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Abstract: Automatic road extraction from unmanned aerial vehicle (UAV) imagery has been one of
the major research topics in the area of remote sensing analysis due to its importance in a wide range
of applications such as urban planning, road monitoring, intelligent transportation systems, and
automatic road navigation. Thanks to the recent advances in Deep Learning (DL), the tedious manual
segmentation of roads can be automated. However, the majority of these models are computationally
heavy and, thus, are not suitable for UAV remote-sensing tasks with limited resources. To alleviate
this bottleneck, we propose two lightweight models based on depthwise separable convolutions
and ConvMixer inception block. Both models take the advantage of computational efficiency of
depthwise separable convolutions and multi-scale processing of inception module and combine them
in an encoder–decoder architecture of U-Net. Specifically, we substitute standard convolution layers
used in U-Net for ConvMixer layers. Furthermore, in order to learn images on different scales, we
apply ConvMixer layer into Inception module. Finally, we incorporate pathway networks along the
skip connections to minimize the semantic gap between encoder and decoder. In order to validate the
performance and effectiveness of the models, we adopt Massachusetts roads dataset. One incarnation
of our models is able to beat the U-Net’s performance with 10× fewer parameters, and DeepLabV3’s
performance with 12× fewer parameters in terms of mean intersection over union (mIoU) metric. For
further validation, we have compared our models against four baselines in total and used additional
metrics such as precision (P), recall (R), and F1 score.

Keywords: mixer U-Net; semantic segmentation; road extraction; unmanned aerial vehicles

1. Introduction

Automated road extraction remains one of the important yet challenging tasks in
remote sensing imagery analysis. Its massive deployment in social and economic welfare
such as city planning, road navigation, arrangement of logistic hubs, and evacuation plan-
ning makes it of great significance. However, the existence of non-road objects, occlusions,
and complexity of the background make it difficult to extract roads precisely. Manually
labeling the roads might be one of the methods to solve the problem, but due to its repe-
titious and wearisome nature, one is prone to making mistakes, let alone its inefficiency.
Several methods have been proposed for extracting road information from raw UAV images.
These methods can be divided into three categories: road area extraction, road centerline
extraction, and road edge detection. Pixel-level segmentation of roads and their surface is
the main task of road area extraction while extracting the skeleton or centerline [1] of roads
is the main task of the road centerline extraction. Road edge detection [2] infers extracting
single-pixel width of road edges, and it is important for autonomous driving car systems.
In some studies, more than one single task is addressed simultaneously [3].
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Road area extraction can be undertaken by pixel-wise semantic segmentation. Tra-
ditional road extraction methods used classic machine learning and computer vision
algorithms such as support vector machines (SVM) and Markov random fields (MRF). Mie
et al. (2003) used support vector machine (SVM) and template matching [4] to extract
the true road segment and remove the false road segment. Jayaseeli and Mathali (2020)
proposed a cuckoo search optimization algorithm for extracting road regions from high
resolution images using multilevel thresholding schema and SVM [5]. Guo et al. (2011)
came up with an adaptive non-planar road detection and tracking approach that combines
a piecewise planar model and an MRF-based alternating optimization method [6]. Alshe-
hhi et al. (2017) proposed an unsupervised method that consists of steps such as feature
extraction (using Gabor or morphological filtering), graph-based image segmentation, and
postprocessing [7]. These traditional methods include multiple steps [7], which is time
consuming and requires individual optimization of each component of the model pipeline.

