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Abstract

Institutions can provide incentives to increase cooperation behaviour in a population where this
behaviour is infrequent. This process is costly, and it is thus important to optimize the overall
spending. This problem can be mathematically formulated as a multi-objective optimization prob-
lem where one wishes to minimize the cost of providing incentives while ensuring a desired level of
cooperation within the population. In this paper, we provide a rigorous analysis for this problem.
We study cooperation dilemmas in both the pairwise (the Donation game) and multi-player (the
Public Goods game) settings. We prove the regularity of the (total incentive) cost function, char-
acterize its asymptotic limits (infinite population, weak selection and large selection) and show
exactly when reward or punishment is more efficient. We prove that the cost function exhibits
a phase transition phenomena when the intensity of selection varies. We calculate the critical
threshold in regards to the phase transition and study the optimization problem when the inten-
sity of selection is under and above the critical value. It allows us to provide an exact calculation
for the optimal cost of incentive, for a given intensity of selection. Finally, we provide numerical
simulations to demonstrate the analytical results. Overall, our analysis provides for the first time
a selection-dependent calculation of the optimal cost of institutional incentives (for both reward
and punishment) that guarantees a minimum amount of cooperation. It is of crucial importance
for real-world applications of institutional incentives since intensity of selection is specific to a
given population and the underlying game payoff structure.

Key words: institution, incentives, cost optimization, evolutionary game theory, evolution of
cooperation.
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1 Introduction

The problem of promoting the evolution of cooperative behaviour within populations of self-
regarding individuals has been intensively investigated across diverse fields of behavioural, so-
cial and computational sciences [Perc et al., 2017, Nowak, 2006b, Han, 2013, West et al., 2007,
Sigmund, 2010]. Various mechanisms responsible for promoting the emergence and stability of
cooperative behaviours among such individuals have been proposed. They include kin and group
selection [Hamilton, 1964, Traulsen and Nowak, 2006], direct and indirect reciprocities [Ohtsuki
and Iwasa, 2006, Krellner and Han, 2020, Nowak and Sigmund, 2005, Han et al., 2012, Okada,
2020], spatial networks [Santos et al., 2006, Perc et al., 2013, Antonioni and Cardillo, 2017, Peña
et al., 2016], reward and punishment [Fehr and Gachter, 2000, Boyd et al., 2003, Sigmund et al.,
2001, Herrmann et al., 2008, Hauert et al., 2007a, Boyd et al., 2010], and pre-commitments [Nesse,
2001, Han et al., 2013, Martinez-Vaquero et al., 2017, Han et al., 2016, Sasaki et al., 2015]. In-
stitutional incentives, namely, rewards for cooperation and punishment of wrongdoing, are among
the most important ones [Wang et al., 2019, Sigmund et al., 2001, Han and Tran-Thanh, 2018,
Sigmund et al., 2010, Vasconcelos et al., 2013, Chen et al., 2015, Wu et al., 2014, Garćıa and
Traulsen, 2019, Góis et al., 2019, Powers et al., 2018]. Differently from other mechanisms, in order
to carry out institutional incentives, it is assumed that there exists an external decision maker
(e.g. institutions such as the United Nations and the European Union) that has a budget to inter-
fere in the population to achieve a desirable outcome. Institutional enforcement mechanisms are
crucial for enabling large-scale cooperation. Most modern societies implemented different forms of
institutions for governing and promoting collective behaviors, including cooperation, coordination,
and technology innovation [Ostrom, 1990, Bowles, 2009, Bowles and Gintis, 2002, Bardhan, 2005,
Han et al., 2021, Scotchmer, 2004].

Providing incentives is costly and it is important to minimize the cost while ensuring a sufficient
level of cooperation [Ostrom, 1990, Chen et al., 2015, Han and Tran-Thanh, 2018]. Despite of
its paramount importance, so far there have been only few works exploring this question. In
particular, Wang et al. [2019] use optimal control theory to provide an analytical solution for cost
optimization of institutional incentives assuming deterministic evolution and infinite population
sizes (modeled using replicator dynamics). This work therefore does not take into account various
stochastic effects of evolutionary dynamics such as mutation and non-deterministic behavioral
update [Traulsen et al., 2006, Sigmund, 2010, Hofbauer and Sigmund, 1998]. Defective behaviour
can reoccur over time via mutation or when incentives were not strong or effective enough in the
past, requiring institutions to spend more budget on providing incentive. Moreover, a key factor
of behavioral update, the intensity of selection [Sigmund, 2010]—which determines how strongly
an individual bases her decision to copy another individual’s strategy on fitness difference—might
strongly impact an institutional incentives strategy and its cost efficiency. For instance, when
selection is weak such that behavioral update is close to a random process (i.e. an imitation
decision is independent of how large the fitness difference is), providing incentives would make little
difference to cause behavioral change, however strong it is. When selection is strong, incentives
that ensure a minimum fitness advantage to cooperators would already ensure positive behavioral
change.

In a stochastic, finite population context, so far this problem has been investigated primarily
based on agent-based and numerical simulations [Chen et al., 2015, Sasaki et al., 2012, Han et al.,
2018, Han and Tran-Thanh, 2018, Cimpeanu et al., 2019]. Results demonstrate several interesting
phenomena, such as the significant influence of the intensity of selection on incentive strategies
and optimal costs. However, there is no satisfactory rigorous analysis available at present that
allows one to derive the optimal way of providing incentives (for a given cooperation dilemma
and desired level of cooperation). This is a challenging problem because of the large but finite
population size and the complexity of stochastic processes on the population.

In this paper, we provide exactly such a rigorous analysis. We study cooperation dilemmas in
both pairwise (the donation game) and multi-player (the Public Goods game) settings. These are
the most studied models for studying cooperation where individually defection is always preferred
over cooperation while mutual cooperation is the preferred collective outcome for the population
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as a whole. Adopting a popular stochastic evolutionary game approach for analysing well-mixed
finite populations [Nowak et al., 2004, Imhof et al., 2005, Nowak, 2006a], we derive the total
expected costs of providing institutional reward or punishment, characterize their asymptotic
limits (infinite population, weak selection and large selection) and show the existence of a phase
transition phenomena in the optimization problem when the intensity of selection varies. We
calculate the critical threshold of phase transitions and study the minimization problem when the
intensity of selection is under and above the critical value. We furthermore provide numerical
simulations to demonstrate the analytical results.

The rest of the paper is organized as follows. In Section 2 we introduce the models and methods
deriving mathematical optimization problems that will be studied. The main results of the paper
are presented in Section 3. In Section 4 we give explicit computations for small populations and
numerical investigations demonstrating the analytical results. In Section 5 we discuss possible
extensions for future work. Finally, detailed computations, technical lemmas and proofs the main
results are provided in the Supplementary Information attached at the end of the paper.

2 Materials and Methods

2.1 Cooperation dilemmas

We consider a well-mixed, finite population of N self-regarding individuals or players, who interact
with each other using one of the following cooperation dilemmas, namely the Donation Game (DG)
and the Public Goods Game (PGG). Let ΠC(i) and ΠD(i) denote the payoffs of Cooperator (C)
and Defector (D) in a population with i C players and N − i D players. We show below that
ΠC(i) − ΠD(i) is a constant, which is denoted by δ. For cooperation dilemmas, it’s always the
case that δ < 0.

2.1.1 Donation Game (DG)

In a DG, two players decide simultaneously whether to cooperate (C) or defect (D). The payoff
matrix of the DG (for row player) is given as follows

( C D

C b− c −c
D b 0

)
,

where c and b represent the cost and benefit of cooperation, where b > c. DG is a special version
of the Prisoner’s Dilemma game (PD).

We obtain

ΠC(i) =
(i− 1)πC,C + (N − i)πC,D

N − 1
=

(i− 1)(b− c) + (N − i)(−c)
N − 1

,

ΠD(i) =
iπD,C + (N − i− 1)πD,D

N − 1
=

ib

N − 1
.

Thus,

δ = ΠC(i)−ΠD(i) = −(c+
b

N − 1
)

2.1.2 Public Goods Game (PGG)

In a PGG, Players interact in a group of size n, where they decide whether to contribute a cost
c to the public goods. Cooperator contributes and defector does not. The total contribution will
be multiplied by a factor r (1 < r < n), and shared equally among all members of the group.
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We obtain [Hauert et al., 2007b]

ΠC(i) =
n−1∑

j=0

(
i− 1

j

)(
N − i

n− 1− j

)

(
N − 1

n− 1

)
(

(j + 1)rc

n
− c
)

=
rc

n

(
1 + (i− 1)

n− 1

N − 1

)
− c,

ΠD(i) =
n−1∑

j=0

(
i

j

)(
N − 1− i
n− 1− j

)

(
N − 1

n− 1

) jrc

n
=
rc(n− 1)

n(N − 1)
i.

Thus,

δ = ΠC(i)−ΠD(i) = −c
(

1− r(N − n)

n(N − 1)

)
.

2.2 Institutional reward and punishment

To reward a cooperator (respectively, punish a defector), the institution has to pay an amount θ/a
(resp., θ/b) so that the cooperator’s (defector’s) payoff increases (decreases) by θ, where a, b > 0
are constants representing the efficiency ratios of providing incentive. Without losing generality
(as we study reward and punishment separately), we set a = b = 1.

2.2.1 Cost of incentives

We adopt here the finite population dynamics with the Fermi strategy update rule [Traulsen et al.,
2006] (see Methods), stating that a player A with fitness fA adopts the strategy of another player

B with fitness fB with a probability given by, PA,B =
(
1 + e−β(fB−fA)

)−1
, where β represents

the intensity of selection. We compute the expected number of times the population contains i
C players, 1 ≤ i ≤ N − 1. For that, we consider an absorbing Markov chain of (N + 1) states,
{S0, ..., SN}, where Si represents a population with i C players. S0 and SN are absorbing states.
Let U = {uij}N−1

i,j=1 denote the transition matrix between the N−1 transient states, {S1, ..., SN−1}.
The transition probabilities can be defined as follows, for 1 ≤ i ≤ N − 1:

ui,i±j = 0 for all j ≥ 2,

ui,i±1 =
N − i
N

i

N

(
1 + e∓β[ΠC(i)−ΠD(i)+θ]

)−1

,

ui,i = 1− ui,i+1 − ui,i−1,

(1)

where ΠC(i) and ΠD(i) represent the average payoffs of a C and D player, respectively, in a
population with i C players and (N − i) D players.

The entries nij of the so-called fundamental matrixN = (nij)
N−1
i,j=1 = (I−U)−1 of the absorbing

Markov chain gives the expected number of times the population is in the state Sj if it is started
in the transient state Si [Kemeny and Snell, 1976]. As a mutant can randomly occur either at S0

or SN , the expected number of visits at state Si is: 1
2 (n1i + nN−1,i).

The total cost per generation is

θi =

{
i× θ in the case of institutional reward,

(N − i)× θ in the case of institutional punishment.

Hence, the expected total cost of interference for institutional reward and institutional punishment
are respectively

Er(θ) =
θ

2

N−1∑

i=1

(n1i + nN−1,i)i, and Ep(θ) =
θ

2

N−1∑

i=1

(n1i + nN−1,i)(N − i). (2)
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2.2.2 Cooperation frequency

Since the population consists of only two strategies, the fixation probabilities of a C (respectively,
D) player in a (homogeneous) population of D (respectively, C) players when the interference
scheme is carried out are (see Methods), respectively,

ρD,C =

(
1 +

N−1∑

i=1

i∏

k=1

1 + eβ(Πk(C)−Πk(D)+θ)

1 + e−β(Πk(C)−Πk(D)+θ)

)−1

,

ρC,D =

(
1 +

N−1∑

i=1

i∏

k=1

1 + eβ(Πk(D)−Πk(C)−θ)

1 + e−β(Πk(D)−Πk(C)−θ)

)−1

.

(3)

Computing the stationary distribution using these fixation probabilities, we obtain the frequency
of cooperation (see Methods)

ρD,C
ρD,C + ρC,D

.

Hence, this frequency of cooperation can be maximised by maximising

max
θ

(ρD,C/ρC,D) . (4)

The fraction in Equation (4) can be simplified as follows [Nowak, 2006a]

ρD,C
ρC,D

=
N−1∏

k=1

T−(k)

T+(k)
=
N−1∏

k=1

1 + eβ[Πk(C)−Πk(D)+θ]

1 + e−β[Πk(C)−Πk(D)+θ]

= eβ
∑N−1

k=1 (Πk(C)−Πk(D)+θ)

= eβ(N−1)(δ+θ). (5)

In the above transformation, T−(k) and T+(k) are the probabilities to increase or decrease the
number of C players (i.e. k) by one in each time step, respectively (see Methods for details).

We consider non-neutral selection, i.e. β > 0 (under neutral selection, there is no need to use
incentives). Assuming that we desire to obtain at least an ω ∈ [0, 1] fraction of cooperation, i.e.

ρD,C

ρD,C+ρC,D
≥ ω, it follows from Equation (5) that

θ ≥ θ0(ω) =
1

(N − 1)β
log

(
ω

1− ω

)
− δ. (6)

Therefore it is guaranteed that if θ ≥ θ0(ω), at least an ω fraction of cooperation can be expected.
From this condition it implies that the lower bound of θ monotonically depends on β. Namely,
when ω ≥ 0.5, it increases with β while decreases for ω < 0.5.

