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Abstract We tackle the problem of learning linear classifiers from noisy datasets in a mul-
ticlass setting. The two-class version of this problem was studied a few years ago where
the proposed approaches to combat the noise revolve around a Perceptron learning scheme
fed with peculiar examples computed through a weighted average of points from the noisy
training set. We propose to build upon these approaches and we introduce a new algorithm
called Unconfused Multiclass additive Algorithm (UMA) which may be seen as a generaliza-
tion to the multiclass setting of the previous approaches. In order to characterize the noise
we use the confusion matrix as a multiclass extension of the classification noise studied in
the aforementioned literature. Theoretically well-founded, UMA furthermore displays very
good empirical noise robustness, as evidenced by numerical simulations conducted on both
synthetic and real data.

Keywords Multiclass classification · Perceptron · Noisy labels · Confusion Matrix ·
Ultraconservative algorithms

1 Introduction

Context This paper deals with linear multiclass classification problems defined on an input
space X (e.g., X = R

d ) and a set of classes

Q .= {1, . . . , Q}.
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In particular, we are interested in establishing the robustness of ultraconservative additive
algorithms (Crammer and Singer 2003) to label noise classification in the multiclass setting—
in order to lighten notation, we will now refer to these algorithms as ultraconservative
algorithms. We study whether it is possible to learn a linear predictor from a training set
made of independent realizations of a pair (X, Y ) of random variables:

S .= {(xi , yi )}ni=1

where yi ∈ Q is a corrupted version of a true label, i.e. deterministically computed class,
t (xi ) ∈ Q associated with xi , according to some concept t . The random noise process Y that
corrupts the label to provide the yi ’s given the xi ’s is supposed uniform within each pair of
classes, thus it is fully described by a confusion matrix C = (C pq)p,q ∈ R

Q×Q so that

∀x, C pt (x) = PY (Y = p|x).

The goal that we would like to achieve is to provide a learning procedure able to deal with
the confusion noise present in the training set S to give rise to a classifier h with small risk

R(h)
.= PX∼D(h(X) �= t (X)),

D being the distribution according to which the xi ’s are obtained. As we want to recover
from the confusion noise, i.e., we want to achieve low risk on uncorrupted/non-noisy data,
we use the term unconfused to characterize the procedures we propose.

Ultraconservative learning procedures are online learning algorithms that output linear
classifiers. They display nice theoretical properties regarding their convergence in the case
of linearly separable datasets, provided a sufficient separation margin is guaranteed (as
formalized in Assumption 1 below). In turn, these convergence-related properties yield gen-
eralization guarantees about the quality of the predictor learned. We build upon these nice
convergence properties to show that ultraconservative algorithms are robust to a confusion
noise process, provided that: i) C is invertible and can be accessed, ii) the original dataset
{(xi , t (xi ))}ni=1 is linearly separable. This paper is essentially devoted to proving how/why
ultraconservative multiclass algorithms are indeed robust to such situations. To some extent,
the results provided in the present contribution may be viewed as a generalization of the
contributions on learning binary perceptrons under misclassification noise (Blum et al. 1996;
Bylander 1994).

Beside the theoretical questions raised by the learning setting considered, we may depict
the following example of an actual learning scenario where learning from noisy data is
relevant. This learning scenario will be further investigated from an empirical standpoint in
the section devoted to numerical simulations (Sect. 4).

Example 1 One situation where coping with mislabelled data is required arises in (partially
supervised) scenarios where labelling data is very expensive. Imagine a task of text cate-
gorization from a training set S = S� ∪Su , where S� = {(xi , yi )}ni=1 is a set of n labelled
training examples and Su = {xn+i }mi=1 is a set of m unlabelled vectors; in order to fall back to
realistic training scenarios where more labelled data cannot be acquired, we may assume that
n � m. A possible three-stage strategy to learn a predictor is as follows: first learn a predictor
f� on S� and estimate its confusion error C via a cross-validation procedure— f is assumed
to make mistakes evenly over the class regions—, second, use the learned predictor to label
all the data in Su to produce the labelled traning set ̂S = {(xn+i , tn+i := f (xn+i ))}mi=1 and
finally, learn a classifier f from ̂S and the confusion information C .
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This introductory example pertains to semi-supervised learning and this is only one pos-
sible learning scenario where the contribution we propose, UMA, might be of some use. Still,
it is essential to understand right away that one key feature of UMA, which sets it apart from
many contributions encountered in the realm of semi-supervised learning, is that we do pro-
vide theoretical bounds on the sample complexity and running time required by our algorithm
to output an effective predictor.

The present paper is an extended version of Louche and Ralaivola (2013). Compared
with the original paper, it provides a more detailed introduction of the tools used in the
paper, a more thorough discussion on related work as well as more extensive numerical
results (which confirm the relevance of our findings). A strategy to make use of kernels for
nonlinear classification has also been added.

Contributions Our main contribution is to show that it is both practically and theoretically
possible to learn a multiclass classifier on noisy data if some information on the noise process
is available. We propose a way to generate new points for which the true class is known. Hence
we can iteratively populate a new unconfused dataset to learn from. This allows us to handle
a massive amount of mislabelled data with only a very slight loss of accuracy. We embed our
method into ultraconservative algorithms and provide a thorough analysis of it, in which we
show that the strong theoretical guarantees that characterize the family of ultraconservative
algorithms carry over to the noisy scenario.

Related work Learning from mislabelled data in an iterative manner has a long-standing
history in the machine learning community. The first contributions on this topic, based on
the Perceptron algorithm (Minsky and Papert 1969), are those of Bylander (1994), Blum
et al. (1996), Cohen (1997), which promoted the idea utilized here that a sample aver-
age may be used to construct update vectors relevant to a Perceptron learning procedure.
These first contributions were focused on the binary classification case and, for Blum
et al. (1996), Cohen (1997), tackled the specific problem of strong-polynomiality of the
learning procedure in the probably approximately correct (PAC) framework (Kearns and
Vazirani 1994). Later, Stempfel and Ralaivola (2007) proposed a binary learning procedure
making it possible to learn a kernel Perceptron in a noisy setting; an interesting feature
of this work is the recourse to random projections in order to lower the capacity of the
class of kernel-based classifiers. Meanwhile, many advances were witnessed in the realm
of online multiclass learning procedures. In particular, Crammer and Singer (2003) pro-
posed families of learning procedures subsuming the Perceptron algorithm, dedicated to
tackle multiclass prediction problems. A sibling family of algorithms, the passive-aggressive
online learning algorithms (Crammer et al. 2006), inspired both by the previous family
and the idea of minimizing instantaneous losses, were designed to tackle various problems,
among which multiclass linear classification. Sometimes, learning with partially labelled
data might be viewed as a problem of learning with corrupted data (if, for example, all
the unlabelled data are randomly or arbitrarily labelled) and it makes sense to mention the
works Kakade et al. (2008) and Ralaivola et al. (2011) as distant relatives to the present
work.

Organization of the paper Section 2 formally states the setting we consider throughout this
paper. Section 3 provides the details of our main contribution: the UMA algorithm and its
detailed theoretical analysis. Section 4 presents numerical simulations that support the sound-
ness of our approach.
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2 Setting and problem

2.1 Noisy labels with underlying linear concept

The probabilistic setting we consider hinges on the existence of two components. On the
one hand, we assume an unknown (but fixed) probability distribution D on the input space
X .= R

d . On the other hand, we also assume the existence of a deterministic labelling function
t : X → Q, where Q .= {1, . . . Q}, which associates a label t (x) to any input example x; in
the Probably Approximately Correct (PAC) literature, t is sometimes referred to as a concept
(Kearns and Vazirani 1994; Valiant 1984).

In the present paper, we focus on learning linear classifiers, defined as follows.

Definition 1 (Linear classifiers) The linear classifier fW : X → Q is a classifier that is
associated with a set of vectors W = [w1 · · ·wQ] ∈ R

d×Q , which predicts the label fW (x)

of any vector x ∈ X as
fW (x) = argmax

q∈Q
〈

wq , x
〉

. (1)

Additionally, without loss of generality, we suppose that

PX∼D (‖X‖ = 1) = 1,

where ‖ · ‖ is the Euclidean norm. This allows us to introduce the notion of margin.

