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Precision herbicide application can substantially reduce herbicide input and weed control cost 
in turfgrass management systems. Intelligent spot-spraying system predominantly relies on 
machine vision-based detectors for autonomous weed control. In this work, several deep 
convolutional neural networks (DCNN) were constructed for detection of dandelion (Taraxacum 
officinale Web.), ground ivy (Glechoma hederacea L.), and spotted spurge (Euphorbia maculata 
L.) growing in perennial ryegrass. When the networks were trained using a dataset containing 
a total of 15,486 negative (images contained perennial ryegrass with no target weeds) and 
17,600 positive images (images contained target weeds), VGGNet achieved high F1 scores 
(≥0.9278), with high recall values (≥0.9952) for detection of E. maculata, G. hederacea, and 
T. officinale growing in perennial ryegrass. The F1 scores of AlexNet ranged from 0.8437 to 
0.9418 and were generally lower than VGGNet at detecting E. maculata, G. hederacea, and 
T. officinale. GoogleNet is not an effective DCNN at detecting these weed species mainly 
due to the low precision values. DetectNet is an effective DCNN and achieved high F1 scores 
(≥0.9843) in the testing datasets for detection of T. officinale growing in perennial ryegrass. 
Moreover, VGGNet had the highest Matthews correlation coefficient (MCC) values, while 
GoogleNet had the lowest MCC values. Overall, the approach of training DCNN, particularly 
VGGNet and DetectNet, presents a clear path toward developing a machine vision-based 
decision system in smart sprayers for precision weed control in perennial ryegrass.

Keywords: artificial intelligence, machine vision, machine learning, precision herbicide application, weed control

INTRODUCTION
Turfgrasses are the predominant vegetation cover in urban landscapes including golf courses, 
institutional and residential lawns, parks, roadsides, and sport fields (Milesi et al., 2005). Weed 
control is one of the most challenging issues for turfgrass management. Weeds compete with 
turfgrass for nutrient, sunlight, and water, and disrupt turfgrass aesthetics and functionality. Cultural 
practices, such as appropriate fertilization, irrigation, and mowing, can reduce weed infestation 
(Busey, 2003), but herbicides often provide the most effective weed control (McElroy and Martins, 
2013). Conventional herbicide-based weed control relies on broadcast application, spraying weed 
patches and pure turfgrass stands indiscriminately. Manual spot-spraying is time-consuming and 
expensive but practiced commonly to reduce herbicide input and weed control cost.
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Deep learning is a category of machine learning that allows 
a computer algorithm to learn and understand a dataset in 
terms of a hierarchy of concepts (Deng et al., 2009; LeCun et al., 
2015). In recent years, deep learning has emerged as an effective 
application in various scientific domains, including computer 
vision (LeCun et al., 2015; Kendall and Gal, 2017; Gu et al., 
2018), natural language processing (Collobert and Weston, 
2008; Collobert et al., 2011), and speech recognition (Hinton 
et al., 2012; LeCun et al., 2015). Deep learning has proven to be 
a promising method in computer-assisted drug discovery and 
design (Gawehn et al., 2016), sentiment analysis and question 
answering (Ye et al., 2009; Bordes et al., 2014), predicting 
sequence specificities of DNA- and RNA-binding proteins 
(Alipanahi et al., 2015), and performing automatic brain tumor 
detection (Havaei et al., 2017).

Deep convolutional neural networks (DCNN) have an 
extraordinary ability to extract complex features from images 
(LeCun et al., 2015; Schmidhuber, 2015; Ghosal et al., 2018). It 
has been widely employed as a powerful tool to classify images 
and detect objects (LeCun et al., 2015). In the 2012 ImageNet 
competition, a DCNN effectively classified a 1000 class dataset 
containing approximately a million high resolution images 
(Krizhevsky et al., 2012). In recent years, a growing number 
of companies such as Apple, Intel, Nvidia, and Tencent utilize 
DCNN-based machine vision in facial recognition (Song et al., 
2014; Parkhi et al., 2015), self-driving cars (LeCun et al., 2015; 
Jordan and Mitchell, 2015), real-time smart phone vision 
applications (Ronao and Cho, 2016), and target identification for 
robot grasping (Wang et al., 2016).

In agriculture, DCNN reliably detected various ecological 
crop stresses (Ghosal et al., 2018). For example, Mohanty 
et al. (2016) presented a DCNN that identified 14 crop species 
and 26 diseases with an overall accuracy of >99%. Moreover, 
DCNN-based machine vision can identify plants. For example, 
Grinblat et al. (2016) presented a DCNN that can reliably 
identify three legume species using plant vein morphological 
patterns, while dos Santos Ferreira et al. (2017) presented a 
DCNN that identified various broadleaf and grassy weeds in 
relation to soybean (Glycine max L. Merr.) and soil, with an 
overall accuracy of >99%. Recently, Teimouri et al. (2018) 
presented a method of automatically determining 18 weed 
species and their growth stages. Accurate image classification 
and object detection along with the fast image processing 
are of paramount importance for real-time weed detection 
and precision herbicide application (Fennimore et al., 2016). 
Previous researchers noted that training a DCNN takes several 
hours with a high-performance graphic processor unit (GPU), 
while the image classification itself is fast (<1 second per 
image) (Mohanty et al., 2016; Chen et al., 2017; Sharpe et al. 
2019; Yu et al., 2019a).