2.2.3 Optimization problems

Bringing all ingredients together, we obtain the following cost-optimization problems of institu-
tional incentives in stochastic finite populations

min
θ≥θ0(ω)

E(θ), (7)

where E is either Er or Ep, defined in (2), which respectively corresponds to institutional reward
and punishment.
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2.3 Methods: Evolutionary Dynamics in Finite Populations

Both the analytical and numerical results obtained here use Evolutionary Game Theory (EGT)
methods for finite populations [Nowak et al., 2004, Imhof et al., 2005, Nowak, 2006a]. In such
a setting, players’ payoff represents their fitness or social success, and evolutionary dynamics is
shaped by social learning [Hofbauer and Sigmund, 1998, Sigmund, 2010], whereby the most suc-
cessful players will tend to be imitated more often by the other players. In the current work, social
learning is modeled using the so-called pairwise comparison rule [Traulsen et al., 2006], assuming
that a player A with fitness fA adopts the strategy of another player B with fitness fB with

probability given by the Fermi function, PA,B =
(
1 + e−β(fB−fA)

)−1
, where β conveniently de-

scribes the selection intensity (β = 0 represents neutral drift while β →∞ represents increasingly
deterministic selection).

For convenience of numerical computations, but without affecting analytical results, we assume
here small mutation limit[Fudenberg and Imhof, 2005, Imhof et al., 2005, Nowak et al., 2004]. As
such, at most two strategies are present in the population simultaneously, and the behavioural
dynamics can thus be described by a Markov Chain, where each state represents a homogeneous
population and the transition probabilities between any two states are given by the fixation prob-
ability of a single mutant [Fudenberg and Imhof, 2005, Imhof et al., 2005, Nowak et al., 2004].
The resulting Markov Chain has a stationary distribution, which describes the average time the
population spends in an end state.

The fixation probability that a single mutant A taking over a whole population with (N −1) B
players is as follows (see e.g. references for details [Traulsen et al., 2006, Karlin and Taylor, 1975,
Nowak et al., 2004])

ρB,A =


1 +

N−1∑

i=1

i∏

j=1

T−(j)

T+(j)



−1

, (8)

where T±(k) = N−k
N

k
N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1
describes the probability to change the number

of A players by ± one in a time step. Specifically, when β = 0, ρB,A = 1/N , representing the
transition probability at neural limit.

Having obtained the fixation probabilities between any two states of a Markov chain, we can
now describe its stationary distribution. Namely, considering a set of s strategies, {1, ..., s}, their
stationary distribution is given by the normalised eigenvector associated with the eigenvalue 1 of
the transposed of a matrix M = {Tij}si,j=1, where Tij,j 6=i = ρji/(s−1) and Tii = 1−∑s

j=1,j 6=i Tij .
(See e.g. references [Fudenberg and Imhof, 2005, Imhof et al., 2005] for further details).

3 Main results

The present paper provides a rigorous analysis for the expected total cost of providing institutional
incentive (2) and the associated optimization problem (7). In the following theorems, E denotes
the cost function either for institutional reward, Er, or institutional punishment, Ep, as obtained
in (2). Also, HN denotes the well-known harmonic number

HN :=
N−1∑

j=1

1

j
. (9)

Our first main result provides qualitative properties and asymptotic limits of E.

Theorem 3.1 (Qualitative properties and asymptotic limits of expected total cost functions).

(1) (regularity) θ 7→ E(θ) is a smooth function on R.
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(2) (finite population estimates) The expected total cost of providing incentive satisfies the follow-
ing estimates for all finite population of size N

N2θ

2

(
HN +

1

N − 1

)
≤ E(θ) ≤ N(N − 1)θ

(
HN + 1

)
. (10)

(3) (infinite population limit) The expected total cost of providing incentive satisfies the following
asymptotic behaviour when the population size N tends to +∞

lim
N→+∞

E(θ)
N2θ

2 (lnN + γ)
=

{
1 + e−β|θ−c| for DG,

1 + e−β|θ−c|eβc
r
n for PGG,

(11)

where γ = 0.5772... is the Euler–Mascheroni constant.

(4) (weak selection limits) The expected total cost of providing incentive satisfies the following
asymptotic limit when the selection strength β tends to 0:

lim
β→0

E(θ) = N2θHN . (12)

(5) (large selection limits) The expected total cost of providing incentive satisfies the following
asymptotic limit when the selection strength β tends to +∞

lim
β→+∞

Er(θ) =





N2

2 θ
(

1
N−1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2

2 θ
(

1 +HN ) for θ > −δ.
(13)

lim
β→+∞

Ep(θ) =





N2θ
2

(
1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2θ

2

(
HN + 1

N−1

)
for θ > −δ.

(14)

(6) (difference between reward and punishment costs) The difference between the expected total
costs of reward and punishment is given by

(Er − Ep)(θ) =





< 0, for θ < −δ,
= 0, for θ = −δ,
> 0, for θ > −δ.

(15)

Our second main result concerns the optimization problem (7). We show that the cost function
E exhibits a phase transition when the strength of the selection β varies.

Theorem 3.2 (Optimization problems and phase transition phenomenon).

(1) (phase transition phenomena and behaviour under the threshold) Define

F ∗ =

{
min{F (u) : P (u) > 0} in the reward case,

min{F̂ (u) : P̂ (u) > 0} in the punishment case,

where P (u), F (u), P̂ and F̂ can be explicitly found in the Supporting Information. There
exists a threshold value β∗ given by

β∗ = −F
∗

δ
> 0,

such that θ 7→ E(θ) is non-decreasing for all β ≤ β∗ and is non-monotonic when β > β∗. As
a consequence, for β ≤ β∗

min
θ≥θ0

E(θ) = E(θ0). (16)

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435569


(2) (behaviour above the threshold value) For β > β∗, the number of changes of the sign of E′(θ)
is at least two for all N and is exactly two for N ≤ N0 = 100. As a consequence, for N ≤ N0,
there exist θ1 < θ2 such that for β > β∗, E(θ) is increasing when θ < θ1, decreasing when
θ1 < θ < θ and increasing when θ > θ2. Thus, for N ≤ N0,

min
θ≥θ0

E(θ) = min{E(θ0), E(θ2)}.

Based on numerical simulations, we conjecture that the requirement that N ≤ N0 could be
removed and Theorem 3.2 is true for all finite N . Theorem 3.2 gives rise to the following algorithm
to determine the optimal value θ∗ for N ≤ N0.

Algorithm 3.3 (Finding optimal cost of incentive θ?).

Inputs: i) N ≤ N0: population size, ii) β: intensity of selection, iii) game and parameters:
PD (c and b) or PGG (c, r and n), iv) ω: minimum desired cooperation level.

(1) Compute δ
{

in PD: δ = −(c+ b
N−1 ); in PGG: δ = −c

(
1− r(N−n)

n(N−1)

)}
.

(2) Compute θ0 = 1
(N−1)β log

(
ω

1−ω

)
− δ;

(3) Compute

F ∗ =

{
min{F (u) : P (u) > 0} in the reward case,

min{F̂ (u) : P̂ (u) > 0} in the punishment case,

where P (u), F (u), P̂ (u) and F̂ (u) are explicitly defined in the Supporting Information.

(4) Compute β∗ = −F∗

δ .

(5) If β ≤ β∗:
θ∗ = θ0, minE(θ) = E(θ0).

(6) Otherwise (i.e. if β > β∗)

(a) Compute u2 that is the largest root of the equation F (u) + βδ = 0 for the reward case
or that of F̂ (u) + βδ = 0 for the punishment case.

(b) Compute θ2 = log u2

β − δ.
• If θ2 ≤ θ0: θ∗ = θ0, minE(θ) = E(θ0);

• Otherwise (if θ2 > θ0):

– If E(θ0) ≤ E(θ2): θ∗ = θ0, minE(θ) = E(θ0);

– if E(θ2) < E(θ0): θ∗ = θ2, minE(θ) = E(θ2).

Output: θ∗ and E(θ∗).

4 Explicit computations for some small N and numerical
investigations

In this section, we will present explicit computations for some small N and provide several nu-
merical investigations to demonstrate the main analytical results, Theorem 3.2 and Algorithm
3.3.
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4.1 Illustrative examples

Example 4.1. Let us consider the case N = 3, the total cost of interference for institutional
reward and institutional punishment are respectively given by

Er(θ) =
9θ

4

(
5 +

4ex − 1

1 + ex + e2x

)
, Ep(θ) =

9θ

4

(
4 +

5ex + 1

1 + ex + e2x

)
,

where x = β(θ + δ). For institutional reward,

F (u) =
(u+ 1)(5u+ 4)(u2 + u+ 1)

u(2u2 − u− 5/2)
− log(u), P (u) = 4u2 − 2u− 5.

For institutional punishment

F̂ (u) =
(u+ 1)(4u+ 5)(u2 + u+ 1)

u( 5
2u

2 + u− 2)
− log(u), P̂ (u) =

5

2
u2 + u− 2.

To illustrate the phase transition phenomena, we consider the institutional reward (institutional
punishment is similar). We compute F ∗:

F ∗ = min{F (u) : P (u) > 0} = 10.9291 obtained at u∗ = 4.29712.

Moreover, F (u) is decreasing when u < u∗ and is increasing when u > u∗. The number of solutions
of the equation F (u) = βa and the sign of E′r(θ) depends on the value of βa.

(i) If βa < F ∗, then F (u) = βa has no solution and E′r(θ) > 0. Hence Er is increasing.

(ii) If βa = F ∗, then F (u) = βa has a unique solution, and E′(θ) ≥ 0 and Er is non-decreasing.

(iii) If βa > F ∗, then F (u) = βa has two solutions (1 +
√

21)/4 < u1 < u2.

E′r(θ)





> 0 u < u1,

< 0 u1 < u < u2,

> 0 u > u2.

Thus Er is increasing when u < u1, is decreasing when u1 < u < u2 and is increasing again when
u > u2.

Algorithm for N = 3

1. Compute

δ =

{
−(c+ b

N−1 ) PD games,

−c
(

1− r(N−n)
n(N−1)

)
PGG games

(17)

2. Compute θ0 = 1
(N−1)β log

(
ω

1−ω

)
− δ;

3. Compute β∗ = − f∗

δ = − 10.9291
δ .

4. If β ≤ β∗ then
θ = θ0, minE(θ) = E(θ0).

5. If β > β∗

(a) Compute θ2 = log u2

β − δ where u2 is the largest zero of the equation F (u) + βδ = 0.

(b) If θ0 ≥ θ2: θ∗ = θ0, minE(θ) = E(θ0);

(c) if θ0 < θ2, compare E(θ0) and E(θ2): if E(θ0) ≤ E(θ2): θ∗ = θ0, minE(θ) = E(θ0); if
E(θ2) < E(θ0): θ∗ = θ2, minE(θ) = E(θ2).
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Figure 1: Compare the expected total cost of investment E for reward and punishment,
for varying θ. Reward is less costly than punishment (Er < Ep) for small θ and vice versa
otherwise. The threshold of θ for this change was obtained analytically (see Theorem 1), which is
exactly equal to −δ. Other parameters: Donation Game with b = 2, c = 1.

4.2 Numerical evaluation

We perform several numerical investigations to demonstrate the main theoretical results. To begin
with, Figure 1 shows the expected total costs for reward and punishment (DG), for varying θ. We
observe that reward is less costly than punishment (Er < Ep) for θ < −δ and vice versa when
θ > −δ. It is exactly as shown analytically in Theorem 3.1. This analytical result is confirmed
here for different population size N and intensity of selection β.

In Figure 2 we calculate the total costs of incentive for both reward and punishment for different
regimes of intensity of selection. We observe that for both weak and strong limits of selection, the
theoretical results obtained in Theorem 3.1 are confirmed, for different population sizes.

Now for Theorem 3.2 and Algorithm 3.3, we focus on reward for illustration. Figure 3 plots
the cost function E(θ) (for institutional reward) in terms of θ for different values of N , β and
ω for illustrating the phase transition when varying β, in a DG. We can see that in all cases,
these numerical observations are in close accordance with theoretical results. For example, with
N = 3 (see top row), we found β? = f?/δ = 10.9291/1.9 = 5.752. Similarly, in the second case,
β? = 3.15/1.03673 = 3.039. For β < β?, E(θ) are increasing functions of θ. Thus, the optimal
cost of incentive θ? = θ0, for a given required minimum level of cooperation ω. For example, with
N = 3, for β = 1 to ensure at least 70% of cooperation (ω = 0.7), then θ? = θ0 = 2.32. When
β ≥ β? one needs to compare E(θ0) and E(θ2). For example, with N = 3, β = 10: for ω = 0.25
(black dashed line), then E(θ0) = 23.602 < 25.6124 = EC(θ2), so θ? = θ0 = 1.845; for ω = 0.7
(green dashed line), then E(θ0) = 26.446 > 25.6124 = EC(θ2), so θ? = θ2 = 2.16 (red solid line);
for ω = 0.999999 (blue dashed line), since θ2 < θ0, θ? = θ0 = 2.59078.

Similarly, with a larger population size (N = 50), we obtained β? = 3.039. In general, similar
observations are obtained as in case of a small population size N = 3. Except that when N is
large, the values of θ0 for different non-extreme values of minimum required cooperation ω (say,
ω ∈ (0.01, 0.99)) is very small (given the log scale of ω/(1− ω) in the formula of ω0). This value
is also smaller than θ0, with a cost E(θ0) > E(θ2), making θ2 the optimal cost of incentive.
Similar results are obtained for PGG (see Figure 2 in the Supporting Information). When ω is
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Figure 2: Total cost of incentive E for reward and punishment, for different regimes of
intensity of selection, β (Log-10 scaled), from weak to strong selection limits. We show
for different values of N . The dashed lines represent the corresponding theoretical limiting values
obtained in Theorem 3.1 for weak and strong selection limits. We observe that numerical results
are in close accordance with those obtained theoretically. Other parameters: Donation Game with
b = 2, c = 1.

extremely high (i.e. > 1 − 10−k, for a large k) (we don’t look at extremely low value since we
would like to ensure at least a sufficient level of cooperation), then we can also see other scenarios
where the optimal cost is θ0 (see Figure 1 in the SI, bottom row). We thus can observe that for
ω ∈ (0.01, 0.99), for sufficiently large population size N and large enough β (β > β?+ a bit more),
then the optimal value of ω is always θ2. Otherwise, θ0 is the optimal cost.

