rule and low frequency rule (Marcu et al., 2006). These features are
combined in a log-linear fashion and optimized using Minimum Error Rate Training (MERT,
Och, 2003).

5.3 Results

In the following part of this section, we present our experimental results, including evalu-
ations of sub-tree alignments, extracted rules, and MT systems. Also, we show results of
several improved methods for the effective use of our approach in tree-to-tree MT.

5.3.1 Evaluation of Alignments

First we evaluated the alignment quality of various sub-tree alignment approaches in terms
of precision (P), recall (R) and F-1 score.16 See Table 2 for results of the three baseline
systems and our sub-tree alignment system. By those measures, our VB-based system
significantly improves both the overall recall and F-1 score, slightly degrading in precision
compared to WordAlign-1/2. Also, the VB-based training outperforms the EM-based coun-
terpart due to the priors introduced into the learning process. The interesting observation
here is that, though the EM training of our model suffers from the degenerate analysis of the
data, it does not show extremely bad results in our experiment. This phenomenon is due
to our restriction on the size of tree-fragment in training. As described in Section 5.2.2, we
restricted the translation rules to those reasonable-size tree-fragments in several ways (e.g.,

16. Let predicted be the number of alignments in system output, correct be the number of correct alignments
in system output, gold be the number of alignments in gold-standard. The measure of precision, recall

and F-β score can be defined as: precision = correct
predicted

, recall = correct
gold

and F-β = (1+β2)×precision×recall

β2×precision+recall
.

Here β is a parameter that controls the preference for recall (i.e., β > 1) or precision (i.e., 0 ≤ β < 1).
In most NLP tasks β is set to 1, indicating equal weights of recall and precision.
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Entry WordAlign-1 WordAlign-2 HeuristicAlgin Ours (EM) Ours (VB)
P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

Overall 75.4 63.6 69.0 76.3 64.5 69.9 65.7 67.7 66.7 79.8 46.2 58.5 72.6 75.1 73.8

NP ↔ NP 86.9 59.0 70.3 87.0 62.1 72.5 79.1 73.6 76.3 84.2 48.2 61.3 88.7 75.3 81.4
NN ↔ NN 83.9 75.6 79.5 83.6 77.0 80.2 76.2 74.1 75.1 81.8 63.7 71.6 81.1 79.9 80.5
VP ↔ VP 75.3 61.9 68.0 74.9 61.9 67.8 71.3 71.8 71.6 80.5 49.0 60.9 75.7 75.8 75.7
PU ↔ , 84.7 76.5 80.4 84.7 76.5 80.4 69.6 71.3 70.3 82.7 67.7 74.5 82.5 80.7 81.6
IP ↔ S 92.5 87.5 89.9 92.3 87.7 89.9 90.6 90.7 90.6 90.4 76.8 83.0 90.0 92.4 91.2
PU ↔ . 98.5 98.7 98.6 98.5 98.7 98.6 98.5 98.7 98.6 94.7 86.8 90.6 98.5 98.5 98.6
NP ↔ NN 77.6 71.5 74.4 83.0 71.5 76.8 59.3 77.5 67.2 75.4 62.3 68.2 75.9 78.9 77.4
NP ↔ PP 46.8 63.8 54.0 49.7 63.5 55.7 53.1 31.9 39.8 43.2 42.1 42.6 54.5 70.1 61.3
NN ↔ NNS 84.2 76.0 79.9 83.8 76.5 80.0 77.8 75.5 76.7 83.7 58.3 68.7 81.0 77.6 79.2
NR ↔ NNP 69.4 41.2 51.8 69.9 41.7 52.3 63.4 57.4 60.2 57.7 41.5 48.3 67.2 56.3 61.3
NN ↔ NP 65.1 59.8 62.4 65.9 61.0 63.3 71.8 50.4 59.2 70.5 48.1 57.2 71.1 67.7 69.4
PP ↔ PP 84.6 68.4 75.7 85.1 69.2 76.3 79.3 72.6 75.8 85.6 56.9 68.4 85.4 82.5 83.9
NN ↔ JJ 90.7 76.5 83.0 90.4 76.3 82.7 83.9 81.7 82.8 84.2 69.1 75.9 85.9 81.2 83.5
P ↔ IN 81.5 69.8 75.2 82.3 68.3 74.7 81.2 72.2 76.4 79.9 57.9 67.1 84.7 76.1 80.2
QP ↔ NP 72.2 64.9 68.3 72.6 65.2 68.7 67.1 65.6 66.4 78.3 42.2 54.8 74.9 71.7 73.3

Table 2: Evaluation results of sub-tree alignment for our system and the baselines. All
measures are reported in percentage.

we set a parameter of maximum depth). While such constraints reduce the number of rules
involved in training, it prevents the use of rare and large rules. Our result here indicates
the fact that the tree-fragment size constraint is actually not only important for efficiency
but also crucial for learning. As discussed in previous work, without these constraints or
imposing a proper prior, the solution of EM is degenerate (Marcu & Wong, 2002; DeNero,
Gillick, Zhang, & Klein, 2006).

In addition, Table 2 shows the result for the 15 most common types of sub-tree align-
ment. As expected, the VB-based system achieves the best F-1 score in most cases. More
interestingly, it is observed that our approach obtains significantly better performance in
handling the PP (Prepositional Phrase) alignment that seems to be a difficult problem for
baselines due to the unclear boundary indicators in aligning the PP structures. We attribute
this to the better use of syntactic information on both language sides in our model, which
are generally ignored in traditional models based on surface heuristics and word alignments.