In this work, four DCNN architectures, including i) AlexNet 
(Krizhevsky et al., 2012), ii) DetectNet (Tao et al., 2016), iii) 
GoogleNet (Szegedy et al., 2015), and iv) VGG-16 (VGGNet) 
(Simonyan and Zisserman, 2014) were explored for weed 
detection in a cool-season turfgrass perennial ryegrass (Lolium 
perenne L.). DetectNet is an object detection DCNN (Tao et al., 
2016), while AlexNet, GoogleNet, and VGGNet are image 

classification DCNNs (Krizhevsky et al., 2012; Simonyan and 
Zisserman, 2014; Szegedy et al., 2015). In previous works, Yu 
et al. (2019b) documented that DetectNet was highly effective 
in detecting annual bluegrass (Poa annua L.) and various 
broadleaf weeds in dormant bermudagrass [Cynodon dactylon 
(L.) Pers.], while VGGNet was highly effective in detecting dollar 
weed (Hydrocotyle spp.), old world diamond-flower (Hedyotis 
cormybosa L. Lam), and Florida pusley (Richardia scabra L.) 
in actively growing bermudagrass. Similarly, Yu et al. (2019a) 
reported that DetectNet reliably detected cutleaf evening-
primrose (Oenothera laciniata Hill) in bahiagrass (Paspalum 
notatum Flugge) with overall accuracy >0.99 and recall value of 
1.00. However, weed detection in cool-season turfgrass systems 
with these DCNNs has never been previously reported.

Dandelion (Taraxacum officinale Web.), ground ivy (Glechoma 
hederacea L.), and spotted spurge (Euphorbia maculata L.) are 
distributed throughout the continental United States (USDA-
NRCS 2018). These weed species are commonly found in various 
cool-season turfgrasses. Herbicides, such as 2,4-D, dicamba, 
MCPP, triclopyr, and sulfentrazone are broadcast-applied in 
cool-season turfgrasses for POST control of various broadleaf 
weeds (McElroy and Martins, 2013; Reed et al., 2013; Johnston 
et al., 2016; Yu and McCullough, 2016a; Yu and McCullough, 
2016b). Precision herbicide application using machine-vision 
based sprayers will substantially reduce herbicide input and weed 
control costs. The objective of this research was to examine the 
feasibility of using DCNN for detection of broadleaf weeds in 
perennial ryegrass.

MaTeRIaLs aND MeThODs

Image acquisition
Images of E. maculata, G. hederacea, and T. officinale growing 
in perennial ryegrass, acquired at multiple golf courses and 
institutional lawns in Indianapolis, Indiana, United States (39.76 
°N, 86.15 ° W), were used in the training datasets. Images of E. 
maculata, G. hederacea, and T. officinale, acquired at multiple 
institutional lawns and golf courses in Carmel, Indiana, United 
States (39.97° N, 86.11° W), were used in the testing dataset 
1 (TD 1). Images of E. maculata and G. hederacea, acquired 
at multiple institutional lawns, roadsides, and parks in West 
Lafayette, Indiana, United States (40.42° N, 86.90° W) were 
used in the testing dataset 2 (TD 2). Images of T. officinale taken 
at multiple institutional and residential lawns at Saskatoon, 
Saskatchewan, Canada (52.13° N, 106.67° W) were included 
in TD 2. The images acquired in Indiana and Saskatchewan 
were taken using a Sony® Cyber-Shot (SONY Corporation, 
Minato, Tokyo, Japan) and a Canon® EOS Rebel T6 digital 
camera (Ohta-ku, Canon Inc., Tokyo, Japan), respectively, at 
a resolution of 1920 × 1080 pixels. The camera heights were 
adjusted to a ground-sampling distance of 0.05 cm pixel-1 
during image acquisition. The images were acquired during the 
daytime from 9:00 AM to 5:00 PM and under various sunlight 
conditions including clear, partly cloudy, or cloudy days. The 
training and testing images were acquired at multiple times 
between August and September 2018.
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Training and Testing
For training and testing image classification DCNN, images were 
cropped into 426 × 240 pixels using Irfanview (Version 5.50, 
Irfan Skijan, Jaice, Bosnia). The images containing a single weed 
species were selected for training and testing image classification 
DCNN. The neural networks were trained using the training 
dataset containing either a single weed species (single-species 
neural network) or multiple weed species (multiple-species neural 
network). For training single-species neural networks, the E. 
maculata training dataset contained 6,180 negative images (images 
containing perennial ryegrass without target weeds) and 6,500 
positive images (images containing perennial ryegrass infested 
with target weeds); the G. hederacea training dataset contained 
4,470 negative and 4,600 positive images; and the T. officinale 
training dataset contained 4,836 negative and 6,500 positive 
images. The above training datasets were used to train DCNN for 
detecting a single weed species growing in perennial ryegrass. For 
each weed species, a total of 630 negative and 630 positive images 
were used for validation dataset (VD), TD 1, and TD 2.