Figure 3 in the SI plots the increase in the costs θ0, θ? and E in order to increase the level of
cooperation from ε to 1− ε.

5 Discussion

Institutional incentives such as punishment and reward provide an effective tool for promoting
the evolution of cooperation in social dilemmas. Both theoretical and experimental analysis has
been provided [Gürerk et al., 2006, Sasaki et al., 2012, Garćıa and Traulsen, 2019, Baldassarri
and Grossman, 2011, Dong et al., 2019, Bardhan, 2005, Wu et al., 2014]. However, past research
usually ignores the question of how institutions’ overall spending, i.e. the total cost of providing
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Figure 3: Using Algorithm 3.3 to find optimal θ that minimizes E(θ) (for institutional
reward) while ensuring a minimum level of cooperation ω. We use as examples a small
population size (N = 3, top row) and a larger one (N = 50, bottom row), for Donation Game
(b = 1.8, c = 1).
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Figure 4: Using Algorithm 3.3 to find optimal θ that minimizes E(θ) while ensuring a
minimum level of cooperation ω, for PGG (r = 3, n = 5, c = 1) with N = 50. Similar
observations to those with Donation Game, are obtained.

these incentives, can be minimized (while ensuring a desired level of cooperation). Answering
this question allows one to estimate exactly how incentives should be provided, i.e. how much to
reward a cooperator and how severely to punish a wrongdoer. Existing works that consider this
question usually omit the stochastic effects in the population, namely, the intensity of selection.

Resorting to a stochastic evolutionary game approach for finite, well-mixed populations, we
provide here theoretical results for the optimal cost of incentives that ensure a desired level of
cooperation while minimizing the total budget, for a given intensity of selection, β. We show
that this cost strongly depends on the value of β, due to the existence of a phase transition in
the cost functions when β varies. This behavior is missing in works that consider a deterministic
evolutionary approach [Wang et al., 2019]. The intensity of selection plays an important role in
evolutionary processes. Its value differs depending on the payoff structure (i.e., scaling game payoff
matrix by a factor is equivalent to dividing β by that factor) and specific populations, which can
be estimated in behavioral experiments [Traulsen et al., 2010, Rand et al., 2013, Zisis et al., 2015,
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Domingos et al., 2020]. Thus, our analysis provides a way to calculate the optimal incentive cost
for a given population and interaction game at hand.

As of theoretical importance, we characterize asymptotic behaviors of the total cost functions
for both reward and punishment (namely, large population, weak selection and strong selection,
limits) and compare these functions for the two types of incentive. We show that punishment is
alway more costly for small (individual) incentive cost (θ) but less so when this cost is above a
certain threshold. This result provides insights into the choice of which type of incentives to use.
We provide an exact formula for this threshold. Moreover, we provide numerical validation of the
theoretical results.

In the context of institutional incentives modelling, a crucial issue is the question of how to
maintain the budget of incentives providing. The problem of who pays or contributes to the budget
is a social dilemma itself, and how to escape this dilemma is critical research question. In this
work we focus on the question of how to optimize the budget used for provided incentives. For
future research, we plan to generalise the results of this paper to more complex scenarios such as
other social dilemmas, mixed incentives, network effects, and any mutation.
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Abstract

In this Supplementary Information, we provide detailed calculations and proofs as well as
illustrative figures for the analytical results in the main text of the present paper.
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Figure 1: Optimal value of the incentive cost θ?, for varying the minimum required
cooperation level ω and the intensity of selection β. Left column: N = 3; Middle column:
N = 10; Right column: N = 50. Top row shows results for a non-extreme value range of ω:
ω ∈ [0.01, 0.99]. Bottom row shows results in a log scale to examine values of ω extremely close
to 1. Other parameters: Donation Game (b = 1.8, c = 1).
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Figure 2: Plot of β? for varying the population size N . We consider three games Donation
Game and Public Goods Game (n = 5), varying their own parameters as well (in both cases,
c = 1). The right-hand side figures plot the value −1/δ as a function of N . This is the upper
bound for the critical threshold β∗ in the institutional reward.

1 Detailed computations: reward

1.1 Computation of the fundamental matrix

The key in our analysis is that the fundamental matrix can be computed explicitly based on the
following result.

Lemma 1.1. (Inverse of a tridiagonal matrix [Huang and McColl, 1997]) Let T be a general
Toeplitz tridiagonal matrix of the form

T =




1 −u
−l 1 −u

. . .
. . .

. . .

−l 1 −u
. . .

. . .
. . .

−l 1 −u
−l 1




(1)
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Figure 3: Plot of the increase in the costs θ0, θ
? and E in order to increase the minimum

required level of cooperation from ε to 1 − ε (i.e. 1 − 2ε increase) for varying the
intensity of selection, β (N = 3, donation game with b = 1.8, c = 1). In general, all three
costs decrease with β. For a sufficiently weak selection (i.e. small β, see top row), a significant
increase in the costs are required to increase even a rather small amount of cooperation (e.g., when
ε = 0.4, or an increase of 0.2 of cooperation). In contrast, for a sufficiently strong selection (see
bottom row), see the lower row for a clearer view), even a big increase of cooperation (when
ε = 0.01, or an increase of 0.98), a small increase in the costs is required. These observations
suggest that the larger β, the overall cooperation outcome changes more significantly for the same
change in the per-individual investment; thereby requiring more careful in choosing this cost to
ensure a low, optimal cost.

Then the inverse of T is given by

(T−1)ij =
(λi+ − λi−)(λn−j+1

+ − λn−j+1
− )

(λ+ − λ−)(λn+1
+ − λn+1

− )
uj−i i < j, (2)

(T−1)ij =
(λj+ − λj−)(λn−i+1

+ − λn−i+1
− )

(λ+ − λ−)(λn+1
+ − λn+1

− )
lj−i i ≥ j, (3)

where

λ+ =
1 +
√

1− 4lu

2
, λ− =

1−
√

1− 4lu

2
. (4)

The following lemma is a special case of Lemma 1.1 which will be used in the subsequent
analysis.

Lemma 1.2. Let W be the following Toeplitz tri-diagonal matrix of order N − 1

W =




1 −a1

−c1 1 −a1

. . .
. . .

. . .

−c1 1 −a1

. . .
. . .

. . .

−c1 1 −a1

−c1 1




, (5)
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where

a1 := (1 + e−x)−1, c := (1 + ex)−1, x = β(θ − c− b

N − 1
).

Then

(W−1)1,j =
(e(N−1)x − e(j−1)x)(1 + ex)

eNx − 1
=
e(j−1)x(1 + ex)(1 + ex + . . .+ e(N−j−1)x)

1 + ex + . . .+ e(N−1)x

(W−1)N−1,j =
(ejx − 1)(1 + ex)

eNx − 1
=

(1 + ex + . . .+ e(j−1)x)(1 + ex)

1 + ex + . . .+ e(N−1)x
.

Proof. Applying Lemma 1.1 for u = a = (1 + e−x)−1, l = c = (1 + ex)−1, n = N − 1, we obtain

1− 4lu = 1− 4

(1 + ex)(1 + e−x)
=
ex + e−x − 2

ex + e−x + 2
=
e2x − 2ex + 1

e2x + 2ex + 1
=
(ex − 1

ex + 1

)2

.

Hence

λ± =
1±
√

1− 4lu

2
=

1±
∣∣∣ ex−1
ex+1

∣∣∣
2

=
ex + 1± |ex − 1|

2(ex + 1)
,

that is

λ+ =
ex

ex + 1
, λ− =

1

ex + 1
if x ≥ 0,

λ+ =
1

ex + 1
, λ− =

ex

ex + 1
if x < 0.

According to Lemma 1.1 we have

(W−1)1j =
λn−j+1

+ − λn−j+1
−

λn+1
+ − λn+1

−
uj−1 =

λn−j+1
− − λn−j+1

+

λn+1
− − λn+1

+

uj−1,

(W−1)N−1j =
λj+ − λj−

λn+1
+ − λn+1

−
lj−1 =

λj− − λj+
λn+1
− − λn+1

+

lj−1,

Therefore, by swapping the role of λ+ and λ− in the case x ≥ 0 and x < 0, we can assume without
affecting the computations that λ+ = ex/(1 + ex) and λ− = 1/(1 + ex) and obtain

(W−1)1j =

(
λ+

λ−

)n−j+1

− 1
(
λ+

λ−

)n+1

− 1
· λ

n−j+1
−
λn+1
−

· uj−1

=
e(n−j+1)x − 1

e(n+1)x − 1
· (1 + ex)−(n−j+1)

(1 + ex)−(n+1)
· (1 + e−x)1−j

=
e(n−j+1)x − 1

e(n+1)x − 1
· (1 + ex)j · (1 + e−x)1−j

=
e(n−j+1)x − 1

e(n+1)x − 1
· ejx(1 + e−x)j · (1 + e−x)1−j

=
e(n−j+1)x − 1

e(n+1)x − 1
· ejx(1 + e−x)

=
e(n+1)x − ejx
e(n+1)x − 1

· (1 + e−x)

=
enx − e(j−1)x

e(n+1)x − 1
· (1 + ex)

=
e(N−1)x − e(j−1)x

eNx − 1
· (1 + ex).
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Similar computations yield

(W−1)N−1,j =
(ejx − 1)(1 + ex)

eNx − 1
.

This completes the proof of the lemma.

1.2 The total cost function and its derivative

Using results from the previous section, in this section we will compute the total cost of interference
and its derivative.

Lemma 1.3. Recalling that x = β(θ − c − b
N−1 ) := β(θ − a) (where a := c + b/(N − 1) = −δ),

the total cost of interference for the institutional reward is given by

Er(θ) =
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+ e(N−1)x

N−1∑

j=1

e−jx

j

]
. (6)

It derivative is given by

E′r(θ) =
1

g(x)2
[f(x)g(x)− (x+ βa)(f(x)g′(x)− f ′(x)g(x))] .

When (f(x)g′(x)− f ′(x)g(x)) > 0 we write E′r(θ) as

E′r(θ) =
1

g(x)2
(f(x)g′(x)− f ′(x)g(x))

(
F (u)− βa

)
, (7)

where u = ex, and F is given in (11).

Proof. Let V := {vij}N−1
i,j=1 = I − U , we have

vi,i±j = 0 for all j ≥ 2,

vi,i±1 = −N − i
N

i

N

(
1 + e∓β[δ+θ]

)−1

,

vi,i = ui,i+1 + ui,i−1 =
N − i
N

i

N
,

(8)

Let a1 :=
(
1 + e−β(θ+δ)

)−1
and c1 :=

(
1 + eβ(θ+δ)

)−1
. The fundamental matrix N = (I −U)−1 =

V −1 (see Section the Introduction in the main text) can be expressed as

N−1 = W−1diag
{ N2

(N − 1)
,

N2

2(N − 2)
, . . . ,

N2

(N − 1)

}
,

where W is the Toeplitz tri-diagonal matrix given in (5). Therefore, from Lemma 1.2 the expected
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total cost of interference for institutional reward can be expressed as

Er(θ) =
θ

2

N−1∑

i=1

(n1i + nN−1,i)i

=
1

2

N−1∑

j=1

N2

(N − j)j
(

(W−1)1j + (W−1)N−1,j

)
jθ

=
N2θ(1 + ex)

2(eNx − 1)

N−1∑

j=1

e(N−1)x − e(j−1)x + ejx − 1

N − j

=
N2θ(1 + ex)

2(eNx − 1)

[(
e(N−1)x − 1

)N−1∑

j=1

1

j
+ (ex − 1)

N−1∑

j=1

e(j−1)x

N − j
]

=
N2θ(1 + ex)

2(eNx − 1)

[(
e(N−1)x − 1

)N−1∑

j=1

1

j
+ (ex − 1)e(N−1)x

N−1∑

j=1

e−jx

j

]

=
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+ e(N−1)x

N−1∑

j=1

e−jx

j

]

:=
N2θ

2

f(x)

g(x)
,

where (recalling the definition of the harmonic number HN )

f(x) = (1 + ex)
[
(1 + ex + . . .+ e(N−2)x)HN + e(N−1)x

N−1∑

j=1

e−jx/j
]
,

g(x) = 1 + ex + . . .+ e(N−1)x,

Since x = β(θ − a), we have

d

dθ
Er(θ) = β

d

dx
Er(θ) =

βN2

2

{
1

β

f(x)

g(x)
+ θ
(f ′(x)

g(x)
− f(x)g′(x)

g(x)2

)}

=
N2

2

{[
f(x)

g(x)
+ (x+ βa)

(f ′(x)

g(x)
− f(x)g′(x)

g(x)2

)]}

=
N2

2

1

g(x)2

[
f(x)g(x)− (x+ βa)(f(x)g′(x)− f ′(x)g(x))

]
. (9)

Let u := ex. From the formula of f and g, it is more convenient to express the right-hand side of

6
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(9) in terms of u. We have

f(x) = (1 + ex)
[
(1 + ex + . . .+ e(N−2)x)HN + e(N−1)x

N−1∑

j=1

e−jx/j
]

= (1 + u)
N−2∑

j=0

(HN +
1

N − 1− j )uj ,

f ′(x) = u
N−2∑

j=0

(HN +
1

N − 1− j )uj + (1 + u)
(
HN

N−2∑

j=0

jejx +
N−2∑

j=0

j

N − 1− j e
jx
)

=
N−2∑

j=0

(
HN +

1

N − 1− j
)
uj(j(1 + u) + u),

g(x) = 1 + ex + . . .+ e(N−1)x =
N−1∑

j=0

uj ,

g′(x) =
N−1∑

j=1

jejx =
N−1∑

j=1

juj .

