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1 Support Vetors and Statistial Mehanis
Rainer DietrihInstitut f�ur Theoretishe PhysikJulius-Maximilians-Universit�atAm HublandD-97074 W�urzburg, Germanydietrih�physik.uni-wuerzburg.dehttp://theorie.physik.uni-wuerzburg.de/�dietrihManfred OpperDepartment of Computer Siene and Applied MathematisAston UniversityAston TriangleBirmingham B4 7ET, UKopperm�aston.a.ukhttp://www.nrg.aston.a.uk/People/opperm/Welome.htmlHaim SompolinskyRaah Institute of Physis and Center for Neural ComputationHebrew UniversityJerusalem 91904, Israelhaim��z.huji.a.ilWe apply methods of Statistial Mehanis to study the generalization performaneof Support Vetor Mahines in large dataspaes.1.1 IntrodutionMany theoretial approahes for estimating the generalization ability of learningmahines are based on general, distribution independent bounds. Sine suh boundshold even for very unfavourable data generating mehanisms, it is not lear a priorihow tight they are in less pessimisti ases.
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2 Support Vetors and Statistial MehanisHene, it is important to study models of nontrivial learning problems for whihwe an get exat results for generalization errors and other properties of a trainedlearning mahine. A method for onstruting and analysing suh learning situationshas been provided by Statistial Mehanis. Statistial Mehanis is a �eld ofTheoretial Physis whih deals with a probabilisti desription of omplex systemsthat are omposed of many interating entities. Tools originally developped to studythe properties of amorphous materials enable us to ondut ontrolled, analytialexperiments for the performane of learning mahines for spei� types of datadistributions when the numbers of tunable parameters and examples are large.While often statistial theories provide asymptoti results for sizes of the trainingdata sample that are muh larger than some intrinsi omplexity of a learningmahine, in ontrast, the so alled 'thermodynami limit' of Statistial Mehanisallows to simulate the e�ets of small relative sample sizes. This is ahieved by takingthe limit where both the sample size and the number of parameters approahesin�nity, but an appropriate ratio is kept �xed.Starting with the pioneering work of Elizabeth (4) this approah has beensuessfully applied during the last deade to a variety of problems in the ontextof neural networks (for a review, see e.g. (9; 13; 7)). This hapter will deal withan appliation to learning with Support Vetor Mahines (SVMs). A somewhatmore detailed analysis whih was designed for readers with a Statistial Physisbakground, an be found in (2).1.2 The basi SVM settingWe will restrit ourselves to SVM lassi�ers. They are de�ned (for more expla-nations, see the introdutory hapter to this book) by a nonlinear mapping �(�)from input vetors x 2 RN into a feature spae F . The mapping is onstrutedfrom the eigenvetors  j(x) and eigenvalues �j of an SVM kernel k(x;y) via�(x) = (p�1 1(x);p�2 2(x); : : :).The output y of the SVM an be represented as a linear lassi�ationsgn (�(x) �w) = sgn 0�NFXj=1p�j j(x)wj1A (1.1)in feature spae, where for simpliity, we have set the bias term equal to zero. Fora realizable setting, the weights wj , j = 1; : : : ; NF are adjusted to a set of examplepairs f(y1;x1); : : : ; (ym;xm)g by minimizing the quadrati funtion 12 jjwjj2 underthe onstraints that y(�(x) �w) � 1 for all examples.