The multiple-species neural networks were trained because we 
were interested to evaluate the feasibility of using a single image 
classification DCNN to detect multiple weed species growing in 
perennial ryegrass. We trained AlexNet, GoogLeNet, and VGGNet 
using two training datasets (A and B). Training dataset A was a 
balanced dataset that contained 19,500 negative and 19,500 positive 
images (6,500 images per weed species). Training dataset B was an 
unbalanced dataset containing a total of 15,486 negative and 17,600 
positive images (6,500 images for E. maculata; 4,600 images for G. 
hederacea; and 6,500 images for T. officinale). A total of 900 negative 
and 900 positive images (300 images for each weed species) were 
used for VD. The TD 1 and TD 2 for the multiple-species neural 
networks contained 630 negative and 630 positive images.

When training object detection DCNN, images were resized 
to 1280 × 720 pixels (720 p) using Irfanview. A total of 810 images 
containing T. officinale while growing in perennial ryegrass were 
used for training DetectNet. Training images were imported into 
custom software compiled using Lazarus (http://www.lazarus-ide.
org/). Bounding boxes were drawn on imported images to identify 
objects. Program output generated corresponding text files used for 
DetectNet training. A total of 100 images containing T. officinale 
while growing in perennial ryegrass were used in the VD, TD 1 or 
TD 2. For detection of T. officinale, the images of VD, TD 1, and TD 2 
contained a total of 630, 446, and 157 individual weeds, respectively.

Neural network training and testing were performed in 
the NVIDIA Deep Learning GPU Training System (DIGITS) 
(version 6.0.0, NVIDIA Corporation, Santa Clara, CA) using the 
Convolutional Architecture for Fast Feature Embedding (Caffe) 
(Jia et al., 2014). Networks were pre-trained using the ImageNet 
database (Deng et al., 2009) and KITTI dataset (Geiger et al., 
2013). The following hyper-parameters were standardized to 
compare the results of all DCNN.

• Base learning rate: 0.03
• Batch accumulation: 5
• Batch size: 2
• Gamma: 0.95
• Learning rate policy: Exponential decay

• Solver type: AdaDelta
• Training epochs: 30

The results of validation and testing for all DCNN were arranged 
in binary confusion matrixes, including true positive (tp), true 
negative (tn), false positive (fp), and false negative (fn) (Sokolova 
and Lapalme, 2009). In this context, tp represents the images 
containing target weeds that are correctly identified; tn represents 
the images containing turfgrasses without target weeds that are 
correctly identified; fp represents the images without target weeds 
that are incorrectly identified as target weeds; and fn represents 
the images containing target weeds incorrectly not identified 
as turfgrasses. We computed the precision (Equation 1), recall 
(Equation 2), F1 score (Equation 3), and Matthews correlation 
coefficient (MCC) (Equation 4) for each DCNN. The precision, 
recall, and F1 score values are unitless indices of predictive ability 
and ranged from 0 to 1. The higher the value is, the better is the 
predictive ability of the network. The high precision indicates that 
the neural network achieved high successful rate of detection for 
the turfgrass area where weeds do not occur, while the high recall 
indicates that the neural network realized high successful rate of 
detection for the target weeds. MCC is a correlation coefficient 
between the observed and predicted binary classifications. MCC 
ranges from -1 to +1. An MCC value of -1 represents the total 
discrepancy between observation and prediction, 0 indicates no 
better than a random prediction, and +1 represents a prefect 
prediction (Matthews, 1975).

Precision measures the ability of the neural network to 
accurately identify targets, which was calculated using the 
following equation (Sokolova and Lapalme, 2009):

 
Precision =

+
tp

tp fp  (1)

Recall measures the ability of the neural network to detect 
its target, which was calculated using the following equation 
(Sokolova and Lapalme, 2009; Hoiem et al., 2012):

 
Recall =

+
tp

tp fn
 (2)

F1 score is a harmonic means of the precision and recall 
(Sokolova and Lapalme, 2009) calculated by the following 
equation:

 
F Precision Recall

Precision Recall
1 2Score = × ×

+
 (3)

MCC measures the quality of binary classifications, 
particularly the correlation between the actual class labels and 
predictions, which was determined by the following equation 
(Matthews, 1975).

 
MCC = × ×

+ × + × + × +
tp tn fp fn

( ) ( ) ( ) ( )tp fp tp fn tn fp tn fn
 (4)
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ResULTs aND DIsCUssION
When single-species neural networks were trained for detection 
of E. maculata, AlexNet and VGGNet exhibited higher precision, 
recall, F1 score, and MCC values compared to GoogleNet 
(Table 1). AlexNet achieved slightly higher F1 score than VGGNet, 
primarily due to higher precision. For detection of G. hederacea, 
AlexNet and VGGNet exhibited excellent performances and 
achieved high F1 score values (≥0.9906) for VD, TD 1, and TD 
2. AlexNet and VGGNet exhibited high F1 scores (≥0.9115) and 
recall values (≥0.9952) at detecting T. officinale for VD and TD 1, 
but the recall values decreased to 0.6032 and 0.9603, respectively 
for TD 2. Among the neural networks, GoogleNet consistently 
exhibited the lowest MCC values, indicating the poor predictions 
for the actual class labels. The poor performance of GoogleNet 
was primarily due to the low precision (≤0.7464). DetectNet 
achieved high F1 scores (≥0.9933) and reliably detected T. 
officinale for VD, TD 1, and TD 2.

