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Abstract 

 

Seawater intrusion (SI) is a global issue, exacerbated by increasing demands for freshwater in 

coastal zones and predisposed to the influences of rising sea levels and changing climates. 

This review presents the state of knowledge in SI research, compares classes of methods for 

assessing and managing SI, and suggests areas for future research. We subdivide SI research 

into categories relating to processes, measurement, prediction and management. Considerable 

research effort spanning more than 50 years has provided an extensive array of field, 

laboratory and computer-based techniques for SI investigation. Despite this, knowledge gaps 

exist in SI process understanding, in particular associated with transient SI processes and 

timeframes, and the characterization and prediction of freshwater-saltwater interfaces over 

regional scales and in highly heterogeneous and dynamic settings. Multidisciplinary research 

is warranted to evaluate interactions between SI and submarine groundwater discharge, 

ecosystem health and unsaturated zone processes. Recent advances in numerical simulation, 

calibration and optimization techniques require rigorous field-scale application to 

contemporary issues of climate change, sea-level rise, and socioeconomic and ecological 

factors that are inseparable elements of SI management. The number of well-characterized 

examples of SI is small, and this has impeded  understanding of field-scale processes, such as 

those controlling mixing zones, saltwater upconing, heterogeneity effects and other factors. 

Current SI process understanding is based mainly on numerical simulation and laboratory 

sand-tank experimentation to unravel the combined effects of tides, surface water-

groundwater interaction, heterogeneity, pumping and density contrasts. The research effort 

would benefit from intensive measurement campaigns to delineate accurately interfaces and 

their movement in response to real-world coastal aquifer stresses, encompassing a range of 

geological and hydrological settings. 
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1. Introduction 

 

The management of freshwater reserves is an increasingly important imperative for the 

custodians of natural resources. Freshwater stored in coastal aquifers is particularly 

susceptible to degradation due to its proximity to seawater, in combination with the intensive 

water demands that accompany higher population densities of coastal zones. Seawater 

intrusion (SI, i.e., the landward incursion of seawater) is caused by prolonged changes (or in 

some cases severe episodic changes) in coastal groundwater levels due to pumping, land-use 

change, climate variations or sea-level fluctuations. The primary detrimental effects of SI are 

reduction in the available freshwater storage volume and contamination of production wells, 

whereby less than 1% of seawater (~250 mg/l chloride, WHO, 2011) renders freshwater unfit 

for drinking. The considerable threat of SI on the global scale is well documented [e.g., 

Kinzelbach et al., 2003; Post, 2005; Barlow and Reichard, 2010]. 

 

Here, SI refers to the subsurface movement of seawater, although surface water bodies (e.g., 

rivers, canals, wetlands) are impacted similarly by intruding seawater. Coastal aquifers are 

complex environments typified by transient water levels, variable salinity and water density 

distributions, and heterogeneous hydraulic properties. Climate variations, groundwater 

pumping and fluctuating sea levels impose dynamic hydrologic conditions, which are inter-

related with the distribution of dissolved salts through water density-salinity relationships. 

These processes are often important at vastly different spatial and temporal scales, although 

cumulative small-scale factors (e.g., beach-scale dynamics) can combine to have wide 

ranging impacts on coastal hydrology and SI [e.g., Carey et al., 2009]. A simplified coastal 

aquifer representation showing a selection of hydrogeological processes of relevance to SI in 
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a shallow unconfined aquifer is given in Fig. 1. Important aspects such as 3D effects, 

heterogeneity in aquifer properties and geometry, dispersion and diffusion, degree of aquifer 

confinement, hydrogeochemical processes, etc., are omitted from the figure, but their 

importance is recognized in the review that follows.  

 

[FIGURE 1] 

Fig. 1. Simplified diagram of a coastal unconfined aquifer setting, showing (a) seawater 

wedge toe, (b) density-driven circulation in the seawater zone, (c) seawater upconing due to 

well pumping, (d) coastal fringe processes, such as tidal seepage face and upper seawater 

recirculation zone, (e) head-controlled surface expression of groundwater. 

 

Considerable research effort spanning more than 50 years has been devoted to understand 

better coastal aquifer flow and transport processes, to enhance coastal water security, and to 

avoid environmental degradation of coastal systems [Diersch and Kolditz, 2002; Post, 2005]. 

Indeed, the field of coastal hydrogeology, considered as a sub-discipline of hydrogeology, 

spans SI, submarine groundwater discharge (SGD), beach-scale hydrology, sub-seafloor 

hydrogeology and studies on geological timescales involving coastline geomorphology. 

Despite this, coastal aquifer hydrodynamics and SI remain challenging to measure and 

quantify, commonly used models and field data are difficult to reconcile, and predictions of 

future coastal aquifer functioning are relatively uncertain across both regional and local 

(individual well) scales [e.g., Sanford and Pope, 2010]. 

 

Here, we review the literature to outline recent progress in SI research, including both 

practical and theoretical elements of SI analysis and investigative tools. SI research 

encompasses a multi-disciplinary range of topics due to the complex nature of coastal aquifer 



5 
 

flow and transport, which are influenced by unsaturated zone processes, interactions with 

surface water systems, shoreline geomorphology, microbiological and vegetation functioning, 

hydrogeochemical reactions, etc. It follows that SI research often involves linkages across 

traditionally disparate disciplines. Further, much of the SI literature focuses on the optimal 

use of coastal groundwater and issues of sustainability (i.e., management), including the 

uptake and application of new knowledge in understanding natural system functioning, and 

ultimately in the deployment of operational practices for regulating groundwater extraction 

and in mitigating SI. Given the inherent uniqueness of each real-world incidence of SI, well-

documented case studies are an important aspect of SI research. 

 

The review aims to summarize the evolution and current status of SI research. The following 

SI research categories are considered: processes (§2), measurement (§3), prediction (§4), and 

management (§5). Finally, we provide a prospective view of gaps in SI knowledge and 

investigative tools (§6). Fundamental aspects of SI theory and management are covered by 

Reilly and Goodman [1985], Custodio and Bruggeman [1987], Bear et al. [1999], Diersch 

and Kolditz [2002] and Cheng and Ouazar [2004], and are not repeated here. 

 

2. SI processes 

 

The processes and factors associated with SI are described qualitatively by Custodio [1987a, 

1987b]. These include dispersive mixing, tidal effects, density effects including unstable 

convection, surface hydrology (e.g., recharge variability and surface-subsurface interactions), 

paleo-hydrogeological conditions (i.e., leading to trapped ancient seawater), anthropogenic 

influences, and geological characteristics that influence the  degree of confinement as well as 

aquifer hydraulic and transport properties. The interactions between these and other processes 
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(e.g., geochemical reactions, tsunamis and other episodic ocean events, beach morphological 

controls on shoreline watertable conditions, unsaturated zone flow and transport) provide for 

a seemingly infinite array of possible settings in which SI can occur. This poses a significant 

challenge for water resource managers in identifying the primary SI controlling factors and 

considering these in both the evaluation and optimization of groundwater use. In many cases, 

field observations reveal behavior that is unexpected or inexplicable if only a subset of 

coastal aquifer processes is considered [e.g., Turner and Acworth, 2004]. Laboratory and 

numerical modeling experimentation are typically the tools of choice in seeking to elucidate 

the influence of individual processes from multifaceted field measurements, and many of the 

studies reviewed below incorporate these types of approaches. 

 

In all SI situations, controlling factors include buoyancy forces associated with density 

variations (controlled mainly through solute concentration but sometimes through 

temperature; Dausman et al. 2010b), advective forces resulting from freshwater discharge, 

dispersive mechanisms, and hydrological/geometric boundary condition controls (e.g., 

aquifer thickness and extent and characteristics of sources and sinks). Time lags in SI 

responses to both cyclic and prolonged fluctuations in aquifer stresses introduce further 

complexity, and could potentially confound the interpretation of SI from field-based 

measurements [e.g., Watson et al., 2010]. The situation of stable density stratification 

(freshwater overlying saltwater) is the most common salinity configuration, and is often 

explored through modified forms of the Henry [1964] problem. Dentz et al. [2006] defined 

dimensionless parameters for the Henry problem, representing the interplay between 

advective and diffusive mechanisms (i.e., the Péclet number; Pe), and the ratio of buoyancy 

to viscous forces (i.e., the Rayleigh number; Ra). Convective circulation of seawater, an 

important component of SI behavior, is demonstrated in the Henry problem. Abarca et al. 



7 
 

[2007b] considered dispersive forms of the Henry problem as more realistic representations 

of SI, and generated additional dimensionless parameters accounting for dispersive and 

anisotropic controls. Werner et al. [2012] considered confined and unconfined dimensionless 

parameters representing the mixed convection processes for steady-state situations involving 

recharge and a sharp freshwater-saltwater interface. The interplays between mechanisms 

associated with unstable situations (saltwater overlying freshwater), as might occur through 

transgression-regression cycles, tsunamis, etc., were discussed at length by Simmons et al. 

[2001], Diersch and Kolditz [2002] and Simmons et al. [2005]. 

 

2.1. Dispersive processes and freshwater-seawater mixing zones 

 

The mixing zone between freshwater and intruding seawater is an important feature of coastal 

aquifers [e.g., Michael et al., 2005]. The salt concentration and fluid density vary across the 

mixing zone due to mechanical dispersion and molecular diffusion, which drive salt into the 

outflowing freshwater thereby contributing to the convective circulation within the wedge 

[e.g., Abarca et al., 2007a; Abarca et al., 2007b]. Effective management of coastal 

groundwater resources usually requires that the position and thickness of the mixing zone be 

reasonably well characterized. 

 

Observed mixing-zone thicknesses vary widely between laboratory experiments, field 

situations and numerical simulations. Narrow mixing zones in homogeneous porous media 

were demonstrated in several laboratory experiments [Abarca and Clement, 2009; Goswami 

and Clement, 2007], and in numerical simulations using fine discretization and small 

dispersion coefficients [e.g., Jakovovic et al., 2011]. However, mixing zones in field 

situations vary considerably, ranging from a few meters to kilometers [Paster et al., 2006; 
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Price et al., 2003; Barlow, 2003]. In steady state, homogeneous systems, the thickness of the 

mixing zone is affected by mechanical dispersion (both longitudinal and transverse 

components), molecular diffusion, freshwater discharge, and the density contrast between 

seawater and the ambient groundwater [e.g., Volker and Rushton, 1982]. Volker and Rushton 

[1982] simulated wider mixing zones in systems characterized by higher dispersion 

coefficients, lower freshwater discharge (for a given velocity-independent dispersion 

coefficient) and higher density contrasts. Velocity-proportional dispersion will likely produce 

narrower mixing zones with lower freshwater discharge. Held et al. [2005] and Paster and 

Dagan [2007] suggested that local (or pore-scale) transverse dispersion is the primary 

mechanism responsible for the existence of steady-state mixing zones in homogeneous 

systems. In this case, narrow mixing zones are expected given typically small transverse 

dispersion coefficients obtained experimentally [Paster and Dagan, 2007]. It follows that 

wide mixing zones observed in field settings are probably not caused by local dispersion 

effects. 

 

Analysis of an anisotropic dispersive adaptation of the Henry problem by Abarca et al. 

[2007b] showed that longitudinal and transversal dispersion are equally important in 

controlling the mixing-zone thickness, which is a function of the geometric mean of the two 

dispersivity coefficients. In reality, the mixing zones in coastal aquifers are the result of 

transport processes driven by density gradients, diffusion, dispersion, and kinetic mass 

transfer, which are influenced by many mechanisms and aquifer characteristics, such as 

spatial heterogeneities in the geologic structure, tidal and wave forcing, temporal variability 

in groundwater recharge, long-term changes in sea-level position, and pumping activities. 

Kinetic mass transfer refers to mass exchange processes between mobile and relatively 

immobile zones due to low-permeability zones, dead-end pores, etc. [e.g., Coats and Smith, 
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1964]. Other interplays between aquifer heterogeneities and mixing-zone thicknesses are 

discussed in the next section. The respective contributions of the various factors listed above 

to freshwater-saltwater interface thickness are not fully understood. 

 

Fluctuations in both inland freshwater heads and seawater levels can play an important role in 

modifying mixing-zone thicknesses. Eeman et al. [2011] reported analyses of the mixing-

zone thickness between a freshwater lens and the upwelling saline water, and showed  that if 

significant fluctuations of the lens thickness occur, transverse dispersion might be less 

important than longitudinal dispersion. Ataie-Ashtiani et al. [1999] investigated the effects of 

tidal activities on SI in an unconfined aquifer and found that dispersion along the interface 

could be enhanced by tidal forces. Widening of the mixing zone due to tides is apparent 

despite only small net movements of the mixing zone through each tidal cycle [Ataie-

Ashtiani et al., 1999; Chen and Hsu, 2004]. The mixing zone, in reality, seldom remains 

stationary due to seasonal variations (or less frequent events) in groundwater utilization and 

surface recharge [e.g., Dausman and Langevin, 2005; Michael et al., 2005]. Based on this 

assumption, Lu et al. [2009] demonstrated that kinetic mass transfer between the relatively 

mobile and immobile zones could significantly widen a moving mixing zone. Further studies 

by Lu and Luo [2010] indicated that mixing enhancement is mainly controlled by the 

unsynchronized transport behavior of salts in the mobile and immobile zones, and that the 

mixing-zone thickness within a seasonal fluctuation cycle can vary significantly. 

 

When a partially penetrating well is located in an aquifer where freshwater and saltwater are 

stratified, pumping fresh groundwater can cause the movement of saltwater from the deeper 

saltwater zone upward into the fresh groundwater (i.e., saltwater upconing), influencing the 

mixing zone thickness. Laboratory visualizations and numerical modeling of such processes 
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by Werner et al. [2009] and Jakovovic et al. [2011] demonstrated that longitudinal dispersion 

creates a dispersed plume during early stage upconing. Once the upconing interface has 

stabilized, the smaller transverse dispersion controls the interface thickness, which 

subsequently becomes narrower. The same controls on mixing zone dynamics likely apply to 

horizontal SI, by which longitudinal dispersion dominates the thickness of a laterally moving 

mixing zone, such as during active SI, in the same manner as any other mobile contaminant 

plume. The mixing zones of slower SI are probably influenced more strongly by transverse 

dispersivity. 

 

2.2. SI in heterogeneous systems 

 

The inherent heterogeneities of geological systems create spatial variations in hydraulic 

properties that control the transport of dissolved constituents by perturbing fluid flow at 

various length scales [Diersch and Kolditz, 2002]. In the context of SI, heterogeneity effects 

are multifaceted and depend on the geomorphologic and geochemical characteristics of the 

porous medium. The scale of heterogeneity is important. Small-scale heterogeneities appear 

to have only a minor influence on mixing zone thicknesses, while macroscopic variations in 

aquifer properties have a stronger influence. Randomly distributed hydraulic conductivities 

(i.e. small-scale heterogeneities) can enhance macrodispersion and produce wider mixing 

zones [Kerrou and Renard, 2010], although Abarca [2006] found that the effects of moderate 

random heterogeneities on widening the steady-state mixing-zone thickness are small. 