Currently, deep learning models have been deployed increasingly in dense classifica-
tion tasks thanks to their good performance and generalization capability. Convolutional
Neural Networks (CNNs) are designed to automatically and adaptively learn spatial hi-
erarchies of features, from low to high-level patterns [8]. Fully convolutional networks
(FCN) [9] for semantic segmentation by Long et al. is one of the earliest models that in-
clude only convolutional layers to extract the segmentation map. The authors modified
models such as VGG16 [10] and Inception [11] networks that performed well in the ob-
ject recognition domain so that the models can accept arbitrarily sized images. The fully
connected layers of the models were substituted for convolution layers that upsample the
extracted feature map to the same size as the input. However, due to the jump structure
of the network, the fine-grained spatial information of images is lost in the upsampling
process. DeConvNet [12] by Noh et al. was introduced to tackle this bottleneck by using
encoder–decoder architecture. The model also adopts VGG16 network as an encoder to
extract high-level feature maps. However, unlike the FCN network, the segmentation map
extraction task is performed by multilayer decoder part that upsamples the output of en-
coder by deconvolution method (also known as transposed convolution). Badrinarayanan
et al. proposed SegNet model [13], also based on encoder–decoder architecture. However,
in SegNet model, the upsampling task in the decoder is performed by using pooling indices
computed in the max-pooling operation executed in the encoder part. Due to the repeated
implementation of max-pooling operation in the encoder part, these models suffer from a
severe loss of spatial information.

In the dilated (also known as “atrous”) convolution models, dilated convolutional
layers are utilized instead of using the max-pooling operation to address the spatial in-
formation loss problem. DeepLab families [14] are some of the most popular models
that incorporate dilated convolutions in their architectures. Specifically, the DeepLabV3
model [15] by Chen et al. is based on three key hallmarks: first is the application of atrous
convolution layers, second is the implementation of Atrous Spatial Pyramid Pooling (ASPP)
that enables the input image at multiple scales, and, finally, the last is the combination of
CNN methods such as VGG16 or Inception models with probabilistic graphical models to
capture object boundaries.

Meanwhile, in the realm of medical image processing, a U-Net model [16] by Ron-
neberger et al. was proposed to segment biological microscopy images. The U-shaped
model adopting an encoder–decoder structure consists of four encoding and four decoding
stages and a bridge block that connects them. One of the salient features of the U-Net
model is the introduction of skip connections that enable the model to retrieve any spatial
information lost during pooling operations in the encoder. Since then, there have been
numerous variations of the model for tackling different domain segmentation tasks [17–21].

In the area of deep learning-based road extraction from UAV imagery, one of the
pioneering studies to utilize Deep neural networks was carried out by Mnih et al. [22].
They proposed a model based on restricted Boltzmann machines (RBMs) [23] to extract road
information from UAV imagery. Their method included preprocessing and postprocessing
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steps. Preprocessing was applied to reduce the high dimensionality of high resolution
of input images and postprocessing was deployed to polish up the disconnected parts
of the predicted roads. The method proposed by [24] was fully based on Convolutional
Neural Networks (CNNs) and the authors used model averaging displacement method to
overcome overfitting during the inference time. Inspired by successful implementation of
U-Net model into medical image processing, Zhang et al. proposed Residual U-Net [17] for
extracting road information from remote sensing images. The authors injected the property
of residual units within encoder–decoder stages into the classic U-net architecture to
improve performance. Furthermore, Buslaev et al. proposed a network based on ResNet-34
pretrained on ImageNet-1000 dataset and a decoder adapted from vanilla U-Net model [25].
In addition, to improve performance, the authors used test-time augmentation techniques.
Cheng et al. introduced CasNet, which consists of two networks: one for road detection
task and the other is for obtaining centerline detection [3]. During the inference time, a
thinning algorithm was proposed to obtain smooth and complete road centerline. RoadNet
proposed by Liu et al. simultaneously deals with three tasks: road surface segmentation,
road edge detection, and road centerline extraction [26].

Although most of the aforementioned deep learning-based models for the road extrac-
tion from the UAV imagery perform well due to their high computational complexities,
these models are still too heavy to be implemented or deployed in practice on resource-
constrained UAVs. The computing capacities of edge modules installed on UAVs are
considered weaker than the computational capability of most deep learning platforms. AI
edge modules, such as Nvidia Jetson TX2 and Jetson Nano, are some of the modules used
for drones, and their computational capability is constrained compared to GPU machines
used for deep learning platforms. The heaviness or lightness of networks refer to the
number of parameters and the number of floating point operations of the network. The
greater the number of parameters, the larger the size of the model, which makes it difficult
to deploy on machines with constrained computational capability. In this paper, we aim to
address this critical issue by proposing two light-weight models based on Inception mod-
ule [11], ConvMixer layer, and separable depthwise convolutions. To our best knowledge,
this is the first paper that combines the aforementioned modules and techniques in a single
network. Both of the models contain remarkably less parameters than the baselines while
achieving state-of-the-art performance on widely adopted realistic dataset.