Therefore

f(x)g′(x)− f ′(x)g(x)

= (1 + u)
(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj
)

−
(N−2∑

j=0

(
HN +

1

N − 1− j
)
uj(j(1 + u) + u)

)(N−1∑

j=0

uj
)

= (1 + u)u

[(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj−1
)
−
(N−2∑

j=1

(
HN +

1

N − 1− j
)
juj−1

)(N−1∑

j=0

uj
)]

− u
(N−2∑

j=0

(
HN +

1

N − 1− j
)
uj
)(N−1∑

j=0

uj
)

:= uP (u),

where

P (u) := (1 + u)

[(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj−1
)
−
(N−2∑

j=1

(
HN +

1

N − 1− j
)
juj−1

)(N−1∑

j=0

uj
)]

−
(N−2∑

j=0

(
HN +

1

N − 1− j
)
uj
)(N−1∑

j=0

uj
)
. (10)

We also have

f(x)g(x) = (1 + u)
(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=0

uj
)

:= Q(u).

Note that x + βa = βθ > 0 andf(x)g(x) > 0. It follows that if f(x)g′(x) − f ′(x)g(x) ≤ 0 then
E′r(θ) > 0. Consider the case f(x)g′(x)− f ′(x)g(x) > 0. Let u = ex and define

F (u) :=
Q(u)

uP (u)
− log(u). (11)

Then
2

N2
E′r(θ) =

1

β

1

g(x)2
(f(x)g′(x)− f ′(x)g(x))

(
F (u)− βa

)
.

7
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The next step is to understand the sign of the term F (u)− βa, which requires to understand the
polynomials P and Q. In the next section, we analyse the polynomial P (Q is explicit and much
simpler).

1.3 Concrete examples of small populations

Example 1.1. (N = 3). When N = 3, the total cost interference for the reward case is given by

Er(θ) =
9θ(1 + ex)

2(1 + ex + e2x)

[
(1 + ex)(1 + 1/2) + e2x(e−x + e−2x/2)

]

=
9θ

4

(
5 +

4ex − 1

1 + ex + e2x

)
.

Note that since x = β(θ − a), d
dθE(θ) = β d

dxE(x).

4

9
E′r(θ) =

1

β

(
5 +

4ex − 1

1 + ex + e2x

)
+ θ
( 4ex

1 + ex + e2x
− (4ex − 1)(ex + 2e2x)

(1 + ex + e2x)2

)

=
1

β

[(
5 +

4ex − 1

1 + ex + e2x

)
+ (x+ βa)

( 4ex

1 + ex + e2x
− (4ex − 1)(ex + 2e2x)

(1 + ex + e2x)2

)]

=
1

β(1 + u+ u2)2

[
(u+ 1)(u+ 4/5)(5u2 + 5u+ 5)− (x+ βa)u(4u2 − 2u− 5)

]
(12)

where a = c+ b
N−1 > 0. Note that x+ βa = βθ > 0.

(1) If x ≤ log
(

1+
√

21
4

)
, then 4u2 − 2u − 5 ≤ 0. It follows from (12) that E′(x) > 0 for all β.

Hence E is increasing for all β.

(2) If x > log
(

1+
√

21
4

)
, then 4u2 − 2u− 5 > 0. Consider the function

F (u) :=
(u+ 1)(5u+ 4)(u2 + u+ 1)

u(4u2 − 2u− 5)
− log(u) for u >

1 +
√

21

4
=: u0.

Then

EC ′(x) =
9

4

u(4u2 − 2u− 5)

β(1 + u+ u2)2

[
F (u)− (βa)

]
.

We have min
u>u0

F (u) = 10.9291 = f∗ at u∗ = 4.29712. Moreover, f(u) is decreasing when

u < u∗ and is increasing when u > u∗. The number of solutions of the equation F (u) = βa
and the sign of E′(x) depends on the value of βa.

(i) If βa < f∗, then F (u) = βa has no solution and E′(x) > 0. Hence E is increasing.

(ii) If βa = f∗, then F (u) = βa has a unique solution, and E′(x) ≥ 0 and E is non-decreasing.

(iii) If βa > f∗, then F (u) = βa has two solutions (1 +
√

21)/4 < u1 < u2.

E′r(θ)





> 0 u < u1,

< 0 u1 < u < u2,

> 0 u > u2.

Thus Er is increasing when u < u1, is decreasing when u1 < u < u2 and is increasing again
when u > u2.
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Algorithm for N = 3

1. Compute

δ =

{
−(c+ b

N−1 ) PD games,

−c
(

1− r(N−n)
n(N−1)

)
PGG games

(13)

2. Compute θ0 = 1
(N−1)β log

(
ω

1−ω

)
− δ;

3. Compute β∗ = − f∗

δ = − 10.9291
δ .

4. If β ≤ β∗ then
θ = θ0, minE(θ) = E(θ0).

5. If β > β∗

(a) Compute θ2 = log u2

β − δ where u2 is the largest zero of the equation F (u) + βδ = 0.

(b) If θ0 ≥ θ2: θ∗ = θ0, minE(θ) = E(θ0);

(c) if θ0 < θ2, compare E(θ0) and E(θ2): if E(θ0) ≤ E(θ2): θ∗ = θ0, minE(θ) = E(θ0); if
E(θ2) < E(θ0): θ∗ = θ2, minE(θ) = E(θ2).

Example 1.2. (N = 4) When N = 4, the total cost function is Er(θ) = 8θ f(x)
g(x) , where

f(x) = (1 + ex)
[11

6
(1 + ex + e2x) + e3x(e−x + e−2x/2 + e−3x/3)

]

= (1 + ex)(
13

6
+

14

6
ex +

17

6
e2x)

= (1 + u)
(

13/6 + 14/6u+ 17/6u2
)
,

g(x) = 1 + ex + e2x + e3x = 1 + u+ u2 + u3.

In this case,

F (u) =
1

2

(13 + 14u+ 17u2)(1 + u+ u2 + u3)

u(1 + u)(7u2 − 4u− 7)
− log(u)

Algorithm for N = 4

1. Compute

δ =

{
−(c+ b

N−1 ) PD games,

−c
(

1− r(N−n)
n(N−1)

)
PGG games

(14)

2. Compute θ0 = 1
(N−1)β log

(
ω

1−ω

)
− δ;

3. Compute u0 > 0 that solves 7u2 − 4u− 7 = 0; that is u0 = 3.4697;

4. Compute f∗ = min{F (u) : u > u0}, which gives f∗ = 6.64711;

5. Compute β∗ = − f∗

δ .

6. If β ≤ β∗ then
θ = θ0, minE(θ) = E(θ0).

7. If β > β∗

(a) Compute θ2 = log u2

β − δ where u2 is the largest zero of the equation F (u) + βδ = 0.

(b) if Er(θ0) ≤ Er(θ2): θ∗ = θ0, minEr(θ) = E(θ0);

(c) if Er(θ2) < Er(θ0): θ∗ = θ2, minEr(θ) = Er(θ2).
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1.4 The polynomial P

In this section, we will compute the coefficients of the polynomial P and study its positive roots.
To this end, we will need the following auxiliary lemma.

Lemma 1.4. It holds that

n∑

j=m

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j

= 4(n+ 1−m) + (k + 2−N)

N+n−k−2∑

j=N+m−k−2

1

j
+ (k −N + 1)

N+n−k−1∑

j=N+m−k−1

1

j
− 2(N − 1)

N−1−m∑

j=N−1−n

1

j
.

(15)

In particular, we have

k∑

j=1

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j

= 4k + (k + 2−N)

N−2∑

j=N−1−k

1

j
+ (k −N + 1)

N−1∑

j=N−k

1

j
− 2(N − 1)

N−2∑

j=N−1−k

1

j
. (16)

and

N−2∑

j=k−N+3

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j

= 4(2N − k − 4) + (k + 2−N)
2N−k−4∑

j=1

1

j
+ (k −N + 1)

2N−k−3∑

j=2

1

j
− 2(N − 1)

2N−4−k∑

j=1

1

j

= 4(2N − k − 4)− (4N − 2k − 5)

2N−k−4∑

j=1

1

j
+ (k −N + 1)

( 1

2N − k − 3
− 1
)
. (17)

Proof. By changing of variable j̄ := N + j − k − 2, we have

n∑

j=m

j

N + j − k − 2
=

N+n−k−2∑

j̄=N+m−k−2

k + 2−N + j̄

j̄

=
N+n−k−2∑

j̄=N+m−k−2

(
1 +

k + 2−N
j̄

)

= (n−m+ 1) + (k + 2−N)

N+n−k−2∑

j̄=N+m−k−2

1

j̄
.

Similarly we have

n∑

j=m

j

N + j − k − 1
=

N+n−k−1∑

j̄=N+m−k−1

k −N + 1 + j̄

j̄

=

N+n−k−1∑

j̄=N+m−k−1

(
1 +

k −N + 1

j̄

)

= (n−m+ 1) + (k −N + 1)
N+n−k−1∑

j̄=N+m−k−1

1

j̄
.
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and

n∑

j=m

j

N − 1− j =
N−1−m∑

j̄=N−1−n

N − 1− j̄
j̄

=
N−1−m∑

j̄=N−1−n

(N − 1

j̄
− 1
)

= (N − 1)
N−1−m∑

j̄=N−1−n

1

j̄
− (n+ 1−m).

Thus

n∑

j=m

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j

= 4(n+ 1−m) + (k + 2−N)
N+n−k−2∑

j=N+m−k−2

1

j

+ (k −N + 1)
N+n−k−1∑

j=N+m−k−1

1

j
− 2(N − 1)

N−1−m∑

j=N−1−n

1

j
.

The next lemma provides a sharp estimates for the harmonic number that will be used later.

Lemma 1.5. [Young, 1991] The harmonic number satisfies the followings estimates

log(n) + γ +
1

2n+ 1
≤

n∑

j=1

1

j
≤ log(n) + γ +

1

2n− 1
, (18)

where γ = 0.5772... is the Euler–Mascheroni constant.

In the next proposition we compute the coefficients of the polynomial P in terms of the har-
monic number. This proposition is the most technical result but is the key to the analysis of this
paper.

Proposition 1.6. Let P (u) be the polynomial defined in (10). Then its coefficients are given by
explicitly by

pk =





−(HN + 1
N−2 ) k = 0,

4(k + 1) + (2k + 4− 4N)
∑N−1
j=N−1−k

1
j − k+1

N−k−2 −HN (k + 1) 1 ≤ k ≤ N − 3,

4(N − 1)− 2NHN k = N − 2,

4N − 5− 1
N−1 −NHN k = N − 1,

8N − 4k − 9− (2N − k − 1)HN + (4N − 2k − 4)
∑N−1
j=2N−k−1

1
j − 1

2N−k−2 N ≤ k ≤ 2N − 5,

HN + 1
2 k = 2N − 4.

(19)
Furthermore, P has exactly one positive root which is bigger than 1.

Proof. The proof is rather technical and lengthy. To obtain the formula for pk we apply a general
formula for coefficients of a product of two polynomials and use Lemma 1.4. Then we apply
Decarte’s rule of signs to show that P has exactly one positive root.
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Let aj := HN + 1
N−1−j for j = 0, . . . , N − 2. Suppose that P (u) =

∑2N−4
j=0 pju

j . Using the
following formula of product of two polynomials:

( m∑

j=0

ajx
j
)( n∑

j=0

bjx
j
)

=
m+n∑

k=0

( min{m,k}∑

j=max{0,k−n}
ajbk−j

)
xk,

we have

(i)
(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj−1
)

=
(N−2∑

j=0

aju
j
)(N−2∑

j=1

(j + 1)uj
)

=

2N−4∑

k=0

( min(k,N−2)∑

j=max(k−N+2,0)

aj(k − j + 1)
)
uk

(ii)
(N−2∑

j=1

(
HN +

1

N − 1− j
)
juj−1

)(N−1∑

j=0

uj
)

=
(N−3∑

j=0

aj+1(j + 1)uj
)(N−1∑

j=0

uj
)

=

2N−4∑

k=0

( min(k,N−3)∑

j=max(0,k−N+1)

aj+1(j + 1)
)
uk.

(iii)
(N−2∑

j=0

(
HN +

1

N − 1− j
)
uj
)(N−1∑

j=0

uj
)

=
(N−2∑

j=0

aju
j
)(N−1∑

j=0

uj
)

=

2N−3∑

k=0

( min(N−2,k)∑

j=max(0,k−N+1)

aj

)
uk.

Hence

(iii)

[(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj−1
)
−
(N−2∑

j=1

(
HN +

1

N − 1− j
)
juj−1

)(N−1∑

j=0

uj
)]

(1 + u)

=

(
2N−4∑

k=0

( min(k,N−2)∑

j=max(k−N+2,0)

aj(k − j + 1)−
min(k,N−3)∑

j=max(0,k−N+1)

aj+1(j + 1)
)
uk

)
(1 + u)

=
( 2N−4∑

k=0

bku
k
)

(1 + u)

=

2N−3∑

k=0

( min(k,2N−4)∑

j=max(0,k−1)

bj

)
uk

= b0 +
2N−4∑

k=1

(bk−1 + bk)uk + b2N−4u
2N−3
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where for k = 0, . . . , 2N − 4

bk :=

min(k,N−2)∑

j=max(k−N+2,0)

aj(k − j + 1)−
min(k,N−3)∑

j=max(0,k−N+1)

aj+1(j + 1) (20)

=

min(k+1,N−1)∑

j=max(k−N+3,1)

ak−j+1j −
min(k+1,N−2)∑

j=max(1,k−N+2)

ajj

=





∑k+1
j=1 (ak−j+1 − aj)j k ≤ N − 3,∑N−1
j=1 ak−j+1j −

∑N−2
j=1 ajj k = N − 2,∑N−1

j=k−N+3 ak−j+1j −
∑N−2
j=k−N+2 ajj N − 1 ≤ k ≤ 2N − 4.