However, the geological structures found in field situations (i.e., large-scale heterogeneities) 

can produce preferential flow paths by which rapid transport can occur [e.g., Calvache and 

Pulido-Bosch, 1997]. This follows density-independent analyses by Rahman et al. [2005], 

who demonstrate that heterogeneity has a negligible impact on transversal mixing, but 
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produces significant plume meandering and distorted concentration profiles. Structured 

variations in the aquifer bottom boundary can similarly introduce preferential SI pathways 

[Abarca et al., 2007a; Mulligan et al., 2007]. Identifying and characterizing the controls of 

local geological features, and representing these appropriately in SI studies is one of the most 

challenging aspects of SI quantification and prediction, as it is for many problems that 

involve solute transport. 

 

Few well-documented case studies characterize accurately the influence of aquifer 

heterogeneities on SI . Kim et al. [2006] highlighted complex interplays between aquifer 

heterogeneities and tidal effects in their field-based analysis of the freshwater-saltwater 

interface on Jeju Island (Korea). Oki et al. [1998] concluded that aquifer heterogeneities in 

the form of stratigraphic discontinuities controlled mixing zone widths in southern Oahu 

aquifers (Hawaii, USA). In their attempts to simulate a relatively small atoll-island aquifer, 

Ghassemi et al. [2000] found that aquifer heterogeneities were essential for numerical 

modeling results to match field observations. Similarly, Hodgkinson et al. [2007] highlighted 

the importance of heterogeneous stratigraphy on seawater-freshwater mixing in a barrier sand 

island. They concluded that low permeability sediments controlled the freshwater lens 

thickness. The review of coastal karst systems by Fleury et al. [2007] identifies conduit flows 

as the primary mechanism dominating solute transport (and therefore SI) in several coastal 

settings. 

 

The variability of possible geological structures presents a significant barrier to the 

generalization of heterogeneity effects on SI. It is clear that such structures must be 

characterized if local geological controls on SI are important. Understanding is gained from 

analyses of SI in various simplified heterogeneous configurations. For example, Chang and 
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Yeh [2010] applied a spectral approach to analyze heterogeneity effects on the position of a 

steady-state interface, which was represented in 2D planar orientation. The correlation scale 

of the log-hydraulic conductivity field (i.e., controlling the continuity of preferential flow 

paths) was an important factor in influencing the position of the interface. Dagan and Zeitoun 

[1998a, 1998b] evaluated heterogeneity effects on the interface position within randomly 

stratified aquifers (i.e., with horizontal structures), and found that neglecting layered 

heterogeneities introduced large uncertainty in estimates of the toe position, but had relatively 

minor influence on calculations of upconing under axisymmetric conditions. Lu et al. [2011] 

demonstrated the mixing effects of stratified heterogeneities. They considered SI in a system 

with a low permeability aquifer layer overlying a higher-permeability layer, presenting results 

of laboratory experiments and numerical simulations. Slanting upward flow of diluted 

saltwater and circulated seawater flow was refracted at the interface between the two layers, 

resulting in streamline separation and mixing zone widening in the low-permeability layer. 

Their findings help to explain the existence of thick mixing zones, such as in the low-

permeability caprock layer overlying a highly permeable volcanic aquifer in Oahu, Hawaii, 

USA [Oki et al., 1998]. Lu et al. [2011] also found that neglecting layered heterogeneity 

would lead to the overestimation of the toe penetration length, provided that the inland head 

boundary remained constant. 

 

Effects of random heterogeneity on stationary mixing zones have been investigated by 

several authors through adaptations of the Henry problem. Held et al. [2005] employed 

homogenization theory to investigate the heterogeneous diffusive Henry problem, and found 

that it was not necessary to upscale the dispersivity coefficient to reproduce accurately the 

mean behavior of SI in a heterogeneous medium. However, a contrary result was obtained by 

Kerrou and Renard [2010] who, based on a more realistic dispersive form of the Henry 
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problem, indicated that macrodispersion needs to be accounted for when upscaling SI in 

heterogeneous media. The contradiction in findings between the studies of Held et al. [2005] 

and Kerrou and Renard [2010] highlights important differences in SI upscaling that arises 

from diffusive and dispersive mixing zone representations. Kerrou and Renard [2010] also 

demonstrated that the impact of heterogeneity on SI was significantly different in 2D and 3D 

models, both in magnitude and in general trends. For example, as the degree of random 

heterogeneity increases, the toe penetration length reduces in 2D models, as suggested by 

Abarca [2006], while it can increase or decrease in 3D models depending on the degree of 

heterogeneity and anisotropy. This occurs because the addition of heterogeneity (i.e., in the 

third dimension) influences both the effective hydraulic conductivity and the effective 

dispersivity, which control the toe penetration in different ways. 

 

Where SI induces unstable density configurations (e.g., due to SI along preferential flow 

paths), heterogeneity is a key factor controlling the development of saltwater fingers 

[Simmons et al. 2001; Diersch and Kolditz, 2002; Simmons, 2005]. Heterogeneities also 

influence the circulation of seawater within the coastal aquifer and the chemical composition 

and discharge location of SGD [Abraca, 2006; Fleury et al., 2007], while neglect of 

heterogeneities can result in a significant bias in predicting the influence of tides on shoreline 

watertable conditions  [Carey et al., 2009]. 

 

2.3. SI implications of sea-level fluctuations 

 

The influences of sea-level fluctuations on groundwater systems (and more specifically on 

SI) are complex and varied. Fluctuations induced by episodic events such as tsunamis and 

storm surges are irregular in magnitude and frequency, whereas tides are predictable, 
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although their amplitudes vary substantially (up to 16.8 m in the Bay of Fundy) around the 

globe [Slooten et al., 2010]. Relationships between ocean stresses and SI involve many 

factors, including: aquifer hydraulic properties and configuration, shoreline morphology (e.g., 

beach slope), seepage face development, capillary fringe processes, and the characteristics of 

the ocean fluctuations themselves, amongst others [e.g., Cartwright et al., 2004b; Carey et al., 

2009; Slooten et al., 2010; Bakhtyar et al., 2012]. Tidal inlets, creeks and rivers are also 

important in shaping both salinity and hydrodynamic conditions in many coastal aquifers 

[e.g., Lenkopane et al., 2009; Li et al., 2000a]. Here, we focus mainly on those near-shore 

aquifer processes  with direct implications for SI. 

 

Seawater inundation of land from climatic or geological events (e.g., tsunami, storm surge, 

transgression, etc.) differs from common forms of SI, such as depicted in the Henry problem, 

in that salinization occurs through downward advection, dispersion and diffusion, and in 

some cases as free convection in the form of lobe-shaped instabilities [e.g., Kooi et al., 2000]. 

Illangasekare et al. [2006] reported on salinization processes in Sri Lanka arising from the 

2004 Indian Ocean tsunami, and concluded that free convection was an important mechanism 

driving rapid salinization of Sri Lankan freshwater lenses. They projected recovery rates of a 

few years from this rare event. Violette et al. [2009] calculated freshwater flushing 

timeframes of 3 to 7 years for an unconfined aquifer in India impacted by a tsunami from the 

same 2004 earthquake. Anderson and Lauer [2008] considered contributions from storm-

induced over-wash to the aquifer salinity of a barrier island. Storm events were found to 

contribute substantially to the aquifer’s persistent salinity conditions, imposing greater 

influence on mixing zone development than tidal oscillations and other factors. Even 

moderate storm effects can have significant influence on coastal hydrogeology [e.g., Wilson 
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et al., 2011]. Freshwater lenses of islands are particularly vulnerable to storm-surge over-

wash [Terry and Falkland, 2010]. 

 

Where sea-level fluctuations are retained within the intertidal zone (i.e., coastal barriers are 

not overtopped), their influence on SI is more ambiguous. Inouchi et al. [1990] found that 

interface movements in response to tides are small, although dispersive modeling produced 

significant tidal impact on mixing zone thicknesses for their simulated settings. Ataie-

Ashtiani et al. [1999] concluded similarly that tides produce negligible impacts on the 

landward extent of the mixing zone, at least for tidal amplitudes much less than aquifer depth, 

and that tides changed substantially mixing zone configurations. A tidal tracer study by 

Acworth et al. [2007] revealed greater vertical fluctuations relative to horizontal movements 

in response to tides, which enhanced mixing zone thicknesses. In contrast, Morrow et al. 

[2010] concluded from geophysical surveys that mixing zone movements occurred in 

response to large tidal amplitudes (i.e., 3.8 m) without substantial widening of the mixing 

zone. Kim et al. [2006] monitored interface changes in response to tides in the Jeju Island 

aquifer (Korea), and found that geologic heterogeneities control tide-interface relationships. 

The main influence of tides was found to be enhanced mixing, consistent with the 

conclusions of Inouchi et al. [1990] and Ataie-Ashtiani et al. [1999]. The relative importance 

of different ocean signals is indicated by the characteristic attenuation length for head 

fluctuations: PDL
c
 , where P is the wave period and D is aquifer diffusivity (

s
SKD / , with K the hydraulic conductivity and SS the specific storage coefficient) [e.g., 

Slooten et al., 2010]. The higher value of D for confined aquifers produces far more extensive 

tidal propagation. Also, high-frequency wind wave signals are dissipated at short distances 

from the beach face, while damping distances for tidal watertable fluctuations can reach 

several kilometers in confined aquifers. Storm surges lasting several days exert even more 
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extensive controls [e.g., Lanyon et al., 1982; Horn, 2006]. Sloping beach faces affect the 

propagation of signals, with the production of weakly damped spring-neap fluctuations [Li et 

al., 2000]. The field-based investigation of Cartwright et al. [2004a], amongst other studies, 

found that tidal fluctuations (up to 2 m amplitude) produced minimal interface movements 

relative to the response caused by a modest storm event (i.e., 4.5 m significant wave height 

inducing interface movements of several meters). 

 

Numerous factors complicate tidal propagation and salinity patterns in real-world coastal 

aquifers, and these are likely responsible for observed differences in the effects of tides on 

salinity distributions. For example, field monitoring and numerical modeling studies have 

identified an upper saline plume of recirculating seawater (see (d) in Fig. 1), generated by a 

combination of tides and waves [e.g., Li et al., 2004; Robinson et al., 2006, 2007; Werner and 

Lockington, 2006, Vandenbohede and Lebbe, 2006; Xin et al., 2010]. Beach morphology 

(i.e., profile and hydraulic properties) plays a significant role in this and other relevant tidal 

phenomena, such as seepage face formation [e.g., Nielsen, 1990; Li et al., 1997, 2002, 2008; 

Carey et al., 2009]. As mentioned above, aquifer heterogeneities are also important in both 

tidal propagation and salt transport [e.g., Calvache and Pulido-Bosch, 1997; Slooten et al., 

2010]. In contrast, fluid density variability and capillarity effects have small influences on 

tidal propagation [Barry et al., 1996; Slooten et al., 2010]. The multitude of possible 

interactions between aquifers, the sea, and tidal surface water features such as estuaries and 

tidal wetlands further complicates coastal aquifer salinity responses to sea-level fluctuations, 

especially considering the tidal salinity dynamics of surface water features [e.g., Lenkopane 

et al., 2009; Wilson et al., 2011]. 
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Tides not only create dynamic conditions in the near-shore aquifer, but they also influence 

time-averaged ocean boundary conditions, which regulate regional aquifer hydrology. Tidal 

watertable over-height refers to the super-elevation of head conditions at the coast arising 

from tidal effects [e.g. Nielsen, 1990; Ataie-Ashtiani et al., 2001; Song et al., 2006]. That is, 

tides imposed time-averaged head conditions at the coast that exceed mean sea level. 

Accurate representation of tidal over-height in the ocean boundary conditions of SI 

management models is essential to produce reasonable guidance on well-field operation 

protocols for avoiding SI, and relies on apposite knowledge of relevant coastal fringe flow 

and transport processes [e.g., Werner and Gallagher, 2006]. 

 

2.4. Hydrochemical processes 

 

The composition of seawater is relatively constant around the world [Millero et al., 2008], 

whereas the composition of fresh groundwater in coastal aquifers can be quite variable. 

Despite this variability, some characteristic chemical water types often form in coastal 

aquifers. This is due to the chemical reactions between the host material and groundwater that 

occur when intruded seawater and fresh groundwater mix, or when one displaces the other. 

The geochemical properties of the rocks determine the dominant chemical processes. Due to 

the distinct difference in the chemical composition of fresh groundwater and seawater, 

various hydrochemical processes can accompany SI, which lead to important changes in 

water quality and can even alter the hydraulic properties of the subsurface. In this section, we 

discuss chemical processes that are typical during SI. 

 

Classical studies on the effects of seawater and freshwater mixing in carbonate aquifers 

include Plummer [1975] and Wigley and Plummer [1976], who showed that carbonate 
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dissolution can be an important process in the mixing zone. The dissolution process occurs 

even when both the seawater and freshwater end members in the mixture are at chemical 

equilibrium with the carbonate mineral. Due to the redistribution of carbonate species and the 

non-linear dependence of activity coefficients on ionic strength [Wigley and Plummer, 1976], 

the resultant mixture has the capacity to dissolve carbonate. Mixing-induced carbonate 

dissolution enhances porosity and can lead to cave formation [Smart et al., 1988], an 

important factor in coastline morphology development [Back et al., 1979]. 

 

Another well-documented group of chemical reactions in coastal groundwater systems is 

cation exchange, which is driven by the differences in cation dominance in seawater and 

fresh groundwater. Na and Mg are dominant in seawater, and freshwater typically is 

dominated by Ca, although this can vary depending on the mineralogy of the aquifer. Clay 

minerals and organic matter have the ability to adsorb cations. If there is a shift in the 

interface position, the equilibrium between groundwater and exchanger is disrupted, and the 

exchange process alters the cation concentrations of the solution. Well-documented case 

studies from the Netherlands [e.g., Appelo and Willemsen, 1987; Stuyfzand, 1999], Spain 

[Giménez Forcada, 2010] and the USA [Valocchi et al., 1981a] have shown that 

characteristic water types develop, and that chromatographic patterns can form along flow 

paths [Appelo, 1994, Van der Kemp et al., 2000; Martínez and Bocanegra, 2002], which can 

be used as an indicator of freshening or salinization of coastal aquifers. Faye et al. [2005] 

were able to distinguish between areas of freshening and salinization based on the sorption 

behavior of Boron (B) and, recently, Russak and Sivan [2010] used cation exchange patterns 

to infer a seasonal alternation between freshening and salinization phases. 
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Intruded seawater in coastal aquifers is often found to have a lower sulfate concentration than 

seawater. While Gomis-Yagües et al. [2000] argued that the depletion of sulfate can be 

attributable to gypsum precipitation, sulfate reduction is usually the result of the degradation 

of organic matter [e.g., Chapelle and McMahon, 1991; Grassi and Cortecci, 2005; Bratton et 

al., 2009]. This process has been studied extensively within the context of biogeochemical 

cycling and early diagenesis [Berner, 1980]. Examples of recent studies include de Montety 

et al. [2008], who showed that ongoing sulfate reduction could lead to a shift in carbonate 

equilibrium that can trigger the precipitation of dolomite and/or magnesium-bearing calcite. 