The reminder of this paper is organized as follows: Sections 2 and 3 introduce the build-
ing blocks of the proposed models and the methodology in detail, respectively. Section 4
describes the baseline models, the dataset, and the metrics and provides the experimental
results and their discussions. Section 5 concludes this paper.

2. Preliminaries

In this section, we describe some preliminaries on the main components of the pro-
posed models.

2.1. Building Blocks

The proposed architectures combine the cores of the following previous studies:

• U-Net network architecture;
• Depthwise separable convolutions;
• ConvMixer layer;
• Inception module.

2.1.1. U-Net for Biomedical Image Segmentation

As mentioned before, the U-Net model was originally proposed for biomedical image
segmentation. The model consists of contracting path (encoder) that compresses the
input data into low-dimensional representation and an expansive path (decoder) that
decodes extracted information back to the original size. Both contracting and expansive
path consist of four stages and in the middle, and there is a bridge comprising two 3× 3
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convolution layers that connect them. At each stage of contracting path, there are two
cascaded 3× 3 convolution layers to extract spatial features followed by a max-pooling
operation that halves the resultant feature map. ReLU activation function is performed after
all 3× 3 convolution layers. After each max-pooling operation, the filter size is doubled. On
the other hand, at each stage of expansive path, before upsampling the feature maps with
transposed convolution operation, the filter size is halved. After the upsampling process,
the output is concatenated with the extracted feature map of the corresponding stage of
the contracting path that enables conveying low-level spatial information to high-level
layers. Aggregated information is convolved by two consecutive 3× 3 convolutions. At the
last stage, following the two 3× 3 convolution operations, 1× 1 convolution is performed
to generate the final output. It is important to point out that, in our implementation, we
incorporate Batch Normalization layer [27] as a method to accelerate the training process,
which was not used in the original implementation of U-Net as it did not exist at that time.

2.1.2. Depthwise Separable Convolutions

The term “depthwise separable convolutions” was used for the first time by Laurent
Sifre in his PhD thesis [28]. In traditional convolutional layers, the weights in the net-
work are shared, feature extraction and feature fusion are performed simultaneously, the
invariant function is used to sample the pooling layer spatially, and a large number of
parameters are generated [29]. Contrarily, depthwise separable convolutions (also known
as depthwise convolutions, not to be confused with the spatially separable convolutions in
the image processing community) consists of two consecutive independent convolutional
layers: depthwise convolution that applies a single filter across each channel (n different filters
for n-channel input) of input data and pointwise convolution-1× 1 convolution that projects
the output of the depthwise convolution into a new channel space [30] (see Figure 1).

Depthwise Convolution

Pointwise Convolution

1x1 Convkxk Conv

Figure 1. Depthwise separable convolutions.

This factorization operation enables decreasing the model size and computational cost
remarkably. The following includes the mathematical expressions of traditional convo-
lution (Equation (1)), depthwise convolution (Equation (2), � denotes the element-wise
product), pointwise convolution (Equation (3)), and depthwise separable convolution
(Equation (4)) operations:
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Conv(W, y)(i,j) =
K,L,M

∑
k,l,m

W(k,l,m) · y(i+k,j+l,m) (1)

DepthwiseConv(W, y)(i,j) =
K,L

∑
k,l

W(k,l) � y(i+k,j+l) (2)

PointwiseConv(W, y)(i,j) =
M

∑
m

W(m) · y(i,j,m) (3)

DepthwiseSepConv(Wp, Wd, y)(i,j) = PointwiseConv(i,j)(Wp, DepthwiseConv(i,j)(Wd, y)) (4)

where W stands for the input data, y denotes convolutional filter with the size of K × L
in the case of traditional and depthwise convolution, and 1× 1 in the case of pointwise
convolution. M and (i, j) represent channel size and pixels of the input data accordingly.
In order to enlighten the impact of depthwise separable convolutions, we compute the
computational cost required for a traditional convolution and a depthwise separable
convolution and compared them. By convolving a P× P×M-shaped input data through
a K × K ×M traditional convolution layer, we obtain a Q× Q× N-shaped feature map
where P is a spatial resolution of input data, M is the number of channels of the input or
equivalently, the number of the convolution kernel, K is the filter size, Q represents the
spatial resolution of the output, and N is the number of channels of the convolved feature
map. Assuming that the stride is 1 and there is no padding operation, the computational
cost of the standard convolution is as follows.