=





∑k+1
j=1 (ak−j+1 − aj)j k ≤ N − 3,∑N−2
j=1 (ak−j+1 − aj)j +HN (N − 1) + 1 k = N − 2,∑N−2
j=k−N+3(ak−j+1 − aj)j + ak−N+2(2N − 3− k) N − 1 ≤ k ≤ 2N − 5,

aN−2 k = 2N − 4.

Therefore, we obtain

P (u) =

2N−3∑

k=0

( min(k,2N−4)∑

j=max(0,k−1)

bj −
min(N−2,k)∑

j=max(0,k−N+1)

aj

)
uk,

that is for k = 0, . . . , 2N − 3

pk =

min(k,2N−4)∑

j=max(0,k−1)

bj −
min(N−2,k)∑

j=max(0,k−N+1)

aj (21)

=





b0 − a0 k = 0,

bk−1 + bk −
∑k
j=0 aj 1 ≤ k ≤ N − 2,

bk−1 + bk −
∑N−2
j=k−N+1 aj N − 1 ≤ k ≤ 2N − 4,

b2N−4 − aN−2 k = 2N − 3.

(22)

In particular, the coefficient of u2N−3 in P (u) is

p2N−3 = b2N−4 − aN−2 =
(
aN−2(N − 1)− aN−2(N − 2)

)
− aN−2 = 0, (23)

thus P (u) is a polynomial of degree 2N − 4.

p0 = b0 − a0 = (a0 − a1)− a0 = −a1 < 0.

For 1 ≤ k ≤ N − 3:

bk−1 + bk =
k∑

j=1

(ak−j − aj)j +
k+1∑

j=1

(ak−j+1 − aj)j

=
k∑

j=1

(ak−j − 2aj + ak−j+1)j + (a0 − ak+1)(k + 1)

=

k∑

j=1

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j + (

1

N − 1
− 1

N − k − 2
)(k + 1)
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Therefore,

pk = bk−1 + bk −
k∑

j=0

aj

=
k∑

j=1

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j + (

1

N − 1
− 1

N − k − 2
)(k + 1)

−HN (k + 1)−
k∑

j=0

1

N − 1− j

=
k∑

j=1

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j −HN (k + 1)−

k∑

j=0

1

N − 1− j

− (k + 1)2

(N − 1)(N − k − 2)

= 4k + (k + 2−N)
N−2∑

j=N−1−k

1

j
+ (k −N + 1)

N−1∑

j=N−k

1

j
− 2(N − 1)

N−2∑

j=N−1−k

1

j

−HN (k + 1)−
k∑

j=0

1

N − 1− j + (
1

N − 1
− 1

N − k − 2
)(k + 1)

= 4(k + 1) + (2k + 4− 4N)

N−1∑

j=N−1−k

1

j
− k + 1

N − k − 2
−HN (k + 1).

For k = N − 2

bk−1 + bk = bN−3 + bN−2

=

N−2∑

j=1

(ak−j − aj)j +

N−2∑

j=1

(ak−j+1 − aj)j +HN (N − 1) + 1

=

N−2∑

j=1

(ak−j − 2aj + ak−j+1)j +HN (N − 1) + 1

=

N−2∑

j=1

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j + 1 +HN (N − 1)

=

N−2∑

j=1

(1

j
+

1

1 + j
− 2

N − 1− j
)
j + 1 +HN (N − 1)

= (N − 2) +

N−2∑

j=1

(1− 1

1 + j
)− 2

N−2∑

j=1

j

N − 1− j +HN (N − 1) + 1

= 2(N − 2)− (HN − 1)− 2[(N − 1)HN − (N − 1)] +HN (N − 1) + 1

= 4(N − 1)−NHN ,

where we have used the relation

N−2∑

j=1

j

N − 1− j =
N−2∑

j=1

N − 1− j
j

= (N − 1)
N−2∑

j=1

1

j
− (N − 2) = (N − 1)(HN −

1

N − 1
)− (N − 2)

= (N − 1)(HN − 1). (24)
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We also have

N−2∑

j=0

aj = (N − 1)HN +
N−2∑

j=0

1

N − 1− j = NHN .

Thus

pN−2 = bN−3 + bN−2 −
N−2∑

j=0

aj

= 4(N − 1)− 2NHN < 0,

where the last inequality follows from the fact that

HN =

N−1∑

j=1

1

j
> 1 +

N − 2

N
=

2(N − 1)

N
. (25)

For k = N − 1:

bk−1 + bk = bN−2 + bN−1

=
N−2∑

j=1

(aN−1−j − aj)j +HN (N − 1) + 1 +
N−2∑

j=2

(aN−j − aj)j + a1(N − 2)

=
N−2∑

j=2

(1

j
+

1

j − 1
− 2

N − 1− j
)
j + (1− 1

N − 2
) +HN (2N − 3) + 2

=
(
N − 3 +

N−3∑

j=1

j + 1

j

)
− 2

N−2∑

j=2

j

N − 1− j +HN (2N − 3) + 3− 1

N − 2

= 2(N − 3) +
(
HN −

1

N − 2
− 1

N − 1

)
− 2
(

(N − 1)(HN − 1)− 1

N − 2

)
+ (2N − 3)HN + 3− 1

N − 2

= 4N − 5− 1

N − 1

Thus

pN−1 = bN−2 + bN−1 −
N−2∑

k=0

aj

= 4N − 5− 1

N − 1
−NHN
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For N ≤ k ≤ 2N − 5:

bk−1 + bk =
N−2∑

j=k−N+2

(ak−j − aj)j + ak−N+1(2N − 2− k) +
N−2∑

j=k−N+3

(ak−j+1 − aj)j + ak−N+2(2N − 3− k)

=

N−2∑

j=k−N+3

(ak−j+1 − 2aj + ak−j)j + (aN−2 − ak−N+2)(k −N + 2)

+ ak−N+1(2N − 2− k) + ak−N+2(2N − 3− k)

=
N−2∑

j=k−N+3

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j + (HN + 1)(k −N + 2)

+ (HN + 1/(2N − k − 2))(2N − k − 2) + (3N − 2k − 5)(HN + 1/(2N − k − 3))

=

N−2∑

j=k−N+3

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j

+ (4N − 2k − 5)HN + k −N + 3 +
3N − 2k − 5

2N − k − 3
.

We also have

N−2∑

j=k−N+1

aj = (2N − k − 2)HN +
N−2∑

j=k−N+1

1

N − 1− j

= (2N − k − 2)HN +

2N−k−2∑

j=1

1

j
.
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Thus using Lemma 1.4 we obtain

pk = bk−1 + bk −
N−2∑

j=k−N+1

aj

=

N−2∑

j=k−N+3

( 1

N + j − k − 2
+

1

N + j − k − 1
− 2

N − 1− j
)
j + (4N − 2k − 5)HN

+ k −N + 3 +
3N − 2k − 5

2N − k − 3
− (2N − k − 2)HN −

2N−k−2∑

j=1

1

j

=
N−2∑

j=k−N+3

( 1

N + j − k − 2
+

1

N + j − k −
2

N − 1− j
)
j + (2N − k − 3)HN

+ k −N + 3 +
3N − 2k − 5

2N − k − 3
−

2N−k−2∑

j=1

1

j

= 4(2N − k − 4)− (4N − 2k − 5)

2N−k−4∑

j=1

1

j
+ (k −N + 1)

( 1

2N − k − 3
− 1
)

+ (2N − k − 3)HN + k −N + 3 +
3N − 2k − 5

2N − k − 3
−

2N−k−2∑

j=1

1

j

= 8N − 4k − 13 + (2N − k − 3)HN − (4N − 2k − 4)
2N−k−4∑

j=1

1

j

− 2

2N − k − 3
− 1

2N − k − 2

= 8N − 4k − 9− (2N − k − 1)HN + (4N − 2k − 4)

N−1∑

j=2N−k−1

1

j
− 1

2N − k − 2

In particular, for k = N

pN = 4N − 9− (N − 1)HN + (2N − 4)
1

N − 1
− 1

N − 2
.

Finally, for k = 2N − 4

p2N−4 = b2N−5 + b2N−4 − (aN−3 + aN−2) = 2aN−3 + aN−2 − (aN−3 + aN−2) = aN−3 = HN +
1

2
.

In conclusion, we obtain

pk =





−(HN + 1
N−2 ) k = 0,

4(k + 1) + (2k + 4− 4N)
∑N−1
j=N−1−k

1
j − k+1

N−k−2 −HN (k + 1) 1 ≤ k ≤ N − 3,

4(N − 1)− 2NHN k = N − 2,

4N − 5− 1
N−1 −NHN k = N − 1,

8N − 4k − 9− (2N − k − 1)HN + (4N − 2k − 4)
∑N−1
j=2N−k−1

1
j − 1

2N−k−2 N ≤ k ≤ 2N − 5,

HN + 1
2 k = 2N − 4.

(26)
Now we prove that there is only one change of signs in the sequence {pk, 0 ≤ k ≤ 2N − 4}.

Consider first 1 ≤ k ≤ N − 3. Since

N−1∑

j=N−1−k

1

j
≥ k + 1

N − 1
,
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we have,

pk ≤ 4(k + 1)− (4N − 2k − 4)
k + 1

N − 1
− k + 1

N − k − 2
−HN (k + 1)

≤ (k + 1)
(

4− 4N − 2k − 4

N − 1
− 1

N − k − 2
−HN

)

= (k + 1)
( 2k

N − 1
−HN −

1

N − k − 2

)
< 0,

where to obtain the last inequality we have used (25) so that

HN ≥
2(N − 1)

N
>

2(N − 3)

N − 1
≥ 2k

N − 1
.

Thus pk < 0 for all 0 ≤ k ≤ N − 3. Next we consider pm = with N ≤ m ≤ 2N − 5. It will be
more convenient to set m = 2N − 4− k and consider instead p2N−4−k. We have

p2N−4−k = 8N − 4(2N − 4− k)− 9− (2N − (2N − 4− k)− 1)HN

+ (4N − 2(2N − 4− k)− 4)
N−1∑

j=k+3

1

j
− 1

k + 2
.

= 4k + 7− (k + 3)HN + (2k + 4)
N−1∑

j=k+3

1

j
− 1

k + 2

= 4k + 7− (k + 3)HN + (2k + 4)(HN −Hk+3)− 1

k + 2

= 4k + 7 + (k + 1)HN − (2k + 4)Hk+3 −
1

k + 2
.

By lemma 1.5

log(k + 2) + γ +
1

2(k + 2) + 1
≤ Hk+3 =

k+2∑

j=1

1

j
≤ log(k + 2) + γ +

1

2(k + 2)− 1
,

we have

4k + 7 + (k + 1)HN − (2k + 4)(log(k + 2) + γ +
1

2k + 3
)− 1

k + 2
≤ p2N−k−4

≤ 4k + 7 + (k + 1)HN − (2k + 4)(log(k + 2) + γ +
1

2k + 5
)− 1

k + 2
(27)

Consider the equation

4x+ 7 + (x+ 1)HN − 2(x+ 2)(log(x+ 2) + γ +
1

2x+ 5
)− 1

x+ 2
= 0 for x ≥ 0, (28)

which is equivalent to

h(x) := 2 log(x+ 2) +
1

x+ 2
+

HN

x+ 2
+

1

(x+ 2)2
+

2

2x+ 5
= 4 +HN − 2γ.

We have

h′(x) =
8x4 + (64− 4HN )x3 + (182− 28HN )x2 + (207− 65HN )x+ (68− 50HN )

(x+ 2)3(2x+ 5)2
.

Let r(x) := 8x4 +(64−4HN )x3 +(182−28HN )x2 +(207−65HN )x+(68−50HN ) := r4x
4 +r3x

3 +
r2x

2+r1x+r0, where r4 := 8, r3 = 64−4HN , r2 := 182−28HN , r1 = 207−65HN , r0 := 68−50HN ,
be the enumerator of h′(x). Since N ≥ 2, HN ≥ 1.5, it follows that r0 < 0. There is only one
change of signs in the coefficients of r(x) since:
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(i) if HN ≤ 207/65 then r0 < 0 < r1, r2, r3, r4,

(ii) if 207/65 < HN < 182/28, then r0, r1 < 0 while r2, r3, r4 > 0,

(iii) if 182/28 < HN ≤ 16, then r0, r1, r2 < 0 while r3, r4 > 0,

(iv) 16 < HN then r0, r1, r2, r3 < 0, while r4 > 0.

Thus, by Decarte’s rule of signs, r(x) has a unique positive solution x0 > 0. It follows that
h′(x) < 0 when x < x0 and h′(x) > 0 when x > x0. Hence h(x) is decreasing when x < x0,
increasing when x > x0 and attains a global minimum at x = x0. Since f(0) = 2 log(2) + 1/2 +
HN/2+1/4+2/5 < 4+HN−2γ, Equation (28) has a unique solution x∗ > x0. If k ≥ x∗ > x0 then,
since h(x) is increasing for x > x0, 4+HN −2γ ≤ h(k) = 2 log(k+2)+ 1

k+2 + HN

k+2 + 1
(k+2)2 + 2

2k+5 ,

that is

4k + 7 + (k + 1)HN − (2k + 4)(log(k + 2) + γ +
1

2k + 5
)− 1

k + 2
≤ 0.

Hence if k > x∗ then

p2N−4−k < 4k + 7 + (k + 1)HN − (2k + 4)(log(k + 2) + γ +
1

2k + 5
)− 1

k + 2
< 0.

Similarly, let

ḡ(x) := 2 log(x+ 2) +
1

x+ 2
+

HN

x+ 2
+

1

(x+ 2)2
+

2

2x+ 3
,

and consider the equation

ḡ(x) = 4 +HN − 2γ. (29)

ḡ′(x) = 0 has a unique positive solution; ḡ(x) is decreasing when x < x1, increasing when x > x1

and attains a global minimum at x = x1; equation (29) has a unique solution x̂.
If k ≤ x̂ then h(k) ≤ 4 +HN − 2γ, that is

4k + 7 + (k + 1)HN − (2k + 4)(log(k + 2) + γ +
1

2k + 5
)− 1

k + 2
≥ 0.