Beck et al. [2008] showed that the geologic heterogeneity of tidal flat sediments influenced 

organic matter remineralization by sulfate reduction, and also found a seasonal variation in 

the pore water chemistry due to organic matter supply and temperature variations. Riedel et 

al. [2011] found that rates of organic carbon mineralization and sulfate reduction in a shallow 

coastal aquifer are much higher in regions dominated by advection than in regions where 

diffusion is the dominant transport mechanism and thus where the supply of oxidants and 

nutrients is limited. 

 

Over the past decade, many studies have focused on redox chemistry within the context of 

SGD, and the transformation of nitrogen (N) and phosphorous (P) in the mixing zone 

between fresh and saline groundwater in SGD settings has received considerable attention 

[Moore, 1999; Slomp and Van Capellen, 2004]. A comprehensive review on SGD and the 

associated fluxes of nutrients, metals and carbon was recently published by Moore [2010]. 

 

The exposure and inundation of coastal areas due to shifts in the location of the coastline can 

further trigger a variety of chemical reactions in the subsurface. Allen [2004] found evidence 

for mixing between meteoric recharge and either modern intruded seawater or Pleistocene 
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age seawater below two islands in British Columbia (Canada) that have undergone 

postglacial isostatic uplift. Boman et al. [2010] described the development of acid sulfate 

soils in brackish-water sediments in Finland that became exposed due to the same geologic 

process. Exposure of the sediments to atmospheric oxygen, often promoted by drainage for 

agricultural purposes, causes oxidation of metastable iron sulfides and pyrite, which results in 

acidification and mobilization of trace metals. Similar conditions have developed in other 

parts of the world due to drainage and reclamation of sulfur-rich marine sediments. Johnston 

et al. [2009] studied the effects of seawater inundation of acidified soils and found that it led 

to considerable increases in soil pH, suggesting that marine inundation might be an effective 

remediation strategy. 

 

2.5. Upconing below wells 

 

Pumping from coastal aquifers can cause the vertical rise of saltwater and a reduction of the 

freshwater zone below pumping wells, a process called upconing. Under certain 

circumstances, equilibrium can be established in which a stable cone develops at some depth 

below the bottom of the well screen, such that upward forces caused by the well are balanced 

by downward forces caused by density effects [Bower et al, 1999]. The rate and extent of 

saltwater upconing depend on a number of factors, including hydraulic properties of aquifer 

systems, pumping rate and duration, initial position of the interface, density contrast between 

freshwater and saltwater, and other factors such as dispersion and sorption effects, 

groundwater recharge, regional flow rate, and the well and aquifer geometries [Wirojanagud 

and Charbeneau, 1985; Reilly and Goodman, 1987; Saeed et al., 2002]. Some analytical 

solutions and numerical models on upconing are reviewed in § 4. 
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3. SI measurement 

 

The measurement of SI, considering the strictest definition in terms of a moving interface, 

requires temporal observations of salinity changes. Other SI indicators include hydraulic head 

trends and water chemistry characteristics that infer historical salt transport processes. 

Accurate delineation of the extent of saline groundwater in coastal aquifers is difficult due to 

the scarcity of water salinity measurements across scales of interest for the management of 

SI. Measurement of transient SI is difficult because the process is typically slow, and historic 

data are scarce or absent. This is reflected in the current lack of estimates of the scale of SI 

problems globally, although continental and national summaries are offered by various 

authors [e.g., Custodio, 2010; Barlow and Reichard, 2010; Werner, 2010]. Monitoring of 

coastal groundwater systems often entails a multi-disciplinary approach, as single techniques 

usually fail to provide unique answers. This review considers head measurements, 

geophysical methods, and applications of environmental tracers, as important elements of 

coastal aquifer measurements. 

 

3.1. Head measurements 

 

Head measurements are complicated in coastal aquifers because the density of the 

groundwater varies. Post et al. [2007] gave a detailed overview of the complications and their 

solutions. Three types of hydraulic heads can be distinguished: (1) Point water head, where 

the observation well is filled entirely with water of the same density as at the bottom of the 

well, (2) Freshwater head, where the observation well is filled entirely with freshwater, and 

(3) Environmental head, where the variation of the density of the water in the observation 

well is the same as in the aquifer. Post et al. [2007] suggested avoiding the environmental 
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head. In the field, only point water head can be measured. For this purpose, water needs to be 

bailed from an observation well (equal to at least the volume of the observation well) before a 

measurement is taken. Contour plots of freshwater head in a horizontal plane at constant 

depth are useful, because flow in isotropic aquifers is normal to these contour lines. Contour 

plots of point water head in a vertical cross section are useful to compute the flow in the 

freshwater zone or the saltwater zone, but not in the mixing zone. In summary, head 

measurements in coastal aquifers are only useful when both the exact depth is recorded and 

when the salinity (and thus density) variation is known inside the well [Custodio, 1987a]. 

 

As in other aquifers, coastal boreholes can act as vertical short circuits between layers. Shalev 

et al. [2009] analyzed field data and conducted a numerical study to investigate the effects of 

boreholes with long screens on the measured position of the watertable and the interface. 

They found that the fluctuation of the interface within the well is higher by up to an order of 

magnitude than in the aquifer, and that the degree of mismatch between the two is dependent 

on the anisotropy of the aquifer and the borehole hydraulic properties. These outcomes 

illustrate the difficulties encountered in the monitoring of SI and the need for properly 

designed observation wells and other measurement infrastructure. 

 

3.2. Geophysical methods 

 

The large electrical resistivity contrast between seawater (0.2 Ωm) and freshwater (> 5 Ωm) 

makes it possible to map the subsurface groundwater salinity distribution using geophysical 

techniques. Direct current (DC)-resistivity and electromagnetic (EM) methods in particular 

have been applied successfully in coastal areas. The relatively recent development of multi-

electrode resistivity arrays and airborne EM methods allow for mapping of the subsurface 
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salinity distribution in unprecedented detail in both space and time. This section discusses the 

most commonly applied techniques, with an emphasis on non-standard applications and 

recent developments. 

 

Resistivity methods have been applied in coastal aquifers for many decades. Swartz [1937] 

was one of the first to use the method to detect the interface depth on the islands of Hawaii. 

Well-documented cases from the subsequent decades include the coastal plains of northwest 

Europe [Hallenbach, 1953; Flathe, 1955; Van Dam and Meulenkamp, 1967; DeBreuk and 

DeMoor, 1969; Van Dam, 1976], Israel [Ginsberg and Levanon, 1976] and Florida [Fretwell 

and Stewart, 1981]. Data acquisition in these early studies was constrained to 1D surveys, 

either vertically with depth or laterally along a profile, but since the 1980s multi-electrode 

systems and computerized inversion algorithms enabled the development of 2D and 3D 

surveys [Dahlin, 2001]. 

 

Electrical resistivity tomography (ERT) is the visualization of the subsurface resistivity 

distribution in 2D or 3D. It has become a mainstream method in coastal hydrogeology over 

the past decade. Acworth and Dasey [2003] applied ERT to investigate the hyporheic zone 

below a tidal creek and identified an extensive mixing zone of seawater and infiltrated 

rainwater. They concluded that the use of borehole data in conjunction with surface-based 

geophysics was essential to interpret correctly the electrical images. Day-Lewis et al. [2006] 

and Henderson et al. [2010] discussed the applicability of ERT to delineate zones of SGD and 

found that the time-varying depth of seawater had a significant impact on the resolution and 

depth of the investigation. Offshore applications of DC resistivity methods are more 

challenging than land-based applications, but have been used successfully in a number of 

studies. Belaval et al. [2003] mapped the occurrence of fresh groundwater below coastal 
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waters in South Carolina and Massachusetts. Manheim et al. [2004] found offshore 

extensions of fresh groundwater of more than 1 km below the bays of the Delmarva 

Peninsula (USA) based on a vessel-towed multi-electrode system, and confirmed the inferred 

presence of fresh pore waters by drilling. Underwater multi-electrode profiling was used by 

Andersen et al. [2007] to map the sub-seafloor distribution of freshwater of a sandy coastal 

aquifer, where concern existed over the discharge of nitrate-containing groundwater. The 

geophysical results appeared to be particularly useful in delineating the freshwater discharge 

at the local scale, where it is controlled by small-scale heterogeneities. 

 

Time-lapse resistivity imaging using permanent electrode arrays is becoming more 

widespread. Poulsen et al. [2010] installed five vertical multi-electrode arrays in boreholes to 

monitor the temporal dynamics of the salinity distribution beneath a coastal dune in 

Denmark. Time-lapse electrical imaging was also used by de Franco et al. [2009] to monitor 

resistivity variations in an aquifer bordering the Venice Lagoon (Italy). This study showed 

that the resistivity was correlated to various environmental factors, such as rainfall, channel 

stage and tidal fluctuations at different depths and timescales. The proven feasibility of this 

technique for the detection of salinity changes has prompted the installation of a permanent 

telemetric system near Almeria (Spain) to monitor the effect of climate and land use change 

on groundwater salinity [Ogilvy et al., 2009]. 

 

Like resistivity methods, electromagnetic methods (EMs) have been used with considerable 

success to map groundwater salinity variations in coastal areas. Frequency-domain methods 

have been used for decades [Stewart, 1982] and, more recently, time-domain methods have 

become more popular [e.g., Fitterman and Stewart, 1986; Goldman et al., 1991; Marksamer 

et al., 2007]. EMs have been used in conjunction with resistivity methods. Examples include 
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studies in which an EM method was used as a cheap and rapid screening tool that helped to 

identify locations for more detailed ERT measurements [e.g., Ong et al., 2010], and studies 

that have exploited the joint inversion of measurements to constrain the non-uniqueness of 

the interpretation [e.g., Albouy et al., 2001]. 

 

EMs do not require contact between the measurement device and the ground surface, which 

has enabled the development of airborne measurement systems [Paine, 2003]. These systems 

allow for cost-effective mapping of the subsurface resistivity over large areas, and in areas 

that are inaccessible by ground-based vehicles, such as the Everglades in Florida [Fitterman 

and Deszcz-Pan, 1998] or the Venice coastal lagoon [Viezzoli et al., 2010]. Kirkegaard et al. 

[2011] used airborne EM measurements to study the salinity of groundwater to depths of 200 

m below a coastal lagoon and noted a strong correlation between the salinity and geological 

heterogeneity. A recent review of helicopter-borne EM methods was published by Siemon et 

al. [2009]. It contains further references to and an example of the application of this 

technique in coastal regions. 

 

Airborne measurements need to be constrained and verified using ground-based and 

downhole resistivity measurements. Geophysical well-logging to characterize the formations 

surrounding the borehole is typically done after drilling and before completion of the 

borehole. Downhole measurements can sometimes be used to monitor temporal changes in 

groundwater salinity, although the presence of a metal casing (which acts as an electrical 

conductor) can be prohibitive. Vandenbohede and Lebbe [2003] used a frequency-domain 

probe to monitor the passage of a plume during a tracer test. Nienhuis et al. [2010] compared 

different methods for detecting the fresh-salt water interface in existing boreholes and found 

that fixed electrode pairs installed at fixed depths within the borehole provide the most 
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accurate results. They also noted that borehole fluids used during drilling remain entrapped in 

confining units and bentonite seals for years, thereby limiting the resolving power of 

downhole methods. 

 

There are two major causes of error in geophysical measurements. First, the observation 

model that relates the observation (the measured signal) to the desired state (salinity) is 

approximate. Second, the measured signal can be affected by other variations besides salinity, 

mostly notably changes in the geology such as the presence of clay layers. As a result, the 

salinity distribution obtained from an analysis of geophysical measurements is approximate. 

 

3.3. Environmental tracers 

 

There have been many studies that have used the chemical composition of coastal 

groundwater as a diagnostic tool to establish the origin of dissolved salts. Although intruded 

seawater is the most obvious candidate for explaining observed increases in groundwater 

salinity, other sources and processes can contribute as well [Stuyfzand and Stuurman, 1994; 

FAO, 1997; Werner and Gallagher, 2006]. A multi-tracer approach that combines 

hydrochemical and isotope data can be used successfully to identify salinity sources 

[Vengosh et al., 1999]. Some recent examples will be given here. Bouchaou et al. [2008] used 

Br/Cl ratios, δ
18

O, δ
2
H, 

3
H, 

87
Sr/

86
Sr ratios, δ

11
B, and 

14
C to discern between different sources 

of salinity in a coastal aquifer in Morocco. They found that rock salt dissolution (halite and 

gypsum in particular), connate saline groundwater and irrigation return flow were 

contributors to salinity besides SI. Based on a similar approach that also included the study of 

δ
34

S data, Han et al. [2011] found that brines, with a TDS (total dissolved solids) > 100 g/l, in 

a coastal aquifer system in northern China constituted the main source of salt in the brackish 
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water moving towards the pumping wells in the area, rather than intruded modern seawater. 

The contribution of brines was also recognized by Ghabayen et al. [2006] in the coastal 

aquifers of the Gaza Strip and by Yechieli and Sivan [2011] in Israel. 

 

Boron concentrations and isotopes have been used by Giménez Forcada and Morell 

Evangelista [2008] to differentiate pollution sources in a coastal aquifer in Spain, which 

allowed seawater to be distinguished from industrial wastewater sources. The usefulness of B 

and its isotopes has been demonstrated in other coastal aquifer studies as well. Morell et al. 

[2008], for example, distinguished between salinity due to connate seawater from deep layers 

and modern SI based on δ
11

B values. Panagopoulos [2009] found a depleted δ
11

B signature 

and increased concentrations of Li and Sr in a karst aquifer in Greece, which were attributed 

to hydrothermal alteration of intruded seawater. Alcalá and Custodio [2008] demonstrated the 

use of the Cl/Br ratio to distinguish between natural salinity sources such as seawater and 

potassium halite, and anthropogenic sources such as wastewater, solid waste and pesticides. 

Contributions by irrigation return flow [e.g., Stigter et al., 1998; Kallioras et al., 2006; 

Lenehan and Bristow, 2010] and salt deposition by sea spray [Cruz and Silva, 2000] have 

been recognized in many areas around the world based on detailed hydrochemical 

characterization studies. Finally, it is noted that hydrochemical studies can be aided by 

statistical techniques such as factor analysis and principal component analysis. Such 

techniques have been used by several authors to distinguish water types and to classify water 

samples into groups [e.g., Aris et al., 2007; El Yaouti et al., 2009; Koh et al., 2009; Yidana, 

2010; Yidana et al., 2010]. 

 

87
Sr/

86
Sr isotope ratios of groundwater are strongly controlled by the Sr isotopic ratio of the 

aquifer. This enabled Jørgensen and Heinemeier [2008] to identify a contribution of a third 
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source of water to the mixing zone between freshwater and seawater in a shallow aquifer. 

During pumping, leakage from the deeper limestone aquifer into the shallow groundwater 

occurred, discernable by the 
86

Sr/
87

Sr ratio. Kim et al [2003] also used the 
86

Sr/
87

Sr ratio to 

identify the origin of saline groundwater on a volcanic island in Korea, whether from a 

modern SI event, or relict. Based on the similarity of the 
87

Sr/
86

Sr ratios of present-day 

seawater and the saline groundwater, they inferred that modern SI was occurring. Recently, 

Lin et al. [2010] concluded that SGD was occurring in deep canyons off the Taiwan coast, 

based on differences in 
87

Sr/
86

Sr isotope ratios between water in the canyon and the adjacent 

seawater. 