The capability of multiple-species neural networks to 
simultaneously detect multiple weed species was evaluated using 
the VD (contained three weed species per dataset) (Table 2). 
VGGNet exhibited the highest MCC values (≥0.9640), while 
GoogleNet exhibited the lowest MCC values (≤0.2718). AlexNet 
and VGGNet achieved high F1 scores (≥0.9395), with high recall 
values (≥0.9822) at detecting these weeds. AlexNet and VGGNet 
exhibited higher precision but lower recall values when trained 
using the training dataset A than the training dataset B. AlexNet 
and VGGNet out-performed GoogleNet. GoogleNet was not 
effective in detecting selected weeds, with the F1 score values of 
0.6894 and 0.7006 when trained using the training dataset A and 
B, respectively.

The capability of multiple-species neural networks to detect 
these weed species was further evaluated using TD 1 and TD 
2 (contained only a single weed species per dataset) (Table 3). 
When the AlexNet was trained using the training dataset A, it 
performed similarly to when trained using the training dataset 
B. AlexNet demonstrated high recall (≥0.9619) but relatively low 
precision (≤0.7412) for detection of E. maculata and T. officinale 
in the TD 1 and T. officinale in the TD 2, which reduced the F1 
score values. The MCC value of GoogleNet was the lowest, while 
the MCC value of VGGNet was the highest among the multiple-
species neural networks for both training datasets.

When the neural networks were trained for detecting multiple 
weed species, VGGNet exhibited excellent performances in 
detecting E. maculata and G. hederacea and achieved high F1 
scores (≥0.9345) and recall values (≥0.9968) in the TD 1 and 
TD 2. However, for detection of T. officinale, VGGNet trained 
using the training dataset B exhibited considerably higher recall 
and F1 score values than when trained using the training dataset 
A. GoogLeNet was ineffective at detecting these weed species, 
primarily due to the low precision values.

Both image classification and object detection DCNN can 
be used in the machine vision sub-system of smart sprayers 
but each approach has pros and cons. Compared to the object 
detection DCNN, the training of the image classification DCNN 
takes less time because it does not involve the drawing of 
bounding boxes. The herbicide application of DetectNet-based Ta
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smart sprayers can target individual weeds as objects using the 
narrow spray pattern nozzles, while this is less feasible with the 
image classification DCNN.

Except for T. officinale, selected DCNN produced consistent 
results for weed detection, even across different geographical 
regions. When single-species neural networks were trained, 

AlexNet and VGGNet exhibited excellent precision and recall at 
detecting T. officinale in the TD 1, but the recall values decreased 
in the TD 2. The reduction in recall value suggests that the 
network is more likely to misclassify target weeds as turfgrass. 
This is undesirable in field applications as weeds would be missed, 
inadequate herbicide applied, and thus result in poor weed 
control. The cause is unknown, but we hypothesized that it was 
likely due to the variations in the morphological characteristics of 
T. officinale between the training and testing images. Fortunately, 
this problem has been overcome by training the multiple-species 
neural networks, particularly the VGGNet.

DetectNet exhibited excellent performances at detecting T. 
officinale across different growth stages and densities (Figures 
1A–E). Several images used for model testing in TD 1 had high 
weed densities. The bounding boxes generated by DetectNet 
failed to cover every single leaf of the target weeds when the 
testing images containing high weed densities (Figure 1E), which 
reduced the recall values. However, this is unlikely to be an issue 
in field applications because the great majority of weeds per image 
are detected. The few undetected leaves would likely fall into the 
spray zone if the herbicides are delivered using flat fan nozzles. In 
addition, several testing images in TD 2 contained smooth crabgrass 
[Digitaria ischaemum (Schreb.) Muhl]. In a few cases, DetectNet 
incorrectly detected the smooth crabgrass as the T. officinale (Figure 
1B), which reduced precision. Increasing the number of training 
images containing crabgrass growing with T. officinale may remove 
this effect and increase the precision and overall accuracy. In 

TaBLe 3 | Testing results of multiple-species neural networks for detection of weeds while growing in perennial ryegrass.a

Training 
dataset

Multiple-
species neural 
network

Weed species TD 1 TD 2

Precision Recall F1 score MCC Precision Recall F1 score MCC

Ab AlexNet Euphorbia maculata 0.7412 1.0000 0.8514 0.6945 0.8666 1.0000 0.9285 0.8562
Glechoma hederacea 0.7305 0.9984 0.8437 0.6773 0.8355 1.0000 0.9104 0.8192
Taraxacum officinale 0.8990 0.9889 0.9418 0.8822 0.8359 0.9619 0.8945 0.7820

GoogleNet Euphorbia maculata 0.5036 1.0000 0.6699 0.6699 0.5040 1.0000 0.6702 0.0894
Glechoma hederacea 0.4874 0.9222 0.6378 -0.1054 0.5025 0.9508 0.6575 0.0211
Taraxacum officinale 0.5024 0.9952 0.6677 0.0490 0.5479 0.9984 0.7075 0.3068

VGGNet Euphorbia maculata 0.9781 0.9937 0.9858 0.9716 0.9890 0.9968 0.9929 0.9857
Glechoma hederacea 0.9844 1.0000 0.9921 0.9843 0.9692 1.0000 0.9844 0.9687
Taraxacum officinale 0.9825 0.9794 0.9809 0.9619 1.0000 0.8048 0.8918 0.8206