Definition 2 (Margin of a linear classifier) Let c : S → Q be some fixed concept. Let
W = [w1 · · ·wQ] ∈ R

d×Q be a set of Q weight vectors. Linear classifier fW is said to have
margin θ > 0 with respect to c (and distribution D) if the following holds:

PX∼D
{∃p �= c(X) : 〈wc(X) − w p, X

〉 ≤ θ
} = 0.

Note that if fW has margin θ > 0 with respect to c then

PX∼D( fW (X) �= c(X)) = 0.

Equipped with this definition, we shall consider that the following assumption of linear
separability with margin θ of concept t holds throughout.

Assumption 1 (Linear Separability of t with Margin θ ) There exist θ ≥ 0 and W ∗ =
[w∗1 · · ·w∗Q] ∈ R

d×Q , with ‖W ∗‖2F = 1 (‖ · ‖F denotes the Frobenius norm) such that fW ∗
has margin θ with respect to the concept t .

In a conventional setting, one would be asked to learn a classifier f from a training set

Strue
.= {(xi , t (xi ))}ni=1

made of n labelled pairs from X × Q such that the xi ’s are independent realizations of a
random variable X distributed according to D, with the objective of minimizing the true risk
or misclassification error Rerror( f ) of f given by

Rerror( f )
.= PX∼D( f (X) �= t (X)). (2)

In other words, the objective is for f to have a prediction behavior as close as possible to
that of t . As announced in the introduction, there is however a little twist in the problem that
we are going to tackle. Instead of having direct access to Strue, we assume that we only have
access to a corrupted version

S .= {(xi , yi )}ni=1 (3)
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where each yi is the realization of a random variable Y whose distribution agrees with the
following assumption:

Assumption 2 The law DY |X of Y is the same for all x ∈ X and its conditional distribution

PY∼DY |X=x (Y |X = x)

is fully summarized into a known confusion matrix C given by

∀x, C pt (x)
.= PY∼DY |X=x (Y = p|X = x) = PY∼DY |X=x (Y = p|t (x) = q). (4)

Alternatively put, the noise process that corrupts the data is uniform within each class
and its level does not depend on the precise location of x within the region that corresponds
to class t (x). The noise process Y is both a) aggressive, as it does not only apply, as we
may expect, to regions close to the class boundaries between classes and b) regular, as the
mislabelling rate is piecewise constant. Nonetheless, this setting can account for many real-
world problems as numerous noisy phenomena can be summarized by a simple confusion
matrix. Moreover it has been proved (Blum et al. 1996) that robustness to classification
noise generalizes robustness to monotonic noise where, for each class, the noise rate is a
monotonically decreasing function of the distance to the class boundaries.

Remark 1 The confusion matrix C should not be mistaken with the matrix C̃ of general term:
C̃i j

.= PX∼DX |Y= j (t (X) = i |Y = j) which is the class-conditional distribution of t (X) given

Y . The problem of learning from a noisy training set and C̃ is a different problem than the
one we aim to solve. In particular, C̃ can be used to define cost-sensitive losses rather directly
whereas doing so with C is far less obvious. Anyhow, this second problem of learning from
C̃ is far from trivial and very interesting, and it falls way beyond the scope of the present
work.

Finally, we assume the following from here on:

Assumption 3 C is invertible.

Note that this assumption is not as restrictive as it may appear. For instance, if we consider the
learning setting depicted in Example 1 and implemented in the numerical simulations, then
the confusion matrix obtained from the first predictor f� is often diagonally dominant, i.e. the
magnitudes of the diagonal entries are larger than the sum of the magnitudes of the entries
in their corresponding rows, and C is therefore invertible. Generally speaking, the problems
that we are interested in (i.e. problems where the true classes seems to be recoverable) tend
to have invertible confusion matrix. It is most likely that invertibility is merely a sufficient
condition on C that allows us to establish learnability in the sequel. Identifying less stringent
conditions on C , or conditions termed in a different way—which would for instance be based
on the condition number of C—for learnability to remain, is a research issue of its own that
we leave for future investigations.

The setting we have just presented allows us to view S = {(xi , yi )}ni=1 as the realization
of a random sample {(Xi , Yi )}ni=1, where each pair (Xi , Yi ) is an independent copy of the
random pair (X, Y ) of law DXY

.= DX DX |Y .

2.2 Problem: learning a linear classifier from noisy data

The problem we address is the learning of a classifier f from S and C so that the error rate

Rerror( f ) = PX∼D( f (X) �= t (X))
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of f is as small as possible: the usual goal of learning a classifier f with small risk is
preserved, while now the training data is only made of corrupted labelled pairs.

Building on Assumption 1, we may refine our learning objective by restricting ourselves
to linear classifiers fW , for W = [w1 · · ·wQ] ∈ R

d×Q (see Definition 1). Our goal is thus to
learn a relevant matrix W from S and the confusion matrix C . More precisely, we achieve
risk minimization through classic additive methods and the core of this work is focused on
computing noise-free update points such that the properties of said methods are unchanged.

3 Uma: unconfused ultraconservative multiclass algorithm

This section presents the main result of the paper, that is, the UMA procedure, which is a
response to the problem posed above: UMA makes it possible to learn a multiclass linear
predictor from S and the confusion information C . In addition to the algorithm itself, this
section provides theoretical results regarding the convergence and sample complexity ofUMA.

As UMA is a generalization of the ultraconservative additive online algorithms proposed
in Crammer and Singer (2003) to the case of noisy labels, we first and foremost recall the
essential features of this family of algorithms. The rest of the section is then devoted to the
presentation and analysis of UMA.

3.1 A brief reminder on ultraconservative additive algorithms

Ultraconservative additive online algorithms were introduced by Crammer and Singer (2003).
As already stated, these algorithms output multiclass linear predictors fW as in Definition 1
and their purpose is therefore to compute a set W = [w1 · · ·wQ] ∈ R

d×Q of Q weight
vectors from some training sample Strue = {(xi , t (xi ))}ni=1. To do so, they implement the
procedure depicted in Algorithm 1, which centrally revolves around the identification of an
error set and its simple update: when processing a training pair (x, y), they perform updates
of the form

wq ← wq + τq x, q = 1, . . . Q,

whenever the error set E(x, y) defined as

E(x, y)
.= {r ∈ Q\{y} : 〈wr , x〉 − 〈wy, x〉 ≥ 0

}

(5)

is not empty, with the constraint for the family {τq}q∈Q of step sizes to fulfill
⎧

⎨

⎩

τy = 1
τr ≤ 0, if r ∈ E(x, y)

τr = 0, otherwise
and

Q
∑

r=1

τr = 0. (6)

The term ultraconservative refers to the fact that only those prototype vectors wr which
achieve a larger inner product 〈wr , x〉 than 〈wy, x〉, that is, the vectors that can entail a
prediction mistake when decision rule (1) is applied, may be affected by the update procedure.
The term additive conveys the fact that the updates consist in modifying the weight vectors
wr ’s by adding a portion of x to them (which is to be opposed to multiplicative update
schemes). Again, as we only consider these additive types of updates in what follows, it will
have to be implicitly understood even when not explicitly mentioned.

One of the main results regarding ultraconservative algorithms, which we extend in our
learning scenario is the following.
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Algorithm 1 Ultraconservative Additive algorithm Crammer and Singer (2003).
Require: Strue
Ensure: W = [w1, . . . ,wQ

]

and associated classifier fW (·) = argmax q 〈wq , ·〉
Initialization: wq ← 0, ∀q ∈ Q
repeat

access training pair (xt , yt )
compute the error set E(xt , yt ) according to (5)
if E(xt , yt ) �= ∅ then

compute a set {τq }q∈Q of update steps that comply with (6)
perform the updates

wq ← wq + τq xq , ∀q ∈ Q

end if
until some stopping criterion is met

Theorem 1 (Mistake bound for ultraconservative algorithms Crammer and Singer 2003)
Suppose that concept t is in accordance with Assumption 1. The number of mistakes/updates
made by one pass over S by any ultraconservative procedure is upper-bounded by 2/θ2.

This result is essentially a generalization of the well-known Block–Novikoff theorem (Block
1962; Novikoff 1963), which establishes a mistake bound for the Perceptron algorithm (an
ultraconservative algorithm itself).