5.3.2 Evaluation of Extracted Rules

We then applied the sub-tree alignment result to our tree-to-tree system to study the impact
of sub-tree alignment on MT. As discussed in Section 4, rule extraction is a downstream
component of sub-tree alignment in the current tree-to-tree MT pipeline. We therefore
chose to evaluate the quality of the rules obtained from various sub-tree alignment results.
To determine the goodness of extracted grammars, we computed the rule precision, recall,
and F-1 scores for our approach and the baseline approaches on the same test set used in
the (1-best) alignment quality evaluation. To make a gold-standard grammar, we chose
the method used in Fossum et al.’s (2008) work where the grammar was automatically
generated from the manually-annotated alignment result, that is, the rules extracted using
the annotated sub-tree alignments were regarded as the gold-standard in computing various
evaluation scores. Table 3 shows the evaluation result for the grammars extracted with
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Entry Rule P Rule R Rule F-1

1b
es

t

WordAlign-1 51.9 60.8 55.9
WordAlign-2 52.3 61.8 56.6
HeuristicAlgin 55.8 55.3 55.5
Ours (EM) 61.9 49.2 54.8
Ours (VB) 54.9 65.2 59.6

m
at

ri
x

Ours (VB + Pmin = 10−5) 79.6 34.5 48.2
Ours (VB + Pmin = 10−6) 53.0 70.0 60.3
Ours (VB + Pmin = 10−7) 41.3 75.6 53.4
Ours (VB + Pmin = 10−8) 34.9 79.5 48.5

Table 3: Evaluation results of rules obtained from various sub-tree alignment approaches.
All measures are reported in percentage.

different sub-tree alignment approaches. We see that the improvements persist when our
sub-tree alignments are employed in translation rule extraction. Our VB-based approach
produces grammars with a higher rule F-1 score than all three of the baselines.

In addition to the 1-best extraction, we studied how rule extraction behaves under the
sub-tree alignment matrix-based extraction method. Table 3 also shows the result of the
sub-tree matrix-based extraction method with different choices of the pruning parameter
Pmin. We see that smaller values of Pmin result in grammars with higher rule recall. Also,
better rule F-1 scores can be achieved by adjusting Pmin and seeking a good balance between
rule precision and rule recall , e.g., Pmin = 10−6 or 10−7.

The above scores are informative as a measure of grammar quality, but we also inves-
tigated some of the differences in the rule sets obtained from our model compared to the
baseline approaches, following Levenberg, Dyer, and Blunsom’s (2012) method. Figure 7
shows the most probable rules (frequency ≥ 2) obtained from our bilingual corpus using
the VB-based alignment approach that do not appear in the model from the WordAlign-2
alignment and vice versa. We asked two annotators of sub-tree alignment to estimate the
rule quality based on the syntactic correspondence and adequacy of frontier node sequence
between the two languages sides. A rule was labeled as ”good” only if both judges consid-
ered it to be of good quality. From the figure, we see that eight of the top-10 rules extracted
using our approach but absent in the WordAlign-2 grammar are good rules. In contrast,
only four of the top-10 rules in the baseline model are of good quality in a sense of human
preference. Furthermore, we examined the top-100 most probable rules that appear in the
two grammars individually. Again, the top-100 rules extracted using our proposed model
are of better quality. It results in 61 good rules. By contrast, only 44% of the top-ranking
rules induced using the WordAlign-2 alignment are good translation rules.

5.3.3 Evaluation of Translations

We also evaluated the translations generated by the MT system for different sub-tree align-
ment approaches. Since the VB-based training shows the best performance in the previous
experiments, we chose it as a default setting of our approach in the following experiments.
Table 4 shows the evaluation result where the translation quality is estimated using case-
insensitive IBM-version BLEU4 (Papineni, Roukos, Ward, & Zhu, 2002) and TER (Snover,
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The top-10 highest probability rules (for MT) in our approach but absent in WordAlign-2

1* NP(DNP1 NN(提高)) → VP(ADVP1 VP(VBD(improved)))
2* NP(PU( “) NP(CD(两) NN(会)) PU(”)) → NP(DT(the) CD(two) NNS(sessions))
3* NP(NP(QP1 NP(NN(代表))) NP2) → NP(X2 NP(CD1 NP(NNS(represents))))
4 NP(NN(渴望) NP1) → VP(VB(desire) NNP1)
5* NP(PU(“) NP(NR1 NN(独立)) PU(”)) → NP(”(”) NP(NNP1 NN(independence)) ”(”))
6* NP(VP1 DEC(的) NP(NN(思想) NN(斗争)))

→ NP(ADJP(ADJP1 JJ(ideological)) NN(struggle))
7* NP(NP(QP1 NP2) NP(ADJP(JJ(重要)) NP(NN(思想))))

→ NP(NP(DT(the) JJ(important) NN(thinking)) IN(of) SBAR(WHNP1 S2))
8* NP(IP1 DEG(的) NP(NN(现实) NN(意义))) → NP(ADJP(ADJP1 JJ(practical))

NN(significance))
9* NP(NP(PU(“) NP(QP1 NN(代表)) PU(”)) NP(ADJP2 NN(思想)))

→ NP(NP(DT(the) JJ2 NN(idea)) PP(IN(of) NP(DT(the) CD1 NNS(represents))))
10 NP(PU(“) NN(入市) PU1) → VP(VBG(joining) NP(DT(the) NN1))

The top-10 highest probability rules (for MT) in WordAlign-2 but absent in our approach

1 LCP(QP1 LC(以上)) → ADJP(JJ1)
2* NP(DNP1 NN(变化)) → VP(ADVP1 VBP(changes))
3* NP(NN(三通) NN1) → NP(CD(three) NNS(links) X1)
4 NP(DNP(IP1 DEC(的)) NP(NN(意义))) → NP(ADJP1 NN(significance))
5 VP(ADVP1 VP(VV2 NP(NN(群众) NN3)))

→ VP(ADVP1 VP(VP(VV2) NP(DT(the) JJ(mass) NN3)))
6 IP(NP1 VP(VV(换) NP(NN(和平) NN2))) → NP(NP(NNS1) PP(IN(for) NP2))
7 NP(VP1 DEG(的) NN(合作)) → ADJP(JJ1)
8 NP(NP(PU(“) NT1 PU(”)) NP(NN(讲话)) NR(中))

→ NP(NP(PRP$(his)) QP(CD1) NN(speech))
9* VP(VP(ADVP1 VP(VV(加强) CC(和) VV(改进))) NP2)

→ VP(ADVP1 VP(VP(VB(strengthen) CC(and) VB(improve)) NP2))
10* NP(NP(PU(“) NN(台独) PU(”)) NP1)

→ NP(NP(”(”) NP(NN(taiwan) NN(independence)) ”(”)) NNS1)

Figure 7: The top-10 highest probability rules built from the proposed sub-tree alignment
approach that are not in the WordAlign-2 baseline grammar, and the top-10 rules
in the WordAlign-2 baseline grammar that are not obtained using the proposed
sub-tree alignment approach. * = a good translation rule.

