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Abstract

Robust detection and tracking of objects is crucial for
the deployment of autonomous vehicle technology. Image
based benchmark datasets have driven development in com-
puter vision tasks such as object detection, tracking and seg-
mentation of agents in the environment. Most autonomous
vehicles, however, carry a combination of cameras and
range sensors such as lidar and radar. As machine learn-
ing based methods for detection and tracking become more
prevalent, there is a need to train and evaluate such meth-
ods on datasets containing range sensor data along with im-
ages. In this work we present nuTonomy scenes (nuScenes),
the first dataset to carry the full autonomous vehicle sensor
suite: 6 cameras, 5 radars and 1 lidar, all with full 360 de-
gree field of view. nuScenes comprises 1000 scenes, each
20s long and fully annotated with 3D bounding boxes for
23 classes and 8 attributes. It has 7x as many annotations
and 100x as many images as the pioneering KITTI dataset.
We define novel 3D detection and tracking metrics. We also
provide careful dataset analysis as well as baselines for li-
dar and image based detection and tracking. Data, devel-
opment kit and more information are available online1.

1. Introduction
Autonomous driving has the potential to radically

change the cityscape and save many human lives [78]. A
crucial part of safe navigation is the detection and track-
ing of agents in the environment surrounding the vehicle.
To achieve this, a modern self-driving vehicle deploys sev-
eral sensors along with sophisticated detection and tracking
algorithms. Such algorithms rely increasingly on machine
learning, which drives the need for benchmark datasets.
While there is a plethora of image datasets for this pur-
pose (Table 1), there is a lack of multimodal datasets that
exhibit the full set of challenges associated with building
an autonomous driving perception system. We released the
nuScenes dataset to address this gap2.

1nuScenes.org
2nuScenes teaser set released Sep. 2018, full release in March 2019.

Figure 1. An example from the nuScenes dataset. We see 6 dif-
ferent camera views, lidar and radar data, as well as the human
annotated semantic map. At the bottom we show the human writ-
ten scene description.

Multimodal datasets are of particular importance as no
single type of sensor is sufficient and the sensor types are
complementary. Cameras allow accurate measurements of
edges, color and lighting enabling classification and local-
ization on the image plane. However, 3D localization from
images is challenging [13, 12, 57, 80, 69, 66, 73]. Lidar
pointclouds, on the other hand, contain less semantic infor-
mation but highly accurate localization in 3D [51]. Further-
more the reflectance of lidar is an important feature [40, 51].
However, lidar data is sparse and the range is typically lim-
ited to 50-150m. Radar sensors achieve a range of 200-
300m and measure the object velocity through the Doppler
effect. However, the returns are even sparser than lidar and
less precise in terms of localization. While radar has been
used for decades [1, 3], we are not aware of any autonomous
driving datasets that provide radar data.

Since the three sensor types have different failure modes
during difficult conditions, the joint treatment of sensor
data is essential for agent detection and tracking. Liter-
ature [46] even suggests that multimodal sensor config-
urations are not just complementary, but provide redun-
dancy in the face of sabotage, failure, adverse conditions
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Figure 2. Front camera images collected from clear weather (col 1), nighttime (col 2), rain (col 3) and construction zones (col 4).

and blind spots. And while there are several works that
have proposed fusion methods based on cameras and li-
dar [48, 14, 64, 52, 81, 75, 29], PointPillars [51] showed
a lidar-only method that performed on par with existing fu-
sion based methods. This suggests more work is required to
combine multimodal measurements in a principled manner.

In order to train deep learning methods, quality data an-
notations are required. Most datasets provide 2D semantic
annotations as boxes or masks (class or instance) [8, 19, 33,
85, 55]. At the time of the initial nuScenes release, only a
few datasets annotated objects using 3D boxes [32, 41, 61],
and they did not provide the full sensor suite. Following
the nuScenes release, there are now several sets which con-
tain the full sensor suite (Table 1). Still, to the best of our
knowledge, no other 3D dataset provides attribute annota-
tions, such as pedestrian pose or vehicle state.