Bc AlexNet Euphorbia maculata 0.7560 0.9984 0.8605 0.7139 0.8279 1.0000 0.9058 0.8098
Glechoma hederacea 0.8364 0.9984 0.9103 0.8187 0.8225 1.0000 0.9026 0.8031
Taraxacum officinale 0.7962 0.9984 0.8859 0.7680 0.7714 0.9857 0.8655 0.7221

GoogleNet Euphorbia maculata 0.5348 1.0000 0.6969 0.2638 0.5237 0.9651 0.6790 0.1622
Glechoma hederacea 0.5194 1.0000 0.6837 0.1968 0.5488 1.0000 0.7087 0.3123
Taraxacum officinale 0.5674 0.9889 0.7211 0.3509 0.4703 0.7794 0.5866 -0.1306

VGGNet Euphorbia maculata 0.8796 0.9968 0.9345 0.8681 0.9445 1.0000 0.9715 0.9429
Glechoma hederacea 0.8974 1.0000 0.9459 0.8916 0.8886 1.0000 0.9410 0.8816
Taraxacum officinale 0.8654 1.0000 0.9278 0.8549 0.9984 0.9952 0.9968 0.9937

aMultiple-species neural network was trained using the training dataset containing multiple weed species. TD 1 or TD 2 contained 630 negative and 630 positive images.
bTraining dataset A contained a total of 19,500 negative and 19,500 positive images (6,500 images for each weed species).
cTraining dataset B contained a total of 15,486 negative and 17,600 positive images (6,500 images for E. maculata, 4,600 images for G. hederacea, and 6,500 
images for T. officinale).
TD 1, testing dataset 1; TD 2, testing dataset 2; MCC, Matthews correlation coefficient.

TaBLe 2 | Validation results of multiple-species neural networks for detection of 
weeds while growing in perennial ryegrass.a

Training 
dataset

Multiple-
species 
neural 
network

Precision Recall F1 score MCC

Ab AlexNet 0.9824 0.9900 0.9862 0.9723
GoogleNet 0.5288 0.9900 0.6894 0.2204
VGGNet 0.9944 0.9822 0.9883 0.9767

Bc AlexNet 0.8858 1.0000 0.9395 0.8784
GoogleNet 0.5427 0.9878 0.7006 0.2718
VGGNet 0.9646 1.0000 0.9820 0.9640

aMultiple-species neural network was trained using the training dataset 
containing multiple weed species. The validation dataset contained a total of 900 
negative and 900 positive images (300 images for each weed species).
bTraining dataset A contained a total of 19,500 negative and 19,500 positive 
(6,500 images for each weed species) images.
cTraining dataset B contained a total of 15,486 negative and 17,600 positive 
images (6,500 images for Euphorbia maculata; 4,600 images for Glechoma 
hederacea; and 6,500 images for Taraxacum officinale).
MCC, Matthews correlation coefficient.
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previous research, DetectNet trained to detect Carolina geranium 
(Geranium carolinianum L.) in plastic-mulched strawberry crops 
was successfully desensitized to black medic (Medicago lupulina L.) 
leaves in a similar circumstance (Sharpe et al., 2018).

In the present study, we evaluated the effectiveness of using a 
single DCNN to detect multiple weed species growing in perennial 
ryegrass. Simultaneous detection of multiple weed species is of 
paramount importance for precision herbicide application because 

FIgURe 1 | DetectNet-generated bounding boxes (predictions) generated on the testing images (input images) of Taraxacum officinale while growing in perennial 
ryegrass. (a) The DetectNet detected T. officinale at mature and seedling growth stages, respectively. (B) The DetectNet incorrectly detected a Digitaria ischaemum 
as T. officinale. (C–e) The DetectNet detected T. officinale at different growth stages and weed densities.
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weeds often grow in mixed stands and various postemergence 
herbicides, such as 2,4-D, carfentrazone, dicamba, and MCPP, are 
sprayed to provide broad-spectrum control of various broadleaf 
weeds (McElroy and Martins, 2013; Reed et al., 2013). For 
training purposes, E. maculata, G. hederacea, and T. officinale 
constituted a single category of objects to be discriminated from 
perennial ryegrass (Figure 2). The selected weed species exhibited 
tremendous differences in plant morphology, while perennial 
ryegrass was viewed at different turfgrass management regimes, 

mowing heights, and surface conditions (Figure 2). Meanwhile, 
weeds present in the training and testing images were at different 
growth stages, which added the extra complexity for the machine 
learning algorithms. Surprisingly, VGGNet (trained using 
training dataset B) achieved high F1 scores (≥0.92), with high 
recall values (≥0.99) in the VD, TD 1, and TD 2. These results 
suggest that the simultaneous detection of multiple weed species 
with a single VGGNet is effective even when target weeds have 
distinct morphological structures and weed densities.

FIgURe 2 | Images for training the multiple-species neural networks. (a) Euphorbia maculata, Glechoma hederacea, and Taraxacum officinale at various weed 
densities. (B) Perennial ryegrass at different turfgrass management regimes, mowing heights, and surface conditions.
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AlexNet and VGGNet trained using the training dataset A 
resulted in higher precision and F1 score, but lower recall than 
the training dataset B in the VD and most testing results in the 
TD 1 and TD 2. Recall is a critical factor for precision herbicide 
application. High recall indicates that target weeds are more likely 
to be correctly identified, whereas low recall indicates that target 
weeds are more likely to be misidentified, leading to inadequate 
herbicide application and thus poor weed control. Regardless 
of the training datasets, GoogLeNet exhibited high recall but 
unacceptable precision. Low precision is undesirable since 
resultant networks are more likely to misclassify turfgrasses as 
target weeds and spraying herbicides where weeds do not occur.