3.2 Main result and high level justification

This section presents our main contribution, UMA, a theoretically grounded noise-tolerant
multiclass algorithm depicted in Algorithm 2. UMA learns and outputs a matrix W =
[w1 · · ·wQ] ∈ R

d×Q from a noisy training set S to produce the associated linear classi-
fier

fW (·) = argmax q〈wq , ·〉 (7)

by iteratively updating the wq ’s, whilst maintaining
∑

q wq = 0 throughout the learning
process. As a new member of multiclass additive algorithms, we may readily recognize in
step 8 through step 10 of Algorithm 2 the generic step sizes {τq}q∈Q promoted by ultra-
conservative algorithms (see Algorithm 1). An important feature of UMA is that it only uses
information provided by S and does not make assumption on the accessibility to the noise-
free dataset Strue: the incurred pivotal difference with regular ultraconservative algorithms is
that the update points used are now the computed (line 4 through line 7) z pq vectors instead
of the xi ’s. Establishing that under some conditions UMA stops and provides a classifier with
small risk when those update points are used is the purpose of the following subsections; we
will also discuss the unspecified step 3, dealing with the selection step.

For the impatient reader, we may already leak some of the ingredients we use to prove the
relevance of our procedure. Theorem 1, which shows the convergence of ultraconservative
algorithms, rests on the analysis of the updates made when training examples are misclassified
by the current classifier. The conveyed message is therefore that examples that are erred
upon are central to the convergence analysis. It turns out that steps 4 through 7 of UMA (cf.
Algorithm 2) construct a point z pq that is, with high probabilty, mistaken on. More precisely,
the true class t (z pq) of z pq is q and it is predicted to be of class p by the current classifier;
at the same time, these update vectors are guaranteed to realize a positive margin condition
with respect to W ∗: 〈w∗q , z pq〉 > 〈w∗k , z pq 〉 for all k �= q . The ultraconservative feature of
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Algorithm 2 UMA: Unconfused Ultraconservative Multiclass Algorithm.

Require: S = {(xi , yi )}ni=1, confusion matrix C ∈ R
Q×Q , and α > 0

Ensure: W = [w1, . . . ,wK ] and classifier fW (·) = argmax q 〈wq , ·〉
1: wk ← 0, ∀k ∈ Q
2: repeat
3: select p and q
4: compute set Aα

p as

Aα
p ←

{

x|x ∈ S,
〈

w p, x
〉− 〈wk , x〉 ≥ α, ∀k �= p

}

5: for k = 1, . . . , Q, compute γ
p

k as

γ
p

k ←
1

n

n
∑

i=1

I{yi = k}I
{

xi ∈ Aα
p

}

x�i , ∀k ∈ Q

6: form � p ∈ R
Q×d as

� p ←
[

γ
p

1 · · · γ p
Q

]�
,

7: compute the update vector z pq according to ([M]q refers to the qth row of matrix M)

z pq ← ([C−1� p]q )�,

8: compute the error set Eα(z pq , q) as

Eα(z pq , q)← {r ∈ Q\{q} : 〈wr , z pq 〉 − 〈wq , z pq 〉 ≥ α}
9: if Eα(z pq , q) �= ∅ then
10: compute some ultraconservative update steps τ1, . . . , τQ such that:

⎧

⎨

⎩

τq = 1
τr ≤ 0,∀r ∈ Eα(z pq , q)

τr = 0, otherwise
and

Q
∑

r=1

τr = 0

11: perform the updates for r = 1, . . . , Q:

wr ← wr + τr z pq

12: end if
13: until ‖zpq‖ is too small

the algorithm is carried by step 8 and step 10, which make it possible to update any prototype
vector wr with r �= q having an inner product 〈wr , zpq 〉 with zpq larger than 〈wq , zpq〉
(which should be the largest if a correct prediction were made). The reason why we have
results ‘with high probability’ is because the z pq ’s are sample-based estimates of update
vectors known to be of class q but predicted as being of class p, with p �= q; computing the
accuracy of the sample estimates is one of the important exercises of what follows. A control
on the accuracy makes it possible for us to then establish the convergence of the proposed
algorithm.
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3.3 With high probability, z pq is a mistake with positive margin

Here, we prove that the update vector z pq given in step 7 is, with high probability, a point on
which the current classifier errs.

Proposition 1 Let W = [w1 · · ·wQ] ∈ R
d×Q and α > 0 be fixed. Let Aα

p be defined as in
step 7 of Algorithm 2, i.e:

Aα
p

.= {x|x ∈ S,
〈

w p, x
〉− 〈wk, x〉 ≥ α, ∀k �= p

}

. (8)

For k ∈ Q, p �= k, consider the random variable γ
p

k (γ p
k in step 5 of Algorithm 2 is a

realization of this variable, hence the overloading of notation γ
p

k ):

γ
p

k
.= 1

n

∑

i

I{Yi = k}I
{

Xi ∈ Aα
p

}

X�i .

The following holds, for all k ∈ Q:

ES
{

γ
p

k

} = E{(Xi ,Yi )}ni=1

{

γ
p

k

} =
Q
∑

q=1

Ckqμ
p
q , (9)

where
μ

p
q

.= EDX

{

I{t (X) = q}I
{

X ∈ Aα
p

}

X�
}

. (10)

Proof Let us compute EDXY

{

I{Y = k}I
{

X ∈ Aα
p

}

X�
}

:

EDXY

{

I{Y = k}I
{

X ∈ Aα
p

}

X�
}

(cf. (4))

=
∫

X

Q
∑

q=1

I{q = k}I
{

x ∈ Aα
p

}

x�PY (Y = q|X = x)dDX (x)

=
∫

X
I

{

x ∈ Aα
p

}

x�PY (Y = k|X = x)dDX (x)

=
∫

X
I

{

x ∈ Aα
p

}

x�Ckt (x)dDX (x)

=
∫

X

Q
∑

q=1

I{t (x) = q}I
{

x ∈ Aα
p

}

x�CkqdDX (x)

=
Q
∑

q=1

Ckq

∫

X
I{t (x) = q}I

{

x ∈ Aα
p

}

x�dDX (x) =
Q
∑

q=1

Ckqμ
p
q ,

where the last line comes from the fact that the classes are non-overlapping. The n pairs
(Xi , Yi ) being identically and independently distributed gives the result. ��

Intuitively, μ
p
q must be seen as an example of class p which is erroneously predicted as

being of class q . Such an example is precisely what we are looking for to update the current
classifier; as expecations cannot be computed, the estimate z pq of μ

p
q is used instead of μ

p
q .
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Proposition 2 Let W = [w1 · · ·wQ] ∈ R
d×Q and α ≥ 0 be fixed. For p, q ∈ Q, p �= q,

z pq ∈ R
d is such that

EDXY z pq = μ
p
q (11)

〈w∗q , μ
p
q 〉 − 〈w∗k , μp

q 〉 ≥ θ, ∀k �= q, (12)

〈w p, μ
p
q 〉 − 〈wk, μ

p
q 〉 ≥ α, ∀k �= p. (13)

(Normally, we should consider the transpose of μp
q , but since we deal with vectors of R

d—and
not matrices—we abuse the notation and omit the transpose.)

This means that

i) t (μp
q ) = q, i.e. the ‘true’ class of μ

p
q is q;

ii) and fW (μ
p
q ) = p; μ

p
q is therefore misclassified by the current classifier fW .

Proof According to Proposition 1,

EDXY

{

� p} = EDXY

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎣

γ
p

1
...

γ
p

Q

⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

=

⎡

⎢

⎢

⎣

EDXY

{

γ
p

1

}

...

EDXY

{

γ
p

Q

}

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

∑Q
q=1 C1qμ

p
1

...
∑Q

q=1 CQqμ
p
Q

⎤

⎥

⎥

⎦

= C

⎡

⎢

⎣

μ
p
1
...

μ
p
Q

⎤

⎥

⎦
.

Hence, inverting C and extracting the qth of the resulting matrix equality gives that
E
{

z pq
} = μ

p
q .