Existing AV datasets and vehicles are focused on partic-
ular operational design domains. More research is required
on generalizing to “complex, cluttered and unseen environ-
ments” [36]. Hence there is a need to study how detection
methods generalize to different countries, lighting (daytime
vs. nighttime), driving directions, road markings, vegeta-
tion, precipitation and previously unseen object types.

Contextual knowledge using semantic maps is also an
important prior for scene understanding [82, 2, 35]. For ex-
ample, one would expect to find cars on the road, but not on
the sidewalk or inside buildings. With the notable exception
of [45, 10], most AV datasets do not provide semantic maps.

1.1. Contributions
From the complexities of the multimodal 3D detection

challenge, and the limitations of current AV datasets, a
large-scale multimodal dataset with 360◦ coverage across
all vision and range sensors collected from diverse situa-
tions alongside map information would boost AV scene-
understanding research further. nuScenes does just that, and
it is the main contribution of this work.

nuScenes represents a large leap forward in terms of
data volumes and complexities (Table 1), and is the first

dataset to provide 360◦ sensor coverage from the entire sen-
sor suite. It is also the first AV dataset to include radar data
and captured using an AV approved for public roads. It is
further the first multimodal dataset that contains data from
nighttime and rainy conditions, and with object attributes
and scene descriptions in addition to object class and loca-
tion. Similar to [84], nuScenes is a holistic scene under-
standing benchmark for AVs. It enables research on mul-
tiple tasks such as object detection, tracking and behavior
modeling in a range of conditions.

Our second contribution is new detection and tracking
metrics aimed at the AV application. We train 3D object
detectors and trackers as a baseline, including a novel ap-
proach of using multiple lidar sweeps to enhance object
detection. We also present and analyze the results of the
nuScenes object detection and tracking challenges.

Third, we publish the devkit, evaluation code, taxonomy,
annotator instructions, and database schema for industry-
wide standardization. Recently, the Lyft L5 [45] dataset
adopted this format to achieve compatibility between the
different datasets. The nuScenes data is published under
CC BY-NC-SA 4.0 license, which means that anyone can
use this dataset for non-commercial research purposes. All
data, code, and information is made available online3.

Since the release, nuScenes has received strong interest
from the AV community [90, 70, 50, 91, 9, 5, 68, 28, 49, 86,
89]. Some works extended our dataset to introduce new an-
notations for natural language object referral [22] and high-
level scene understanding [74]. The detection challenge en-
abled lidar based and camera based detection works such
as [90, 70], that improved over the state-of-the-art at the
time of initial release [51, 69] by 40% and 81% (Table 4).
nuScenes has been used for 3D object detection [83, 60],
multi-agent forecasting [9, 68], pedestrian localization [5],
weather augmentation [37], and moving pointcloud predic-
tion [27]. Being still the only annotated AV dataset to pro-
vide radar data, nuScenes encourages researchers to explore
radar and sensor fusion for object detection [27, 42, 72].

3github.com/nutonomy/nuscenes-devkit

github.com/nutonomy/nuscenes-devkit


Dataset Year Sce-
nes

Size
(hr)

RGB
imgs

PCs
lidar††

PCs
radar

Ann.
frames

3D
boxes

Night /
Rain

Map
layers

Clas-
ses Locations

CamVid [8] 2008 4 0.4 18k 0 0 700 0 No/No 0 32 Cambridge
Cityscapes [19] 2016 n/a - 25k 0 0 25k 0 No/No 0 30 50 cities
Vistas [33] 2017 n/a - 25k 0 0 25k 0 Yes/Yes 0 152 Global
BDD100K [85] 2017 100k 1k 100M 0 0 100k 0 Yes/Yes 0 10 NY, SF
ApolloScape [41] 2018 - 100 144k 0∗∗ 0 144k 70k Yes/No 0 8-35 4x China
D2-City [11] 2019 1k† - 700k† 0 0 700k† 0 No/Yes 0 12 5x China

KITTI [32] 2012 22 1.5 15k 15k 0 15k 200k No/No 0 8 Karlsruhe
AS lidar [54] 2018 - 2 0 20k 0 20k 475k -/- 0 6 China
KAIST [17] 2018 - - 8.9k 8.9k 0 8.9k 0 Yes/No 0 3 Seoul
H3D [61] 2019 160 0.77 83k 27k 0 27k 1.1M No/No 0 8 SF
nuScenes 2019 1k 5.5 1.4M 400k 1.3M 40k 1.4M Yes/Yes 11 23 Boston, SG