Hence if k ≤ x̂ then p2N−k−4 > 0. Since

ḡ(x̂) = h(x∗) < ḡ(x∗)

and ḡ is increasing in (x1,∞), we have x̂ < x∗. We now prove that they are closed together.

ḡ(x∗)− h(x∗) = ḡ(x∗)− ḡ(x̂) + ḡ(x̂)− h(x∗) = ḡ(x∗)− ḡ(x̂).

Hence

4

(2x∗ + 3)(2x∗ + 5)
= 2(log(x∗ + 2)− log(x̂+ 2)) + (HN + 1)

( 1

x∗ + 2
− 1

x̂+ 2

)

+
( 1

(x∗ + 2)2
− 1

(x̂+ 2)2

)
+
( 2

2x∗ + 3
− 2

2x̂+ 3

)

= (x∗ − x̂)
( 2

ξ + 2
− HN + 1

(x∗ + 2)(x̂+ 2)
− 1

(x̂+ 2)2(x∗ + 2)
− 1

(x̂+ 2)(x∗ + 2)2

− 4

(2x∗ + 3)(2x̂+ 3)

)
, (30)

where x̂ < ξ < x∗. Since

ḡ(HN − 1) = 2 log(HN + 1) + 1 +
1

HN + 1
+

2

2HN + 1
< 4 +HN − 2γ = ḡ(x̂),
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we have m := HN − 1 < x̂ < x∗. For N ≥ 5, we have x∗ > x̂ > m ≥ 77
60 . Hence

HN + 1

(x̂+ 2)(x∗ + 2)
+

1

(x̂+ 2)2(x∗ + 2)
+

1

(x̂+ 2)(x∗ + 2)2
+

4

(2x∗ + 3)(2x̂+ 3)

<
1

x∗ + 2
+

1

(m+ 2)2(x∗ + 2)
+

1

(m+ 2)2(x∗ + 2)
+

4

(2m+ 3)(2x∗ + 3)
.

It follows that

2

ξ + 2
− HN + 1

(x∗ + 2)(x̂+ 2)
− 1

(x̂+ 2)2(x∗ + 2)
− 1

(x̂+ 2)(x∗ + 2)2
− 4

(2x∗ + 3)(2x̂+ 3)

>
2

x∗ + 2
−
( 1

x∗ + 2
+

1

(m+ 2)2(x∗ + 2)
+

1

(m+ 2)2(x∗ + 2)
+

4

(2m+ 3)(2x∗ + 3)

)

=
(4m3 + 18m2 + 16m− 4)x∗ + (6m3 + 25m2 + 16m− 14)

(m+ 2)2(2m+ 3)(x∗ + 2)(2x∗ + 3)
. (31)

From (30) and (31) we deduce

0 < (x∗ − x̂) <
4(m+ 2)2(2m+ 3)(x∗ + 2)

(2x∗ + 5)(4m3 + 18m2 + 16m− 4)x∗ + (6m3 + 25m2 + 16m− 14)

<
2(m+ 2)2(2m+ 3)

(4m3 + 18m2 + 16m− 4)x∗ + (6m3 + 25m2 + 16m− 14)

<
2(m+ 2)2(2m+ 3)

(4m3 + 18m2 + 16m− 4)m+ (6m3 + 25m2 + 16m− 14)

< 1,

where the last inequality is because m > 1.28.
Let k0 be the position of change of signs in the coefficients {pk, 0 ≤ k ≤ 2N−4}, that is pk < 0

for 0 ≤ k ≤ k0 and pk > 0 for k0 + 1 ≤ k ≤ 2N − 4. Since pN > 0 for N ≥ 27, we have

k0 =





N − 2 N ≤ 25,

N − 1 N ∈ {26, 27},
2N − 4− b2N − x∗ − 4c N ≥ 27.

(32)

Since there is only one change of signs in the sequence of coefficients of P , by Decarte’s rule of
signs, P has a unique positive root. This root is bigger than 1 since we have

P (1) = 2
[(N−2∑

j=0

(HN +
1

N − 1− j )
)

(
N−1∑

j=1

j)−N
N−2∑

j=1

(
HN +

1

N − 1− j
)
j
]

−N
N−2∑

j=0

(
HN +

1

N − 1− j
)

=
[
(N − 1)N

(
(N − 1)HN +

N−2∑

j=0

1

N − 1− j
)
−N

(
(N − 2)(N − 1)HN + 2

N−2∑

j=1

N − 1− j
j

)]

−N
(

(N − 1)HN +
N−2∑

j=0

1

N − 1− j
)

=
[
(N − 1)N2HN −N((N − 2)(N − 1)HN + 2(N − 1)HN − 2− 2(N − 2))

]
−N2HN

= 2N(N − 1)−N2HN < 0

where the first inequality follows from (25).
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1.5 The function F

Next we study the function F defined in (11). We will need the following lemma, which establishes
a relation between the polynomials P and Q.

Lemma 1.7. For u > 0, we have

Q(u) ≥ (1 + u)uP (u). (33)

As a consequence, for β ≤ 1
a we have d

dθEr(θ) ≥ 0.

Proof. The statement (33) is equivalent to

N−2∑

j=0

(
HN +

1

N − 1− j
)
uj
)(N−1∑

j=0

uj
)

=

2N−3∑

k=0

( min(N−2,k)∑

j=max(0,k−N+1)

aj

)
uk ≥ uP (u), (34)

which we now prove. Let

hk :=

min(N−2,k)∑

j=max(0,k−N+1)

aj =

{∑k
j=0 aj 0 ≤ k ≤ N − 2,∑N−2
j=k−N+1 aj N − 1 ≤ k ≤ 2N − 3

=

{
(k + 1)HN +

∑N−2
j=N−1−k

1
j 0 ≤ k ≤ N − 2,

(2N − k − 2)HN +
∑2N−k−2
j=1

1
j N − 1 ≤ k ≤ 2N − 3

Now we show that hk+1 ≥ pk for all k = 0, . . . , 2N − 4.
For k = 0: h1 > 0 > p0.
For 1 ≤ k ≤ N − 3, we have

hk+1 = (k+2)HN+
N−2∑

j=N−k−2

1

j
, pk = 4(k+1)+(2k+4−4N)

N−1∑

j=N−1−k

1

j
− k + 1

N − k − 2
−HN (k+1).

Since HN ≥ 2 (N ≥ 4), (2k + 3)HN ≥ 4(k + 1). It follows that hk+1 ≥ pk.
For k = N − 2

hN−1 = (N − 1)HN +
N−1∑

j=1

1

j
= NHN > 4(N − 1)− 2NHN

since according to (25), 3NHN > 6(N − 1) > 4(N − 1).
For k = N − 1,

hN = (N − 2)HN +
N−2∑

j=1

1

j
= (N − 1)HN −

1

N − 1
> 4N − 5− 1

N − 1
−NHN = pN−1

since HN ≥ 2 (N ≥ 4), (2N − 1)HN ≥ 4N − 2 > 4N − 5.
For N ≤ k ≤ 2N − 5. We have

hk+1 = (2N − k − 3)HN +
2N−k−3∑

j=1

1

j
,

pk = 8N − 4k − 9− (2N − k − 1)HN + (4N − 2k − 4)
N−1∑

j=2N−k−1

1

j
− 1

2N − k − 2

= 8N − 4k − 9− (2N − k − 1)HN + (4N − 2k − 4)[HN −H2N−k−1]− 1

2N − k − 2
.
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Thus, we obtain
hk+1 − pk = (4N − 2k − 3)H2N−k−1 − (8N − 4k − 9).

Since 2N − k − 1 ≥ 4, we have H2N−k−1 ≥ 2, thus

hk+1 − pk ≥ 2(4N − 2k − 3)− (8N − 4k − 9) = 3 > 0,

i.e., hk+1 > pk for all N ≤ k ≤ 2N − 5
Finally for k = 2N − 4, we have

h2N−3 = HN + 1 > HN +
1

2
= p2N−4.

In conclusion, we have proved that hk+1 > pk for all k = 0, . . . , 2N − 4.
As a consequence, if βa ≤ 2, then

0 < x+ βa ≤ x+ 2 ≤ ex + 1 = 1 + u,

thus

(x+ βa)(f(x)g′(x)− f ′(x)g(x)) = (x+ βa)uP (u) ≤ (1 + u)uP (u) ≤ Q(u) = f(x)g(x),

which implies that E′(x) ≥ 0. This completes the proof of the lemma.

Let u0 > 1 be the unique positive root of P obtained in Proposition 1.6. Then

{u ∈ R : P (u) > 0} = {u > u0}.

Lemma 1.7 provides an upper bound β̄ of β such that E(θ) ≥ 0 for all β ≤ β̄. To obtain the
optimal bound we need to study the minimization problem

min{F (u) | u > u0}.

Proposition 1.8. F has a global minimizer on (u0,+∞). Furthermore, for N ≤ N0 = 100, F
has a unique minimizer u∗ and F is decreasing when u0 < u < u∗ and is increasing when u > u∗.

Proof. It follows from Lemma 1.7 that F is bounded below on (u0,+∞). Further more, it is
continuous and coercive in this interval since

lim
u→(u0)+

F (u) = lim
u→+∞

F (u) = +∞.

Therefore F has a global minimizer on (u0,+∞). We have

F ′(u) =
uQ′(u)P (u)−Q(u)(P (u) + uP ′(u))

u2P (u)2
− 1

u
=:

M(u)

u2P (u)2
,

where
M(u) := uQ′(u)P (u)−Q(u)(P (u) + uP ′(u))− uP (u)2. (35)

Then M is a polynomial of degree 4N − 6. The leading coefficient m4N−6 of M is

m4N−6 = q2N−2p2N−4 > 0.

The sign of F ′ is the same as that of M . Thus the number of changes of signs of F ′ is equal to
the number of positive roots of M . Since Q(0) > 0 while P (0) < 0, we have

M(0) = −Q(0)P (0) > 0

In addition, since P is a polynomial whose coefficient of the highest degree is positive and u0 is
the unique positive root of P , it follows that P ′(u0) > 0. Hence

M(u0) = −u0Q(u0)P ′(u0) < 0.
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Since limu→+∞M(u) = +∞, M has at least two positive roots, one is belong to (0, u0) and one
is in (u0,+∞). To determine the number of positive roots of M we can use Sturm’s theorem. To
this end, we construct the Sturm sequence of M as follows

M0 = M,

M1 = M ′,

Mi+1 = −rem(Mi−1,Mi),

for i ≥ 1, where M ′ is the derivative of M and rem(Mi−1,Mi) is the remainder of the Euclidean
division of Mi−1 by Mi. The number of changes of signs at ξ of the Sturm sequence of M , denoted
by s(ξ), is the number of sign changes, by ignoring zeros, in the sequence of real numbers

M0(ξ),M1(ξ), . . .

According to Sturm theorem, the number of distinct positive real roots of M is s(0) − s(+∞),
where the sign at +∞ of a polynomial is the sign of its leading coefficient. Sturm’ algorithm
is rather analytically intricate but is easily implemented using mathematical softwares such as
Mathematica.
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Figure 4: Numerical results showing there are always two changes of sign in the se-
quence of coefficients of M, for N up to 100. We show the positions at which the changes
of signs occur, for reward (top row) and punishment (bottom row).

We conjecture that M actually has exactly two roots. One possible way to prove this conjecture
is to show that there are two changes of signs in the sequence of coefficients of M . This is because
if there are two changes of signs in the sequence of coefficients of M then M has either 2 or none
positive roots according to Descartes’ rule of signs, which follows that M has exactly 2 positive
roots since we already proved above that M has at least two positive roots. However, finding
the signs of coefficients of M is analytically challenging since formulas for the coefficients of M is
extremely intricate. By direct computations (using Mathematica) we verify that this conjecture
is true for N ≤ N0 = 100. As a consequence, for N ≤ N0, F ′ has only one zero, denoted by u∗,
on (u0,+∞). Then u∗ is the unique minimizer of F on (u0,+∞). Furthermore, F is decreasing
on (u0, u∗) and is increasing on (u∗,+∞).
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1.6 Finite population estimates

In this section, we establish the finite population estimates for Er(θ). To this end, we need the
following auxiliary lemma.

Lemma 1.9. For all x ∈ R, we have

0 ≤ ex + . . .+ e(N−2)x

1 + ex + . . .+ e(N−1)x
≤ N − 2

N
. (36)

Proof. Let u = ex and z(u) := u+...+uN−2

1+u+...+uN−1 . Then

z(u) =

{
N−2
N u = 1,
uN−1−u
uN−1

u 6= 1.

For u 6= 1, we have

z′(u) =
(N − 1)uN − u2N−2 − (N − 1)uN−2 + 1

(uN − 1)2
.

To find the roots of f ′(u) we need to factorize the enumerator in the above expression.

(N − 1)uN − u2N−2 − (N − 1)uN−2 + 1

= (1− u2N−2)− (N − 1)uN−2(1− u)

= (1− u)(1 + u+ . . .+ u2N−3 − (N − 1)uN−2 − (N − 1)uN−1)

= (1− u)
[
(1− uN−2) + u(1− uN−3) + . . .+ uN−3(1− u)− uN−1(1− u)

− uN−1(1− u2)− . . .− uN−1(1− uN−2)
]

= (1− u)
[
(1− u)(uN−3 − uN−1) + (1− u2)(uN−4 − uN−1) + . . .+ (1− uN−2)(1− uN−1)

]

= (1− u)
[
(1− u)uN−3(1− u2) + (1− u2)uN−4(1− u3) + . . .+ (1− uN−2)(1− uN−1)

]

= (1− u)3
[
uN−3(1 + u) + uN−4(1 + u)(1 + u+ u2) + . . .+ (1 + u+ . . .+ uN−3)(1 + u+ . . .+ uN−2)

]
.