Equation (12) is obtained thanks to Assumption 1 combined with (10) and the linearity of
the expectation. Equation (13) is obtained thanks to the definition (8) of Aα

p (made of points
that are predicted to be of class p) and the linearity of the expectation. ��

The attentive reader may notice that Proposition 2 or, equivalently, step 7, is precisely the
reason for requiring C to be invertible, as the computation of z pq hinges on the resolution of
a system of equations based on C .

Proposition 3 Let ε > 0 and δ ∈ (0; 1]. There exists a number

n0(ε, δ, d, Q) = O
(

1

ε2

[

ln
1

δ
+ ln Q + d ln

1

ε

])

such that if the number of training samples is greater than n0 then, with high probability

〈w∗q , z pq〉 − 〈w∗k , z pq〉 ≥ θ − ε (14)

〈w p, z pq 〉 − 〈wk, z pq〉 ≥ 0, ∀k �= p. (15)

Proof The existence of n0 relies on pseudo-dimension arguments. We defer this part of the
proof to “Appendix” and we will directly assume here that if n ≥ n0, then, with probability
1− δ for any W , z pq .

∣

∣

〈

w p − wq , z pq
〉− 〈w p − wq , μ

p
q
〉∣

∣ ≤ ε. (16)

Proving (14) then proceeds by observing that
〈

w∗q − w∗k , z pq

〉

=
〈

w∗q − w∗k , μ
p
q

〉

+
〈

w∗q − w∗k , z pq − μ
p
q

〉

bounding the first part using Proposition 2:
〈

w∗q − w∗k , μ
p
q

〉

≥ θ
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and the second one with (16). A similar reasoning allows us to get (15) by setting α
.= ε in

Aα
p . ��

This last proposition essentially says that the update vectors zpq that we compute are, with
high probability, erred upon and realize a margin condition θ − ε.

Note that α is needed to cope with the imprecision incurred by the use of empirical
estimates. Indeed, we can only approximate 〈w p, z pq〉 − 〈wk, z pq〉 in (15) up to a precision
of ε. Thus for the result to hold we need to have 〈w p, μ

p
q 〉− 〈wk, μ

p
q 〉 ≥ ε which is obtained

from (13) when α = ε. In practice, this just says that the points used in the computation of
z pq are at a distance at least α from any decision boundaries.

Remark 2 It is important to understand that the parameter α helps us derive sample com-
plexity results by allowing us to retrieve a linearly separable training dataset with positive
margin from the noisy dataset. The theoretical results we prove hold for any such α > 0
parameter and the smaller this parameter, the larger the sample complexity, i.e., the harder it
is for the algorithm to take advantage of a training samples that meets the sample complexity
requirements. In other words, the smaller α, the less likely it is for UMA to succeed; yet, as
shown in the experiments, where we use α = 0, UMA continues to perform quite well.

3.4 Convergence and stopping criterion

We arrive at our main result, which provides both convergence and a stopping criterion.

Proposition 4 Under Assumptions 1, 2 and 3 there exists a number n, polynomial in
d, 1/θ, Q, 1/δ, such that if the training sample is of size at least n, then, with high probability
(1− δ), UMA makes at most O(1/θ2) updates.

Proof Let Sz the set of all the update vectors z pq generated during the execution of UMA
and labeled with their true class q . Observe that, in this context, UMA (Alg. 2) behaves like a
regular ultraconservative algorithm run on Sz . Namely: a) lines 4 through 7 compute a new
point in Sz , and b) lines 8 through 10 perform an ultraconservative update step.

From Proposition 3, we know that with high probability, w∗ is a classifier with positive
margin θ−ε on Sz and it comes from Theorem 1 that UMA does not make more than O(1/θ2)

mistakes on such dataset.
Because, by construction, we have that with high probability each element of Sz is erred

upon then |Sz | ∈ O(1/θ2); that means that, with high probability, UMA does not make more
than O(1/θ2) updates.

All in all, after O(1/θ2) updates, there is a high probability that we are not able to construct
examples on which UMA makes a mistake or, equivalently, the conditional misclassification
errors P( fW (X) = p|Y = q) are all small. ��

Even though UMA operates in a batch setting, it ‘internally’ simulates the execution of an
online algorithm that encounters a new training point (z pq ∈ Sz ) at each time step. To more
precisely see how UMA can be seen as an online algorithm, it suffices to imagine it be run in
a way where each vector update is made after a chunk of n (where n is as in Proposition 4)
training data has been encountered and used to compute the next element of Sz . Repeating
this process O(1/θ2) times then guarantees convergence with high probability. Note that, in
this scenario, UMA requires n′ = O(n/θ2) data to converge which might be far more than the
sample complexity exhibited in Proposition 4. Nonetheless, n′ still remains polynomial in d ,
1/θ , Q and 1/δ. For more detail on this (online to batch conversion) approach, we refer the
interested readers to Blum et al. (1996).
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3.5 Selecting p and q

So far, the question of selecting good pairs of values p and q to perform updates has been left
unanswered. Indeed, our results hold for any pair (p, q) and convergence is guaranteed even
when p and q are arbitrarily selected as long as z pq is not 0. Nonetheless, it is reasonable
to use heuristics for selecting p and q with the hope that it might improve the practical
convergence speed.

On the one hand, we may focus on the pairs (p, q) for which the empirical misclassification
rate

P̂X∼S { fW (X) �= t (X)} .= 1

n

n
∑

i=1

I
{

fW (xi ) �= t (x j )
}

(17)

is the highest (X ∼ S means that X is randomly drawn from the uniform distribution of law
x �→ n−1 ∑n

i=1 I{x = xi } defined with respect to training set S = {(xi , yi )}ni=1). We want
to favor those pairs (p, q) because, i) the induced update may lead to a greater reduction of
the error and ii) more importantly, because z pq may be more reliable, as Aα

p will be bigger.
On the other hand, recent advances in the passive aggressive literature (Ralaivola 2012)

have emphasized the importance of minimizing the empirical confusion rate, given for a pair
(p, q) by the quantity

P̂X∼S { fW (X) = p|t (X) = q} .= 1

nq

n
∑

i=1

I{t (xi ) = q, fW (xi ) = p}, (18)

where

nq
.=

n
∑

i=1

I{t (xi ) = q}.

This approach is especially worthy when dealing with imbalanced classes and one might
want to optimize the selection of (p, q) with respect to the confusion rate.

Obviously, since the true labels in the training data cannot be accessed, neither of the
quantities defined in (17) and (18) can be computed. Using a result provided in Blum et al.
(1996), which states that the norm of an update vector computed as zpq directly provides an
estimate of (17), we devise two possible strategies for selecting (p, q):

(p, q)error
.= argmax

(p,q)

‖zpq‖ (19)

(p, q)conf
.= argmax

(p,q)

‖zpq‖
π̂q

, (20)

where π̂q is the estimated proportion of examples of true class q in the training sample. In a
way similar to the computation of zpq in Algorithm 2, π̂q may be estimated as follows:

π̂q = 1

n
[C−1 ŷ]q ,

where ŷ ∈ R
Q is the vector containing the number of examples from S having noisy labels

1, . . . , Q, respectively.
The second selection criterion is intended to normalize the number of errors with respect

to the proportions of different classes and aims at being robust to imbalanced data. Our
goal here is to provide a way to take into account the class distribution for the selection of
(p, q). Note that this might be a first step towards transforming UMA into an algorithm for
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minimizing the confusion risk, even though additional (and significant) work is required to
provably provide UMA with this feature.

On a final note, we remark that (p, q)conf requires additional precautions when used:
when (p, q)error is implemented, z pq is guaranteed to be the update vector of maximum
norm among all possible update vectors, whereas this no longer holds true when (p, q)conf is
used and if z pq is close to 0 then there may exist another possibly more informative—from
the standpoint of convergence speed—update vector z p′q ′ for some (p′, q ′) �= (p, q).