The training dataset A is balanced and contained equal number 
of negative and positive images, whereas the training dataset B is 
unbalanced and contained less training images than the training 
dataset A. Because of the differential performances of multiple-
species neural networks, particularly AlexNet and VGGNet, 
were evident when trained using the training dataset A and B, we 
hypothesized that (1) the ratios of negative and positive images 
in the training dataset may influence the performances of neural 
networks, (2) changing the number of positive images for each 
weed species in the training dataset may alter the performances 
for weed detection, and (3) a larger training dataset might be 
needed to further improve the precision and recall and enhance 
the overall accuracy. These hypotheses will be tested in further 
work. It should be noted that all training images were taken in 
a relatively small geographical area. While the model achieved 
high classification rates, a more diversified training dataset 
that represents different weed biotypes collected in different 
geographical regions is highly desired. Moreover, pixel-wise 
semantic segmentation was noted to improve the accuracy of 
object detection with less training images (Milioto and Stachniss, 
2018; Milioto et al., 2018), which warrant further evaluation. The 
expansion of the neural networks to include a wider variety of 
weed species should be the next immediate step of this research.

CONCLUsION aND sUMMaRY
This research demonstrated the feasibility of using DCNN for 
weed detection in perennial ryegrass. When the neural networks 

were trained using training datasets containing a single weed 
species, AlexNet and VGGNet performed similarly for detection 
of E. maculata and G. hederacea growing in perennial ryegrass. 
AlexNet and VGGNet had reduced the recall values in the TD 
2 for detection of T. officinale, but this problem was overcome 
by training the multiple-species neural networks. VGGNet 
consistently exhibited the highest MCC values in the multiple-
species neural networks for both training datasets. VGGNet 
trained using training dataset A exhibited higher precision and 
F1 score but lower recall compared to the models trained using 
training dataset B. VGGNet (trained using the training dataset 
B) achieved high F1 score (≥0.9278), with high recall (≥0.9952), 
indicating that it is highly suitable for the automated detection of 
E. maculata, G. hederacea, and T. officinale growing in perennial 
ryegrass. GoogleNet is not an effective DCNN at detecting 
these weed species primarily due to the unacceptable precision. 
DetectNet exhibited excellent F1 scores (≥0.9843) and recall 
values (≥0.9911) in the TD 1 and TD 2, and thus is an effective 
DCNN for detection of T. officinale growing in perennial ryegrass. 
To further improve the accuracy of weed detection, other DCNN 
architectures, such as Single Shot Detection (SSD; Liu et al., 2016), 
You Only Look Once (Yolo; Redmon et al., 2016), and residual 
network (He et al., 2016) may be investigated in the future.

DaTa aVaILaBILITY sTaTeMeNT
The datasets generated for this study are available on request to 
the corresponding author.

aUThOR CONTRIBUTIONs
JY, AS, and NB designed the experiment. JY, ZC, and SS acquired 
the images. JY trained DCNN models, analyzed the data, and 
drafted the manuscript.

aCKNOWLeDgMeNTs
This research received no specific grant from any funding agency 
in the commercial, public, or not-for-profit organizations.

ReFeReNCes
Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the 

sequence specificities of DNA-and RNA-binding proteins by deep learning. 
Nat. Biotechnol. 33, 831–838. doi: 10.1038/nbt.3300

Bordes, A., Chopra, S., and Weston, J. (2014). Question answering with 
subgraph embeddings. In Proceedings of the Conference on Empirical 
Methods in Natural Language Processing. http://arxiv.org/abs/1406.3676v3

Busey, P. (2003). Cultural management of weeds in turfgrass. Crop Sci. 43, 1899–
1911. doi: 10.2135/cropsci2003.1899

Chen, Q., Xu, J., and Koltun, V. (2017). Fast image processing with fully-convolutional 
networks. Pages 2516–2525 in Proceedings of the IEEE International Conference 
on Computer Vision. doi: 10.1109/ICCV.2 017.273

Collobert, R., and Weston, J. (2008). A unified architecture for natural language 
processing: Deep neural networks with multitask learning. Pages 160–167 in 

Proceedings of the Proceedings of the 25th international conference on Machine 
learning: ACM. doi: 10.1145/1390156.1390177 .

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. 
(2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res. 
12, 2493–2537. doi: 10.1016/j.chemolab.2011.03.009

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. F. (2009). Imagenet: 
A large-scale hierarchical image database. in Proceedings of the 
Computer Vision and Pattern Recognition. pp. 248–255 doi: 10.1109/
CVPR.2009.5206848.

dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., and Pistori, H. (2017). Weed 
detection in soybean crops using ConvNets. Comp. Electron. Agric. 143, 314–324. 
doi: 10.1016/j.compag.2017.10.027

Fennimore, S. A., Slaughter, D. C., Siemens, M. C., Leon, R. G., and Saber, M. N. 
(2016). Technology for automation of weed control in specialty crops. Weed 
Technol. 30, 823–837. doi: 10.1614/WT-D-16-00070.1

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 1422

https://doi.org/10.1038/nbt.3300
http://arxiv.org/abs/1406.3676v3
https://doi.org/10.2135/cropsci2003.1899
https://doi.org/10.1109/ICCV.2017.273
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1016/j.chemolab.2011.03.009
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.compag.2017.10.027
https://doi.org/10.1614/WT-D-16-00070.1
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Weed Detection in RyegrassYu et al.