Parameters = K · K ·M · N
Flops = Q ·Q · K · K ·M · N

(5)

In the case of depthwise separable convolutions, depthwise convolution operation is
performed first. The cost of depthwise convolution is given by the following.

Parameters = K · K ·M
Flops = Q ·Q · K · K ·M

(6)

Next, the pointwise convolution is performed, which results in the following.

Parameters = M · N
Flops = K · K ·M · N

(7)

In total, depthwise separable convolution operation yields the following.

Parameters = K · K ·M + M · N
Flops = Q ·Q · K · K ·M + K · K ·M · N

(8)

By factorizing the standard convolution into two parts, computational cost can be
reduced by the following.

1
N

+
1

K2 (9)

Applications of depthwise separable convolutions can be found in the Xception
model [30] by Francois Chollet and MobileNet family [31–33] by Howard et al. and
Sandler et al. In one incarnation of their MobileNets model, Howard et al. [31] were able to
successfully decrease the parameter size up to 4.2 million while attaining a decent 70.6%
Top 1 accuracy on ImageNet-1000 [34] dataset. For comparison, the VGG16 model with
138 million parameters achieved 71.5% accuracy [31] on the same task.
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2.1.3. ConvMixer Layer

Recently, [35] proposed a novel architecture based on depthwise separable convolu-
tions for the object recognition task. The architecture is inspired by the mixing idea [35] of
the MLP-Mixer model [36] by Tolstikhin et al. Specifically, depthwise convolution serves
as a tool to mix spatial locations followed by a pointwise convolution that mixes channel
locations. Figure 2 highlights the modified version of the original ConvMixer layer, which is
used in our ConvMixer Inception Block (see Section 2.1.4). The difference from the original
version is that the orders of Batch normalization [27] operation and activation layers are
swapped. In addition, we use the ReLU [37] activation function for all layers instead of
GELU [38].

D
epthw

ise C
onvolution

Pointw
ise C

onvolution

ReLU

ReLU

B
atch N

orm
alization

B
atch N

orm
alization

Residual Connection

Figure 2. The architecture of the ConvMixer layer (CML) that substitutes standard 3× 3 convolutional
layers in the proposed ConvMixer inception block. Here,

⊕
stands for the element-wise addition of

the input and the output of the Depthwise convolution followed by the ReLU activation function and
Batch normalization.

2.1.4. ConvMixer Inception Block

The Inception module [11] is one of the ground-breaking architectures in the deep
learning realm. Prior studies built deeper networks by stacking convolutional layers on
top of each other to achieve superior performance. However, the larger and deeper the
model becomes, the more prone it is to overfitting and vanishing gradients [39]. On top of
that, the increase in model size results in an increase in computational cost as well. The
inception network was designed to overcome these obstacles. Another important aspect
of this architecture is that it allows the model to learn the input image at different scales
simultaneously. Figure 3a illustrates the naive inception module. The input (base) proceeds
through 1× 1, 3× 3, 5× 5 convolutions, and 3× 3 max-pooling independently, and the
outputs are concatenated to be used as an input to the next layer.

Furthermore, in their updated inception-v2 and inception-v3 versions [40], the authors
incorporated several upgrades to the inception module, which resulted in a boost in perfor-
mance and a remarkable reduction in model size. Specifically, one of the important changes
was to factorize 5× 5 convolution operation into two 3× 3 convolutions since two stacked
3× 3 convolutions produce the same effect of a single 5× 5 convolution for a reduced cost
of computation. We leveraged this idea in designing our architectures. However, instead of
using standard convolutions, we adopt ConvMixer layers (see Figure 3b) with 3× 3 filter
size to learn image features. In addition, we replaced the 3× 3 max-pooling operation with
7× 7 standard convolution. Following [40], 5× 5 and 7× 7 convolutions are represented by
a series of two and three ConvMixer layers accordingly. In the original implementation, the
ratio of 3× 3, 5× 5 convolutions, and 3× 3 max-pooling layer within a module increases
as it becomes deeper. However, for the sake of simplicity, we keep it equal for all filter sizes
across the entire model. The method for building the network architectures of the proposed
models is explained in detail in the next section.
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Base