Dorr, Schwartz, Makhoul, Micciula, & Weischedel, 2005), and the significance test is per-
formed using the bootstrap resampling method (Koehn, 2004). Moreover, the efficiency of
rule extraction is reported in terms of rule-set-size/extraction-time. For comparison, we
also report the result of rule extraction using word alignment matrices (Liu et al., 2009b)
on WordAlign-1 and WordAlign-2.

Table 4 indicates that our approach outperforms the baselines by the BLEU and TER
measures for both 1-best and 30-best extraction. In addition, the matrix-based method is
much more efficient than the k-best method. For example, compared with 30-best extrac-
tion, extracting rules from sub-tree alignment matrices is 9 times more efficient. However,
when all rules are counted as unit one in parameter estimation of the translation model,
using alignment matrices does not show significant BLEU improvements or TER reduc-
tions in comparison with the 30-best counterpart (see rows marked with unitcount). This
is because many of those additionally extracted rules are not utilized in real translation.
For example, we observed that only 7.3% of the rules used in generating the final (1-best)
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Entry Dev Test Rule-set Efficiency
BLEU4[%] TER[%] BLEU4[%] TER[%] size (rule/sec)

WordAlign-1 (1-best) 36.2 57.0 34.2 58.3 24.8M 75.4
WordAlign-2 (1-best) 36.2 56.9 34.2 58.1 25.3M 75.9
HeuristicAlgin (1-best) 35.7 57.2 33.8 58.3 22.7M 72.0
WordAlign-1 (30-best) 36.3 57.2 34.4 58.2 32.7M 3.8
WordAlign-2 (30-best) 36.4 57.0 34.6* 58.0 33.0M 3.9
HeuristicAlgin (30-best) 35.4 57.2 33.9 58.0 32.4M 3.8
WordAlign-1 (matrix) 36.9* 56.5 35.0* 57.9* 50.2M 35.8
WordAlign-2 (matrix) 36.8* 56.6 35.1* 57.7* 53.8M 37.9
Ours (1-best + unitcount) 36.7* 56.6 34.9* 57.8 27.0M 78.8
Ours (30-best + unitcount) 36.8* 56.6 35.0* 57.6* 37.4M 4.1
Ours (matrix + unitcount) 36.9* 56.3* 35.3** 57.5* 54.9M 37.7
Ours (1-best + posterior) 36.9* 56.4* 35.0* 57.4* 27.0M 78.8
Ours (30-best + posterior) 37.0* 56.2** 35.2** 57.0** 37.4M 4.1
Ours (matrix + posterior) 37.4** 55.9** 35.6** 57.1** 54.9M 37.7

Table 4: Evaluation of translations for different alignment approaches. For BLEU, higher
is better. For TER, lower is better. unitcount means that we take each rule
occurrence as unit one in parameter estimation, and posterior means that we use
rule posterior probabilities as fractional counts in parameter estimation. * or **
= significantly better than all three of the 1-best baselines (p < 0.05 or 0.01).

translations were indeed extracted from the alignments that were not seen in the 30-best
alignments. It thus indicates the fact that naively increasing the number of rules might not
be effective for improving the translation quality.

The last three rows in Table 4 show the result of using alignment posterior probabilities
in parameter estimation (i.e., the method described in Section 4.3). We see that alignment
posterior probabilities are very helpful in improving translation quality because the system
can weight more on those rules with more confidence (entries with unitcount vs. entries
with posterior). By using sub-tree alignment matrices in rule extraction and alignment
posterior probabilities in parameter estimation, our approach finally achieves a +1.0 BLEU
improvement and a -0.9 TER reduction over the 30-best case of the baselines. It even
outperforms the word alignment matrix-based counterpart by +0.5 BLEU points and -0.6
TER points (both are significant at p < 0.05).

Further, the effectiveness of the proposed approach is demonstrated in terms of BLEU
and TER scores under the same rule-set size. Figure 8 compares our approach and the
baseline approaches in different numbers of unique rules extracted.17 Clearly, in the same
number of unique rules, the proposed sub-tree alignment approach leads to better transla-
tions than those of the baselines.

5.3.4 The Impact of Alignment and Grammar Quality on MT Performance

The above experiments demonstrate the effectiveness of the proposed approach in terms
of different measures individually. The next natural question is how sub-tree alignment

17. To do this, we adjusted Pmin to obtain grammars with different sizes for our approach. For other
approaches, we used different k-best lists for rule extraction.
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Figure 8: BLEU and 1-TER against rule-set size

and rule extraction affect the translation quality. The study of this issue is very important
when we optimize the upstream systems of MT decoding and select appropriate evaluation
metrics for a good prediction of MT performance.

We therefore carried out another set of experiments which compares the translation
quality in different sub-tree alignment and rule extraction settings. To generate diverse
sub-tree alignment and rule extraction results, we varied the values of ω and Pmin for
sub-tree alignment and rule extraction respectively. In this way, we obtained ensembles of
sub-tree alignments and grammars with different precision and recall scores.18 We chose
F-β score as the evaluation metric for both the sub-tree alignment system and the rule
extraction system. Instead of fixing β to be 1, we varied the β value from 0.5 to 3. Since
the parameter β can control the bias towards precision or recall, choosing different values for
β is very helpful in seeking a good tradeoff between precision and recall. Then we can find
an appropriate evaluation measure of sub-tree alignment and rule extraction for predicting
MT performance well.