9

Gawehn, E., Hiss, J. A., and Schneider, G. (2016). Deep learning in drug discovery. Mol. 
Infor. 35, 3–14. doi: 10.1002/minf.201501008

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: the 
KITTI dataset. Inter. J. Rob. Res. 32, 1231–1237. doi: 10.1177/0278364913491297

Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., and 
Sarkar, S. (2018). An explainable deep machine vision framework for plant stress 
phenotyping. Proc. Nat. Acad. Sci. 115, 4613–4618. doi: 10.1073/pnas.1716999115

Grinblat, G. L., Uzal, L. C., Larese, M. G., and Granitto, P. M. (2016). Deep learning 
for plant identification using vein morphological patterns. Comp. Electron. 
Agric. 127, 418–424. doi: 10.1016/j.compag.2016.07.003

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent 
advances in convolutional neural networks. Pattern Recog. 77, 354–377. doi: 
10.1016/j.patcog.2017.10.013

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. 
(2017). Brain tumor segmentation with deep neural networks. Med. Image 
Anal. 35, 18–31. doi: 10.1016/j.media.2016.05.004

He, K. M., Zhang, X. Y., Ren, S. Q., and Sun, J. (2016). Deep residual learning 
for image recognition. IEEE Conf. Comput. Vision Pattern Recognition (CVPR), 
770–778. doi: 10.1109/CVPR.2016.90

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., et al. (2012). 
Deep neural networks for acoustic modeling in speech recognition: The shared 
views of four research groups. IEEE Signal Process Mag 29, 82–97. doi: 10.1109/
MSP.2012.2205597

Hoiem, D., Chodpathumwan, Y., and Dai, Q. (2012). Diagnosing error in object 
detectors. in . Berlin, Heidelberg: Springer. Pages 340–353

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). 
Caffe: Convolutional architecture for fast feature embedding. in . . Pages 675-678.

Johnston, C. R., Yu, J., and McCullough., P. E. (2016). Creeping bentgrass, perennial 
ryegrass, and tall fescue tolerance to Topramezone during establishment. Weed 
Technol. 30, 36–44. doi: 10.1614/WT-D-15-00072.1

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, 
and prospects. Science 349, 255–260. doi: 10.1126/science.aaa8415

Kendall, A., and Gal, Y. (2017). What uncertainties do we need in bayesian 
deep learning for computer vision? in Proceedings of the Advances in Neural 
Information Processing Systems. pp. 2274–5584.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification 
with deep convolutional neural networks. Pages 1097–1105 in Proceedings 
of the Advances in neural information processing systems Advances in Neural 
Information Processing Systems 25 NIPS 2012. doi: 10.1145/3065386

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444. 
doi: 10.1038/nature14539

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., and Fu, C. Y., Berg, 
A.C. (2016). Ssd:Single shot multibox detector. Pages 21–37 in Proceedings 
of the European Conference on Computer Vision arXiv:151202325v5. doi: 
10.1007/978-3-319-46448-0_2

McElroy, J., and Martins, D. (2013). Use of herbicides on turfgrass. Planta Daninha 
31, 455–467. doi: 10.1590/S0100-83582013000200024

Milesi, C., Elvidge, C., Dietz, J., Tuttle, B., Nemani, R., and Running, S. (2005). 
A strategy for mapping and modeling the ecological effects of US lawns. 
J. Turfgrass Manage. 1, 83–97.

Milioto, A., and Stachniss, C. (2018). Bonnet: An open-source training and 
deployment framework for semantic segmentation in robotics using CNNs. In 
IEEE International Conference on Robotics and Automation. arXiv preprint 
arXiv:1802.08960. DOI: 10.1109/ICRA.2019.8793510

Milioto, A., Lottes, P., and Stachniss, C. (2018) Real-time semantic segmentation of 
crop and weed for precision agriculture robots leveraging background knowledge in 
CNNs. Pages 2229–2235 in Proceedings of the 2018 IEEE International Conference 
on Robotics and Automation ICRA: IEEE. doi: 10.1109/ICRA.2018.8460962

Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for image-
based plant disease detection. Front. Plant Sci. 7, 1419. doi: 10.3389/fpls.2016.01419

Matthews, B. W. (1975). Comparison of the predicted and observed secondary 
structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 
405, 442–451. doi: 10.1016/0005-2795(75)90109-9

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. 
in, Proceedings of the British Machine Vision Conference BMVC. 6. doi: 
10.5244/C.29.41

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look 
once: Unified, real-time object detection. Pages 779–788 in Proceedings of the 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
arXiv:150602640v5. doi: 10.1109/CVPR.2016.91