1x1 
Conv

3x3 
Conv

5x5 
Conv

3x3  
max pooling

Filter Concat

(a) Naive inception module

Base

1x1 CML CML CML

Filter Concat

CML CML

CML

(b) ConvMixer inception block

Figure 3. Comparison of naive inception module (a) and the proposed ConvMixer inception block (b).
Note that 5× 5 and 7× 7 convolutions are expressed by two and three stacked ConvMixer layers
(CML), respectively, in the proposed ConvMixer inception block (b).

3. Proposed Model Architectures

In this study, we propose two light-weight models based on U-Net, inception module,
ConvMixer layer, and depthwise separable convolutions.

3.1. Mixer U-Net

Figure 4 illustrates the methodology of the first proposed model, namely, the mixer
U-Net. The model adopts the U-shaped structure of the U-Net model consisting of four en-
coding and decoding stages with a bridge that connects them. As mentioned in Section 2.1.4,
unlike in the U-Net, in the proposed mixer U-Net, all standard 3× 3 convolutions are re-
placed with ConvMixer inception block except the first encoding stage. Thus, it is called
Mixer U-Net. At the first stage, the input proceeds through an embedding layer, which
is a standard 3× 3 convolution followed by a ConvMixer inception block. At each of the
next stages of encoder, the resolution of the input is, first, halved by the 2× 2 max-pooling
operation and then convolved by two ConvMixer inception blocks. The number of feature
channels, as in U-Net, increases from 64 at the first stage of the encoder and eventually
reaches 1024 at the bridge. It should be noted that the resolution of the input image should
be divisible by 16 as it is downsampled by two at each stage with 16-times in total by the
time it hits the bridge.

In the U-Net model, the feature maps are upsampled by the transposed convolution
(also known as deconvolution) operation [12]. However, there are two bottlenecks in using
this method. First of all, as the transposed convolution is also a convolution operation that
maps lower resolution input into higher resolution output, it has learnable parameters,
which means additional computational cost. On top of that, it can result in “uneven overlap”
in some pixels of the upsampled feature map or so-called “checkerboard artifact” [41,42]. In
order to avoid these effects caused by the deconvolution operation, the bilinear interpo-
lation method is exploited in the proposed mixer U-Net. Thus, at the end of every stage
of decoder, including the bridge, the extracted feature map is upsampled with bilinear
interpolation before concatenating it with the output of the mirroring encoder stage. Next,
the concatenated feature map is convolved with two ConvMixer inception blocks. At the
final stage, after convolution operations, 1× 1 convolution is used for extracting the binary
segmentation map.

3.2. Mixer U-Net with Path Networks

It is well-known that the lower-level layers of convolutional neural networks learn
low-level features such as edges, blobs, or corners [43]. Moreover, as it becomes deeper,
the features become more class-specific such as parts of objects in the image or an entire
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object as a whole. In our model, there are skip connections at each stage of encoder that
enable the model to convey spatial information to the mirroring decoder stage. However,
comparatively raw feature map of the first stage of encoder gets concatenated with well-
processed high-level input feature map of the last decoder stage. This mismatch between the
two array of features becomes lower as we move forward along the model. This semantic
gap between the two sets might result in an inferior performance [19]. Hence, in order to
lessen the divergence between encoder and decoder feature maps, we propose our second
architecture that is an updated version of the first proposed model additionally with path
networks along the skip connections (see Figure 5). At the first stage of encoder, the extracted
feature map is passed on through four ConvMixer layers before being concatenated with
the corresponding stage input. It is important to point out that the resolution and the
number of channels remain the same throughout the entire network. As the model becomes
deeper, the number of layers of the path network is reduced by one, leaving a single layer
at the fourth stage. Everything else is processed consistently with the previous architecture.
In the next section, the superiority and effectiveness of the two proposed models are
demonstrated by conducting extensive experiments.