Figures 9 and 10 plot the F-β scores as measures of MT performance for sub-tree align-
ment and rule extraction. From Figure 10, we see that the rule F-3 score correlates best
with the translation quality measures, which indicates that the MT system prefers rule
recall-biased metrics. This agrees with our observation in Figure 8 that the MT system
can make benefits from more rules. On the other hand, the curves in Figure 9 show a
better correlation between sub-tree alignment F-2/F-3 score and translation quality mea-
sures, implying a preference for relatively higher sub-tree alignment recall. This result is
reasonable because in our framework more node alignment links can result in more aligned
tree-fragments (or rules) extracted. A high-recall sub-tree alignment generally results in a
big grammar with high rule recall, and thus better BLEU and TER results. We also com-

18. For example, a larger value of ω generally results in higher alignment precision, while a small value
prefers higher alignment recall. For rule extraction, a larger value of Pmin generally leads to a grammar
with higher rule precision, while choosing a smaller Pmin can generate a grammar with higher rule recall.
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Figure 9: BLEU and 1-TER against sub-tree alignment F-β measure
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Figure 10: BLEU and 1-TER against rule F-β measure

puted the Pearson’s correlation coefficients between sub-tree alignment/rule F-3 score and
BLEU/TER. For sub-tree alignment F-3, its correlation coefficients with BLEU and TER
are 0.971 and -0.962 respectively. For rule F-3, its correlation coefficients with BLEU and
TER are 0.983 and -0.963 respectively. Both of them show good correlations with the trans-
lation quality measures. Another interesting observation here is that the MT performance
is more sensitive to the change of rule F-β score than to the change of sub-tree alignment
F-β score. This may lie in that rule extraction is a direct upstream step of decoding and
impacts more on the output of MT systems. In contrast, sub-tree alignment is a front-end
step of the MT pipeline and has an indirect effect on the actual translation process.
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System Dev Test
BLEU4[%] TER[%] BLEU4[%] TER[%]

Hierarchical phrase-based 37.2 57.3 35.2 58.0
Tree 1-best word alignment (WordAlign-2) 36.8 56.4* 35.3 57.7
to Word alignment matrix 37.0 56.3* 35.2 57.5*
tree Sub-tree alignment matrix 37.9* 55.8** 36.0** 56.8**

Table 5: MT Evaluation results of rules obtained from various alignment approaches. For
BLEU, higher is better. For TER, lower is better. * or ** = significantly better
than the hierarchical phrase-based baseline (p < 0.05 or 0.01).

5.3.5 Further Improvements

Previous work has pointed out that the straightforward implementation of tree-to-tree MT
suffers from the problems of too few rules and too few derivations in either rule extraction or
decoding process (Chiang, 2010). To further advance the tree-to-tree system and compare
it with the state-of-the-art, we employed tree binarization (Wang et al., 2007b) and fuzzy
decoding (Chiang, 2010) in our system. As our alignment approach can be equipped with
the general framework of tree-to-tree translation, it is trivial to conduct another set of
experiments to investigate the effectiveness of our approach in a stronger system.19 Table
5 shows the BLEU and TER scores of our system enhanced with the above methods.20 For
comparison, we also report the result of a state-of-the-art MT system that implements the
hierarchical phrase-based model (Chiang, 2007) and our tree-to-tree system that extracts
rules using the word alignment matrices (Liu et al., 2009b). Table 5 indicates the superiority
of our approach when tree binarization and fuzzy decoding are involved. It significantly
outperforms the hierarchical phrase-based system (+0.7 BLEU points and -1.2 TER points)
and the tree-to-tree system based on the word alignment matrices (+0.8 BLEU points and
-0.7 TER points).

As discussed in Section 4, the transfer rules in our sub-tree alignment model resembles
the general form of STSGs which can be directly used in MT. Instead of resorting to an
explicit step of rule extraction, we can use the rules in the sub-tree alignment model for
MT decoding, i.e., sub-tree alignment is cast as a grammar induction step. We therefore
built another system which directly acquires translation rules from the sub-tree alignment
step. To do this, we only need to output all the rules from the derivation forest generated
by our alignment model. All rule probabilities can be obtained using the inside and output
probabilities, and pruning is performed by throwing away rules whose probability is below
Pmin. In addition to rule probability, we reused the n-gram language model, the rule number
bonus, the target length bonus, the lexicalized rule and low frequency rule indicators in our
base tree-to-tree system as additional features for a fair comparison. To obtain a good and
reasonable result, we employed both fuzzy decoding and tree binarizaiton in the experiment.

19. We did not choose this setting in the previous experiments because our gold-standard alignment annota-
tion was on the Penn Treebank-style trees only. It was difficult to evaluate the alignment and grammar
quality on binarized trees due to the lack of benchmark data. In our experiments we first conducted the
experiments on each individual tasks (see Sections 5.3.1-5.3.3), and studied their correlations in a simple
but reasonable setting for a consistent result of sub-tree alignment and MT (see Section 5.3.4). Then we
investigated the effectiveness of our approach on an advanced tree-to-tree system (see Section 5.3.5).

20. In our implementation all parse trees were binarized in a head-out fashion.
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Entry Dev Test
BLEU4[%] TER[%] BLEU4[%] TER[%]

Baseline (explicit rule extraction) 37.9 55.8 36.0 56.8
Rules from the sub-tree alignment model 36.2 57.9 34.3 58.8
Rules from the sub-tree alignment model + MERT 36.7 57.3 34.9 58.0
Baseline + sub-tree alignment features 38.2 55.8 36.1 56.9

Table 6: MT Evaluation results of obtaining rules from the sub-tree alignment model and
obtaining rules with the traditional rule extraction pipeline