Reed, T. V., Yu, J., and McCullough, P. E. (2013). Aminocyclopyrachlor efficacy 
for controlling Virginia buttonweed (Diodia virginiana) and smooth crabgrass 
(Digitaria ischaemum) in tall fescue. Weed Technol. 27, 488–491. doi: 10.1614/
WT-D-12-00159.1

Ronao, C. A., and Cho, S. B. (2016). Human activity recognition with smartphone 
sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244. 
doi: 10.1016/j.eswa.2016.04.032

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural 
Networks 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Sharpe, S. M., Schumann, A. W., and Boyd, N. S. (2018). Detection of Carolina 
geranium (Geranium carolinianum) growing in competition with strawberry using 
convolutional neural networks. Weed Sci. 67, 239–245. doi: 10.1017/wsc.2018.66

Sharpe, S. M., Schumann, A. W., Yu, J., and Boyd, N. S. (2019). Vegetation detection and 
discrimination within vegetable plasticulture row-middles using a convolutional 
neural network. Prec. Agric. 20, 1–7. doi: 10.1007/s11119-019-09666-6

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. In the International Conference on Learning Representations 
(ICLR). https://arxiv.org/pdf/1409.1556.pdf. Accessed: October 5, 2018.

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance measures for 
classification tasks. Infor. Proc. Manage. 45, 427–437. doi: 10.1016/j.ipm.2009.03.002

Song, I., Kim, H. J., and Jeon, P. B. (2014). Deep learning for real-time robust 
facial expression recognition on a smartphone. in Proceedings of the Consumer 
Electronics ICCE, 2014 IEEE International Conference on Consumer Electronics 
. Pages 564–567. doi:10.1109/ICCE.2014.6776135

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al., and (2015). 
Going deeper with convolutions. in: Proceedings of the The IEEE Conference on 
Computer Vision and Pattern Recognition. 1–9. doi: 10.1109/CVPR.2015.7298594 

Tao, A., Barker, J., and Sarathy, S. (2016). Detectnet: Deep neural network for 
object detection in digits. https://devblogs.nvidia.com/detectnet-deep-neural-
network-object-detection-digits. Accessed: October 2, 2018.

Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., and 
Jørgensen, N. R. (2018). Weed growth stage estimator using deep convolutional 
neural networks. Sensors 18, 1580. doi: 10.3390/s18051580

USDA-NRCS. (2018). United States Department of Agriculture—Natural 
Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/
site/national/home. Accessed October 3, 2018.

Wang, Z., Li, Z., Wang, B., and Liu, H. (2016). Robot grasp detection using 
multimodal deep convolutional neural networks. Adv. Mech. Eng. 8, 1–12. doi: 
10.1177/1687814016668077

Ye, Q., Zhang, Z., and Law, R. (2009). Sentiment classification of online reviews 
to travel destinations by supervised machine learning approaches. Expert Syst. 
Appl. 36, 6527–6535. doi: 10.1016/j.eswa.2008.07.035

Yu, J., and McCullough, P. E. (2016a). Growth stage influences mesotrione efficacy 
and fate in two bluegrass (Poa) species. Weed Technol. 30, 524–532. doi: 
10.1614/wt-d-15-00153.1

Yu, J., and McCullough, P. E. (2016b). Triclopyr reduces foliar bleaching from 
mesotrione and enhances efficacy for smooth crabgrass control by altering uptake 
and translocation. Weed Technol. 30, 516–523. doi: 10.1614/wt-d-15-00189.1

Yu, J., Sharpe, S. M., Schumann, A. W., and Boyd, N. S. (2019a). Detection of 
broadleaf weeds growing in turfgrass with convolutional neural networks. Pest 
Manage. Sci. 75, 2211–2218. doi: 10.1002/ps.5349.

Yu, J., Sharpe, S. M., Schumann, A. W., and Boyd, N. S. (2019b). Deep learning 
for image-based weed detection in turfgrass. Eur. J. Agron. 104, 78–84. doi: 
10.1016/j.eja.2019.01.004

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Yu, Schumann, Cao, Sharpe and Boyd. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and 
that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 1422

https://doi.org/10.1002/minf.201501008
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1073/pnas.1716999115
https://doi.org/10.1016/j.compag.2016.07.003
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1614/WT-D-15-00072.1
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1590/S0100-83582013000200024
https://doi.org/10.1109/ICRA.2019.8793510
https://doi.org/10.1109/ICRA.2018.8460962
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.5244/C.29.41
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1614/WT-D-12-00159.1
https://doi.org/10.1614/WT-D-12-00159.1
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1017/wsc.2018.66
https://doi.org/10.1007/s11119-019-09666-6
https://arxiv.org/pdf/1409.1556.pdf
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/ICCE.2014.6776135
https://doi.org/10.1109/CVPR.2015.7298594
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits
https://doi.org/10.3390/s18051580
https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home
https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home
https://doi.org/10.1177/1687814016668077
https://doi.org/10.1016/j.eswa.2008.07.035
https://doi.org/10.1614/wt-d-15-00153.1
https://doi.org/10.1614/wt-d-15-00189.1
https://doi.org/10.1002/ps.5349.
https://doi.org/10.1016/j.eja.2019.01.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Weed Detection in Perennial Ryegrass With Deep Learning Convolutional Neural Network
	Introduction
	Materials and Methods
	Image Acquisition
	Training and Testing

	Results and Discussion
	Conclusion and Summary
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