Smola, Bartlett, Sh�olkopf, and Shuurmans: Advanes in Large Margin Classi�ers 1999/09/24 17:34

1.3 The learning problem 31.3 The learning problemWe assume a simple noise free senario, where the generation of data is modelledwithin the so alled teaher-student framework. Here, it is assumed that some las-teaher-studentframework si�er (the teaher) whih has a similar representation as the mahine of interest,gives the orret outputs to a set of randomly generated input data. The general-ization error an be measured as the probability of disagreement on a random inputbetween teaher and student mahine. In our ase, we hoose the representationyi = sgn 0�Xj p�jBj j(xi)1A : (1.2)All nonzero omponents are assumed to be hosen independently at random froma distribution with zero mean and unit variane. We will also onsider the ase,where a �nite fration of the Bj are 0 in order to tune the omplexity of the rule.Finally, the inputs xi are taken as independent random vetors with a uniformprobability distribution D(x) on the hyperube f�1; 1gN . We are interested in theperformane of the SVM averaged over these distributions.We will speialize on a family of kernels whih have the form k(x;y) = K �x�yN �,where, for simpliity, we set K(0) = 0. These kernels are permutation symmetriin the omponents of the input vetors and ontain the simple pereptron marginlassi�er as a speial ase, when K(z) = z. For binary input vetors x 2 f�1; 1gN ,the eigenvalue deomposition for this type of kernels is known (5). The eigenfun-eigenvaluedeomposition tions are produts of omponents of the input vetors, i.e.  i(x) = 2�N=2Qj2Si xj ,whih are simple monomials, where Si � f1; : : : ; Ng is a subset of the ompo-nents of x. For polynomial kernels, these features have also been derived in (11).The orresponding eigenvalues are found to be �i = 2N=2Px k(e;x) i(x), withe = (1; : : : ; 1)T . They depend on the ardinality jSij of the set Si only. For jSij = 1,the eigenfuntions are the N linear funtions xj , j = 1; : : : ; N . For jSij = 2, wehave the N(N � 1)=2 bilinear ombinations xixj et. The behaviour of the eigen-values for large input dimension N is given by �i ' 2NN jSijK(jSij)(0): K(l) denotesthe l-th derivative of the funtion K. The rapid derease of the eigenvalues withthe ardinality jSij is ounterbalaned by the strong inrease of their degeneraywhih grows like njSij = � NjSij� ' N jSij=jSij!. This keeps the overall ontribution ofeigenvaluesPjSij=l �injSij for di�erent ardinalities l of the same order.1.4 The approah of Statistial MehanisThe basi idea to map SVM learning to a problem in Statistial Mehanis is tode�ne a (Gibbs) measure p�(w) over the weights w whih in a spei� limit is
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4 Support Vetors and Statistial Mehanisonentrated at the weights of the trained SVM. This is done by settingp�(w) = 1Z e� 12�jjwjj2 mYi=1�0�yi NFXj=1p�j j(xi)wj � 11A : (1.3)�(x) is the unit step funtion whih equals 1 for x � 0 and 0 else. Z normalizes thedistribution. In the limit � !1, this distribution is onentrated at the minimumof jjwjj2 in the subspae of weights where all arguments of the � funtions are non-negative. This is equivalent to the onditions of the SVM quadrati programmingproblem. A di�erent approah has been disussed in (3), where the Kuhn Tukeronditions of the optimization problem have been diretly implemented into a Sta-tistial Mehanis framework. It will be interesting to see, if this method an alsobe applied to the generalization problem of SVMs.The strategy of the Statistial Mehanis approah onsists of alulating expe-tations of interesting quantities whih are funtions of the weight vetor w overboth the distribution (1.3) and over the distribution of the training data. At theend of the alulation, the limit � !1 is taken. These averaging proedures an beperformed analytially only in the limit where N !1 and m!1. They requirea variety of deliate and nontrivial manipulations whih for lak of spae annotbe explained in this ontribution. One of these tehniques is to apply a entrallimit theorem (valid in the 'thermodynami limit') for arrying out expetationsthermodynamilimit over the random inputs, utilizing the fat that the features  j are orthogonal withrespet to the hosen input distribution. This is the main reason, why we preferto work in high-dimensional feature spae rather than using the low dimensionalkernel representation. A review of the standard tehniques used in the StatistialMehanis approah and their appliation to the generalization performane of neu-ral networks an be found e.g. in (9; 13; 7)), a general review of the basi priniplesis (6).The results of our analysis will depend on the way, in whih the two limitsN ! 1 and m ! 1 are arried out. In general, one expets that a deay of thegeneralization error �g to zero should our only when m = O (NF), beause NFis the number of parameters of the data model. Nevertheless, when the mapping �ontains a reasonably strong linear part, �g may drop to small values already on asale of m = �N examples. Hene, in taking the limit N ! 1, we will make thegeneral ansatz m = �N l, l 2 N and disuss di�erent regions of the generalizationperformane by varying l. Our model di�ers from a previous Statistial Mehanisapproah to SVMs (1) where the dimension of the feature spae grew only linearwith N .