Table 6 compares the results of sub-tree alignment matrix-based rule extraction and in-
ducing rules from the alignment model (Row 1 vs. Row 2). Unfortunately, straightforwardly
inferring rules and their probabilities from the sub-tree alignment model underperforms the
baseline. This might be attributed to several reasons. First, due to the large derivation
space, we cannot enumerate all relatively large tree-fragments in the sub-tree alignment
step, instead we only access the tree-fragments with limited depths. By contrast, our base-
line system extracts basic rules using sub-tree alignment matrices and then obtains more
large rules with some heuristics (e.g., rule composing). The additional rules obtained in
our baseline framework of rule extraction are in general very useful to modern syntax-based
systems (Galley et al., 2006; Marcu et al., 2006; DeNeefe et al., 2007). Second, the rule
probability in our sub-tree alignment model is defined as a product of probability factors
for a good generation story. However, MT systems usually use features which are not re-
quired to form a generative model, such as the features shown in Equations (33)-(37). In
consequence, many well-developed features can be used by the baseline system but they
are not available in our sub-tree alignment model. Third, our sub-tree alignment model
is trained by maximizing the likelihood or other criteria, which is not consistent with that
adopted by the MT system (i.e., minimizing an evaluation-related error rate function). To
further study these issues, we improved the system in two ways. First, we treated all four
of the probability factors in the sub-tree alignment model (See Equation (13)) as different
features in the MT decoder, and tuned their weights using MERT. Row 3 in Table 6 shows
that this method achieves better results than the system employing unweighted probability
factors. However, its performance is still worse than that of the baseline, which indicates
that the MT-oriented features and rule extraction heuristics are crucial to the success of
our tree-to-tree system. Finally we added the probabilistic factors of our sub-tree alignment
model to the baseline system as additional features. As shown in the last row of Table 6,
the enhanced system yields modest BLEU improvements over the baseline, but no TER
improvement is achieved. All the above results give us two interesting messages - 1) rule
extraction heuristics, MT-oriented features and objectives of learning are key factors con-
tributing to a good tree-to-tree system; 2) and it is better to use our sub-tree alignment
model as an upstream module of rule extraction and decoding, rather than using it as a
simple step for grammar induction.

The last issue we investigate here is whether our sub-tree alignment model can make
benefits from labeled data. Although we focus on unsupervised learning in this work,
the proposed model does not require a strictly unsupervised condition. Instead it can be
enhanced with the use of labeled data. The idea is simple: we combine the probability
factors of our sub-tree alignment model in a log-linear weighted fashion. It means that

768



Unsupervised Sub-tree Alignment for Tree-to-Tree Translation

Entry Dev Test
BLEU4[%] TER[%] BLEU4[%] TER[%]

Unweighted 37.9 55.8 36.0 56.8
Weighted (weights are learned on labeled data) 38.3 55.6 36.1 56.9

Table 7: Comparison of the unweighted and weighted sub-tree alignment models

all probability factors of our sub-tree alignment model are taken as real valued feature
functions, and their feature weights can be learned on labeled data by supervised methods.
In this way, our unweighted generative model (i.e., each factor has a weight of one) is
transformed into a weighted model (i.e., each factor has an individual weight). Note that
this weighted model has almost the same form as those used in SMT systems. The only
difference from the SMT model is that no language model is needed because the target-
language side is fixed in the sub-tree alignment step. To avoid bias towards too few or
too many rules, we also added the rule number as an additional feature to our new model.
For training and test, we divided our node-aligned gold-standard data into two parts - the
first 310 sentences were selected for weight training, and the remaining 327 sentences were
selected for testing the system. To learn feature weights in a supervised manner, we chose
MERT which is one of the most powerful tools for training log-linear models. The error
function used in MERT is defined by one minus sub-tree alignment F-1 score.

On the 327-sentence test data (with the tree annotation of the Penn Treebanks), the
weighted model achieves an alignment F-1 score of 75.4% and a rule F-1 score of 60.0%,
respectively. This result is better than that of the unweighed (and unsupervised) model
which obtains an alignment F-1 score of 72.4% and a rule F-1 score of 59.2% on the same
data set. Finally we tested the MT performance in our best setting (i.e., sub-tree alignment
matrix-based rule extraction + tree binarization + fuzzy decoding).21 Table 7 shows that
the weighted sub-tree alignment model leads to a better BLEU score on the tuning set but
does not show promising improvements on the test data. As the size of our labeled corpus
is small, we expect better results if more labeled data is available. Also it is worth studying
more sophisticated supervised methods to learn better weights, such as the kernel-based
methods (Sun et al., 2010b). As supervised/semi-supervised learning is not the focus of
this work, we leave these interesting issues to future investigations.

6. Related Work

Syntax-based approaches have been widely adopted in machine translation over the last
ten years. Many successful syntactic MT systems have been developed and shown good
results on several translation tasks (Eisner, 2003; Galley et al., 2004, 2006; Liu et al.,
2006; Huang et al., 2006; Zhang et al., 2008; Liu et al., 2009a; Chiang, 2010). Despite
differences in modeling and implementation details, all these models require an ”alignment”
step to acquire the syntactic correspondence between the source and target languages. As
is standard in SMT, most syntax-based MT systems use word alignments to infer syntactic
alignments from string-tree/tree-tree pairs. However, word alignments are generally not of
good quality from the viewpoint of syntactic alignment. It makes more sense to directly

21. As we did not have sub-tree-aligned data for binarized trees, we reused the weights learned on the Penn
Treebank-style trees for all four of the probability factors in our sub-tree alignment model.
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induce sub-tree level alignments from pairs of sentences with the syntactic information on
either language side or both. This is especially true for tree-to-tree MT where what we
actually need is the alignment between sub-trees in two languages, rather than the surface
alignment of words. There are several lines of work that address the syntactic alignment
problem and make better use of various alignment results for tree-to-tree translation.