Conv 1x1

Identity Mapping

Conv 3x3, ReLU, Batch Norm

ConvMixer Inception Block

MaxPool 2x2

Bilinear Upsampling

Concatenation

Figure 4. The architecture of the proposed Mixer U-Net.

Conv 3x3, ReLU, Batch Norm

Bilinear Upsampling

Concatenation

Conv 1x1

ConvMixer Layer

ConvMixer Inception Block

MaxPool 2x2

Figure 5. The architecture of the proposed Mixer U-Net with Path Networks (PN).
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4. Experiments, Results and Discussion
4.1. The Dataset and Preprocessing

Figure 6 highlights the flowchart of methodologies used in this paper. In order to evalu-
ate the performance of the proposed models, we use publicly available Massachusetts Roads
dataset [44] for the experiments. The dataset consists of 1171 aerial images covering over
2600 square kilometers of urban, suburban, and rural areas of the state of Massachusetts,
USA. The dataset is randomly split into 1108 images for training, 14 images for validation,
and 49 images for testing. The spatial resolution of all images is 1500× 1500 pixels covering
an area of 2.25 square kilometers per image. The dataset is considered one of the largest
and challenging road detection datasets available.

Before training the model, we preprocess the data as follows. As the spatial size of
images is too large for training, we crop images randomly to 256× 256. Then, we apply
randomly one of the horizontal flip, vertical flip, or 90◦ rotation augmentation techniques
to introduce some randomness into the dataset. Finally, we normalize the images with
the mean and standard deviation of the entire dataset. During the inference time, the
image is resized to 1504× 1504 as the models accept only images with the size divisible
by 16. After that, it is normalized with the mean and standard deviation of the training
set. The additional padded two pixels on each side of the image are discarded during
the evaluation.

256x256

256x256

256x256

Rotation

Horizontal Flip

Vertical Flip

Random Crop Augmentation

Im
ag

e
N

or
m

al
iz

at
io

n

Prediction

Ground Truth

Loss
Value

Ba
ck

pr
op

og
at

io
n

Trained
Model

Input data Data preprocessing Training Process 

Inference 

Figure 6. The flowchart of methodologies.

4.2. Implementation Details

The proposed models, along with the baselines, were implemented on Python 3.8.12
and Pytorch 1.10. The experiments were performed on a single NVIDIA RTX A5000 GPU
with 24 GB memory. An Adam optimizer was used to optimize the models with the initial
learning rate set to 0.001. Cosine Annealing learning rate scheduler [45] is applied to control
the learning rate during training. All models were trained for 200 epochs with mini-batch
size equal to 8.

Binary Cross Entropy (BCE) (Equation (10)) loss is considered to be stable and works
best in the case of equal class distribution [46]. However, our dataset suffers severely from
class imbalance. In this case, Dice loss (Equation (11)) is preferred as it does not treat
every pixel individually but measures the overlap between two samples. By leveraging the
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stability of BCE loss and flexibility of Dice loss of class imbalance, we can adopt a Combo
loss (Equation (12)) that is the combination of two loss functions [46,47].

LBCE =
1
N

N

∑
i=1

(yi log ŷi + (1− yi) log (1− ŷi)) (10)

LDice = 1− 2 · |Y ∩ Ŷ|+ smooth
|Y|+ |Ŷ|+ smooth

(11)

LCombo = LBCE + LDice (12)

In Equation (11), a smooth (usually set to 1) variable is added in both the numerator
and denominator to ensure that, in the case of Y = Ŷ = 0, the function is not undefined.