It follows that z′(u) > 0 in (0, 1) and z′(u) < 0 in (1,+∞). Hence max z(u) = f(1) = N−2
N . In

addition, we have
z(0) = 0 = lim

u→+∞
f(u).

Thus 0 ≤ z(u) ≤ N−2
N for all u > 0, which is the required statement.

Lemma 1.10. It holds that

N2θ

2

(
HN +

1

N − 1

)
≤ Er(θ) ≤ N(N − 1)θ

(
HN + 1

)
. (37)

Proof. We have

(1 + ex)(1 + ex + . . .+ e(N−2)x)

1 + ex + . . .+ e(N−1)x
= 1 +

ex + . . .+ e(N−2)x

1 + ex + . . .+ e(N−1)x
.

Using Lemma 1.9, we get

1 ≤ (1 + ex)(1 + ex + . . .+ e(N−2)x)

1 + ex + . . .+ e(N−1)x
≤ 2(N − 1)

N
.

Since

1

N − 1

N−2∑

j=0

ejx ≤ e(N−1)x
N−1∑

j=1

e−jx

j
=
N−2∑

j=0

ejx

N − 1− j ≤
N−2∑

j=0

ejx.
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we obtain the following estimates

1

N − 1
≤ 1

N − 1

(1 + ex)(1 + ex + . . .+ e(N−2)x)

1 + ex + . . .+ e(N−1)x
≤ (1 + ex)

1 + ex + . . .+ e(N−1)x
e(N−1)x

N−1∑

j=1

e−jx

j

≤ (1 + ex)(1 + ex + . . .+ e(N−2)x)

1 + ex + . . .+ e(N−1)x
≤ 2(N − 1)

N
.

Thus for θ > 0 we have

N2θ

2

(N−1∑

j=1

1

j
+

1

N − 1

)
≤ Er(θ) ≤

N2θ

2

2(N − 1)

N

(N−1∑

j=1

1

j
+ 1
)

= N(N − 1)θ
(N−1∑

j=1

1

j
+ 1
)
.

As a consequence, since E is smooth as a function of θ, by the extreme value theorem, it attains
a minimum in any bounded interval [θ0, θ1] where θ0 ≥ 0.

1.7 Asymptotic limits

In this section, we will establish the asymptotic limits of Er(θ) as N → +∞, β → 0 and β → +∞
where N is the population size and β is the selection intensity.

Proposition 1.11 (Infinite population limit). We have

lim
N→+∞

Er(θ)
N2θ

2 (lnN + γ)
=

{
1 + e−β|θ−c| for DG,

1 + e−β|θ−c|eβc
r
n for PGG.

(38)

Proof.

N2θ

2

(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(N−1∑

j=1

1

j
+

1

N − 1

)
≤ Er(θ)

≤ N2θ

2

(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(N−1∑

j=1

1

j
+ 1
)

Hence

(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(∑N−1
j=1

1
j + 1

N−1

)

lnN + γ
≤ Er(θ)

N2θ
2 (lnN + γ)

≤ (1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(∑N−1
j=1

1
j + 1

)

lnN + γ
(39)

We recall that x = β(θ + δ), where

δ = δ(N) =

{
−(c+ b

N−1 ) for DG,

−c(1− r(N−n)
n(N−1) ) for PGG.

Let

w(θ) :=
(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x
.

Then we have

w(θ) = 1 +
ex + . . . e(N−2)x

1 + . . .+ e(N−1)x
=

{
2(N−1)
N if x = 0,

1 + ex 1−e(N−3)x

1−e(N−1)x if x 6= 0.
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Since for fixed θ, x equals to 0 for only one value of N , we can consider x 6= 0 when we study
the limit N → +∞. We have

lim
N→+∞

ex = lim
N→+∞

eβ(θ+δ(N)) =

{
eβ(θ−c) for DG,

eβ(θ−c(1− r
n )) for PGG.

For DG:

lim
N→+∞

1− e(N−3)x

1− e(N−1)x
= lim
N→+∞

1− e−βb(N−3)/(N−1)eβ(θ−c)(N−3)

1− e−βbeβ(θ−c)(N−1)
=

{
1 if θ ≤ c,
e−2β(θ−c) if θ > c.

For PGG:

lim
N→+∞

1− e(N−3)x

1− e(N−1)x
= lim
N→+∞

1− e(N−3)βcr
(N−n)
n(N−1) eβ(θ−c)(N−3)

1− eβcr (N−n)
n eβ(θ−c)(N−1)

=

{
1 if θ ≤ c,
e−2(θ−c) if θ > c.

It follows that for DG

lim
N→+∞

w(θ) =

{
1 + eβ(θ−c) if θ ≤ c,
1 + e−β(θ−c) if θ > c

= 1 + e−β|θ−c|. (40)

and for PGG

lim
N→+∞

w(θ) =

{
1 + eβ(θ−c)eβc

r
n if θ ≤ c,

1 + e−β(θ−c)eβc
r
n if θ > c

= 1 + e−β|θ−c|eβc
r
n . (41)

From Lemma 1.5, we deduce that

lim
N→+∞

(∑N−1
j=1

1
j + 1

N−1

)

lnN + γ
= lim
N→+∞

(∑N−1
j=1

1
j + 1

)

lnN + γ
= 1 (42)

From (39), (40), (41) and (42) we obtain, for DG

lim
N→+∞

Er(θ)
N2θ

2 (lnN + γ)
= 1 + e−β|θ−c|.

and for PGG

lim
N→+∞

Er(θ)
N2θ

2 (lnN + γ)
= 1 + e−β|θ−c|eβc

r
n .

Proposition 1.12. We have

(i) (weak selection limit)

lim
β→0

Er(θ) = N2
(N−1∑

j=1

1

j

)
θ. (43)

(ii) (large selection limit)

lim
β→+∞

Er(θ) =





N2

2 θ
(

1
N−1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2

2 θ
(

1 +HN ) for θ > −δ.
(44)
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Proof. The total expected cost for institutional reward can be rewritten as

Er(θ) =
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+
N−1∑

j=1

e(N−1−j)x

j

]

=
N2θ

2

N−1∑
j=0

ηje
jx

N−1∑
j=0

ejx
,

where

η0 :=
1

N − 1
+HN , ηj :=

1

N − j − 1
+ 2HN +

1

N − j , j = 1, . . . , N − 2 and ηN−1 = 1 +HN .

We recall that x = β(θ+ δ). Since β → 0 implies x→ 0, it follows from the formula of Er(θ) that

lim
β→0

Er(θ) = N2
(N−1∑

j=1

1

j

)
θ.

Now we consider the limit β → +∞. If θ = −δ, then x = 0. Hence we also have

lim
β→+∞

Er(θ) = N2θ

∑N−1
j=0 ηj

N
= N2θHN .

If θ > −δ, then limβ→+∞
(
e−j(θ+δ)

)β
= 0 for all 1 ≤ j ≤ N − 2. Hence

lim
β→+∞

Er(θ) =
N2θ

2
lim

β→+∞

∑N−1
j=0 ηj

(
ej(θ+δ)

)β
∑N−1
j=0

(
ej(θ+δ)

)β

=
N2θ

2
lim

β→+∞

∑N−1
j=0 ηj

(
e(j−N+1)(θ+δ)

)β
∑N−1
j=0

(
e(j−N+1)(θ+δ)

)β

=
N2θ

2

ηN−1

1
=
N2θ

2
(1 +HN ).

If θ < −δ, then limβ→+∞
(
ej(θ+δ)

)β
= 0 for all j = 1, . . . , N − 1. Hence

lim
β→+∞

Er(θ) =
N2θ

2
lim

β→+∞

∑N−1
j=0 ηj

(
ej(θ+δ)

)β
∑N−1
j=0

(
ej(θ+δ)

)β

=
N2θ

2

η0

1
=
N2

2
θ
( 1

N − 1
+HN

)
.

1.8 Phase transition

In this section, we prove Theorem 3.2 for reward incentive.

Proof of Theorem 3.2 for reward incentive. First we show the existence of phase transition (i.e.,
the existence of the threshold value β∗) and study the optimization problem

min
θ≥θ0

Er(θ), (45)
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when the selection is less than or equal the threshold value, β ≤ β∗. According to Lemma 1.3 we
have

E′r(θ) =
1

g(x)2
[f(x)g(x)− (x+ βa)(f(x)g′(x)− f ′(x)g(x))] =

1

g(x)2
[Q(u)− (log u+ βa)uP (u)] ,

where u = ex, f(x), g(x), P (u) and Q(u) are given in Lemma 1.3. By Proposition 1.6, P , which
is a polynomial with positive leading coefficient, has a unique positive root u0 > 1. Therefore for
0 < u ≤ u0, uP (u) < 0 and hence E′r(θ) ≥ 0 (since Q(u) > 0 and x+ βa > 0). Consider now the
case u > u0 (thus uP (u) > 0). We write E′r(θ) as

E′r(θ) =
1

g(x)2
uP (u) [F (u)− βa] ,

where F (u) = Q(u)
uP (u) − log u, which is also given in Lemma 1.3. By Proposition 1.8, F (u) has

a global minimizer on (u0,+∞). Let F ∗ be the global minimum. Let β∗ := F∗

a . Then for
β ≤ β∗, βa ≤ β∗a = F ∗ ≤ F (u) for all u > u0. Thus F (u) − βa ≤ 0 for all u > u0, which
implies that E′(θ) ≥ 0 for all u > u0 as well. Hence, for β ≤ β∗, E′(θ) ≥ 0 for all θ and so,
minθ≥θ0 Er(θ) = Er(θ0) and the minimum is attained at θ = θ0.

Now we study the optimization problem (45) when the selection is greater than the threshold
value, β > β∗. According to Proposition 1.8, F ′ changes signs at least once when u > u0. Thus
F (u) is non-monotonic and the equation F (u) = βa has at least two roots which are larger than
u0 for all β > β∗. Hence F (u) − βa, thus E′r(θ), changes sign at least twice for any β > β∗. For
N ≤ N0 = 100, the equation F (u) = βa has exactly two solutions u0 < u1 < u2. Hence

F (u)− βa





> 0 u > u1,

< 0 u1 < u < u2,

> 0 u > u2.

The statement of the main theorem then follows by setting θi := log ui

β + a, i = 1, 2.

2 Detailed computations: punishment incentive

In this section, we provide detailed analysis for the case of punishment. We will only sketch on
the parts that are similar to the reward case and focus on the parts that are distinguish from the
reward case.
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2.1 The cost function and its derivative

Similarly as in the reward case, using Lemma 1.2 we obtain the expected total cost of interference
for institutional punishment

Ep(θ) =
θ

2

N−1∑

i=1

(n1,i + nN−1,i)(N − i)

=
1

2

N−1∑

j=1

N2

(N − j)j
(

(W−1)1j + (W−1)N−1,j

)
(N − j)θ

=
N2θ(1 + ex)

2(eNx − 1)

N−1∑

j=1

e(N−1)x − e(j−1)x + ejx − 1

j

=
N2θ(1 + ex)

2(eNx − 1)

[(
e(N−1)x − 1

)N−1∑

j=1

1

j
+ (ex − 1)

N−1∑

j=1

e(j−1)x

j

]

=
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+
N−1∑

j=1

e(j−1)x

j

]

:=
N2θ

2

f̂(x)

g(x)
, (46)

where g(x) = 1 + ex + . . .+ e(N−1)x is the same as in the reward case, and

f̂(x) = (1 + ex)
[(

1 + ex + . . .+ e(N−2)x
)
HN +

N−1∑

j=1

e(j−1)x

j

]
.

The derivative of Ep with respect to θ is

E′p(θ) =
N2

2

1

g(x)2

[
f̂(x)g(x)− (x+ βa)(f̂(x)g′(x)− f̂ ′(x)g(x))

]
. (47)

Using again the notation u = ex, by similar computations as in the reward case, we have

f̂(x)g(x)− f̂ ′(x)g(x) = uP̂ (u), f̂(x)g(x) = Q̂(u),

where

P̂ (u) := (1 + u)

[(N−2∑

j=0

(HN +
1

1 + j
)uj
)(N−1∑

j=1

juj−1
)
−
(N−2∑

j=1

(
HN +

1

1 + j

)
juj−1

)(N−1∑

j=0

uj
)]

−
(N−2∑

j=0

(
HN +

1

1 + j

)
uj
)(N−1∑

j=0

uj
)

(48)

and

Q̂(u) := (1 + u)
(N−2∑

j=0

(HN +
1

j + 1
)uj
)(N−1∑

j=0

uj
)
. (49)

If f̂(x)g(x)− f̂ ′(x)g(x) ≤ 0 then E′p(θ) > 0. We consider the case f̂(x)g(x)− f̂ ′(x)g(x) > 0, and
write E′p(θ) as

E′p(θ) =
N2

2

1

g(x)2
(f̂(x)g(x)− f̂ ′(x)g(x))

(
F̂ (u)− βa

)
, (50)

where

F̂ (u) :=
Q̂(u)

uP̂ (u)
− log(u). (51)
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2.2 Concrete examples of small populations

2.3 The difference between the reward and punishment costs

In this section, we calculate the difference between the reward and punishment costs.

Proposition 2.1.

(Er − Ep)(θ) =





< 0, for θ < −δ,
= 0, for θ = −δ,
> 0, for θ > −δ.

(52)

Proof. We have

(Er − Ep)(θ) =
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

N−1∑

j=1

e(N−1−j)x − e(j−1)x

j

=
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

N−1∑

j=1

e(j−1)x
[ 1

N − j −
1

j

]
.

Hence the sign of (Er − Ep)(θ) depends on the sign of the function

r(u) :=
N−1∑

j=1

u(j−1)
[ 1

N − j −
1

j

]

for u := ex ∈ (0,∞). r(u) is a polynomial of degree N − 2 with a positive leading coefficient. We
have

r(0) =
1

N − 1
− 1 < 0, lim

u→+∞
r(u) = +∞.