6.1 Word and Sub-tree Alignment for Machine Translation

The earliest efforts in syntactic alignment focus on enhancing word alignment models with
syntactic information. To date, several research groups (Fraser & Marcu, 2007; DeNero
& Klein, 2007; May & Knight, 2007; Fossum et al., 2008; Haghighi, Blitzer, DeNero, &
Klein, 2009; Burkett, Blitzer, & Klein, 2010; Riesa, Irvine, & Marcu, 2011) have proposed
syntax-augmented models to advance their word alignment systems. Although these models
achieved promising improvements, they still address the alignment problem in word level.
As discussed in Section 1, such methods might not be desirable choices for learning the
correspondence between tree nodes in two languages. As an alternative and more straight-
forward solution, researchers tried to infer sub-tree level alignments for pairs of syntactic
trees. For example, Imamura (2001), Groves, Hearne, and Way (2004), and Tinsley et al.
(2007) defined several scoring functions to measure the similarity between the source and
target sub-trees, and aligned the tree nodes with greedy algorithms. Their approaches,
though simple to implement, are not derived in a principled way. For example, all these
models do not have an explicit optimization procedure, as in a general framework of sta-
tistical learning. Instead, the model parameters are obtained using additional alignment
models or lexicons. In another line of research, Sun et al. (2010a, 2010b) attempted to ad-
dress the sub-tree alignment problem with supervised/semi-supervised models. They used
tree kernels and various syntactic features to advance their sub-tree alignment system and
showed promising results on Chinese-English translation tasks. However, this approach still
relies on heuristic algorithms for inferring node correspondences between two parse trees.
Beyond this, to train the tree kernels, their approach requires additional labeled data which
is generally very expensive to build. Unlike these studies, we derive our sub-tree model in a
principled way and develop an unsupervised sub-tree alignment framework for tree-to-tree
MT.

6.2 Unsupervised Syntactic Alignment

There are also previous studies that do not resort to labeled data for sub-tree alignment.
The earliest of these was Eisner’s (2003) work. He designed an unsupervised approach
to modeling the sub-tree alignment problem in the STSG formalism. However, since no
detailed derivation and model decomposition is provided, this model is computationally
expensive, even difficult to be applied to current tree-to-tree systems where complex tree
structures are involved. Gildea (2003) also applied STSGs to tree-to-tree/tree-to-string
alignment. He developed a ”loosely” tree-based alignment method to address the issue of
parse-tree isomorphism in bitext. But his work only targets the word alignment rather
than modern syntactic MT systems. Recently Nakazawa and Kurohashi (2011) proposed
a Bayesian approach for sub-tree alignment between dependency trees, and tested it in a
Japanese-English MT system. Actually their model has much in common with the model
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presented in this work. For example, they both apply unsupervised learning methods and
Bayesian models to sub-tree alignment. On the other hand, the two studies differ in some
important aspects. First, Nakazawa and Kurohashi (2011) restricted themselves to sub-tree
alignment between dependency trees, which is very different from aligning tree nodes in
phrase structure trees. Since phrase structure trees involve more complex structures and
syntactic categories, the alignment problem in phrase structure trees are relatively more
difficult than the dependency-based counterpart. Second, our model makes benefits from
the recent advances in STSGs and is directly applicable to current state-of-the-art tree-to-
tree systems.

Another related work to what is presented here is Pauls, Klein, Chiang, and Knight’s
(2010) work. They factored a node-to-string alignment model over components that each
generates a target side of a synchronous rule from a source side. Moreover, the probability of
a rule fragment was factored into a lexical and structural component in their work. Actually,
their model and our proposed model are two variants on a theme. But there appear to
be obvious differences between them. First, our focus is sub-tree alignment for tree-to-tree
translation, while Pauls et al. (2010) addressed the alignment issue for tree-to-string/string-
to-tree translation. In our model, we parse both language sides independently, rather than
parsing only one side and projecting syntactic categories. As a result, inference is faster
in this work since we do not need to consider all possible parse trees of the unparsed side
during alignment. Second, the permutation model presented in this work is more general
in order to handle non-ITG trees. Third, we investigate methods for the effective use of
sub-tree alignment in MT. In particular, we present a rule extraction approach to obtaining
additional translation rules using sub-tree alignment posteriors, rather than learning rules
only from the 1-best sub-tree alignment.

6.3 Rule Extraction Using Various Alignment Results

In machine translation, word and syntactic alignments are used to extract translation rules
or phrases. In the traditional pipeline of rule and phrase extraction, only the 1-best align-
ment result is considered, which suffers from the limited scope of the single alignment. To
efficiently obtain diverse alignment/parsing results, packed data structures were adopted to
improve 1-best pipeline MT systems in recent years (Mi & Huang, 2008; Liu et al., 2009a;
Zhang, Zhang, Li, Aw, & Tan, 2009). For example, Liu et al. (2009b) and de Gispert et al.
(2010) used alignment posterior probabilities for phrase or hierarchical phrase extraction.
The development of sub-tree alignment matrices is actually motivated by a similar idea
from word alignment matrices. The difference from the above work is that we use sub-tree
on both language sides to infer alignment posterior probabilities, while these probabilities
are calculated in word/phrase-level in previous work (Liu et al., 2009b; de Gispert et al.,
2010). Moreover, to our knowledge, the effectiveness of sub-tree alignment matrix has not
been systematically studied in the case of tree-to-tree translation.

Note that the approach presented in this work is also doing something similar to syn-
chronous grammar induction. For example, our model results in an STSG which has the
same formalism as that used in MT. Recent studies on Bayesian models (Blunsom, Cohn,
Dyer, & Osborne, 2009; Cohn & Blunsom, 2009; Levenberg et al., 2012) have shown very
promising results in directly learning synchronous grammars from bilingual data for hierar-
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chical phrase-based and string-to-tree systems, rather than extracting synchronous grammar
rules based on an explicit word/syntactic alignment step. However it is rare to see related
work on tree-to-tree MT. In principle this article is different from previous work on syn-
chronous grammar induction. For example, the aim of this work is to learn a sub-tree
alignment model, which can be applied to many potential applications except MT, such as
sentence compression for paraphrasing and test summarization (Jing, 2000; Cohn & Lapata,
2009). Unlike synchronous grammar induction where the alignment is implicitly encoded
in the learning process, we treat sub-tree alignment as a separate task. This eases the
development and tuning of the alignment system because we actually do not resort to MT
systems which are ”slow” and difficult to optimize. Another advantage is that our approach
can make benefits from more compact models, rather than those used in MT where a great
number of rules are involved. Take our implementation as instance. The alignment model
is learned on a relatively small set of grammar rules (rules with limited depths), while the
MT system accesses a much larger grammar where many additional rules are involved by
rule composing. Such a method can result in an efficient alignment system and is likely to
alleviate the degenerate analysis of the data, with no cost of degrading in MT performance.