4.3. Baseline Models

We compare the performance of the proposed models against four state-of-the-art deep
learning-based models, specifically, Fully Convolutional Networks (FCN) [9], U-Net [16],
ResU-Net [17], and DeepLabV3 [15]. FCN is considered as a milestone in deep-learning
based semantic segmentation models. In addition, FCN is one of the first models built
on only convolutional layers in the semantic segmentation domain. Although U-Net was
originally proposed for medical image processing, several variations of it were successfully
deployed in different domains. In addition to that, both of our models are built based on
U-Net architecture. Thus, comparing the proposed models’ performance against U-Net
and FCN would be appropriate. Furthermore, ResU-Net is one of the variations of U-Net
implemented in the realm of road detection from remote sensing imagery. On top of
that, the parameter size of ResU-Net is relatively smaller than other baselines. Finally,
DeepLabV3 is one of the recently developed networks in the general semantic segmentation
research area, and it would be interesting to check the performance of this model on the
binary segmentation task that we are dealing with in this study. It should be noted that the
backbone network of both DeepLabV3 and FCN is ResNet50 pretrained on ImageNet-1000
dataset [34]. All baseline models were trained from scratch with the same parameters used
in the training of the proposed models.

4.4. Evaluation Metrics

Some of the common evaluation metrics for semantic segmentation are pixel accuracy
(PA), Precision, Recall, F1 score, and Jaccard index. However, as mentioned above, the
Massachusetts roads dataset suffers from a severe class imbalance problem, i.e., the number
of pixels representing the background exceeds the number of pixels denoting road areas
excessively. Thus, using a pixel accuracy metric for the purpose of evaluation would be
inappropriate. The following equations are the mathematical expressions of the above-
mentioned metrics, except PA:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 score = 2× Precision× Recall
Precision + Recall

(15)

Jaccard(A, B) =
|A ∩ B|
|A| ∪ |B| =

TP
TP + FP + FN

(16)

where TP, FP, and FN stand for the number of true positive, false positive, and false
negative predictions, respectively. Precision is the ratio of true positives to the prediction,
while recall is the ratio of true positives to the ground truth. The F1 score is the harmonic
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mean of precision and recall. The Jaccard index, also known as mean intersection over union
(mean IoU), is the ratio of the intersection and union for the two sets A and B. All metrics
are calculated on each class separately, and their average is reported as the final score.

4.5. Results and Analysis

Figure 7 highlights the learning curves of all models during the training and validation
process. In particular, Figure 7a,b elucidate the loss value, and Figure 7c,d portray mean
IoU scores during training and validation, respectively.
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Figure 7. Learning curves for the four baselines and the proposed models during training and
validation. In all Figures, x-axis highlights the number of training epochs. In Figures (a,b), y-axis
represents loss value, and in Figures (c,d), it describes the mean intersection over union (mean IoU)
in percentage (%).

It can be noted from Figure 7 that U-Net and ResU-Net experience a slower conver-
gence compared to other models while the proposed models yield the fastest convergence
exceeding the 75% mean IoU benchmark easily within the first 10 epochs in the validation.
However, in order to unlock the full potential of all models, we keep training them until
performance is saturated. As a result, by the end of training, the proposed models remained
dominant while the performance gap among models shrunk remarkably, scoring negligibly
lower than 80% mIoU both on the training and validation sets.

Table 1 summarizes the quantitative results of our experiments. Evidently, all models
attained competitive results across all metrics in the inference time. Despite the fact that
the proposed Mixer U-Net and Mixer U-Net with PN contain roughly 10-times fewer
parameters than the baselines except ResU-Net, the models achieved the highest mIoU,
recall, and F1 score, losing slightly to U-Net and ResU-Net in terms of precision. Among
all models, FCN and DeepLabV3 yield inferior results, most probably, due to the reason
that these models’ backbone was pretrained on ImageNet-1000 dataset, the distribution of
which notably differs from the target dataset. Although the ResU-Net model experiences
relatively slower convergence at the beginning of the training, it achieves the highest results
among the baseline models, surpassing the proposed models as well in terms of precision.
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It can be concluded that training models until full convergence might result in superior
performance despite their initially slower convergence.

Table 1. Quantitative results.