 

Coastal areas have often been subjected to multiple phases of marine inundations. 

Distinguishing between modern versus relict SI is an important objective of many studies 

[Darling et al., 1997; Petalas and Diamantis, 1999]. One particular example of an aquifer 

system where 
14

C has been used successfully to distinguish between modern and former SI is 

the Mediterranean coastal aquifer system of Israel. Sivan et al. [2005] used 
3
H and 

14
C to 

show that seawater had moved up to 100 m inland over a few decades. Yechieli et al. [2009] 

were able to discriminate between modern SI and older seawater based on 
3
H and 

14
C 

measurements, and found that the age of the old saline groundwater decreased with 

decreasing depth, which they attributed to rising sea levels during the Holocene. 

 

4. SI prediction 

 

The distinguishing feature of SI models, relative to groundwater flow models, is the variation 

of density caused by the variation in salinity. Although the seawater density is only 2.5% 

larger than that of freshwater, the difference has a major impact. There are two types of flow 
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models for the simulation of SI: interface models and variable density models. In interface 

models, the freshwater and saltwater are treated as two immiscible fluids separated by an 

interface, along which freshwater and saltwater pressures are continuous. In variable density 

models, the transition zone between freshwater and saltwater has a finite thickness and the 

density of the water varies continuously. SI analytical solutions are predominantly based on 

the interface assumption, whereas variable density models are mainly resolved using 

numerical solutions. Only variable density models provide salinity predictions that can then 

be compared to field salinity measurements. 

 

4.1. Analytical solutions 

 

The interface flow formulation requires the solution of two coupled systems: flow in the 

freshwater zone and flow in the saltwater zone, which need to be solved simultaneously such 

that pressure and normal flux are continuous across the interface. There is a shear flow along 

the interface (i.e., velocities tangent to the interface differ between the freshwater and the 

saltwater) that is a function of the density difference and the angle of the interface [e.g., Bear, 

1972]. The solution of interface flow problems is simplified significantly when only the 

steady-state position of the interface is of interest. For such cases, there is flow in the 

freshwater zone only and the saltwater is at rest. Solution can be simplified further through 

adoption of the Dupuit approximation, which means that the resistance to flow in the vertical 

direction is neglected within an aquifer so that the vertical pressure distribution is hydrostatic. 

For Dupuit interface flow, the head in the freshwater zone is a function of the horizontal 

coordinates only and the thickness of the freshwater zone can be computed with the Ghyben-

Herzberg formula [e.g., Bear, 1972; Strack, 1989; Fitts, 2002], which is a linear relationship 

between the depth of the interface and the head in the aquifer. 
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There are many exact solutions for steady interface problems; Reilly and Goodman [1985] 

and Cheng and Ouazar [1999] provide partial overviews, while Bruggeman [1999] gives 

exact solutions to 36 interface flow problems. Two main solution techniques can be 

distinguished. Exact solutions for steady 2D interface flow in the vertical plane can be 

obtained with the hodograph method in combination with conformal mapping [e.g., Verruijt, 

1970; Bear, 1972; Strack, 1989; Zhang et al., 1997, 1999; Bakker, 2000]; recent applications 

include Kacimov [2001], Kacimov and Obnosov [2001] and Kacimov et al. [2006]. 

Alternatively, 2D interface flow may be solved with a Green’s function approach [e.g., 

Hocking et al., 2011], although this requires numerical solution of an integral equation. Exact 

solutions for Dupuit interface flow can be obtained with the Strack potential [Strack, 1976, 

1989]. The power of the Strack potential lies in the fact that the solution can be written as one 

expression for the potential as a function of the horizontal coordinates regardless of the 

position of the interface, i.e., Qx = -/x for 1D flow. Here, Qx is groundwater discharge 

towards the sea (L
2
T

-1
),  is the Strack potential (L

3
T

-1
), and x is the direction perpendicular 

to the coastline (L). The Strack potential is valid for piecewise homogeneous aquifers. When 

the potential fulfills the Laplace or Poisson equations, solutions may be obtained through 

superposition. Analytic element solutions of steady interface flow can be obtained with the 

analytic element code GFLOW [http://haitjema.com/, last accessed 6 February 2012] and 

AnAqSim [http://www.fittsgeosolutions.com/, last accessed 27 February, 2012]. A popular 

application of the Strack potential is the optimization of groundwater withdrawals in coastal 

aquifers (§4.4). The maximum (or critical) pumping rate is reached when the interface 

becomes unstable either from below or from the side [Strack, 1989].  
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Interface flow solutions become more difficult when the Strack potential fulfills a non-linear 

differential equation. Sikkema and van Dam [1982] present a solution technique for semi-

confined interface flow. Bakker [2006] applied this technique to obtain exact solutions for the 

outflow zone along ocean bottoms with a leaky bed. Dagan and Zeitoun [1998a, 1998b] 

developed an exact solution for an interface in a stratified coastal aquifer with a random 

permeability distribution.  

 

Few exact solutions exist for interface flow where both the freshwater and the saltwater are 

moving. Bakker [1998] presented a method to compute the instantaneous flow field where 

both the fresh and salt water are moving by extending the Strack potential. Maas [2007] 

presented a solution for a freshwater lens in a 2D vertical cross-section affected by brackish 

flow from below. This solution is valuable to assess the sustainability of freshwater lenses in 

low-lying areas affected by an increased upward leakage of brackish water, for example 

caused by sea-level rise. Zhang et al. [2009] presented a boundary integral solution for a 

drain that extracts both fresh and salt water. 

 

The only (semi) analytic solution for the evolution of the dispersed interface is a small 

perturbation solution for upconing below a well [Dagan and Bear, 1968]. Werner et al. [2009] 

and Jakovovic et al. [2011] showed that this solution gives good results when compared to 

results of sandbox experiments for lower density contrasts and higher pumping rates, but that 

the analytical solution over-predicted the interface rise for lower pumping rates. Zhang et al. 

[2012] showed that the upconing was well predicted using a sharp-interface model. 

 

The main approximation of interface flow is that the freshwater and saltwater are immiscible 

fluids. The consequence of this approximation is that SI is overestimated [Dausman et al., 
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2010a; Pool and Carrera, 2011] and thus maximum pumping rates are underestimated. 

Recently, several attempts have been made to modify interface solutions to take mixing into 

account. Paster and Dagan [2008a, 2008b] included mixing in an interface solution through 

application of a boundary layer approach. Pool and Carrera [2011] took a simpler approach 

by modifying the saltwater density in the Strack potential according to the transverse 

dispersivity using an empirical formula obtained through comparison of interface flow 

solutions with numerical results of variable density models. 

 

Henry [1964] presented a steady solution for a problem of 2D variable density flow in a 

vertical cross-section; alternative solutions to the same problem were published later by Segol 

[1993] and Dentz et al. [2006]. The Henry problem is unique as it is the only analytic solution 

that exists for steady SI with variable density flow, but it has little utility for simulating SI in 

real aquifers as only diffusion and no dispersion is simulated. A few (semi) analytic solutions 

exist for steady convective flow, but these are also limited to diffusion only [Voss et al., 

2010]. 

 

4.2. Numerical modeling and benchmarking 

 

The limited number of analytical solutions for variable density flow problems creates a heavy 

dependence on numerical codes for simulating SI. Such computer models have become 

irreplaceable tools to gain insight in real-world SI issues ranging from system understanding 

on local or regional scales to future projections of SI for management purposes. The 

combination of the improved understanding of physical and chemical processes with 

advancements in numerical methods, computer languages, and raw computational power has 

led to a number of SI codes that are capable of simulating SI in real-world coastal aquifers. 
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Physical processes are captured to varying degrees, and challenges persist in the local-scale 

simulation of real-world conditions, such as the representation of near-shore hydrodynamics, 

including seepage face development and tidal/wave fluctuations. 

 

Most codes solve a coupled system of variable density flow and solute transport equations, 

which is numerically complicated and computationally demanding. The main difficulty lies in 

the accurate solution of the solute transport part, which requires a fine discretization of the 

aquifer. Common techniques such as the finite element or finite difference methods perform 

well for the solution of the flow equations, but they result in unwanted numerical dispersion 

when applied to solve the solute transport equations. Solution methods for the transport 

equations such as the total variation diminishing method or the method of characteristics 

commonly yield better results but require larger computational times for the same grid 

resolution. The computational effort associated with regional-scale SI problems usually leads 

to trade-offs between model accuracy and run-times that are important in interpreting model-

predicted salinities and in model calibration. 

 

Many codes exist for the simulation of SI; a list of popular codes is given in Table 1. The 

most widely used codes are SEAWAT [Langevin et al., 2007] and SUTRA [Voss and 

Provost, 2002]. SEAWAT was specifically designed for the simulation of SI, although it has 

many other applications as well, notably the combined simulation of groundwater flow and 

heat transfer. SEAWAT uses MODFLOW (finite differences) to solve the flow system and 

MT3D with its many solution techniques to solve the solute transport equations. Most 

MODFLOW packages are available in SEAWAT to simulate different stresses and boundary 

conditions. SUTRA is a general-purpose code that applies a finite-element and integrated-

finite-difference hybrid method to solve both the flow system (including the unsaturated 
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zone) and the transport equations. Both SEAWAT and SUTRA are well documented and 

freely available (http://water.usgs.gov/software/lists/groundwater/, last accessed 11 October 

2011). 

 

All but the last code in Table 1 solve the combined flow and transport equations and can be 

applied to simulate freshwater-saltwater mixing, the evolution of transition zones, and 

complex phenomena such as density inversions (where saltier water lies above fresher water). 

The final entry in the table, the SWI package for MODFLOW, was especially designed to 

simulate transient regional seawater intrusion. SWI does not require vertical discretization of 

the aquifer. The salinity distribution in an aquifer is specified through one or more interfaces 

that separate water of uniform or linearly varying densities. SWI is based on the Dupuit 

approximation within an aquifer and does not simulate mixing beyond the initial salinity 

distribution or inversions within an aquifer, but its computational performance is commonly 

three orders of magnitude better than the other models listed in Table 1 [Bakker et al., 2004; 

Dausman et al., 2010a]. SWI is freely available from http://modflowswi.googlecode.com/, 

last accessed 27 February, 2012. 

 

Numerical codes can be verified through comparison with analytic solutions for variable 

density flow (§ 4.1). Further testing of codes can be carried out through benchmarking. 

Benchmarking refers to the process of comparing output of models for well-defined standard 

problems [Simpson and Clement, 2003]. A number of benchmark problems have been 

proposed for SI problems. Diersch and Kolditz [2002] and Voss et al. [2010] provide a 

discussion on the applicability of different tests to SI codes. The Henry [1964] and Elder 

[1967a, 1967b] problems prevail as the most popular test cases. As mentioned, the Henry 

problem is the only known exact solution to a variable density flow problem. In Henry’s 

http://water.usgs.gov/software/lists/groundwater/
http://modflowswi.googlecode.com/
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original formulation, a transition zone develops due to high molecular diffusion, which to a 

certain extent obscures the density-dependence of the flow. Simpson and Clement [2004] 

suggested reducing the freshwater recharge, which increases the influence of density-

dependent effects. Abarca et al. [2007b] developed a dispersive rather than a diffusive Henry 

problem but did not present an analytic solution. The Elder problem concerns an unstable 

transient natural convection problem where saltier water moves downwards in fresher water 

[Voss and Souza, 1987]. There were early indications that there is no unique solution to the 

Elder problem because instabilities and fingers are influenced by numerical factors [Voss et 

al., 2010]. The recent study by van Reeuwijk et al. [2009] confirmed the existence of multiple 

(three) physically plausible solutions of the classic Elder problem using the pseudospectral 

method to avoid discretization errors. This important result has major consequences for 

model benchmarking in that a single solution does not exist. While the Elder problem is a 

good benchmark problem for variable density codes, it is not very representative of SI 

problems. Even if an Elder-like instability occurs in a SI problem, the grid resolution is rarely 

adequate to simulate the evolving salinity distribution accurately. 

 

Other popular benchmark problems include the HYDROCOIN salt dome problem [Konikow 

et al., 1997], salt lake problem [Simmons et al., 1999], salt pool problem [Johannsen et al., 

2002; Oswald and Kinzelbach, 2004], rotating fluids problem [Bakker et al., 2004], and the 

Henry and Hilleke problem [Henry and Hilleke, 1972, Langevin et al., 2010]. Existing 

benchmark problems have two main shortcomings. First, only two problems represent 3D 

flow (the salt pool problem and the 3D stability test in an inclined box by Voss et al. [2010]), 

while SI is commonly a 3D process. Second, many of the listed benchmark problems are 

developed from laboratory experiments; boundary conditions are not very representative of 
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real world SI problems and it is often difficult to set up the code to replicate the laboratory 

experiment exactly. 

 

Parameter estimation and uncertainty analysis of SI models is only in its infancy. Model 

independent tools such as PEST [Doherty, 2004] or UCODE [Poeter et al., 2005] are applied 

regularly to groundwater models, but rarely to SI models. Carrera et al. [2010] reviewed the 

computational and conceptual challenges of automatic calibration of SI modeling. Their 

review highlighted the extensive simplifications adopted by the application of automatic 

calibration to SI models, with the exception of the studies by Dausman et al. [2009a, 2010b]. 

Carrera et al. [2010] list a number of obstacles to the automatic calibration of SI models 

including the density-dependence of head measurements, the sensitivity of salinity 

concentration data to flow, the sensitivity of SI models to aquifer bottom topography, and 

difficulties with defining initial conditions. The uncertainty of calibrated SI models is rarely 

quantified, and often omitted entirely from SI modeling studies. One of the few exceptions is 

the analysis of Herckenrath et al. [2011], who developed a robust methodology for predictive 

uncertainty analyses of SI, based on variable‐density flow and transport modeling of a 

hypothetical aquifer resembling the Henry problem. 

 

Table 1. Popular SI codes 

[Table 1] 

 

The aforementioned models all focus on the near-shore aquifer, often considering tides, but 

with crude representations of waves and beach morphology. Bakhtyar et al. [2012] combined 

SEAWAT and a detailed wave motion model that solves the Reynolds-Averaged Navier 

Stokes equations with k-ε turbulence closure. This model updated that of Bakhtyar et al. 
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[2011], which was validated using data from a laboratory flume experiment but did not 

account for density dependence. Various wave conditions were modeled, as were changes in 

the beach morphology. While the latter was affected markedly by wave characteristics, the SI 

was essentially independent of them. A similar modeling study was reported by Xin et al. 

[2010], who used a simpler wave model (shallow water equations) but included tides. They 

coupled their wave/tide model with SUTRA, which simulates saturated-unsaturated flow with 

variable density. They showed that the circulation within the beach face is significant, and 

that tide and waves, considered separately, have less impact on such circulations than with 

both acting in tandem. These models are capable of describing in considerable detail the 

physical processes accompanying SI, as well as associated phenomena such as transport of 

pollutants into coastal seas. 

 

4.3. Reactive transport modeling 

 

Reactive transport modeling of hydrogeochemical processes accompanying SI and SGD 

(§5.3) has been attempted since the 1980s but remains challenging to date. The earliest 

applications focused on modeling cation exchange and the development of chromatographic 

patterns [e.g., Valocchi, 1981b; Appelo and Willemsen, 1987; Beekman and Appelo, 1991]. 