7. Discussion

The underlying assumption of our proposed model is that 1-to-1 sub-tree alignments can
be achieved based on the constraints imposed by neighboring parts of the tree (see Section
2). This makes sense in the standpoint of linguistically-motivated models, yet it in turn
faces a problem that the constraints make it difficult to align some sentences/trees correctly,
particularly if they are free translations. There are several reasons that can explain why
our approach works nice with tree-to-tree MT and why it does not suffer greatly from
the structure divergence between languages. First, our model is ”flexible” and allows for
node deletion/insertion in alignment. It means that in some levels of the tree it is not
necessary to require that every node is aligned to a valid node in the other language side,
instead nodes can be ”dropped” as needed. The advantage of such a method is that if
we cannot confidently align a node to any node in the counterpart tree, we can align it
to a virtual node and do not enforce bad constraints to aligning other parts of the tree.
This is very useful when there are very flat tree structures or partial translations which
are not syntactically well-formed. Second, the main purpose of our approach is to infer
sub-tree alignment probabilities which can be used in pruning sub-tree alignment matrices
and extracting rules for MT systems. Though 1-to-1 alignment is required for training the
sub-tree alignment model, what we actually do is to access a large number of alignment
alternatives for rule extraction, even if some of them cannot appear in the same derivation
due to our alignment constraints. Third, our model can work with any phrase structure
trees. Instead of the Penn Treebank-style trees which are difficult for alignment in some
cases, our sub-tree alignment system works well with binarized trees and shows promising
improvements over various baselines. Note that tree binarization is a very effective method
to alleviate the structure divergence problem, especially for Chinese-English translation.
Also, it might be interesting to investigate other methods for dealing with differences in
syntactic structures between languages, such as the forest-based methods (Mi & Huang,
2008; Liu et al., 2009a).

772



Unsupervised Sub-tree Alignment for Tree-to-Tree Translation

Another note on our approach. If implemented naively, the speed of the sub-tree align-
ment system will be very slow since our model needs the calculation of the alignment proba-
bility over all pairs of tree-fragments. Fortunately, with the thought of computation, several
optimizations can make the system much more efficient in practice. First, as is described in
this work, pruning methods can be employed to restrict the number of tree-fragments to a
reasonable level. In our experiments, the system with pruning achieved a speed of 1.8∼2.2
sentence/second on a single core of the Intel Xeon 3.16-GHz CPU. Another way for speed
improvement is parallel processing. A very good property of the EM-style algorithms is
that the E-step can be easily implemented in parallel computation environment. What we
need is to divide the training data set into a number of ”smaller” parts, and then run the
inside-outside algorithm on these parts in parallel (i.e., a Map procedure). The expected
counts of model parameters can be accumulated over the results of all the parts (i.e., a
Reduce procedure). Then the M-step can be performed as usual. In our implementation
we used 40 threads for parallel training. The running time of one training iteration over
our 1-million-sentence corpus was about 14-17 hours. Note that further system speed-up
can be expected if more powerful distributed infrastructures are available (e.g., clusters +
Hadoop), and it is not difficult to scale up our approach to handle millions of sentence pairs
using the current training framework.

8. Conclusions

We have proposed an unsupervised probabilistic sub-tree alignment approach for tree-to-
tree translation. By factoring the alignment model over several components, the resulting
model can be easily learned using the EM algorithm and the variational Bayesian approach.
Also, we have investigated different ways of applying the proposed model to tree-to-tree
translation. In particular, we developed a sub-tree alignment matrix which encodes an
exponentially large number of alignments. From this representation of sub-tree alignment,
desirable rules can be extracted more efficiently than using the k-best sub-tree alignment
result. Our experiments showed that the proposed model achieved significant improvements
in both alignment quality and grammar quality over several baselines. On the NIST Chinese-
English evaluation corpora, it achieved a +1.0 BLEU improvement and a -0.9 TER reduction
on top of a state-of-the-art tree-to-tree system. The improved MT system even significantly
outperformed a state-of-the-art hierarchical phrase-based system when equipped with tree
binarization and fuzzy decoding.
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Appendix A. Part-of-speech Tags and Phrase Structure Labels

In this work the annotation of POS tagging and phrase structure parsing follows the stan-
dard defined in the Penn English and Chinese Treebanks (Marcus et al., 1993; Xue et al.,
2005). See Tables 8-11 for lists of POS tags and constituent labels used in the example
trees in this article.

POS Tag Description
AD Adverb
AS Aspect Particle
NN Noun (except proper nouns and temporal nouns)
NR Proper Noun
P Preposition
PN Pronoun
PU Punctuation
VV Verb (except stative verbs, copulas, and the main

verbs of ”有”, ”没” and ”无”)

Table 8: Chinese POS tags used in the examples

POS Tag Description
DT Determiner
IN Preposition
JJ Adjective
NNP Proper noun (singular)
NNS Noun (plural)
PRP Personal Pronoun
RB Adverb
VBD Verb (past tense)
VBN Verb (past participle)
VBP Verb (non-3rd person singular present)
, Comma
. Period

Table 9: English POS tags used in the examples

Syntactic Label Description
IP Single Clause
NP Noun Phrase
PP Preposition Phrase
QP Quantity Phrase
VP Verb Phrase

Table 10: Chinese constituent labels used in the examples
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Syntactic Label Description
ADVP Adverb Phrase
NP Noun Phrase
PP Preposition Phrase
S Sentence
VP Verb Phrase

Table 11: English constituent labels used in the examples

Distribution Notation Description
Pnt(·) θtnt|snt

snt and tnt are source and target-language non-terminal symbols
Ptree(·) θttree|tnt

ttree is a target-language tree-fragment
Preorder(·) θtvnt|svnt

svnt and tvnt are vectors of non-terminal symbols in source
and target-languages

Plength(·) θl|m m and l are numbers of source and target terminals (or words)
Pw(·) θtw|sw sw and tw are source and target terminals (or words)

Table 12: Notations of model parameters

Appendix B. EM-based Training for the Sub-tree Alignment Model

As described in Section 3, the proposed sub-tree alignment model has five types of pa-
rameters, including the non-terminal mapping probability Pnt(·), the target-language tree-
fragment generation probability Ptree(·), the frontier non-terminal reordering probability
Preorder(·), the word number probability Plength(·) and the word mapping probability Pw(·).
For convenience we use a new set of notations to denote these model parameters in the fol-
lowing description. See Table 12 for a symbol list.