Moreover, the sequence of coefficients of r has one change of signs, which happens at j = bN/2c.
Thus, by Decartes’s rule of signs, r has a unique positive solution, which is u = 1. Hence r(u) < 0
for u ∈ (0, 1) while r(u) > 0 for u ∈ (1,+∞). As a consequence, Er(θ) < Ep(θ) for u < 1, that is
for θ < −δ and Er(θ) > Ep(θ) for θ > −δ.

2.4 The polynomial P̂

The following proposition establishes interesting relationships between the polynomials P and P̂
as well as between Q and Q̂. These relationships enable us to obtain properties of the polynomials
P̂ and Q̂ from P and Q without the need to calculate their coefficients, which significantly reduces
the complexity of the analysis.

Proposition 2.2. We have

P (u) = −u2N−4P̂
( 1

u

)
and Q(u) = u2N−2Q̂

( 1

u

)
(53)

or equivalently

P̂ (u) = −u2N−4P
( 1

u

)
and Q̂(u) = u2N−2Q

( 1

u

)
. (54)

As a consequence, since P has a unique positive root according to Proposition 1.6, P̂ also has a
unique positive root.

Proof. By change of index ĵ := N − 2− j, we have
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(i)

N−2∑

j=0

(
HN +

1

N − 1− j
)
uj =

N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)
uN−2−ĵ

= uN−2
N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)( 1

u

)ĵ

(ii)

N−2∑

j=0

(
HN +

1

N − 1− j
)
juj−1 =

N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)
(N − 2− ĵ)uN−3−ĵ

= uN−4
N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)
(N − 2− ĵ)

( 1

u

)ĵ−1

.

By change of index ĵ := N − 1− j we have

(a)

N−1∑

j=0

juj−1 =
N−1∑

ĵ=0

(N − 1− ĵ)uN−2−ĵ = uN−3
N−1∑

ĵ=0

(N − 1− ĵ)
( 1

u

)ĵ−1

(b)

N−1∑

j=0

uj =
N−1∑

ĵ=0

uN−1−ĵ = uN−1
N−1∑

ĵ=0

( 1

u

)ĵ

Therefore, by denoting

v :=
1

u
, âj := HN +

1

ĵ + 1
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P (u) = (1 + u)

[(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=1

juj−1
)
−
(N−2∑

j=1

(
HN +

1

N − 1− j
)
juj−1

)(N−1∑

j=0

uj
)]

−
(N−2∑

j=0

(
HN +

1

N − 1− j
)
uj
)(N−1∑

j=0

uj
)

= u2N−4
(

1 +
1

u

)[(N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)( 1

u

)ĵ)(N−1∑

ĵ=0

(N − 1− ĵ)
( 1

u

)ĵ−1)

−
(N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)
(N − 2− ĵ)

( 1

u

)ĵ−1)(N−1∑

ĵ=0

( 1

u

)ĵ)
]

− u2N−3
(N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)( 1

u

)ĵ)(N−1∑

ĵ=0

( 1

u

)ĵ)

= u2N−4

{
(1 + v)

((N−2∑

j=0

âjv
j
)[

(N − 1)
N−1∑

j=0

vj−1 −
N−1∑

j=0

jvj−1
]

−
[
(N − 2)

N−2∑

j=0

âjv
j−1 −

N−2∑

j=0

ajjv
j−1
](N−1∑

j=0

vj
))
−
(N−2∑

j=0

âjv
j
)(N−1∑

j=0

vj−1
)}

= u2N−4

{
(1 + v)

[(N−2∑

j=0

âjv
j
)(N−1∑

j=0

vj−1
)
−
(N−2∑

j=0

âjv
j
)(N−2∑

j=0

jvj−1
)

+
(N−2∑

j=0

âjjv
j−1
)(N−1∑

j=0

vj
)]

−
(N−2∑

j=0

âjv
j
)(N−1∑

j=0

vj−1
)}

= u2N−4

{
(1 + v)

[
−
(N−2∑

j=0

âjv
j
)(N−2∑

j=0

jvj−1
)

+
(N−2∑

j=0

âjjv
j−1
)(N−1∑

j=0

vj
)]

+
(N−2∑

j=0

âjv
j
)(N−1∑

j=0

vj
)}}

= −u2N−4P̂ (v)

= −u2N−4P̂
( 1

u

)
.

Similarly for Q(u), we obtain

Q(u) = (1 + u)
(N−2∑

j=0

(HN +
1

N − 1− j )uj
)(N−1∑

j=0

uj
)

= u2N−2
(

1 +
1

u

)(N−2∑

ĵ=0

(
HN +

1

ĵ + 1

)( 1

u

)ĵ)(N−1∑

ĵ=0

( 1

u

)ĵ)

= u2N−2Q̂
( 1

u

)
.

The following lemma, which is the counter-part of Lemma 1.7, establishes a relation between
P̂ and Q̂. It is interesting to notice the appearance of the factor 3

4(N−1) on the right-hand side of

(55) below.
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Lemma 2.3. We have

Q̂(u) ≥ 3

4(N − 1)
(1 + u)uP̂ (u). (55)

Proof. It follows from Proposition 2.2 that p̂k = −p2N−4−k. Hence from Proposition 1.6 we obtain

p̂k =





−(HN + 1
2 ), k = 0,

−(4k + 7) + (k + 3)HN − (2k + 4)
∑N−1
j=k+3

1
j + 1

k+2 1 ≤ k ≤ N − 4,

−4N + 5 + 1
N−1 +NHN , k = N − 3,

2NHN − 4(N − 1), k = N − 2,

−8N + 4(k + 3) + (2k + 4)
∑N−1
j=k+3−N

1
j + 2N−3−k

k+2−N + (2N − k − 3)HN , N − 1 ≤ k ≤ 2N − 5,

HN + 1
2 , k = 2N − 4.

The statement (55) is equivalent to

N−2∑

j=0

(
HN +

1

1 + j

)
uj
)(N−1∑

j=0

uj
)

=
2N−3∑

k=0

( min(N−2,k)∑

j=max(0,k−N+1)

âj

)
uk ≥ 3

4(N − 1)
uP̂ (u), (56)

which we now prove. Let

h̄k :=

min(N−2,k)∑

j=max(0,k−N+1)

âj =

{∑k
j=0 âj 0 ≤ k ≤ N − 2,∑N−2
j=k−N+1 âj N − 1 ≤ k ≤ 2N − 3

=

{
(k + 1)HN +

∑k
j=0

1
j+1 0 ≤ k ≤ N − 2,

(2N − k − 2)HN +
∑N−2
j=k−N+1

1
j+1 N − 1 ≤ k ≤ 2N − 3

To prove (56) we will prove a slightly stronger statement that h̄k+1 ≥ 1
2 p̂k for k = 0, . . . , N − 2

and k = 2N − 4, and that h̄k+1 ≥ 3
4(N−1) p̂k for k = N − 1, . . . , 2N − 5.

For k = 0 : h̄1 = 2HN + 1 + 3/2 > − 1
2 (HN + 1/2).

For 1 ≤ k ≤ N − 4, we have

h̄k+1 −
1

2
p̂k = (k + 2)HN +

k+1∑

j=0

1

j + 1
+

1

2

(
(4k + 7)− (k + 3)HN + (2k + 4)

N−1∑

j=k+3

1

j
− 1

k + 2

)

= (k + 1)(HN −Hk+3) +
(4k + 7)

2
+
k + 3

2
HN −

1

2(k + 2)
> 0.

For k = N − 3:

h̄k+1 −
1

2
p̂k = (N − 1)HN +

N−2∑

j=0

1

1 + j
− 1

2
(−4N + 5 +

1

N − 1
+NHN )

=
1

2
((4N − 5) +NHN −

1

N − 1

)
> 0.

For k = N − 2

h̄k+1 −
1

2
p̂k = (N − 1)HN +

N−2∑

j=0

1

1 + j
− 1

2
(2NHN − 4(N − 1))

= 2(N − 1) > 0.
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For N − 1 ≤ k ≤ 2N − 5. Let α > 1 be chosen later. We have

h̄k+1 −
1

α
p̂k = (2N − k − 3)HN +

N−1∑

j=k+3−N

1

j

− 1

α

(
− 8N + 4(k + 3) + (2k + 4)

N−1∑

j=k+3−N

1

j
+

2N − 3− k
k + 2−N + (2N − k − 3)HN

)

= (2N − k − 3)HN

(
1− 1

α

)
+
(

1− 2(k + 2)

α

) N−1∑

j=k+3−N

1

j
− (2N − 3− k)

α(k + 2−N)

≥ (2N − k − 3)
(

1− 1

α

)
HN −

(2(k + 2)

α
− 1
) N−1∑

j=k+2−N

1

j
.

We choose α > 1 such that

(2N − k − 3)
(

1− 1

α

)
≥
(2(k + 2)

α
− 1
)

for all k = N − 1, . . . , 2N − 5.

The above condition is equivalent to the following condition

2N(α− 1) ≥ (k + 2)α+ (k + 1) for all k = N − 1, . . . , 2N − 5.

Therefore we only need to choose α > 1 such that the above inequality holds true for k = 2N − 5,
that is

2N(α− 1) ≥ (2N − 3)α+ (2N − 4).

Hence α ≥ 4(N−1)
3 . Therefore, we obtain that for N − 1 ≤ k ≤ 2N − 5

h̄k+1 ≥
3

4(N − 1)
p̂k.

For k = 2N − 4, we have

h̄k+1 −
1

2
p̂k = HN +

1

N − 1
− 1

2
(HN +

1

2
) =

1

2
HN +

1

N − 1
− 1

4
> 0.

Let û0 be the unique positive root of P̂ . Note that û0 = 1
u0 , where u0 is the unique positive

root of P . We consider the minimisation problem

min{F̂ (u) : u > û0}, (57)

where F̂ is defined in (51). The following proposition is the counter-part of Proposition 1.8.

Proposition 2.4. The minimisation problem (57) has a global minimizer. For N ≤ N0 = 100
sufficiently small, it has a unique minimizer û∗ and F̂ is decreasing when û0 < u < û∗ and is
increasing when u > û∗.

Proof. The proof of this proposition is similar to that of Proposition 1.8 in the reward case.
According to Lemma 2.3 we have

F̂ (u) ≥ 3

4(N − 1)
(1 + u)− log(u).

It implies that
lim

u→+∞
F̂ (u) = +∞ = lim

u→û+
0

F̂ (u).

From this together with the fact that F̂ is smooth on the interval (û0,+∞), we conclude that F̂
has a minimizer on this domain. The rest of the proof is the same as that of Proposition 1.8 where
P and Q are replaced by P̂ and Q̂, respectively and the unique positive root u0 of P is replaced
by that of P̂ (i.e., û0).
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2.5 Finite population estimates

Lemma 2.5. It holds that

N2θ

2

(
HN +

1

N − 1

)
≤ Ep(θ) ≤ N(N − 1)θ

(
HN + 1

)
. (58)

Proof. We recall that

Ep(θ) =
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+
N−1∑

j=1

e(j−1)x

j

]
. (59)

Since we also have the following estimates

1

N − 1
(1 + ex + . . .+ e(N−2)x) ≤

N−1∑

j=1

e(j−1)x

j
≤ (1 + ex + . . .+ e(N−2)x),

we can proceed exactly as in the proof of Proposition 1.11 in the reward case to obtain the required
estimates.

2.6 Asymptotic limits

Proposition 2.6. We have the following limits:

(i) (Infinite-population limit)

lim
N→+∞

Ep(θ)
N2θ

2 (lnN + γ)
=

{
1 + e−β|θ−c| for DG,

1 + e−β|θ−c|eβc
r
n for PGG.

(ii) (weak selection limit)
lim
β→0

Ep[(θ) = N2θHN .

(iii) (large selection limit)

lim
β→+∞

Ep(θ) =





N2θ
2

(
1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2θ

2

(
HN + 1

N−1

)
for θ > −δ.

Proof.

(i) We also have

N2θ

2

(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(N−1∑

j=1

1

j
+

1

N − 1

)
≤ Ep(θ)

≤ N2θ

2

(1 + ex)(1 + . . .+ e(N−2)x)

1 + . . .+ e(N−1)x

(N−1∑

j=1

1

j
+ 1
)

Hence by proceeding exactly the same as in the reward case, we obtain the desired limit.

(ii) Since β → 0+ implies x→ 0, we have

lim
β→0+

Ep(θ) = N2θ
(N−1∑

j=1

1

j

)
.
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(iii) We have

Ep(θ) =
N2θ(1 + ex)

2(1 + ex + . . .+ e(N−1)x)

[(
1 + ex + . . .+ e(N−2)x

)N−1∑

j=1

1

j
+
N−1∑

j=1

e(j−1)x

j

]
.

=
N2θ

2

∑N−1
j=0 η̂je

jx

∑N−1
j=0 ejx

,

where

η̂0 = HN + 1, η̂j = 2HN +
1

j
+

1

1 + j
for j = 1, . . . , N − 2 and η̂N−1 = HN +

1

N − 1
.

Proceeding similarly as in Proposition 1.12 we get

lim
β→+∞

Ep(θ) =





N2θ
2

η̂0
1 = N2θ

2

(
1 +HN

)
for θ < −δ,

N2θHN for θ = −δ,
N2θ

2
η̂N−1

1 = N2θ
2

(
HN + 1

N−1

)
for θ > −δ.

2.7 Phase transition

Having obtained Proposition 2.4, the proof of Theorem 3.2 for the case of punishment can be
proceeded in the exactly as in the reward case by replacing F ∗ by F̂ ∗, which is the minimum value
of F̂ in the interval (û0,+∞) and β∗ by β∗p , where

β∗p :=
F̂ ∗

a
. (60)

Therefore we omit the details.
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