Mao et al. [2006a] created PHWAT, the first general-purpose density-dependent flow and 

reactive transport model, coupling SEAWAT (version 2) and PHREEQC-2 [Parkhurst and 

Appelo, 1999]. Besides permitting the inclusion of arbitrary complex reaction networks, their 

model included the effect of density changes due to reaction-induced concentration changes, 

as given by the VOPO model (Monnin, 1994). Mao et al. [2006a] applied their model to the 

experimental data of Panteleit [2004], which described a careful laboratory experiment 

combining density-dependent flow with cation exchange in a three-layer aquifer. PHWAT 
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successfully simulated the data, including the cation peak (“snow-plough” effect, e.g., Barry 

et al., 1983) that is produced when a high-concentration solution flushes resident cations from 

the soil. Post and Prommer [2007] used an updated version of the PHWAT code based on 

SEAWAT-2000 to develop a multi-component reactive transport variant of the Elder problem 

and to test the impact of density effects due to chemical reactions on flow patterns. They 

found that those were significant only for small density contrasts and high permeabilities, 

whereas they were negligible at density contrasts of seawater. Boluda-Botella et al. [2008] 

investigated the sensitivity of various transport and geochemical parameters on the results of 

a reactive transport model of cation exchange and gypsum dissolution. These models cannot 

account for waves or variable saturation porous media, and so are not suitable for describing 

near-shore aquifer processes. 

 

Sanford and Konikow [1989] used a reactive transport model to study the feedback between 

groundwater circulation in the transition zone and the development of porosity and 

permeability due to carbonate dissolution. They found a positive feedback in which porosity 

development in the mixing zone led to stronger circulation, which led to further carbonate 

dissolution and increased porosity. The validity of their results was later confirmed by Rezaei 

et al. [2005]. Romanov and Dreybrodt [2006] further refined previous approaches by 

decoupling the geochemical and the solute transport equations, which allowed them to model 

dissolution in narrow mixing zones. 

 

Modeling of the degradation of organic chemicals in tidally controlled groundwater systems 

has been attempted by Mao et al. [2006b], Brovelli et al. [2007], Robinson et al. [2009] and 

Li and Boufadel [2010]. These studies showed that flow patterns induced by tidal oscillation 

in combination with variable-density effects result in complex spreading of contaminant 
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plumes. Mixing is enhanced by the tidal oscillations, which tend to promote biodegradation 

through constant supply of oxygenated water below the beach face [Robinson et al., 2009]. 

 

The importance of geochemical zonation on the fate of pollutants in SGD systems has been 

studied using reactive transport models by several authors. Jung et al. [2009] simulated the 

transport and sorption of arsenic (As) to sediments of the shallow aquifer of Waquoit Bay 

(Massachusetts, USA). The mixing of oxidized and reduced groundwater triggers the 

precipitation of iron oxides, to which As is sorbed. Based on modeling, Spiteri et al. [2006] 

found that pH, and not oxygen, exerts the strongest control on iron precipitation. In their 

model, the authors also considered the effect of iron precipitation on phosphate removal. 

Subsequently, Spiteri et al. [2008] examined the role of iron oxidation by denitrification and 

found that this process enhances the formation of iron oxides, and the removal of phosphate 

from discharging groundwater. 

 

4.4. Pumping optimization 

 

Optimal management of groundwater in coastal aquifers is a critical task due to the threat and 

complex nature of SI. Optimization methods are applied to address various practical 

questions relating to pumping operation, well placement, design of artificial recharge 

schemes and other mitigation measures, trade-offs between environmental and 

socioeconomic factors, and interdependencies between surface and subsurface systems. 

Optimization problems involve minimizing or maximizing an objective function, e.g., the 

total safe pumping rate, subject to a set of constraints that define technical or physical 

limitations (e.g., pump capacity). Decision variables are used to define and differentiate 

alternative decisions (e.g., pumping or injection rates), and state variables represent system 
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response to stresses (e.g., hydraulic head). Wagner [1995] and Qin et al. [2009] provide 

reviews on optimization problems for groundwater flow and contamination problems, and 

Dhar and Datta [2009] offer a useful introduction to SI optimization methods. Cheng et al. 

[2004] use second-order stochastic analysis to determine variances of interface toe location. 

Recent seminal contributions to SI optimization are reviewed here. 

 

Approaches to SI optimization can be grouped according to the method of SI simulation 

within the optimization strategy, as the embedding approach and the simulation-optimization 

approach. Qahman et al. [2005] consider the response matrix approach as a third category. 

The embedding approach incorporates the discretized governing equations into the constraint 

set of the optimization model, which can become excessively large and complicated when 

density variations and transience of real-world SI applications are considered. Only a few 

hypothetical cases of SI optimization using the embedding approach and miscible flow and 

transport equations have been demonstrated [e.g., Das and Datta, 1999]. The simulation-

optimization approach involves repetitive simulation of SI to determine state variable values 

(e.g., head and concentration) to assess perturbations in decision variables. SI simulation is 

achieved using analytical solutions, numerical solutions or surrogate models (otherwise 

known as “meta-models”) [Sreekanth and Datta, 2010; Dhar and Datta, 2009]. Surrogate 

models can be described in simple terms as computationally efficient, empirical replacements 

of physically based simulators, and these are in widespread use in SI optimization [e.g., 

Sreekanth and Datta, 2010]. Different non-linear statistical data modeling tools such as 

artificial neural networks have been used as surrogate models for SI management studies 

[e.g., Rao et al., 2004; Bhattacharjya and Datta, 2009; Kourakos and Mantoglou, 2009; Dhar 

and Datta, 2009]. The response matrix approach is essentially a primitive form of surrogate 

model, and is intended for linear or mildly non-linear problems where superposition 
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assumptions apply [Dhar and Datta, 2009]. Response matrix approach applications usually 

consider only hydraulic aspects of drawdown and discharge, and usually avoid salinity state 

variables due to the nonlinearity restrictions [e.g., Reichard and Johnson, 2005; Abarca et al., 

2006; Karterakis et al., 2007]. Due to the limitations of SI analytical solutions and the 

computational burden of SI numerical simulation, the simulation-optimization approach by 

use of surrogate models appears as the most popular approach in recent research of SI 

optimization problems. 

 

A range of mathematical techniques has been used in optimizing groundwater extraction in 

coastal aquifers, including: linear programming (LP) [e.g., Mantoglou, 2003], non-linear 

programming (NLP) [e.g., Mantoglou and Papantoniou, 2008] and evolutionary algorithms 

(EA) [e.g., Kourakos and Mantoglou, 2009; Dhar and Datta, 2009; Ataie-Ashtiani and 

Ketabchi, 2011]. Genetic algorithms (GA) are the most popular EA approach [Nicklow et al., 

2010]. SI optimization is inherently a nonlinear problem that is often subject to highly 

irregular derivatives in decision variable-objective function relationships, potentially 

comprising many locally optimal solutions. Classical techniques such as NLP often resolve 

only local optima due their reliance on functional gradients. In addition, these methods are 

often computationally inefficient in obtaining whole Pareto-optimal solutions to multiple 

objective problems (i.e., considering trade-offs between different objectives), and can suffer 

from convergence problems and other numerical difficulties [e.g., Bhattacharjya and Datta, 

2009]. As a result, recent SI simulation-optimization studies are based mostly on non-

traditional algorithms, such as EA, because of their effectiveness in converging on the global 

optimum for highly nonlinear or irregular problems [Dhar and Datta, 2009; Mantoglou and 

Papantonioua, 2008]. EA-based approaches include GA [Bhattacharjya and Datta, 2005; 

Qahman et al., 2005; Park and Aral, 2004], simulated annealing [Rao et al., 2004], 



42 
 

differential evolution [Karterakis et al., 2007] and elitist continuous ant colony optimization 

[Ataie-Ashtiani and Ketabchi, 2011]. Table 2 provides a categorization of optimization 

technique for SI management problems with some example references. 

 

Recent SI optimization research efforts have considered more advanced artificial neural 

network-based simulation and GA optimization methods, aimed at reducing the 

computational burden required to explore SI management solutions [e.g., Bhattacharjya and 

Datta, 2009; Kourakos and Mantoglou, 2009]. For example, Dhar and Datta [2009] proposed 

and applied an optimization methodology based on a numerical simulation model, meta-

model, and multiple objective GA (i.e., non-dominated sorting genetic algorithm) for 

multiple objective management of coastal aquifers. Recent applications of genetic 

programming as potential surrogate models in multi-objective problems have brought 

promising results in reductions of computation time in assessing optimal coastal aquifer 

pumping strategies [e.g., Sreekanth and Datta, 2010; Sreekanth and Dattaa, 2011a]. 

 

Table 2. Categorization of optimization technique in SI management 

[Table 2] 

 

5. SI management 

 

Much of the SI literature focuses on the quest to manage coastal groundwater sustainability, 

thereby balancing the social, economic and environmental benefits derived from coastal 

groundwater reserves. Strategic SI sampling regimes are precursors to avoiding groundwater 

quality deterioration, however, coastal aquifers are complicated and resource intensive to 

assess. Hence, a key component of SI research relates to practices in coastal aquifer 
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management, including the operation and control of groundwater extraction, and the 

associated links between pumping regulation and aquifer condition and trend as determined 

through monitoring and assessment. Coastal aquifer management often involves SI 

remediation and mitigation measures (discussed below). The potential impacts of SI on 

ecosystem health are also reviewed, given the importance of environmental assets in triple 

bottom line evaluation and management. We consider linkages between SI and SGD. The 

fresh component of SGD (SFGD) is the net recharge to the coastal aquifer, and SGD 

chemistry is closely tied to mixing processes and movements in the freshwater-saltwater 

interface. Finally, studies exploring the impact of future climate change and sea-level rise on 

SI are highlighted, given that these are key areas of SI research and integral to prospective SI 

management. 

 

5.1. Practical SI management considerations 

 

The challenges of SI management are multi-faceted. For example, precursors to the effective 

regulation of pumping for the purposes of SI control include: 1. sufficient knowledge of 

hydrogeological processes relevant to SI, 2. monitoring and interpretation of water level and 

water quality conditions and trends, 3. consideration of relevant socio-economic and 

environmental factors, and 4. retrospection and prospection across the three aforementioned 

categories. The latter includes consideration of future climate change and sea-level rise, in the 

context of historical climatic and sea-level variability of the region. In addition, government 

policies, legislative frameworks and regulatory authority are necessary to invoke constraints 

on land use and on the operation of well fields. 
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Where controls over groundwater pumping are enabled, SI management usually involves 

invocation of sanctions and measures to regulate groundwater extraction. Werner et al. [2011] 

summarized recently the approaches to well field operation and groundwater regulation (for 

the purposes of SI management), and demonstrated practical and scientific challenges that are 

faced by coastal aquifer custodians. They categorized SI operational strategies into trigger-

level and fluxed-based approaches, and recommended that elements of both approaches are 

optimal in managing SI. Devising hydrological and hydrochemical triggers (i.e., 

characteristics of the system that infer whether a management response is needed) is 

challenging. For example, SI can produce freshwater storage losses with very small 

reductions in groundwater levels, and therefore  water level temporal trends may not be 

suitable measures of coastal aquifer conditions. 

 

Efforts to manage coastal aquifers efficaciously have led to the construction and application 

of an extensive array of highly complex numerical models and innovative field sampling 

techniques. However, in many cases, management decision-making requires rapid assessment 

of coastal aquifer vulnerability (or other performance-based measures such as resilience and 

reliability [Hashimoto et al., 1982]) to SI, or only a highly simplified approach is affordable 

(e.g., if national or continental scales are considered). In response to this, a number of SI 

vulnerability assessment approaches have evolved in the last decade. For example, Lobo-

Ferreira et al. [2007] developed the GALDIT method, an indexing approach to SI 

vulnerability assessment that is comparable in principle to the DRASTIC methodology [Aller 

et al., 1987] whereby causative factors are weighted and summed to produce an indexed 

evaluation of groundwater contamination vulnerability. Other indexing methods that assess 

more broadly coastal aquifer vulnerability to sea-level rise include those of Thieler and 

Hammar-Klose [1999] and Ozyurt and Ergin [2010]. Werner et al. [2012] asserted that 
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existing indexing approaches to SI vulnerability assessment fail to capture the key physical 

elements that control SI, and suggested application of methods that have theoretical 

underpinnings. An example of this is given by Wriedt and Bouraoui [2009], who undertook 

large-scale screening of SI risk along the Spanish Mediterranean coast. Their two-tiered 

approach first evaluated the balance of recharge versus pumping, and subsequently adopted 

simple SI analytical solutions to infer steady-state SI responses to pumping stresses. 

 

5.2. Engineering measures for SI remediation and mitigation 

 

Efforts to address incidences of SI usually involve, in the first instance, attempts to regulate 

groundwater pumping, taking into account the interplay between the conditions of the aquifer 

and economic and social factors (and in some cases environmental impacts). An example of 

this is the modeling study by Qureshi et al [2008], who included surface water use, 

groundwater use, SI, agricultural productivity, water-logging and economic factors in 

exploring policy options for managing the Burdekin aquifers, Australia. Conjunctive use 

scenarios explored variations in irrigation usage from surface water and groundwater reserves 

to demonstrate economic implications of modifying water use patterns. Unfortunately, 

pumping regulation is either ineffective or untenable in many cases, and subsequently it often 

fails to successfully mitigate or remediate SI. In these cases, the deployment of engineering 

measures, such as enhanced recharge or physical modification of the aquifer can provide 

alternative and economically viable solutions, despite that these are invariably costly options. 

Reichard et al. [2010] and Koussis et al. [2010] demonstrated the economic benefits of 

including various recharge augmentation measures in assessing water-supply options using 

examples of the Los Angeles Basin (USA) and the Akrotiri basin (Cyprus), respectively. 
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Any human intervention to control or ameliorate SI needs to modify the aquifer’s water 

and/or salt balances. This can be achieved through numerous means, such as reducing SGD, 

reducing coastal aquifer evapotranspiration, reducing discharge to (or enhancing recharge 

from) terrestrial surface systems containing freshwater, enhancing aquifer recharge (e.g., 

through wastewater injection or artificial recharge ponds), accessing a proportion of the 

aquifer’s saline water (e.g., for the purposes of desalination), impeding seawater inflow, 

and/or by inducing inflows from neighboring aquifers (e.g., enhanced influxes from 

overlying, underlying or inland aquifers). A comprehensive introduction to this topic was 

presented by Custodio [1987c].  Oude Essink [2001a] provides a summary of SI control 

measures. Here, we review a selection of these approaches and focus on prominent case 

studies and recent developments. 

 

Perhaps the least intrusive engineering measure for addressing SI is the application of 

horizontal wells, skimming wells and surface drains, i.e., based on the premise that shallow 

withdrawal reduces saltwater ingress (due to upconing) at the point of extraction [Custodio, 

1987c]. The reader is directed to § 2.5 and § 4.4 for examples of upconing modeling studies 

and approaches for optimizing freshwater extraction. 