Here we follow the same framework of the EM-based training as that described in Figure
3. See Figure 11 for a complete version of the EM algorithm for all parameters of the model.
In this algorithm, EC(·) represents the expected count of the input variable. δ(X = x) is
a 0-1 function that returns 1 if variable X takes a value of x, 0 otherwise. γ(k)(r;u, v)
and γ(k)(S, T ) are the rule probability (see Equation (29)) and the probability of the sub-
tree alignment between S and T (see Equation (20)), where k indicates that all these
probabilities are calculated based on the parameters in the k-th iteration. tree(·), vnt(·)
and lex(·) are the functions that return the tree-structure, frontier non-terminal vector, and
terminal sequence of the input tree-fragment, respectively (see Section 3.2).

The basic idea of the E-step is that we check each rule r (given a pair of tree nodes u

and v) and update EC(·) by its relative probability γ(r;u,v)
γ(root(S),root(T )) . This can be applied

to the update rules for the parameters θtnt|snt , θttree|tnt , θtvnt|svnt and θl|m (see lines 8-11).
The only exception is θtw|sw . As defined in Equation (14), Pw(ti | sj) is not a direct
product factor, instead we use the sum over all terminals of the source-language tree-
fragment (i.e.,

∑m
j=1 Pw(ti | sj)). Here we follow the result of IBM Model 1 and make the

update magnitude proportional to Pw(ti | sj)/
∑|lex(sr)|

j′=1 Pw(ti | sj′). We refer the reader
to Brown et al.’s (1993) work for detailed derivation of the expected count in IBM Model
1. It is also worth noting that the above algorithm performs parameter update based on
different choices of (u, v) and r in the E-step. This means that if a rule instance is involved
in a particular derivation for more than one time (e.g., the same tree-fragment appears at
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1: Function TrainModelWithEM ({(S1, T1), ..., (Sn, Tn)})
2: Initialize {θ(0)

tnt|snt , θ
(0)
ttree|tnt , θ

(0)
tvnt|svnt , θ

(0)
l|m, θ

(0)
tw|sw}

3: For k = 0 to K − 1 do
4: Set EC(·) = 0 for all model parameters
6: E-step:
5: Foreach tree pair (S, T ) in sequence {(S1, T1), ..., (Sn, Tn)} do
6: Foreach node pair (u, v) in (S, T ) do
7: Foreach rule r rooted at (u, v) do

8: EC(θtnt|snt) + = γ(k)(r;u,v)·δ(snt=u)·δ(tnt=v)

γ(k)(root(S),root(T ))

9: EC(θttree|tnt) + = γ(k)(r;u,v)·δ(tnt=v)·δ(ttree=tree(tr))
γ(k)(root(S),root(T ))

10: EC(θtvnt|svnt) + = γ(k)(r;u,v)·δ(svnt=vnt(sr))·δ(tvnt=vnt(tr))
γ(k)(root(S),root(T ))

11: EC(θl|m) + = γ(k)(r;u,v)·δ(m=|lex(sr)|)·δ(l=|lex(tr)|)
γ(k)(root(S),root(T ))

12: Foreach word pair (sj , ti) in position (j, i) of (lex(sr), lex(tr)) do

13: EC(θtw|sw) + =

γ(k)(r;u,v)·
P
(k)
w (ti|sj)∑|lex(sr)|

j′=1
P
(k)
w (ti|sj′ )

·δ(sw=sj)·δ(tw=ti)

γ(k)(root(S),root(T ))

10: M-step:

14: Foreach non-terminal symbol pair (snt, tnt) do

15: θ
(k+1)
tnt|snt =

EC(θtnt|snt )∑
t′nt

EC
(
θt′nt|snt

)
16: Foreach target non-terminal symbol tnt and tree-fragment structure ttree do

17: θ
(k+1)
ttree|tnt =

EC(θttree|tnt )∑
t′tree

EC
(
θt′tree|tnt

)
18: Foreach pair of non-terminal symbol vectors (svnt, tvnt) do

19: θ
(k+1)
tvnt|svnt =

EC(θtvnt|svnt )∑
t′vnt

EC
(
θt′vnt|svnt

)
20: Foreach pair of word numbers (m, l) do

21: θ
(k+1)
l|m =

EC(θl|m)∑
l′ EC

(
θl′|m

)
22: Foreach pair of words (sw, tw) do

23: θ
(k+1)
tw|sw =

EC(θtw|sw )∑
t′w
EC
(
θt′w|sw

)
24: return {θ(K)

tnt|snt , θ
(K)
ttree|tnt , θ

(K)
tvnt|svnt , θ

(K)
l|m , θ

(K)
tw|sw}

Figure 11: The EM-based training algorithm for all model parameters

different positions), the update of the corresponding parameters would be carried out for
multiple times.

Another note on the EM algorithm. The expected counts of all the parameters can be
efficiently calculated using the inside and outside probabilities according to lines 8-11 and
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13. But for some parameters there are more efficient ways. For example, as is discussed in
Section 3.4.1, the expected count of θtnt|snt can be obtained without checking each individual
rule, that is, we can omit the loop for r in this case. This technique can be considered for
further speed-up of the sub-tree alignment system.
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