3.6 UMA and kernels

Thus far, we have only considered the situation where linear classifiers are learned. There are
however many learning problems that cannot be handled effectively without going beyond
linear classification. A popular strategy to deal with such a situation is obviously to make use
of kernels (Schölkopf and Smola 2002). In this direction, there are (at least) two paths that can
be taken. The first one is to revisit UMA and provide a kernelized algorithm based on a dual
representation of the weight vectors, as is done with the kernel Perceptron (see Cristianini and
Shawe-Taylor 2000) or its close cousins (see, e.g. Friess et al. 1998; Dekel et al. 2005; Freund
and Schapire 1999). Doing so would entail the question of finding sparse expansions of the
weight vectors with respect to the training data in order to contain the prediction time and to
derive generalization guarantees based on such sparsity: this is an interesting and ambitious
research program on its own. A second strategy, which we make use of in the numerical
simulations, is simply to build upon the idea of Kernel Projection Machines (Blanchard and
Zwald 2008; Takerkart and Ralaivola 2011): first, perform a Kernel Principal Component
Analysis (shorthanded as kernel-PCA afterwards) with D principal axes, second, project
the data onto the principal D-dimensional subspace and, finally, run UMA on the obtained
data. The availability of numerous methods to efficiently extract the principal subspaces (or
approximation thereof) (Bach and Jordan 2002; Drineas et al. 2006; Drineas and Mahoney
2005; Stempfel and Ralaivola 2007; Williams and Seeger 2000) makes this path a viable
strategy to render UMA usable for nonlinearly separable concepts. This explains why we
decided to use this strategy in the present paper.

4 Experiments

In this section, we present results from numerical simulations of our approach and we dis-
cuss different practical aspects of UMA. The ultraconservative step sizes retained are those
corresponding to a regular Perceptron: τp = −1 and τq = +1, the other values of τr being
equal to 0.

Section 4.1 discusses robustness results, based on simulations conducted on synthetic
data while Section 4.2 takes it a step further and evaluates our algorithm on real data, with a
realistic noise process related to Example 1 (cf. Sect. 1).

We essentially use what we call the confusion rate as a performance measure, which is:

1√
Q
‖̂C‖F

Where ‖̂C‖F is the Frobenius norm of the confusion matrix ̂C computed on a test set Stest

(independent from the training set), i.e.:
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Fig. 1 a Evolution of the confusion rate (y-axis) for different noise levels (x-axis); b evolution of the same
quantity with respect to errors in the confusion matrix C (x-axis) measured by the approximation factor (see
text)

‖̂C‖2F =
∑

i, j

̂C2
i j , with ̂C pq

.=
⎧

⎨

⎩

0 if p = q,
∑

xi∈Stest
I{ŷi = p and ti = q}

∑

xi∈Stest
I{ti = q} otherwise,

with ŷi the label predicted for the test instance xi by the learned predictor. ̂C is much akin
to a recall matrix, and the 1/

√
Q factor ensure that the confusion rate is comprised within 0

and 1.

4.1 Toy dataset

We use a 10-class dataset with a total of roughly 1000 2-dimensional examples uniformly
distributed according to U , which is the uniform distribution over the unit circle centered at the
origin. Labelling is achieved according to (1) given a set of 10 weight vectors w1, . . . ,w10,
which are also randomly generated according to U ; all these weight vectors have therefore
norm 1. A margin θ = 0.025 is enforced in the generated data by removing examples that are
too close to the decision boundaries—practically, with this value of θ , the case where three
classes are so close to each other that no training example from one of the classes remained
after enforcing the margin never occurred.

The learned classifiers are tested against a dataset of 10,000 points that are distributed
according to the training distribution. The results reported in the tables and graphics are
averaged over 10 runs.

The noise is generated from the sole confusion matrix. This situation can be tough to
handle and is rarely met with real data but we stick with it as it is a good example of a
worst-case scenario.

Robustness to noise We first (Fig. 1a) evaluate the robustness to noise of UMA by running
our algorithm with various confusion matrices. We uniformly draw a reference nonnegative
square matrix M , the rows of M are then normalized, i.e. each entry of M is divided by the
sum of the elements of its row, so M is a stochastic matrix. If M is not invertible it is rejected
and we draw a new matrix until we have an invertible one. Then, we define N such that
N = (M − I )/10, where I is the identity matrix of order Q; typically N has nonpositive
diagonal entries and nonnegative off-diagonal coefficients. We will use N to parametrize a

123



Mach Learn (2015) 99:327–351 341

family of confusion matrices that have their most dominant coefficient to move from their
diagonal to their off-diagonal parts. Namely, we run UMA 20 times with confusion matrices
C ∈ {Ci

.= �(I + i N )}20
i=1, where � is a matrix operator which outputs a (row-)stochastic

matrix: when applied on matrix A, � replaces the negative elements of A by zeros and it
normalizes the rows of the obtained matrix; note that i = 10 corresponds to the case where
C = M . Equivalently, one can think of Ci as the weighted average between I and �(N )

where I has a constant weight of 1 and �(N ) is weighted by i . Note that, after some point,
further increasing i has little effect on Ci as it eventually converges to �(N ). Figure 1a
plots our results against the Frobenius norm of the diagonal-free confusion matrix C , that
is: ‖C − diag(C)‖F where diag(C) denotes the diagonal matrix with the same diagonal
values as C . For the sake of comparison, we also have run UMAwith a fixed confusion matrix
C = I on the same data. This amounts to running a Perceptron through the data multiple
times and it allows us to have a baseline for measuring the improvement induced by the use
of the confusion matrix.

Robustness to the incorrect estimation of the confusion matrix The second experiment
(Fig. 1b) evaluates the robustness of UMA to the use of a confusion matrix that is not exactly
the confusion matrix that describes the noise process corrupting the data; this will allow
us to measure the extent to which a confusion matrix (inaccurately) estimated from the
training data can be dealt with by UMA. Using the same notation as before, and the same
idea of generating a random stochastic reference matrix M , we proceed as follows: we
use the given matrix M to corrupt the noise-free dataset and then, each confusion matrix
from the family {Ci }20

i=1 is fed to UMA as if it were the confusion matrix governing the
noise process. We introduce the notion of approximation factor ρ as ρ(i)

.= 1 − i/10,
so that ρ takes values in the set {−1,−0.9, . . . , 0.9}. As reference, the limit case where
ρ = 1—that is, i = 0—corresponds to the case where UMA is fed with the identity matrix
I , effectively being oblivious of any noise in the training set. More generally, the values
of C are being shifted away from the diagonal as ρ decreases, the equilibrium point being
ρ = 0 where C is equal to the true confusion matrix M . Consequently, a positive (resp.
negative) approximation factor means that the noise is underestimated (resp. overestimated),
in the sense that the noise process described by C would corrupt a lower (resp. higher)
fraction of labels from each class than the true noise process applied on the training set,
and corresponding to M . Figure 1b plots the confusion rate against this approximation
factor.

On Fig. 1a we observe that UMA clearly provides improvement over the Perceptron algo-
rithm for every noise level tested, as it achieves lower confusion rates. Nonetheless, its
performance degrades as the noise level increases, going from a confusion rate of 0.5 for
small noise levels—that is, when ‖C − diag(C)‖F is small—to roughly 2.25 when the
noise is the strongest. Comparatively, the Perceptron algorithm follows the same trend, but
with higher confusion rate, ranging from 1.7 to 2.75.

The second simulation (Fig. 1b) points out that, in addition to being robust to the noise
process itself,UMA is also robust to underestimated (approximation factor ρ > 0) noise levels,
but not to overestimated (approximation factor ρ < 0) noise levels. Unsurprisingly, the best
confusion rate corresponds to an approximation factor of 0, which means that UMA is using
the true confusion matrix and can achieve a confusion rate as low as 1.8. There is a clear
gap between positive and negative approximation factors, the former yielding confusion
rates around 2.6 while the latter’s are slightly lower, around 2.15. From these observa-
tions, it is clear that the approximation factor has a major influence on the performances of
UMA.
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4.2 Real data

4.2.1 Experimental protocol

In addition to the results on synthetic data, we also perform simulations in a realistic learning
scenario. In this section we are going to assume that labelling examples is very expensive
and we implement the strategy evoked in Example 1. More precisely, for a given dataset S,
proceed as follows:

1. Ask for a small number m of examples for each of the Q classes.
2. Learn a rough classifier1 g from these Q × m points.
3. Estimate the confusion C of g on a small labelled subset Sconf of S.
4. Predict the missing labels y of S using g; thus, y is a sequence of noisy labels.
5. Learn the final classifier fUMA from S, y, C and measure its error rate.