 

A variety of measures to enhance aquifer recharge can be instigated where changes in well 

field operation and design fail to remedy SI issues. Vandenbohede et al. [2009] described 

sustainable water extraction practices in the western Belgian coastal plane, where SI-induced 

reductions in pumping within one system were offset by artificial recharge and subsequent 

enhanced extractions from a neighboring coastal aquifer. They describe long-term and 

regional perspectives to coastal aquifer management that have led to enhanced water supply 

security and sustainability. Abarca et al. [2006] applied both linear and nonlinear 
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optimization methods to design alternative remedial measures for the Llobregat Delta aquifer 

(Spain), and found that the development of a hydraulic barrier allowed for gains in freshwater 

extraction that exceeded rates of injection. The most extensively studied examples of 

freshwater injection to mitigate SI are those of the Los Angeles coastal basins, where 

engineering modifications have been implemented since about 1960. Schroeder et al. [1989] 

described early attempts to simulate hydraulic barrier operation to allow enhanced 

groundwater extraction and protect against SI. More recently, Reichard and Johnson [2005] 

and Bray and Yeh [2008] detailed simulation-optimization studies aimed at improving the 

efficiency and effectiveness of SI controls in those systems. Studies that demonstrate optimal 

practices in hydraulic barrier application include that of Luyun et al. [2011], who used 

laboratory experiments and numerical simulation to show that freshwater injection was most 

effective if applied at the toe of the saltwater wedge, and that therefore well injection is 

probably more effective than surface recharge in controlling SI. 

 

Cases where freshwater is injected into saline groundwater for the purposes of aquifer storage 

and recovery (ASR) were examined by Ward et al. [2009] and Bakker [2010], amongst 

others. They offered guidance on the performance of ASR (i.e., recovery efficiency of 

injectant) in variable salinity systems, including critical combinations of aquifer hydraulic 

and transport properties, fluid density differences and ASR operational conditions. 

 

Aliewi et al. [2001] suggested that lenses less than 90 cm in thickness are more economically 

utilized by applying “scavenger wells” to pump saltwater concurrently and from below the 

point of freshwater extraction. Their numerical modeling study of the Gaza and Jericho 

aquifers (Palestine) demonstrated relationships between aquifer parameters, recharge, and 

well construction and operation on the performance of skimming-scavenger well systems. 
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Pool and Carrera [2010] used hypothetical numerical simulations to examine the 

effectiveness of negative hydraulic barriers, in which seawater is pumped from a well located 

between the freshwater well and the coast. Critical pumping rates producing minimum 

salinity in the freshwater well were influenced by seawater and freshwater pumping rates, 

depth of well penetration, well locations and aquifer properties, as expected. The system was 

controlled by 3D effects, by which seawater bypassed the negative hydraulic barrier to 

eventually reach the freshwater well. This caused a reduction in system effectiveness when 

the rates of seawater pumping were too high. 

 

The most invasive measures to control SI are physical subsurface barriers, which can be 

installed to retain groundwater and/or inhibit SI, with notable applications in Japan [Luyun et 

al., 2009]. Recently, Luyun et al. [2011] showed that flow barriers are more effective when 

situated deeper in the aquifer and at locations closer to the coast, through laboratory 

experimentation and numerical simulation of simplified situations. Luyun et al. [2009] 

examined the transience of trapped saltwater following subsurface barrier installation, and 

found that the subsurface wall height was the key factor in controlling flushing rates and the 

relative mix of seawater and freshwater on the seaward side of the barrier. While such 

materials as bentonite clay, concrete grout, bituminous substances or sheet piles are suggested 

as barrier wall materials [Custodio, 1987c; Luyun et al., 2011], the concept of injecting air to 

reduce aquifer permeability has also been evaluated. For example, Dror et al. [2004] 

undertook air injection laboratory experiments and found that the formation of a low-

conductivity barrier, which was a combination of trapped air and pore-filling precipitate, 

reduced discharge by an order of magnitude or more, at least temporarily. From extension of 

their laboratory results, they concluded that the practice of air injection to create temporary 

groundwater flow barriers was potentially viable at field-application scales, although they 
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conceded that further analysis was needed to assess the performance of such approaches in 

field-scale SI applications. 

 

5.3. Submarine groundwater discharge and SI 

 

The discharge of freshwater to the sea, referred to here as submarine fresh groundwater 

discharge (SFGD), mixes in the aquifer with recirculated seawater producing SGD [Li et al., 

1999]. SFGD and coastal aquifer geochemical processes are vital components of coastal 

ecosystems, and are sensitive to anthropogenic effects [Moore, 1999; Moore 2010]. The risk 

of SI, i.e., the propensity for freshwater-saltwater interface movements, is closely related to 

SFGD through constitutive relationships between interface location and groundwater flow 

[e.g., Strack, 1976; Werner et al., 2012]. For example, in the case of the shrinking Aral Sea, 

Shibuo et al. [2006] demonstrated that a reduced risk of SI was accompanied by enhanced 

SFGD. 

 

SGD and SI are complementary and inter-dependent processes [Taniguchi et al., 2002]. For 

example, the salinity of SGD has been linked to SI through both field observation [e.g., 

Dimova et al., 2011] and numerical modeling by Kaleris [2006], who demonstrated that the 

salinity of SGD increases when the extent of the interface increases. Price et al. [2006] 

proposed that nutrient discharge to the Everglades (Florida, USA) is influenced by SI through 

geochemical processes occurring within the freshwater-saltwater interface. Further, the 

presence/position of the seawater interface is known to influence groundwater flow pathways, 

and therefore SI potentially impinges on the fate of coastal fringe contaminants [e.g., Kaleris 

et al., 2002]. 
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From a water resources perspective, maximizing the capture of SFGD while avoiding 

excessive SI is an elemental principle of coastal aquifer management strategies in cases 

where SFGD provides little benefit to receiving marine environments [e.g., Babu et al, 2009], 

notwithstanding groundwater dependencies of coastal terrestrial ecosystems. Depending on 

its chemical constituents, SFGD can impose negative influences on marine water bodies (e.g., 

through excessive nutrient loads [Tse and Jiao, 2008]), or alternatively, marine ecosystems 

can be SFGD-dependent [e.g., Duarte et al, 2010]. These hazards depend on the mixing of the 

receiving waters. Ideally, conjunctive goal setting, accounting for SI and marine ecosystem 

health is required in considering the management of SFGD [McCoy and Corbett, 2009]. To 

achieve this, knowledge of the rate and quality of SFGD is required. However, complex 

relationships between SFGD, SGD and SI exist in natural settings. For example, wave and 

tidal action can reduce the SFGD portion of SGD to only 4% [Li et al., 1999]. This presents 

significant challenges in reconciling model- and field-based methods for estimating SFGD. 

 

Geological variability also plays a major role in SFGD rates and distributions. For example, 

Lin et al. [2011] reported significant SFGD from a multiple aquifer system in which 

substantial pumping-induced overdraft might otherwise be expected to minimize SFGD, at 

least from a simple water balance perspective. Mulligan et al. [2007] highlighted the 

importance of paleochannels both as SFGD conduits and providing preferential pathways for 

SI. Marine and terrestrial hydrodynamics are also key factors in SGD, SFGD and SI 

relationships. Taniguchi et al. [2006] found that terrestrial groundwater connections impose 

controls on SGD on the landward side of the freshwater-saltwater interface, where SGD 

seaward of the interface was mostly controlled by oceanic dynamics, for their study area on 

Kyushu Island, Japan. 
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Estimation of SFGD through the summation of direct measurements is virtually impossible in 

some cases due to the extensive distances over which SFGD occurs through the ocean floor. 

Bakker [2006] reported that a significant portion of SFGD from the southern part of the 

Floridan aquifer likely occurs at the edge of the continental shelf, some 120 km from the 

shore. In these cases, the application of conceptual and numerical models to extend 

hydrogeological and submarine measurements is essential to approximate the SFGD 

component of coastal aquifer water balances. In cases where fresh groundwater resources 

extend significant distances below the sea [e.g., Kooi and Groen, 2001], groundwater 

extraction can produce SI in offshore aquifers, whereby sub-sea freshwater reserves are 

depleted, representing a situation of non-renewable groundwater mining [e.g., Cohen et al., 

2010]. Evidence of SI in these circumstances may involve considerable lag-times. In a review 

of methods for SGD quantification by Burnett et al. [2006], it was recommended that 

multiple methods be applied, including geophysics, seepage meters, natural tracers and 

various hydraulic and water balance approaches, amongst others, given the significant 

uncertainty in most measurement methods and the difficulties in reconciling SGD predictions 

from models with the complexities of field situations. 

 

5.4. SI impacts on ecosystems 

 

SI impacts are associated primarily with losses of freshwater resources and contamination of 

water supply wells, and only a few studies consider adverse ecological impacts directly 

linked to SI. Environmental degradation arising from SI is commonly linked to the 

application of high salinity groundwater in agriculture, resulting in modified soil chemistry 

and reduced soil fertility [e.g., Darwish et al., 2005; Qi and Qiu, 2011]. The hydraulic aspects 

associated with SI, such as watertable decline leading to reductions in both SFGD and 



52 
 

groundwater availability for terrestrial groundwater-dependent ecosystems, have also been 

recognized [e.g., Duarte et al., 2010; Kaplan and Munoz-Carpena, 2011]. Additionally, the 

discharge of saline groundwater into terrestrial freshwater surface features has been well 

studied [e.g., Simpson et al., 2011; Oude Essink et al., 2010], in particular associated with 

polders of the Netherlands, although subsequent ecological implications are not documented. 

With these exceptions, SI ecosystem impacts are otherwise seldom acknowledged in coastal 

aquifer management studies, even where the focus is ecological and water supply 

sustainability. However, research in the last decade has developed an enhanced appreciation 

of the broader environmental implications of SI, although these have not been summarized 

previously. Here, we provide a brief overview of potential (and actual) ecosystem impacts 

arising from SI. 

 

As discussed in § 2.4, SI induces various hydrochemical and geochemical reactions 

depending on the characteristics of the subsurface environment. The most direct biological 

impacts of changes in groundwater chemistry are likely those of groundwater systems 

themselves, e.g., stygofauna (i.e., groundwater fauna) and subsurface microbial communities. 

These ecosystems are in closest proximity to the interface, and most directly affected by SI. 

For example, Santoro [2010] suggests that SI can significantly alter microbial functioning 

including the catalysis of important nutrient transformations. Edmonds et al. [2009] found 

that while SI in laboratory flow-through columns induced considerable changes in 

biogeochemical cycling, the microbial communities exhibited extraordinary physiological 

flexibility, retaining their community structure over the five-week duration of the 

experiments. 
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There are no studies on potential or actual linkages between stygofauna diversity and SI, 

although Humphreys [2008] indicates that stygofauna distributions are dependent on salinity 

and on other physico-chemical attributes. The Yucatan Peninsula, where open cenotes 

(sinkholes) host a great variety of food webs that include endemic species [Schmitter-Soto et 

al., 2002], serves as a prominent example of potential SI-ecosystem interactions. Freshwater 

occurs as a thin lens overlying saltwater, which is found more than 110 km from the coast 

[Steinich and Marin, 1996]. SI has influenced large parts of the aquifer, reaching tens of 

kilometers inland [Bauer-Gottwein et al., 2011]. The aquifer includes the world’s most 

extensive underwater cave system, of which the cenotes are surface expressions [Bauer-

Gottwein et al., 2011], and hence the potential for SI to cause ecosystem degradation is 

especially high. 

 

Many of the anthropogenic stresses that induce SI, such as groundwater pumping or the 

construction of surface drainage networks in coastal settings, also affect both the rate and 

water chemistry of SFGD [e.g., Moore, 1999]. Further, SI potentially modifies the chemistry 

of SGD directly, following the discussion of links between SI and SGD identified above [e.g., 

Taniguchi et al., 2006]. Price et al. [2010], in their study of phosphate adsorption and 

desorption, concluded that processes inducing SI such as sea-level rise will release phosphate 

from freshwater coastal carbonate aquifers into the sea. SI is also known to release and 

transport other toxic elements, such as arsenic [Nath et al., 2008], and it is possible that these 

and other SI-derived heavy metals might degrade ecosystems via SFGD delivery 

mechanisms. In order to assess in more detail human stresses on the many marine ecosystems 

that depend on SFGD [e.g., Johannes, 1980], further understanding of the hydrogeochemical 

relationships that govern linkages between SI and SFGD is required. 
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In non-tidal cases, SI most likely occurs predominantly within the lower aquifer domain due 

to the higher density of seawater relative to ambient freshwater, e.g., following salinity 

patterns similar to the dispersive Henry problem [Abarca et al., 2007b]. However, Robinson 

et al. [2006] and Werner and Lockington [2006] demonstrated that tidal fluctuations can 

induce saltwater recirculation in the upper aquifer, producing a saline watertable in the 

coastal fringe. Werner and Lockington [2006] extend the quasi-steady situation of a stable 

landward boundary condition to consider the transient situation of SI (i.e., interface 

movement in response to a watertable drop) in 2D. Their modeling results show that 

watertable salinization can arise from SI where a tidal boundary condition is considered. It 

follows that secondary capillary-driven salt rise into the unsaturated zone, following 

watertable salinization, is a plausible outcome of SI [e.g., Werner and Lockington, 2004]. 

 

Werner and Lockington’s [2006] results indicate that SI in tidal systems can impart more 

considerable ecosystem stress than in the non-tidal case, particularly where vegetation (e.g., 

phreatophytes) and other biota in coastal and estuarine fringes are dependent on fresh 

groundwater conditions. There are implications here also for urban infrastructure that has 

susceptibility to rising damp and salt-decay [e.g., Lopez-Arce et al., 2009]. Field evidence for 

SI-induced soil salinization in the manner proposed here is limited. Buscaroli and Zannoni 

[2010] examined salt rise from saline watertables in a Mediterranean pinewood forest, and 

concluded that surface soluble salt accumulation was independent of watertable salinity at 

least for deep vadose zones. Where ecosystem stress in coastal settings has been at least 

partly attributed to salinity changes [e.g., Kaplan et al., 2010], there is usually an element of 

both subsurface and surface SI, which has confounded the diagnosis of soil salinization 

processes. Perhaps the strongest link between ecosystem decline and SI is reported by 

Antonellini and Mollema [2010], who found that symptoms of vegetation distress and 
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regression in species richness of the coastal forests and wetlands of Ravenna (Italy) were 

associated with watertable depth and groundwater salinity. In particular, tree-rooting patterns 

were influenced by watertable salinities, and wetland vegetation species richness was 

controlled by water salinities more generally. They attributed high watertable salinities to 

saltwater upconing potentially driven by evapotranspiration in combination with mechanical 

drainage. While tides of the region are small, these might also impart an influence on the 

nature of SI, by influencing watertable salinities in a similar manner to that reported by 

Werner and Lockington [2006]. 

 

The results of ecological impact predictions due to sea-level rise by Saha et al. [2011] 

indicate that SI will contribute significantly to the degradation of coastal forests. Their 

analysis neglected the role of tides on watertable salinization, and hence might have under-

estimated the ecological degradation arising from SI. Greaver and Sternberg [2010] examined 

relationships between rainfall patterns, SI and coastal dune ecosystems in open ocean islands 

of the Bahamas. They concluded that soil salinization occurred predominantly from SI and 

accompanying salt rise, both of which occurred seasonally. While Greaver and Sternberg 

[2010] ruled out tides as the primary factor controlling SI and soil salinization, they provided 

no indication or analysis of the relative contribution of tides to watertable salinization. 