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1.5 Results I: General 51.5 Results I: GeneralOne of the most basi and natural quantities whih result from the alulation is aso alled order parameter whih for the SVM is de�ned byR =Xi �ihwiBii (1.4)where �i := �i=2N , and h:::i denotes an average with respet to the distribution(1.3) and the distributions of the data and of the teaher vetor. R is a weightedoverlap between the teaher and SVM student weight vetors. This similaritymeasure between teaher and student allows us to express the generalization errorby �g = 1� aros RpBq : Here B = Pi �ih(Bi)2i and q0 = Pi �ih(wi)2i denotegeneralizationerror spei� squared norms of the teaher and student weight vetors. Note that by thespei� form of �g, the teaher's rule is perfetly learnt when the student vetorpoints in the same diretion as the teaher irrespetively of the student vetor'slength. Furthermore, an analysis of the ontributions oming from eigenvetors ofdi�erent omplexities (i.e. ardinalities jSij) will give us an intuitive understandingof the SVMs inferene of the rule.As a general result of our analysis, we �nd that if the number of examples issaled as m = �N l,saling of numberof inputs All high order omponents Bi are ompletely undetermined, i.e. R(+) :=PjSij>l �ihwiBii ! 0, and also that q(+)0 :=PjSij>l �ih(wi)2i ! 0, in the large Nlimit.This does not mean that the values of the orresponding weights wi are zero, theyare just too small to ontribute in the limit to the weighted sums (1.4).All low order omponents are ompletely determined, in the sense that wi = Bifor all i with jSij < l, where  depends on � only. The only omponents whih areatually learnt at a sale l are those for jSij = l.To illustrate this behaviour for the simplest ase, we study quadrati kernels ofthe form K(x) = (1 � d)x2 + dx, where the parameter d, 0 < d < 1, ontrolsthe nonlinearity of the SVM's mapping. The eigenvetors of lowest omplexity arejust the N linear monomials � xj , and the remaining ones are the N(N � 1)=2quadrati terms of the form xixj . The learning urve is shown in Fig. 1.1, wherewe have inluded results from simulations for omparison.If the number of examples sales linearly with the input dimension, i.e. m = �N(left side of Fig. 1.1), the SVM is able to learn only the linear part of theteaher's rule. However, sine there is not enough information to infer the remainingN(N � 1)=2 weights of the teaher's quadrati part, the generalization error of theSVM reahes a nonzero plateau as �!1 aording to �g(�)� �g(1) � ��1. Theheight of the plateau is given by �g(1) = ��1 aros(d), whih inreases from zeroat d = 1, when the kernel is entirely linear, to �g = 12 at d = 0 when only quadratifeatures are present.
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6 Support Vetors and Statistial Mehanis
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Figure 1.1 Derease of the generalization error on di�erent sales of examples, forquadrati SVM kernel learning a quadrati teaher rule (d = 0:5; B = 1) and variousgaps . Simulations were performed with N= 201 and averaged over 50 runs (leftand next �gure), and N= 20, 40 runs (right).If we inrease the number of examples to grow quadratially withN , i.e.m = �N2(right side of Fig. 1.1), the generalization error will derease towards zero with abehavior � 1=� asymptotially, where the prefator does not depend on d.The retarded learning of the more omplex omponents of the mapping �generalizes to kernels whih are polynomials of higher order z > 2. On the sale ofpolynomialkernels m = �N l examples, when l < z, the generalization error dereases to a plateau as�!1 whih is given by�g = 1� arosvuutPlj=1 K(j)(0)j!K(1) : (1.5)Only at the highest sale m = �Nz, we get an asymptotial vanishing of thegeneralization error to zero as �g � 0:500489z! ��1.1.6 Results II: Over�tting
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1.6 Results II: Over�tting 7
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Figure 1.2 Learning urves for linear student and quadrati SVM kernels, alllearning a linear teaher rule (B = d). For � = 10, a �nite size saling is shown inthe inset.As the next problem, we study the ability of the SVM to ope with the problemof over�tting when learning a rule whih has a muh lower omplexity than themapping �. We model suh a problem by keeping the SVM quadrati, but hoosinga data generating mehanism whih is de�ned by a simple linear separation ofexamples. This is ahieved by setting jBij = 1 for jSij = 1 and jBij = 0 for thehigher order omponents. Our results for the generalization error are shown in Fig.1.2, where the number of examples is saled as m = �N . Surprisingly, although theomplexity of the SVM is by far higher than the underlying rule, only a rather weakform of over�tting is observed. The SVM is able to learn the N teaher weights Bion the orret sale of m = �N examples. The asymptoti rate of onvergene is�g � ��2=3. If we had used a simple linear SVM for the same task, we would havelearned the underlying onept only slightly faster at the rate �g � ��1.We an ompare these results with simple bounds on the expeted generalizationerror as desribed in setion ?? of the introdutory hapter. E.g., the expetationof the ratio of the number of support vetors over the total number of examples myields an upper bound on �g (12). Calulating the expeted number of supportvetors within the Statistial Mehanis approah yields an asymptoti deay� ��1=3 for this bound whih deays at a slower rate than the atual �g.1.7 Results III: Dependene on the input density
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8 Support Vetors and Statistial MehanisOne an expet that if the density of inputs ats in a favourable way togetherwith the teaher's onept, learning of the rule will be faster. We have modelledsuh a situation by onstruting an input distribution whih is orrelated withthe teaher weights Bi by having a gap of zero density of size 2 around theteaher's deision boundary. In this ase we expet to have a large margin betweenpositive and negative examples. The density for this model is of the form D(x) �� �jPip�iB� i(x)j � �.For a quadrati SVM learning from a quadrati teaher rule, we observe a fasterdeay of the generalization error than in the ase of a uniform density. However,on the linear sale m = �N (Fig. 1.1) the asymptoti deay is still of the form�g(�) � �g(1) � ��1. A dramati improvement is obtained on the highest salem = �N2, where the generalization error drops to zero like �g � ��3e�̂()�2 . Inthis ase, the mismath between the true generalization error and the simple boundbased on the fration of support vetors is muh more striking. The latter dereasesmuh slower, i.e. only algebraially with �.1.8 Disussion and OutlookThe present work analysed the performane of SV Mahines by methods of Statisti-al Mehanis. These methods give distribution dependent results on generalizationerrors for ertain simple distributions in the limit of high dimensional input spaes.Why do we expet that this somewhat limited approah may be of interest tothe mahine learning ommunity? Some of the phenomena disussed in this hapterould de�nitely be observed qualitatively in other, more general approahes whihare based on rigorous bounds. E.g., the reently introdued onept of lukiness(10; 8) applied to the ase of the favourable density with a gap would give smallergeneralization errors than for a uniform density. This is beause the margin (taken asa lukiness funtion) would ome out typially larger. Nevertheless, the quantitativeagreement with the true learning urves is usually less good. Hene, an appliationof the bounds to model seletion may in some ases lead to suboptimal results.On the other hand, the power of the Statistial Mehanis approah omes fromthe fat that (in the so far limited situations, where it an be applied) it yieldsquantitatively exat results in the thermodynami limit, with exellent agreementwith the simulations of large systems. Hene, this approah an be used to hekthe tightness of bounds in ontrolled analytial experiments. We hope that it willalso give an idea how bounds ould be improved or replaed by good heuristis.So far, we have restrited our results to a noise free senario, but it is straight-forward to extend the approah to noisy data. It is also possible to inlude SVMtraining with errors (resulting in the more advaned optimization problem withslak variables) in the formalism. We expet that our analysis will give insight intothe performane of model seletion riteria whih are used in order to tune theparameters of the SVM learning algorithm to the noise. We have already shown forthe noise free ase that a very simple statistis like the relative number of support
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1.8 Disussion and Outlook 9vetors an give a wrong predition for the rate of onvergene of the generaliza-tion error. It will be interesting to see if more sophistiated estimates based on themargin will give tighter bounds.AknowledgementsThis work was supported by a grant (Op 45/5-2) of the Deutshe Forshungsgemein-shaft and by the British-German Aademi Researh Collaboration Programmeprojet 1037 of the British ounil. The work of HS was supported in part by theUSA-Israel Binational Siene Foundation.
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