One might wonder why we do not simply sample a very small portion of S in the first step.
The reason is that in the case of very uneven classes proportions some of the classes may
be missing in this first sampling. This is problematic when estimating C as it leads to a
non-invertible confusion matrix. Moreover, the purpose of g is only to provide a baseline for
the computation of y, hence tweaking the class (im)balance in this step is not a problem.

In order to put our results into perspective, we compare them with results obtained from
various algorithms. This allows us to give a precise idea of the benefits and limitations ofUMA.
Namely, we learn four additional classifiers: f y is a regular Perceptron learned on S labelled
with noisy labels y, fconf and ffull are trained with the correctly labelled training sets Sconf and
S respectively and, lastly, fS3VM is a classifier produced by a multiclass semi-supervised SVM
algorithm (S3VM, Bennett and Demiriz 1998) run on S where only the labels of Sconf are pro-
vided. The performances achieved by f y and ffull provide bounds forUMA’s error rates: on the
one hand, f y corresponds to a worst-case situation, as we simply ignore the confusion matrix
and use the regular Perceptron instead—arguably, UMA should perform better than this—; on
the other hand, ffull represents the best-case scenario for learning, when all the correct labels
are available—the performance of ffull should always top that of UMA (and the performances
of other classifiers). The last two classifiers, fconf and fS3VM, provide us with objective com-
parison measures. They are learned from the same data as UMA but use them differently:
fconf is learned from the reduced training set Sconf and fS3VM is output by a semi-supervised
learning strategy that infers both fS3VM and the missing labels of S and it totally ignores the
predictions y made by g. Note that according to the learning scenario we implement, we
assume C to be estimated from raw data. This might not always be the case with real-world
problems and C might be easier and/or less expensive to get than raw data; for instance, it
might be deduced from expert knowledge on the studied domain. In that case, fconf and fS3VM
may suffer from not taking full advantage of the accurate information about the confusion.

4.2.2 Datasets

Our simulations are conducted on three different datasets. Each one with different features.
For the sake of reproducibility, we used datasets that can be easily found on the UCI Machine
learning repository (Bache and Lichman 2013). Moreover, these datasets correspond to
tasks for which generating a complete, labelled, training set is typically costly because of

1 For the sake of self-containedness, we use UMA for this task (with C being the identity matrix). Remind
that, when used this way, UMA acts as a regular Perceptron algorithm

123



Mach Learn (2015) 99:327–351 343

1 2 3 4 5 6 7 8 9 10
0

200

400

600

Class

N
um

be
r 

of
 In

st
an

ce
s

(a)

5 10 15 20 25
0

200

400

600

800

Class

N
um

be
r 

of
 In

st
an

ce
s

(b)

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

Class

N
um

be
r 

of
 In

st
an

ce
s

(c)

Fig. 2 Class distribution for the three datasets. a Handwritten digits, b letter recognition, c reuters

the necessity of human supervision and subject to classification noise. The datasets used and
their main features are as follows.

Optical recognition of handwritten digits This well-known dataset is composed of 8 × 8
grey-level images of handwritten digits, ranging from 0 to 9. The dataset is composed of
3823 images of 64 features for training, and 1797 for the test phase. We set m to 10 for this
dataset, which means that g is learned from 100 examples only. Sconf is a sampling of 5 %
of S. The classes are evenly distributed (see Fig. 2a). We handle the nonlinearity through
the use of a Gaussian kernel-PCA (see Sect. 3.6) to project the data onto a feature space of
dimension 640.

Letter recognition The Letter Recognition dataset is another well-known pattern recognition
dataset. The images of the letters are summarized into a vector of 16 attributes, which cor-
respond to various primitives computed on the raw data. With 20,000 examples, this dataset
is much larger than the previous one. As for the handwritten digits dataset, the examples are
evenly spread across the 26 classes (see Fig. 2b). We uniformly select 15,000 examples for
training and the remaining 5000 are used for test. We set m to 50 as it seems that smaller
values do not yield usable confusion matrices. We again sample 5 % of the dataset to form
Sconf and use, as before, a Gaussian kernel-based Kernel-PCA to (nonlinearly) expand the
dimension of the data to 1600.

Reuters The Reuters dataset is a nearly linearly-separable document categorization dataset
of more than 300,000 instances of nearly 47,000 features each. For size reasons we restrict
ourselves to roughly 15,000 examples for training, and 15,000 other for test. It occurs that
some classes are so underrepresented that they are flooded by the noise process and/or do not
appear in Sconf, which may lead to a non-invertible confusion matrix. We therefore restrict
the dataset to the nine largest classes. One might wonder whether doing so erases class
imbalance. This is not the case as, even this way, the least represented class accounts for
roughly 500 examples while this number reaches nearly 4000 for the most represented one
(see Fig. 2c). Actually, these 9 classes represent more than 70 % of the dataset, reducing the
training and test sets to approximately 11,000 examples each. We do not use any kernel for
this dataset, the data being already near to linearly-separable. Also, we sample Sconf on 5 %
of the training set and we set m = 20.

4.2.3 Results

Table 1 presents the misclassification error rates averaged on 10 runs. Keep in mind that we
have not conducted a very thorough optimization of the hyper-parameters as the point here is
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Table 1 Misclassification rates of different algorithms

Dataset fy fconf ffull fS3VM UMA fS3VM (no K-PCA)

Handwritten digits 0.25 0.21 0.04 0.15 0.16 0.07
Letter recognition 0.35 0.36 0.23 0.49 0.33 0.18
Reuters 0.30 0.17 0.01 0.22 0.21 0.22

essentially to compare UMA with the other algorithms. Additionally, we also report the error
rates of fS3VM when trained on the kernelized data with all dimensions, that is the kernelized
data before we project them onto their D principal components. Because the projection step
is indeed unbecessary withS3VM, this will give us insights on the error due to the Kernel-PCA
step. Comparing the first and the last columns of Table 1, it appears that UMA always induces
a slight performance gain, i.e. a decrease of the misclassification rate, with respect to f y.

From the second and third columns of Table 1, it is clear that the reduced number of
examples available to fconf induces a drastic increase in the misclassification rate with respect
to ffull which is allowed to use the totality of the dataset during the training phase.

Comparing UMA and fconf in Table 1 (fifth and second columns), we observe that UMA
achieves lower misclassification rates on the Handwritten Digits and Letter Recognition
datasets but a higher misclassification rate on Reuters. Although this is likely related to the
strong class imbalance in the dataset. Indeed, some classes are overly represented, accounting
for the vast majority of the whole dataset (see Fig. 2c). Because Sconf is uniformly sampled
from the main dataset, fconf is trained with a lot of examples from the overrepresented classes
and therefore it is very effective, in the sense that it achieves a low misclassification rate, for
these overrepresented classes; this, in turn, induces a (global) low misclassification rate, as
possibly high misclassification rates on underrepresented classes are countervailed by theirs
accounting for a small portion of the data. On the other hand, because of this disparity in
class representation, the slightest error in the confusion matrix, granted it involves one of
these overrepresented classes, may lead to a significant increase of the misclassification rate.
In this regard, UMA is strongly disadvantaged with respect to fconf on the Reuters dataset and
it is the cause of the reported results.

The error rates for the S3VM and UMA classifiers are close for the Reuters and Handwritten
Digits datasets whereas UMA has a clear advantage on the Letter Recognition problem. On the
other hand, note that we used theS3VMmethod in conjunction with a Kernel-PCA for the sake
of comparison with UMA in its kernelized form. The last column of Table 1 tends to confirm
that this projection strategy increase the error rate of fS3VM. Also, reminds that the value of m
does not impact the performances of fS3VM but has a significant effect on UMA, even though
UMA never uses these labelled data. For instance, on the Reuters datasets, increasing m from
20 to 70 reduces UMA’s error rate by nearly 0.1 (see the error rates of Fig. 3 (m = 70) when
the size of labelled data is close to 550, that is 5 % of the whole dataset). Despite our efforts
to keep m as small as possible, we could not go under m = 50 for the Letter Recognition
dataset without compromising the invertibility of the confusion matrix. The simple fact that
an unusually high number of examples are required to simply learn a rough classifier asserts
the complexity of this dataset. Moreover, the fact that f y also outperforms fS3VM implies that
the labels fed to UMA are already mostly correct, and, according to our working assumptions,
this is the most favorable setting for UMA.