Argoverse [10] 2019 113† 0.6† 490k† 44k 0 22k† 993k† Yes/Yes 2 15 Miami, PT
Lyft L5 [45] 2019 366 2.5 323k 46k 0 46k 1.3M No/No 7 9 Palo Alto
Waymo Open [76] 2019 1k 5.5 1M 200k 0 200k‡ 12M‡ Yes/Yes 0 4 3x USA
A∗3D [62] 2019 n/a 55 39k 39k 0 39k 230k Yes/Yes 0 7 SG
A2D2 [34] 2019 n/a - - - 0 12k - -/- 0 14 3x Germany

Table 1. AV dataset comparison. The top part of the table indicates datasets without range data. The middle and lower parts indicate
datasets (not publications) with range data released until and after the initial release of this dataset. We use bold highlights to indicate the
best entries in every column among the datasets with range data. Only datasets which provide annotations for at least car, pedestrian and
bicycle are included in this comparison. (†) We report numbers only for scenes annotated with cuboids. (‡) The current Waymo Open
dataset size is comparable to nuScenes, but at a 5x higher annotation frequency. (††) Lidar pointcloud count collected from each lidar.
(**) [41] provides static depth maps. (-) indicates that no information is provided. SG: Singapore, NY: New York, SF: San Francisco, PT:
Pittsburgh, AS: ApolloScape.

1.2. Related datasets
The last decade has seen the release of several driv-

ing datasets which have played a huge role in scene-
understanding research for AVs. Most datasets have fo-
cused on 2D annotations (boxes, masks) for RGB cam-
era images. CamVid [8], Cityscapes [19], Mapillary
Vistas [33], D2-City [11], BDD100k [85] and Apol-
loscape [41] released ever growing datasets with segmen-
tation masks. Vistas, D2-City and BDD100k also contain
images captured during different weather and illumination
settings. Other datasets focus exclusively on pedestrian an-
notations on images [20, 25, 79, 24, 88, 23, 58]. The ease
of capturing and annotating RGB images have made the re-
lease of these large image-only datasets possible.

On the other hand, multimodal datasets, which are
typically comprised of images, range sensor data (lidars,
radars), and GPS/IMU data, are expensive to collect and
annotate due to the difficulties of integrating, synchroniz-
ing, and calibrating multiple sensors. KITTI [32] was the
pioneering multimodal dataset providing dense pointclouds
from a lidar sensor as well as front-facing stereo images and
GPS/IMU data. It provides 200k 3D boxes over 22 scenes
which helped advance the state-of-the-art in 3D object de-
tection. The recent H3D dataset [61] includes 160 crowded
scenes with a total of 1.1M 3D boxes annotated over 27k
frames. The objects are annotated in the full 360◦ view,
as opposed to KITTI where an object is only annotated if
it is present in the frontal view. The KAIST multispectral
dataset [17] is a multimodal dataset that consists of RGB
and thermal camera, RGB stereo, 3D lidar and GPS/IMU.
It provides nighttime data, but the size of the dataset is lim-

ited and annotations are in 2D. Other notable multimodal
datasets include [15] providing driving behavior labels, [43]
providing place categorization labels and [6, 55] providing
raw data without semantic labels.

After the initial nuScenes release, [76, 10, 62, 34, 45] fol-
lowed to release their own large-scale AV datasets (Table 1).
Among these datasets, only the Waymo Open dataset [76]
provides significantly more annotations, mostly due to the
higher annotation frequency (10Hz vs. 2Hz)4. A*3D takes
an orthogonal approach where a similar number of frames
(39k) are selected and annotated from 55 hours of data. The
Lyft L5 dataset [45] is most similar to nuScenes. It was re-
leased using the nuScenes database schema and can there-
fore be parsed using the nuScenes devkit.

2. The nuScenes dataset
Here we describe how we plan drives, setup our vehicles,

select interesting scenes, annotate the dataset and protect
the privacy of third parties.