Models mIoU Precision Recall F1 Score # Params

FCN 79.11 87.73 87.09 87.27 32.95 M
U-Net 80.19 89.71 86.39 87.83 31.04 M

ResU-net 80.64 89.76 86.7 88.01 8.22 M
DeepLabV3 79.28 88.36 86.48 87.27 39.63 M

Mixer U-Net 80.39 88.73 87.31 87.87 3.19 M
Mixer U-Net with PN 80.75 89.42 87.02 88.04 3.67 M

Generally, all models yield good results with small distortion or misdetection. Figure 8
illustrates segmentation maps extracted by the models. Five images (row (a)) with varying
difficulty were chosen randomly from the test set. The red dotted rectangles show areas
where the models struggled the most, whereas green ones represent areas with relatively
improved accuracy. On the first, third, and fifth images, all models struggle on the high-
lighted areas. However, on the second and fourth images, the proposed models extract
nearly identical segmentation maps as the ground truth.

Figure 8. Visual comparison of road extraction results by the baselines and the proposed models
on randomly chosen images from the test dataset. The first two rows-(a,b) represent the original
image and the ground truth, respectively. The order of models is as follows: (c) FCN, (d) U-Net,
(e) ResU-Net, (f) DeepLabV3, (g) Mixer U-Net (ours), and (h) Mixer U-Net with PN (ours). Dotted
red rectangles represent the areas of the image with poor performance, while dotted green rectangles
highlight areas with better performance.
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In order to further explore the areas on images where the models struggle the most
and the reasons for that, we conducted an error analysis (see Figure 9). For the same
goal, another set of five images was randomly chosen from the test set and the extracted
segmentation maps were overlaid on top of the ground truth. The green pixels (TP)
represent the accurately detected road pixels while the blue lines (FP) denote the pixels
mistakenly assigned as road pixels. Finally, the red lines (FN) illustrate areas where the
models could not detect the roads and classified them as the background. In general, the
models can distinguish roads from areas such as building roofs, rivers, or the parts of
roads occluded with trees. However, the models treat parking lots or pavements alongside
buildings or houses as roads since the context information of these parts of images is similar
to the structure of roads. Moreover, the models struggle with the images where roads are
occluded by the shadow of buildings and the ones which are small in width and light grey.
On top of that, when the images and their ground truth labels were examined thoroughly, it
was detected that not all roads were labeled but were, instead, classified as the background.
This might be one of the reasons why the models are struggling to perform properly on
those aforementioned areas.

(a)

(b)

(c)

(h)

(g)

(f)

(e)

(d)

Figure 9. Error analysis of models: visual comparison of road extraction results by the baselines
and the proposed models on randomly chosen images from the test dataset. The first two rows-
(a,b) represent the original image and the ground truth, respectively. The order of models is as follows:
(c) FCN, (d) U-Net, (e) ResU-Net, (f) DeepLabV3, (g) Mixer U-Net (ours), and (h) MixerU-Net with
PN (ours). The green, red, and blue lines represent true positives (TP), false negatives (FN), and false
positives (FP) for road pixels.
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5. Conclusions

In this paper, we proposed two lightweight models based on U-Net, depthwise sepa-
rable convolutions, ConvMixer layer, and an inception module to extract road areas from
unmanned aerial vehicle imagery. Specifically, the standard 3× 3 convolution operation
used in naive inception block was substituted for the ConvMixer layer, which produces
the same result for reduced computational cost. In addition to that, we replaced the max-
pooling operation in the original inception module with three cascaded ConvMixer layers
that produces the effect of one 7× 7 convolution operation. The utilization of the inception
module allowed us to learn images on different scales. Furthermore, path networks were
incorporated along skip connections to alleviate the semantic gap between encoder and
decoder stages. Finally, we substituted the transposed convolution upsampling method in
the decoder part of the networks for Bilinear interpolation to overcome the checkerboard
artifact issue. We conducted extensive experiments on publicly available Massachusetts
roads dataset. The experiments show that the proposed models yielded superior results
compared to four state-of-the-art models while containing remarkably fewer parameters.
On top of that, the proposed models experienced relatively faster convergence compared
to baseline networks, easily achieving 75% accuracy benchmark within only 10 epochs
of training.

Although the proposed models allowed us to decrease the parameter size considerably,
performance was negligibly higher than that of the baseline models. We believe that there
is still a room for improvement for our models not only in terms of performance but also
further reductions in parameter size. One example could be the optimization of channel
size distributions within the inception blocks across the models, which is set equally for
all channels in this work. In future studies, we will carry on improving our models and
investigate their potential by experimenting with various domain datasets.
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