Nonetheless, the disparities between UMA and fconf deserve more attention. Indeed, the
same data are being used by both algorithms, and one could expect more closeness in the
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Fig. 3 Error rate of UMA and fconf with respect to the sampling size. Reuters dataset with m = 70 for the
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Fig. 4 Error rates for the reuter (left), optical digit recognition (center) and letter (right) datasets with respect
to the size of Sconf. Average over 15 runs

results. To get a better insight on what is occurring, we have reported the evolution of the
error rate of these two algorithms with respect to the sampling size of Sconf in Fig. 3. We
can see that UMA is unaffected by the size of the sample, essentially ignoring the possible
errors in the confusion matrix on small samples. This reinforces our previous results showing
that UMA is robust to errors in the confusion matrix. On the other hand, with the addition of
more samples, the refinement of the confusion matrix does not allow UMA to compete with
the value of additional (correctly) labelled data and eventually, when the size of Sconf grows,
fconf performs better than UMA. This points towards the idea that the aggregated nature of
the confusion matrix incurs some loss of relevant information for the classification task at
hand, and that a more accurate estimate of the confusion matrix, as induced by, e.g., the use
of larger Sconf, may not compensate for the information provided by additional raw data.

Building on this observation, we go a step further and replicate this experiment for all of
the three datasets; only this time we track the performances of fS3VM instead. The results are
plotted on Fig. 4. For the three datasets, we observe the same behavior as before. Namely,
UMA is able to maintain a low error rate even with a very small size of Sconf. On the other
hand, UMA does not benefit as much as other methods from a large pool of labelled examples.
In this case, UMA quickly stabilizes while, to the contrary, the S3VM method starts at a fairly
high error rate and keeps improving as more labelled examples are available.

Beyond this, it is important to recall that UMA never uses the labels of Sconf (those are only
used to estimate the confusion matrix, not the classifier—refer to Sect. 4.2.1 for the detailed
learning protocol). While refining the estimation of C is undoubtedly useful, a direction
toward substantial performance gains should revolve around the combination of both this
refined estimation of C and the use of the correctly labelled training set Sconf. This is a
research subject on its own that we leave for future work.
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Fig. 5 Error and confusion risk on reuters dataset with various update strategies

All in all, the reported results advise us to prefer UMA over other available methods when
the amount of labelled data is particularly small, in addition, obviously, to the motivating case
of the present work where the training data are corrupted and the confusion matrix is known.
Also, another interesting finding we get is that even a rough estimation of the confusion
matrix is sufficient for UMA to behave well.

Finally, we investigate the impact of the selection strategy of (p, q) on the convergence
speed of UMA (see Sect. 3.5). We use three variations of UMA with different strategies for
selecting (p, q) (error, confusion, and random) and monitor each one along the learning
process on the reuters dataset. The error and confusion strategies are described in Sect. 3.5
and the random strategy simply selects p and q at random.

From Fig. 5, which reports the misclassification rate and the confusion rate along the
iterations, we observe that both performance measures evolve similarly, attaining a stable state
around the 30th iteration. The best strategy depends on the performance measure used, even
though regardless of the performance measure used, we observe that the random selection
strategy leads to a predictor that does not achieve the best performance measure (there is
always a curve beneath that of the random selection procedure), which shows that it not an
optimal selection strategy.

As one might expect, the confusion-based strategy performs better than the error-based
strategy when the confusion rate is retained as a performance measure, while the con-
verse holds when using the error rate. This observation motivates us to thoroughly study
the confusion-based strategy in a near future as being able to propose methods robust to class
imbalance is a particularly interesting challenge of multiclass classification.

The plateau reached around the 30th iteration may be puzzling, since the studied dataset
presents no positive margin and convergence is therefore not guaranteed. One possible expla-
nation for this is to see the reuters dataset as linearly separable problem corrupted by the
effect of a noise process, which we call the intrinsic noise process that has structural features
‘compatible’ with the classification noise. By this, we mean that there must be features of
the intrinsic noise such that, when additional classification noise is added, the resulting noise
that characterizes the data is similar to a classification noise, or at least, to a noise that can be
naturally handled by UMA. Finding out the family of noise processes that can be combined
with the classification noise—or, more generally, the family of noise processes themselves—
without hindering the effectiveness of UMA is one research direction that we aim to explore
in a near future.
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5 Conclusion

In this paper, we have proposed a new algorithm, UMA—for Unconfused Multiclass Addi-
tive algorithm—to cope with noisy training examples in multiclass linear problems. As its
name indicates, it is a learning procedure that extends the (ultraconservative) additive mul-
ticlass algorithms proposed by Crammer and Singer (2003); to handle the noisy datasets, it
only requires the information about the confusion matrix that characterizes the mislabelling
process. This is, to the best of our knowledge, the first time the confusion matrix is used as
a way to handle noisy label in multiclass problems.

One of the core ideas behind UMA, namely, the computation of the update vector z pq , is
not tied to the additive update scheme. Thus, as long as the assumption of linear separability
holds, the very same idea can be used to render a wide variety of algorithms robust to noise by
iteratively generating a noise-free training set with the consecutive values of z pq . Although,
every computation of a new z pq requires learning a new classifier to start with. This may
eventually incur prohibitive computational costs when applied to batch methods (as opposed
to online methods) which are designed to process the entirety of the dataset at once.2

UMA takes advantage of the online scheme of additive algorithms and avoids this problem
completely. Moreover, additive algorithms are designed to directly handle multiclass problem
rather than having recourse to a bi-class mapping. The end-results of this are tightened
theoretical guarantees and a convergence rate that does not depend of Q, the number of
classes. Besides, UMA can be directly used with any additive algorithms, allowing to handle
noise with multiple methods without further computational burden.

While we provide sample complexity analysis, it should be noted that a tighter bound can
be derived with specific multiclass tools, such as the Natarajan’s dimension (see Daniely et al.
2011 for example), which allow to better specify the expressiveness of a multiclass classifier.
However, this is not the main focus of this paper and our results are based on simpler tools.

To complement this work, we want to investigate a way to properly tackle near-linear
problems (such as reuters). As for now the algorithm already does a very good jobs due to
its noise robustness. However more work has to be done to derive a proper way to handle
cases where a perfect classifier does not exist. We think there are great avenues for interesting
research in this domain with an algorithm like UMA and we are curious to see how this present
work may carry over to more general problems.
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Appendix: Double sample theorem

Proof (Proposition 3) For a fixed pair (p, q) ∈ Y2, we consider the family of functions

Fpq
.= { f : f (x)

.= 〈wq − w p, x
〉 : w p,wq ∈ Bd}

2 Nonetheless, from a purely theoretical point of view,UMAmakes at most O(1/θ2) mistakes (see proposition
4) and computing z pq can be done in O(n) time. Therefore, polynomial batch methods do not suffer much
from this as their overall execution time is still polynomial.
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where Bd is a d-dimensional unit ball. For each f ∈ Fpq define the corresponding “loss”
function

l f (x)
.= l( f (x))

.= 2− f (x).

Strictly speaking, l f (x) is not a loss as it does not take y into account, nonetheless it does
play the same role in the following proof than a regular loss in the regular double-sampling
proof. One way to think of it is as the loss of a problem for which we do not care about the
observed labels but instead we want to classify points into a predetermined class—in this
case q .