Drive planning. We drive in Boston (Seaport and South
Boston) and Singapore (One North, Holland Village and
Queenstown), two cities that are known for their dense traf-
fic and highly challenging driving situations. We emphasize
the diversity across locations in terms of vegetation, build-
ings, vehicles, road markings and right versus left-hand traf-
fic. From a large body of training data we manually select
84 logs with 15h of driving data (242km travelled at an av-

4In preliminary analysis we found that annotations at 2Hz are robust to
interpolation to finer temporal resolution, like 10Hz or 20Hz. A similar
conclusion was drawn for H3D [61] where annotations are interpolated
from 2Hz to 10Hz.



Sensor Details
6x Camera RGB, 12Hz capture frequency, 1/1.8” CMOS sensor,

1600 × 900 resolution, auto exposure, JPEG com-
pressed

1x Lidar Spinning, 32 beams, 20Hz capture frequency, 360◦

horizontal FOV, −30◦ to 10◦ vertical FOV, ≤ 70m
range, ±2cm accuracy, up to 1.4M points per second.

5x Radar ≤ 250m range, 77GHz, FMCW, 13Hz capture fre-
quency, ±0.1km/h vel. accuracy

GPS & IMU GPS, IMU, AHRS. 0.2◦ heading, 0.1◦ roll/pitch,
20mm RTK positioning, 1000Hz update rate

Table 2. Sensor data in nuScenes.

erage of 16km/h). Driving routes are carefully chosen to
capture a diverse set of locations (urban, residential, nature
and industrial), times (day and night) and weather condi-
tions (sun, rain and clouds).
Car setup. We use two Renault Zoe supermini electric
cars with an identical sensor layout to drive in Boston and
Singapore. See Figure 4 for sensor placements and Table 2
for sensor details. Front and side cameras have a 70◦ FOV
and are offset by 55◦. The rear camera has a FOV of 110◦.
Sensor synchronization. To achieve good cross-modality
data alignment between the lidar and the cameras, the ex-
posure of a camera is triggered when the top lidar sweeps
across the center of the camera’s FOV. The timestamp of the
image is the exposure trigger time; and the timestamp of the
lidar scan is the time when the full rotation of the current li-
dar frame is achieved. Given that the camera’s exposure
time is nearly instantaneous, this method generally yields
good data alignment5. We perform motion compensation
using the localization algorithm described below.
Localization. Most existing datasets provide the vehicle
location based on GPS and IMU [32, 41, 19, 61]. Such lo-
calization systems are vulnerable to GPS outages, as seen
on the KITTI dataset [32, 7]. As we operate in dense ur-
ban areas, this problem is even more pronounced. To accu-
rately localize our vehicle, we create a detailed HD map
of lidar points in an offline step. While collecting data,
we use a Monte Carlo Localization scheme from lidar and
odometry information [18]. This method is very robust
and we achieve localization errors of ≤ 10cm. To encour-
age robotics research, we also provide the raw CAN bus
data (e.g. velocities, accelerations, torque, steering angles,
wheel speeds) similar to [65].
Maps. We provide highly accurate human-annotated se-
mantic maps of the relevant areas. The original rasterized
map includes only roads and sidewalks with a resolution of
10px/m. The vectorized map expansion provides informa-
tion on 11 semantic classes as shown in Figure 3, making
it richer than the semantic maps of other datasets published
since the original release [10, 45]. We encourage the use of
localization and semantic maps as strong priors for all tasks.

5The cameras run at 12Hz while the lidar runs at 20Hz. The 12 camera
exposures are spread as evenly as possible across the 20 lidar scans, so not
all lidar scans have a corresponding camera frame.

Figure 3. Semantic map of nuScenes with 11 semantic layers in
different colors. To show the path of the ego vehicle we plot each
keyframe ego pose from scene-0121 with black spheres.

Finally, we provide the baseline routes - the idealized path
an AV should take, assuming there are no obstacles. This
route may assist trajectory prediction [68], as it simplifies
the problem by reducing the search space of viable routes.