 

5.5. SI, climate change and sea-level rise 

 

Anticipated future variations in the hydrologic stresses of coastal aquifers, such as changes in 

climatic characteristics (e.g., rainfall and evapotranspiration) and sea levels need to be 

considered in devising coastal aquifer management strategies. In particular, sea-level rise and 

changes in both recharge and evaporation due to global climate change are expected to 
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exacerbate SI [e.g., Oude Essink et al., 2010], either directly or through secondary effects 

such as increased pumping in drying climates, enhanced frequency and severity of storm 

surge inundation, marine transgression, and rising salinities in surface water bodies (i.e., due 

to seawater incursion into surface water features). Here, we focus on the direct influence of 

projected climate change and sea-level rise on SI in coastal aquifers, acknowledging that the 

secondary effects listed above can also contribute significantly to the threat of SI. 

 

There is a growing body of literature describing case studies of anticipated SI arising from 

future sea-level rise. A wide range of SI responses to sea-level rise is reported. Sherif and 

Singh [1999] predicted that the extent of SI induced by a sea-level rise of 50 cm was 9 km in 

the semi-confined Nile Delta, but only 0.4 km in the confined Madras aquifer. Oude Essink 

[2001b] concluded from numerical modeling of a Dutch SI case study that sea-level rise 

would have a significant impact on rates of aquifer salinization in low-lying coastal aquifers 

of the Netherlands, albeit the time lag for some aquifers was expected to exceed 100 years. 

Dausman and Langevin [2005] predicted that SI would invade an additional 1.5 km inland if 

sea levels rise by 48 cm, thereby threatening water supply wells in a surficial aquifer in 

Florida. Nishikawa et al. [2009] evaluated SI under future sea-level rise considering two 

different management approaches for the coastal Los Angeles aquifers (USA) and concluded 

that sea-level rise would cause significant SI under the business-as-usual scenario, but that 

raising inland groundwater levels mitigated SI caused by sea-level rise. Shrivastava [1998] 

used numerical simulation to show that a confined alluvial aquifer in Jamaica would incur no 

significant SI under either sea-level rise or storm surge, albeit interface salinities were 

modified. Yechieli et al. [2010] report that sea-level rise, neglecting inland shifts in the 

shoreline, is likely to produce only minor SI in the phreatic and confined aquifers of the 

Israeli Mediterranean coast. From these studies, it is difficult to draw general conclusions 
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about the potential deleterious effects of SI arising from sea-level rise given the wide range of 

SI responses, ranging from no impact to several kilometers of interface movement. 

 

Werner and Simmons [2009] used simple steady-state changes in the position of an interface 

to assess sea-level rise in unconfined aquifers. They found that the conceptualization of the 

inland boundary conditions was a primary factor in the estimation of ensuing SI. Specifically, 

flux-controlled conditions (i.e., the seaward discharge persists despite sea-level rise) 

produced SI in the order of tens of meters, whereas head-controlled conditions (i.e., 

watertable rise is restricted by surface controls such as lakes, rivers, wetlands or head-

dependent pumping or drainage at some point inland; Fig. 1) produced SI up to several 

kilometers. Flux-controlled conditions are more prevalent, although examples of SI in head-

controlled systems subjected to sea-level rise are given by Feseker [2007] and Kundzewicz 

and Doll [2009]. The important implications, regardless of inland boundary condition, are 

that coastal aquifer management strategies need to allow the piezometric surface to rise 

commensurate with sea-level rise to avoid significant SI (neglecting secondary effects as 

listed above). Critical values of parameter combinations that were associated with severe SI 

(i.e., asymptotic SI-parameter relationships) were identified by Werner and Simmons [2009]. 

For example, coastal discharge (i.e., SFGD) needs to exceed a minimum value (qmin) to avoid 

substantial SI (i.e., “active SI” or salt transport driven by landward freshwater hydraulic 

gradients), given as: 
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Werner et al. [2012] extended the sea-level rise-SI analysis of Werner and Simmons [2009] 

to include confined aquifers, and used the equations of Strack [1989] to assess relationships 

between SI and aquifer stresses, again for steady interface conditions. They found that sea-

level rise was essentially inconsequential in flux-controlled confined aquifers, but that head-

controlled confined aquifers (likely a rarer situation) were susceptible to SI from sea-level 

rise. The conclusions regarding SI and sea-level rise by Werner et al. [2012] are consistent 

with site-specific observations from the individual case studies as presented above. 

 

In most cases, it is expected that sea-level rise will be accompanied by altered recharge 

regimes due to climate change, producing joint impacts on SI [e.g., Oude Essink et al., 2010]. 

Kourakos and Mantoglou [2011] demonstrated that climate-driven reductions in recharge 

potentially require substantial mitigation efforts to avoid freshwater decline, even in the 

absence of sea-level rise. Kundzewicz and Doll [2009] asserted that, with the exception of 

low-lying coastal regimes, recharge decline would induce a larger reduction in groundwater 

availability than that caused by sea-level rise. The simulations of Yechieli et al. [2010] were 

consistent with this view, with recharge decline producing significantly larger SI relative to 

sea-level rise impacts in their case study of a Mediterranean unconfined aquifer. However, 

the investigation of unsaturated-saturated zone flow and salt transport behavior on Bahaman 

islands by Greaver and Sternberg [2010] revealed important interplays between sea-level 

variation and precipitation. This demonstrated that, in some cases, there are 

interdependencies between climate and sea-level variations that need to be considered. 

Nonetheless, separating the relative contributions to SI imposed by the two individual 

stresses (sea-level rise and recharge change) is important for planning purposes, and to 

account separately for the considerable uncertainties associated with predicting both factors. 
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Feseker [2007] considered both recharge reductions (i.e., due to climate change) and sea-

level rise, and found that sea-level rise was expected to produce more extensive salinization 

compared to recharge changes, which were abated by the head-controlling conditions 

imposed by drainage networks. Carneiro et al. [2010] predicted only minor salinization for 

future sea-level rise and recharge declines in a shallow unconfined aquifer on the 

Mediterranean coast of Morocco. Vandenbohede et al. [2008c] examined the situation in 

Belgium under expected increased recharge and sea-level rise, and concluded that while 

higher groundwater levels produced positive outcomes in the form of seaward interface 

movements, negative implications included higher rates of dewatering of low lying areas and 

environmental stress in near-coastal dune ecosystems. 

 

Werner et al. [2012] compared sea-level rise impacts to recharge reductions through 

manipulation of simple analytical solutions to the steady-state position of an interface. They 

found that sea-level rise impacts were more substantial in head-controlled systems, whereas 

recharge change impacts were more extensive in flux-controlled systems. Parameter 

combinations leading to critical vulnerability conditions were given for a range of aquifer 

stress perturbations, which included changes in sea-level, recharge and freshwater discharge 

to the sea. 

 

A limitation of the analyses by Werner and Simmons [2009] and Werner et al. [2012] is the 

assumption of steady-state conditions. This precluded consideration of SI time-scales, which 

are clearly important aspects considering that Oude Essink et al. [2010], Feseker [2007] and 

others reported extensive SI time lags, in contrast to more rapid SI responses determined by 

Yechieli et al. [2010]. Investigations by Watson et al. [2010] and Webb and Howard [2011] 
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extended the analysis of Werner and Simmons [2009] through systematic numerical 

experiments of transient sea-level rise in hypothetical unconfined aquifers of varying 

parameter combinations. Both studies assessed the time-scales and disequilibrium of sea-

level rise-induced SI. Watson et al. [2010] considered primarily flux-controlled cases and 

adopted instantaneous sea-level rise, whereas Webb and Howard [2011] assumed head-

controlled settings and examined a 90-year sea-level rise event. The time-scales (and inland 

distances) of SI were broadly consistent between the studies, ranging from decades to 

centuries. Webb and Howard [2011] highlight that systems with high K-to-W ratios and high 

effective porosities were associated with the longest lag times and most extensive 

disequilibriums after the 90-year sea-level rise events. Watson et al. [2010] noted that 

different aspects of the saltwater wedge (i.e. center of mass, toe position, etc.) approached 

steady state at different rates, and they observed a transient over-shoot phenomenon whereby 

the landward extent of the interface temporarily exceeded the steady-state condition. Chang 

et al. [2011] further explored SI time-scales under sea-level rise, considering confined aquifer 

conditions. Their conclusions repeat those of Watson et al. [2010] and Werner et al. [2012] in 

observing temporary SI overshoot and noting essentially inconsequential SI in confined 

aquifers. The gradual sea-level rise simulations of Chang et al. [2011] demonstrated that the 

overshoot phenomena discovered by Watson et al. [2010] also occurs in confined aquifers 

and under gradual-rise conditions. 

 

6. Prospecting scientific challenges in SI 

 

Despite nearly 50 years of research, numerous SI research questions persist. Many of the 

remaining scientific challenges are fundamental, and have serious implications for managing 

SI and the associated threats to freshwater resources and ecosystems. SI research remains an 
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active field, underpinned by complicated ocean-aquifer interactions and, in dependent of 

climate change, growing human stresses on coastal aquifers. Our review of SI literature 

indicates that the greatest shortfall in SI research is the lack of intensive monitoring studies of 

SI in which mixing zone changes are precisely mapped and reconciled with methods of 

prediction. Long-term, high-density monitoring of field-scale SI is needed to address this, and 

to facilitate the transfer of knowledge and methods from hypothetical and/or small-scale 

experiments to real-world situations. Multiple case studies are needed to gain insight into SI 

in different geological and hydrological settings. Specific scientific challenges are described 

below in the following categories: (a) process understanding, (b) measurement and modeling, 

and (c) application to field-scale problems. 

 

6.1 Process understanding 

 

The mechanisms affecting the thickness of freshwater-seawater mixing zones in field 

conditions are multiple and cumulative. No agreement has been reached so far in terms of the 

controlling mechanisms. Most previous studies on the dispersive mixing zone are based on 

either laboratory-scale experiments or various forms of the Henry problem. Those 

investigations provide invaluable insights into mixing-zone development, but the application 

to field conditions requires further consideration of scaling and field-scale heterogeneity. 

Various forms of the Henry problem continue to be used as a surrogate for SI process 

understanding, and while this affords advantages of simplicity, the representativeness of the 

Henry problem to real-world SI remains questionable. A key issue here is that dispersion 

coefficients derived from laboratory or field experiments cannot lead to the thick mixing 

zones found in some coastal aquifers. The strategy of using larger dispersion coefficients to 

reproduce thick mixing zones is likely due to under-representation of both aquifer 
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heterogeneities and temporal wedge dynamics and, therefore, the employment of large 

dispersion coefficients in numerical simulations is a simplification that does not explain the 

underlying mechanisms. Other questions regarding mixing zone evolution remain; e.g., under 

what conditions can we use equivalent homogeneous conditions to reproduce SI behavior and 

when do we need to use explicit heterogeneity? Universal scaling relationships for SI have 

not been derived, which contributes to the challenge of physically based SI simulation in 

which dispersive processes are accurately captured. Future analyses of dispersive processes in 

field-scale SI problems need to consider alternatives to single-porosity, constant-dispersivity 

approaches, amongst various options. 

 

Studies of SI mixing zones and heterogeneity effects have thus far focused almost solely on 

steady-state conditions. However, the effects of heterogeneities on transient SI (in particular 

active SI cases) and the associated temporal evolution of mixing zones is expected to be 

significant given observations of mixing zone dynamics (widening and narrowing) in 

response to transient stresses. Transient SI in heterogeneous environments, incorporating 

pumping effects, is an area clearly worthy of further investigation. In particular, quantitative 

analyses of SI in fractured and fissured rock systems are lacking. SI controlling factors such 

as geological structure and three-dimensionality should be considered more frequently in 

future SI research. There is a potential for an increased role in linking sedimentological facies 

data into such analyses. 

 

There are few field-based studies involving detailed measurements of upconing processes and 

the associatedsalinization of pumping wells. Rather, knowledge in this area is based almost 

entirely on laboratory and mathematical experimentation, and involving only simple forms of 

saltwater upconing as might be expected under ideal conditions. However, it is more likely 
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that the interplay between density effects, heterogeneities and dispersion/diffusion produce 

complex well salinization mechanisms that are unexplored, and that current intuition on well 

salinization mechanisms is over-simplified. In particular, situations where undiluted seawater 

intercepts well screens and mixes with freshwater in the well have not been adequately 

evaluated and could be more widespread than previously thought. Additional investigation is 

warranted to characterize better the 3D nature of saltwater upconing in real-world systems. 

 

Recent research into coastal fringe hydrodynamics has demonstrated that local scale 

processes influence both the time-averaged head conditions of the ocean boundary and the 

salinity profile near the coast. The implications for SI (and its investigation) are potentially 

significant for several reasons. For example, pumping in tidal settings potentially causes 

watertable salinization near the shoreline. This could have consequences in terms of soil 

salinization and ecosystem degradation, albeit the conditions under which this can occur have 

not been assessed. Also, observations of tidal over-height far exceeding theoretical values 

(caused by site-specific aquifer heterogeneities and beach morphology) demonstrate the need 

to characterize coastal fringe processes to avoid under-estimating the hydraulic head imposed 

by the ocean (and subsequently under-estimating the threat of SI). It is clear that all areas of 

SI process research would benefit from future investigations that combine theoretical 

analyses with field experimentation to provide guidance on the transfer of small-scale 

experimental results to real-world simulations. 

 

6.2 Measurement and modeling 

 

Comprehensive SI measurement campaigns integrated with modeling efforts that adopt 

formal calibration and predictive uncertainty analyses are a key area for future research in SI 
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characterization. We found limited cases where water level, hydrochemistry, environmental 

tracer and geophysical information have been intensively collected and compared with 

geological controls and hydrological stresses in a quantitative framework. Also, better 

integration of terrestrial aspects with marine and submarine facets of coastal aquifer 

functioning and SI is warranted, because SFGD forms a fundamental component of coastal 

aquifer water balances, and many coastal aquifers discharge into sensitive marine 

environments. To achieve this, a greater focus on multi-disciplinary approaches is needed. In 

addition, links between data capture and modeling need to be enhanced. For example, there 

are potentially significant gains to be made from evaluating the contribution of various types 

of measurements to reducing the predictive uncertainty of SI models, thereby providing 

much-needed guidance on cost-effective deployment of SI characterization methods. Equally, 

the seamless integration of data collection and storage networks into SI modeling platforms 

could assist in guiding adaptations of sampling strategies and facilitate more frequent SI 

model redevelopment. The techniques and computational power needed for these types of 

analyses are available. 

 

There is a host of future opportunities to develop further the various SI measurement 

approaches, building on recent advances. For example, airborne geophysical and associated 

ground-truthing approaches continue to evolve and offer regional-scale depictions of coastal 

aquifer salinity distributions. The need to monitor temporal evolution in salinity distributions 

requires new methods and applications of time-lapse geophysical measurement systems. 