Clearly, Fpq is a subspace of affine functions, thus Pdim(Fpq) ≤ (d + 1), where
Pdim(Fpq) is the pseudo-dimension of Fpq . Additionally, l is Lipschitz in its first argument
with a Lipschitz factor of L

.= 1. Indeed ∀y, y1, y2,∈ Y : |l(y1, y)− l(y2, y)| = |y1 − y2|.
Let Dpq be any distribution over X × Y and T ∈ (X × Y)m such that T ∼ Dm

pq , then

define the empirical loss errl
T [ f ] .= 1

m

∑

xi∈T l(xi , yi ) and the expected loss errl
D[ f ] .=

ED [l(x, y)]
The goal here is to prove that

PT∼Dm
pq

(

sup
f ∈Fpq

|errl
D[ f ] − errl

T [ f ]| ≥ ε

)

∈ O
(

(

8

ε

)(d+1)

emε2/128

)

(21)

Proof (Proof of (21)) We start by noting that l(y1, y2) ∈ [0, 2] and then proceed with a
classic 4-step double sampling proof. Namely:

Symmetrization We introduce a ghost sample T ′ ∈ (X × Y)m , T ′ ∼ Dm
pq and show that for

f bad
T such that |errl

Dpq
[ f bad

T ] − errl
T [ f bad

T ]| ≥ ε then

PT ′|T
(∣

∣

∣errl
T ′ [ f bad

T ] − errl
Dpq
[ f bad

T ]
∣

∣

∣ ≤ ε

2

)

≥ 1

2
,

as long as mε2 ≥ 32.

It follows that

P(T,T ′)∼Dm
pq×Dm

pq

(

sup
f ∈Fpq

|errl
T [ f ] − errl

T ′ [ f ]| ≥
ε

2

)

≥ PT∼Dm
pq

(

|errl
T [ f bad

T ]−errl
Dpq
[ f bad

T ]| ≥ ε
)

×PT ′|T
(∣

∣

∣errl
T ′ [ f bad

T ]−errl
Dpq
[ f bad

T ]
∣

∣

∣ ≤ ε

2

)

≥ 1

2
PT∼Dm

pq

(

|errl
T [ f bad

T ] − errl
Dpq
[ f bad

T ]| ≥ ε
)

= 1

2
PT∼Dm

pq

(

sup
f ∈Fpq

|errl
T [ f ] − errl

Dpq
[ f ]| ≥ ε

)

By definition of f bad
T

Thus upper bounding the desired probability by

2× P(T,T ′)∼Dm
pq×Dm

pq

(

sup
f ∈Fpq

|errl
T [ f ] − errl

T ′ [ f ]| ≥
ε

2

)

(22)

Swapping permutations Let define �m the set of all permutations that swap one or more
elements of T with the corresponding element of T ′ (i.e. the i th element of T is swapped
with the i th element of T ′). It is quite immediate that |�m | = 2m . For each permutation
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σ ∈ �m we note σ(T ) (resp. σ(T ′)) the set originating from T (resp. T ′) from which the
elements have been swapped with T ′ (resp. T ) according to σ .

Thanks to �m we will be able to provide an upper bound on (22). Our starting point is that
(T, T ′) ∼ Dm

pq×Dm
pq then for anyσ ∈ �m , the random variable sup f ∈Fpq

|errl
T [ f ]−errl

T ′ [ f ]|
follows the same distribution as sup f ∈Fpq

|errl
σ(T )[ f ] − errl

σ(T ′)[ f ]|.
Therefore:

P(T,T ′)∼Dm
pq×Dm

pq

(

sup
f ∈Fpq

|errl
T [ f ] − errl

T ′ [ f ]| ≥
ε

2

)

= 1

2m

∑

σ∈�m

PT,T ′∼Dm
pq×Dm

pq

(

sup
f ∈Fpq

|errl
σ(T )[ f ] − errl

σ(T ′)[ f ]| ≥
ε

2

)

= E(T,T ′)∼Dm
pq×Dm

pq

⎡

⎣

1

2m

∑

σ∈�m

I

{

sup
f ∈Fpq

|errl
σ(T )[ f ] − errl

σ(T ′)[ f ]| ≥
ε

2

}

⎤

⎦

≤ sup
(T,T ′)∈(X×Y)2m

[

Pσ∈�m

(

sup
f ∈Fpq

|errl
σ(T )[ f ] − errl

σ(T ′)[ f ]| ≥
ε

2

)]

, (23)

which concludes the second step.
Reduction to a finite class The idea is to reduce Fpq in (23) to a finite class of functions.

For the sake of conciseness, we will not enter into the details of the theory of covering
numbers. Please refer to the corresponding literature for further details (e.g. Devroye et al.
1996).

In the following, N (ε/8, Fpq , 2m) will denote the uniform ε/8convering number of Fpq

over a sample of size 2m.
Let define Gpq ⊂ Fpq such that (lGpq )|(T,T ′) is an ε/8-cover of (lFpq )|(T,T ′). Thus, |Gpq | ≤

N (ε/8, lFpq , 2m) < ∞ Therefore, if ∃ f ∈ Fpq such that |errl
σ(T )[ f ] − errl

σ(T ′)[ f ]| ≥ ε
2

then, ∃g ∈ Gpq such that |errl
σ(T )[g] − errl

σ(T ′)[g]| ≥ ε
4 and the following comes naturally

Pσ∈�m

(

sup
f ∈Fpq

|errl
σ(T )[ f ] − errl

σ(T ′)[ f ]| ≥
ε

2

)

(union bound)

≤ Pσ∈�m

(

max
g∈Gpq

|errl
σ(T )[g] − errl

σ(T ′)[g]| ≥
ε

4

)

≤ N (ε/8, lFpq , 2m) max
g∈Gpq

Pσ∈�m

(

|errl
σ(T )[g] − errl

σ(T ′)[g]| ≥
ε

8

)

Hoeffding’s inequality Finally, consider |errl
σ(T )[g] − errl

σ(T ′)[g]| as the average of m real-
izations of the same random variable, with expectation equal to 0. Then by Hoeffding’s
inequality we have that3

Pσ∈�m

(

|errl
σ(T )[g] − errl

σ(T ′)[g]| ≥
ε

4

)

≤ 2e−mε2/128 (24)

Putting everything together yields the result w.r.t. N (ε/8, lFpq , 2m) for mε2 ≥ 32. For
mε2 < 32 it holds trivially.

3 Note that in some references the right-hand side of (24) might viewed as a probability measure over m
independent Rademacher variables.
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Recall that lFpq is Lipschitz in its first argument with a Lipschitz constant L = 1 thus

N (ε/8, lFpq , 2m) ≤ N (ε/8, Fpq , 2m) = O
(

( 8
ε

)Pdim(Fpq )
)

The last part of the proof comes from the observation that, for any fixed (p, q), we had
never used any other specific information about Fpq other than the upper bound of d + 1
over its pseudo dimension. In other words, Eq. (21) holds for slightly modified definition of
Fpq as long as the pseudo dimension does not exceed d + 1.

Let us now consider:

F̂pq
.= { f : f (x)

.= I{t (x) = q}I
{

x ∈ Aα
p

}

〈

w p − wq , x
〉 : w p,wq ∈ Bd}

Clearly for each function in F̂pq there is at most one corresponding affine function, thus

F̂pq and Fpq share the same upper bound of d + 1 on their pseudo-dimension.

Consequently, any covering number of Fpq is also a covering number of F̂pq . More
precisely, this proof holds true for any w p and wq , independently of Aα

p which may itself be
defined with respect to w p and wq .

It comes naturally that, fixing S as the training set, the following holds true:

1

m

∑

m

I{t (x) = q}I
{

x ∈ Aα
p

}

x = z pq .

Thus
∣

∣

∣errl
T [ f ] − errl

D[ f ]
∣

∣

∣ =
∣

∣

∣

∣

〈

w p − wq

‖w p − wq‖ , z pq

〉

−
〈

w p − wq

‖w p − wq‖ , μ
q
p

〉∣

∣

∣

∣

.

We can generalize this result for any couple (p, q) by a simple union bound, giving the
desired inequality:

P(X×Y)∼D

(

sup
W∈Rd×Q

∣

∣

∣

∣

〈

w p − wq

‖w p − wq‖ , z pq

〉

−
〈

w p − wq

‖w p − wq‖ , μ
q
p

〉∣

∣

∣

∣

≥ ε

)

≤ O
(

Q2
(

8

ε

)(n+1)

emε2/128

)

Equivalently, we have that
∣

∣

∣

∣

〈

w p − wq

‖w p − wq‖ , z pq

〉

−
〈

w p − wq

‖w p − wq‖ , μ
q
p

〉∣

∣

∣

∣

≥ ε

with probability 1− δ for

m ∈ O
(

1

ε2

[

ln

(

1

δ

)

+ ln(Q)+ d ln

(

1

ε

)])

.
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