Also, monitoring of diffuse and localized SFGD, and upscaling of SFGD measurements to 

obtain regional-scale aquifer discharge remain significant challenges. Environmental (and 

artificial) tracer techniques, including various combinations of chemical species, isotopic 

signatures and heat could partly provide solutions. These methods have not been exhaustively 
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explored for SI problems, in particular to quantify SI trends and residence times, and to 

distinguish transport paths and groundwater and saltwater origins. 

 

There is also an important scope for reactive transport modeling to aid in and strengthen the 

interpretation of environmental tracer data. The combination of complicated flow fields due 

to variable density effects and the potential chemical transformation pathways of the 

chemical and isotopic species, results in such complexity that these models are indispensable 

tools to guide our intuition and improve our conceptual understanding. The applicability of 

radium isotopes in detecting and quantifying SFGD is an example here, as the fate of radium 

in the mixing zone between fresh and saline groundwater is controlled by redox conditions 

and salinity-dependent sorption. The implications of the interplay of spatiotemporal salinity 

changes and geochemical processes for the interpretation of radium data have not been 

explored fully, for which reactive transport models would be valuable tools. 

 

Displacement of the transition zone, for example due to pumping, sea-level rise, coastal 

erosion or changes in recharge, induces hydrochemical reactions. The latter are catalyzed by 

microbes, and in turn influence microbial functioning. Aquifer hydraulic properties can be 

affected also, depending on hydrogeochemical and ecological conditions, but the degree of 

these effects is not well constrained. These factors are likely to have major impact on the 

water quality of SFGD under certain conditions, e.g., where the transport and degradation of 

contaminants are mediated by microbial organisms and/or geochemistry. The importance of 

these and other factors in assessing SI through laboratory experimentation and numerical 

simulation requires additional testing. 

 



66 
 

There is little quantitative guidance in current SI literature on what level of complexity or 

simplicity is warranted in SI models. For example, how and under what conditions should a 

fully detailed geological characterization be employed in a numerical model, and when is it 

appropriate to simplify to an effective homogeneous K value? The same sorts of 

simplification questions apply to the hydrochemical aspects of SI. The nature of how simple 

or complex a modeling approach and associated data should be relative to intended model 

purpose remains a major challenge for this field. 

 

A further challenge specific to SI models is the salinity distribution in the aquifer at the 

beginning of the simulation. Two main goals of SI models are the prediction of the impact of 

SI on well fields and the prediction of the effect of human or natural changes in hydrological 

conditions (land use, climate change). The starting salinity distribution in the aquifer has a 

major effect on the accuracy of such predictions. Calibration data can be obtained from water 

quality sampling or geophysical measurements, coupled with geostatistical methods to model 

the 3D salinity distribution at the beginning of the simulation period. When measurements are 

insufficient, the starting salinity distribution is estimated by modeling the historical evolution 

of the salinity distribution provided that historic influences (e.g., pumping rates, recharge 

data, river stages, etc.) are obtainable. This approach partly moves the difficulty to the 

estimation of the salinity distribution at the start of the historical evolution. Common choices 

for the start of the historic evolution are either a steady-state situation (also referred to as pre-

development conditions) or an entirely saline or fresh aquifer. A greater understanding of the 

role of geological evolution (e.g., Holocene transgression and accompanying changes to 

coastal morphology) on coastal aquifer salinity conditions is needed for these purposes. 

Either way, the specific choice of the starting point of historic simulations is ideally designed 

to have only a minor effect on the outcome, but guidance on this is lacking. 
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The computational demand of SI models is large even though most SI codes use relatively 

large cell sizes that are not adequate to simulate all SI processes. Research is needed to 

improve the computational performance of SI codes and to take advantage of, for example, 

code parallelization. This will allow finer mesh discretization and/or similar calibration 

techniques to be applied as those used in flow-only groundwater modeling. Limited attempts 

and restricted capacity to automatically calibrate SI models is compounded by shortcomings 

in field-scale SI characterization. The use of SI models in designing field monitoring 

strategies should be explored further, although it is often difficult to reconcile uncertain 

salinity measurements with the predictions of regional-scale SI models. Formal uncertainty 

analyses of SI models are also lacking, and hence field measurement campaigns and model 

calibration efforts are rarely interdependent in the strictest sense. The combination of inverse 

modeling with predictive uncertainty analyses of SI models is needed for management 

applications, including the estimation of risks associated with such effects as climate change 

and other uncertain aquifer stresses. Predictions regarding the effects of climate change are 

even more uncertain because climate change scenarios themselves are highly uncertain. That 

is, the uncertainties inherent in climate scenarios need to be coupled to SI prediction 

uncertainties to decipher the results of models and how they might influence management 

decisions, such as the optimization of groundwater use. 

 

 

It is noteworthy that most SI optimization research considers only hypothetical or highly 

simplified coastal aquifers. There are no examples of highly complex, well calibrated SI 

models that are applied to rigorous pumping optimization evaluation, despite such methods 

being applied to other hydrogeology problems. Indeed, despite that numerous optimization 
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methods have been applied to hypothetical and simple SI problems, optimization research is 

not in mainstream use, and is still largely quarantined to the research domain. This typifies a 

significant time lag between research findings and the techniques for SI investigation adopted 

by hydrogeology practitioners. Future research in this field needs to develop, evaluate and 

implement optimization methodologies in the context of real-world systems, which are 

usually characterized by large scales, scant data, an inordinate number of pumping-related 

decision variables and constraints, and SI processes occurring over a variety of scales (e.g., 

upconing, SI from tidal waterways, relic seawater mobilization, etc.). Added to this, water 

resource custodians require information pertinent to prediction uncertainty and salinization 

risk, and to address these issues it is often necessary to invoke stochastic approaches to SI 

simulation. Only hypothetical examples presently demonstrate such an approach. SOA 

problems are amenable to parallel computing, which provides opportunities to capitalize on 

expanding computation resources. Further efforts to enhance the efficiency and accuracy of 

density-dependent flow and transport simulation, either directly or by surrogation with 

simpler models, will also assist in bringing SI optimization methods into mainstream use. 

 

6.3 Application to field-scale problems and management 

 

Practical SI problems involve managing a complex and in some cases slow-moving 

phenomenon with limited resources and scant field measurements. In many practical 

applications, there is a strong case to be made for using more of the available tools to better 

map and define the saltwater wedge, to develop enhanced SI conceptual models, and to 

obtain larger datasets of parameters. More data are required in both the spatial and time 

domains, although the 3D nature of SI leads to often costly and point-based or snapshot 

methods of measurement. Integrated measurements and analyses using modeling, head and 
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salinity data, geophysics and tracer information will allow better problem conceptualization 

and model constraint. For example, only limited field observations of saltwater wedge 

movement or upconing are available, and instances of accurate plume mapping near pumping 

wells is rare. In many SI cases, the paucity of data and measurement leads to a heavy reliance 

on models to make estimates. However, few models are calibrated rigorously and verified 

with respect to accurate monitoring and characterization of the saltwater distribution. 

 

Critical SI management questions remain unresolved. For example, while sea-level rise is 

likely to impact on coastal aquifer hydrological processes interdependently with recharge 

changes, modified recharge and sea-level rise have been evaluated for only a handful of cases 

and/or considering highly simplified situations. Recent evaluations of the temporal aspects of 

SI in response to sea-level rise neglect situations involving transgression and associated land 

surface over-topping. The free convection processes associated with transgression under 

current rates of sea-level rise require further analysis to assess their importance relative to 

lateral SI. A systematic study of both sea-level rise and recharge drought, considering a tidal 

boundary condition, is also needed to demonstrate the magnitude of tidal influences on SI 

processes and subsequent ecological impacts under future scenarios, taking into account 

various hydrogeological, climatic and tidal settings. 

 

The resilience of coastal aquifer systems to SI is also not well understood. Indeed, transient 

effects remain poorly studied, and there are important implications here in terms of the 

reversibility of SI, and the remediation of aquifers in combination with artificial recharge and 

ASR schemes. SI management requires substantial research effort to develop improved 

practices for SI control. Application of desalinization techniques, including in situ (down-

hole) methods, is growing rapidly in coastal aquifers. The byproduct of desalinized salt or 



70 
 

brackish water is a concentrated saline stream (a brine), which is usually injected in deeper 

(saltier) layers or in the ocean. The (long-term) effect of either on the freshwater resources in 

coastal aquifers is an important point of research. 

 

Engineering and pumping control measures need to be incorporated into decision support 

systems, linking biophysical models with social constraints, as applied in other areas of water 

resources management. Here, an enhanced appreciation of the links between SI and 

environmental concerns, such as linkages between watertable salinization and interactions 

with ecosystems, is required. The hydro-ecological aspects of SI have been largely neglected. 

Major challenges in coastal subsurface hydro-ecology relate to the difference in temporal and 

spatial scales of interest between water resource managers and ecologists, and the need for 

quantified ecological responses to environmental stress changes, in particular associated with 

SI and taking into account saturated-unsaturated and surface-subsurface effects. There are 

also no reported case studies of measured declines in SFGD or SGD where these are linked to 

accompanying SI in a quantitative manner. As such, the use of SFGD as a SI management 

indicator remains elusive, partly due to challenges in SFGD estimation across large scales. As 

pressure on coastal systems increases, SI processes associated with engineering interventions 

(e.g., hydraulic, gas-based and physical barrier systems, artificial recharge, scavenger wells, 

etc.) are likely to come under increased scrutiny. However, the performance of engineering 

measures requires more extensive analysis to evaluate the response time-scales and the 

resilience once mitigation measures are installed. A holistic comparative analysis of the 

different engineering options for SI remediation and mitigation, to guide decision-makers on 

engineering approach and design, is lacking. 

 



71 
 

The current worldwide SI status is not entirely clear. There are some baseline data, but in the 

absence of quantitative national and continental summaries, it is not possible to project 

reliably into the future under climate change or population growth scenarios. Extraction from 

coastal aquifers is sure to change in time, but the impact of SI globally is unknown. Linkages 

between population growth, groundwater extraction, contamination, SFGD and climate 

change effects are needed to properly distinguish between the various coastal impacts and the 

different SI causal factors. A SI typological approach, drawing from other typological 

studies, could also provide the basis for useful national and continental summaries, i.e., to at 

least illustrate qualitatively the propensity of SI to occur and to rank SI hotspots, considering 

large lengths of coastal fringe. 

 

Perhaps the most important scientific challenge in SI research relates to implementation of SI 

knowledge, regarding hydrogeochemical processes, investigative methods and management 

approaches, into practice. Strategies are needed to reduce substantial gaps between SI 

knowledge and management practice. More studies that retrospectively and critically evaluate 

the effectiveness of management practices, and in particular initiatives arising from SI 

research findings, are needed to demonstrate the benefits or otherwise of methods and 

knowledge gained from SI research. Post-audits of this nature are by-and-large absent from 

the literature, but would undoubtedly lead to substantial knowledge gains regarding SI 

processes, investigation methods and management practices. 
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Table 1. Popular SI codes 

SI Code Basic Model 

Features
1
 

Model 

testing
2
 

Practical SI applications 

2D/3DFEMFAT FE, SU H Zhang et al. [2004] 

FEFLOW FE, SU, GUI H, E, C Gossel et al. [2010], Watson et al. [2010], 

Yechieli et al. [2010] 

FEMWATER FE, SU, GUI  Datta et al. [2009], Carneiro et al. [2010] 

HYDROGEOSP

HERE 

FE, SU E, C Thompson et al. [2007], Graf and Therrien 

[2005] 

MARUN FE, SU H Li and Boufadel [2011], Abdollahi-Nasab et 

al. [2010], Boufadel et al. [2000], 

Boufadel et al. [2011] 

MOCDENS3D FD, S, GUI H, E, R Bakker et al. [2004], Oude Essink [2001a, 

2001b, 2001c], Oude Essink et al. [2010], 

Giambastiani et al. [2007], Vandenbohede 

and Lebbe [2006, 2007], Vandenbohede et al. 

[2008a, 2008b, 2008c, 2009, 2010] 

MODHMS FD, SU, GUI H Werner and Gallagher [2006] 

SEAWAT FD, S, GUI H, E, C, 

R 

Cherubini and Pastore [2011], Bakker et al. 

[2004], Langevin et al. [2010], 

Vandenbohede and Lebbe [2011], Webb and 

Howard [2011], El-Bihery [2009], Lin et al. 

[2009], Mao et al.[2006], Kourakos and 

Mantoglou [2009, 2011], Abdullah et al. 

[2010], Praveena et al. [2010], Praveena and 
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Aris [2010], Luyun et al. [2009], Goswami 

and Clement [2007], Dausman et al. [2009b] 

SUTRA FE/FD, SU, 

GUI 

H, E, C Nishikawa et al. [2009], Pool and Carrera 

[2010] 

SWI FD, S, IF R Bakker et al. [2004] 

1
 FD - finite difference; FE - finite elements; IF – interface flow interfaces; S - saturated flow 

only; SU - saturated-unsaturated flow; GUI - dedicated graphical user interface available 

2
 E - Elder problem; H - Henry problem; C - HYDROCOIN salt-dome problem; R - rotating 

fluids problem 
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Table 2. Categorization of optimization technique in SI management 

Optimization category and 

simulation approaches
1
 

Mixing 

Zone
2
 

Optimization 

technique
3
 

Example References 

EMA 

IF NLP Shamir et al. [1984] 

VD NLP Das and Datta [1999] 

SOA 

Numerical Solution 

IF GA, NLP 

Willis and Finney 

[1988]; Finney et al. 

[1992]; Emch and Yeh 

[1998]; Mantoglou et al. 

[2004]; Mantoglou and 

Papantoniou [2008] 

VD SA, GA 

Qahman et al. [2005], 

Abarca et al. [2006] 

Analytical Solution IF 

LP, NLP, 

GA, ACO 

Cheng et al. [2000]; 

Mantoglou [2003]; 

Cheng et al. [2004]; Park 

and Aral [2004]; Ataie-

Ashtiani and Ketabchi 

[2011] 
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Surrogate 

Models 

RMA 

 

 

LP, NLP, GA  

 

Hallaji and Yazicigil 

[1996]; Abarca et al. 

[2006]; Karterakis et al. 

[2007] 

 

Neural Networks 

and Genetic 

Programming 

IF GA - 

VD GA 

Rao et al. [2004]; 

Bhattacharjya and Datta 

[2005, 2009]; Dhar and 

Datta [2009]; Kourakos 

and Mantoglou [2009]; 

Sreekanth and Datta 

[2010]; 

Sreekanth and Datta 

[2011a] 

1
EMA: Embedding approach; SOA: Simulation-optimization approach; RMA: Response 

matrix approach 

2
IF: Interface flow; VD: Variable density flow 

3
LP: Linear programming; NLP: Non-linear programming; EA: Evolutionary algorithm; GA: 

Genetic algorithm; SA: Simulated annealing, ACO: Ant-colony optimization 
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Fig. 1. Simplified diagram of a coastal unconfined aquifer setting, showing (a) seawater 

wedge toe, (b) density-driven circulation in the seawater zone, (c) seawater upconing due to 

well pumping, (d) coastal fringe processes, such as tidal seepage face and upper seawater 

recirculation zone, (e) head-controlled surface expression of groundwater. 