Scene selection. After collecting the raw sensor data, we
manually select 1000 interesting scenes of 20s duration
each. Such scenes include high traffic density (e.g. inter-
sections, construction sites), rare classes (e.g. ambulances,
animals), potentially dangerous traffic situations (e.g. jay-
walkers, incorrect behavior), maneuvers (e.g. lane change,
turning, stopping) and situations that may be difficult for
an AV. We also select some scenes to encourage diversity
in terms of spatial coverage, different scene types, as well
as different weather and lighting conditions. Expert anno-
tators write textual descriptions or captions for each scene
(e.g.: “Wait at intersection, peds on sidewalk, bicycle cross-
ing, jaywalker, turn right, parked cars, rain”).

Data annotation. Having selected the scenes, we sample
keyframes (image, lidar, radar) at 2Hz. We annotate each of
the 23 object classes in every keyframe with a semantic cat-
egory, attributes (visibility, activity, and pose) and a cuboid
modeled as x, y, z, width, length, height and yaw angle.
We annotate objects continuously throughout each scene if
they are covered by at least one lidar or radar point. Using
expert annotators and multiple validation steps, we achieve
highly accurate annotations. We also release intermediate
sensor frames, which are important for tracking, prediction
and object detection as shown in Section 4.2. At capture
frequencies of 12Hz, 13Hz and 20Hz for camera, radar and
lidar, this makes our dataset unique. Only the Waymo Open
dataset provides a similarly high capture frequency of 10Hz.

Figure 4. Sensor setup for our data collection platform.



Figure 5. Spatial data coverage for two nuScenes locations.
Colors indicate the number of keyframes with ego vehicle poses
within a 100m radius across all scenes.

Annotation statistics. Our dataset has 23 categories in-
cluding different vehicles, types of pedestrians, mobility de-
vices and other objects (Figure 8-SM). We present statistics
on geometry and frequencies of different classes (Figure 9-
SM). Per keyframe there are 7 pedestrians and 20 vehicles
on average. Moreover, 40k keyframes were taken from
four different scene locations (Boston: 55%, SG-OneNorth:
21.5%, SG-Queenstown: 13.5%, SG-HollandVillage: 10%)
with various weather and lighting conditions (rain: 19.4%,
night: 11.6%). Due to the finegrained classes in nuScenes,
the dataset shows severe class imbalance with a ratio of
1:10k for the least and most common class annotations
(1:36 in KITTI). This encourages the community to explore
this long tail problem in more depth.

Figure 5 shows spatial coverage across all scenes. We
see that most data comes from intersections. Figure 10-SM
shows that car annotations are seen at varying distances and
as far as 80m from the ego-vehicle. Box orientation is also
varying, with the most number in vertical and horizontal
angles for cars as expected due to parked cars and cars in the
same lane. Lidar and radar points statistics inside each box
annotation are shown in Figure 14-SM. Annotated objects
contain up to 100 lidar points even at a radial distance of
80m and at most 12k lidar points at 3m. At the same time
they contain up to 40 radar returns at 10m and 10 at 50m.
The radar range far exceeds the lidar range at up to 200m.

3. Tasks & Metrics
The multimodal nature of nuScenes supports a multitude

of tasks including detection, tracking, prediction & local-
ization. Here we present the detection and tracking tasks
and metrics. We define the detection task to only operate on
sensor data between [t−0.5, t] seconds for an object at time
t, whereas the tracking task operates on data between [0, t].

3.1. Detection
The nuScenes detection task requires detecting 10 object

classes with 3D bounding boxes, attributes (e.g. sitting vs.
standing), and velocities. The 10 classes are a subset of all
23 classes annotated in nuScenes (Table 5-SM).
Average Precision metric. We use the Average Precision
(AP) metric [32, 26], but define a match by thresholding

the 2D center distance d on the ground plane instead of in-
tersection over union (IOU). This is done in order to de-
couple detection from object size and orientation but also
because objects with small footprints, like pedestrians and
bikes, if detected with a small translation error, give 0 IOU
(Figure 7). This makes it hard to compare the performance
of vision-only methods which tend to have large localiza-
tion errors [69].

We then calculate AP as the normalized area under the
precision recall curve for recall and precision over 10%.
Operating points where recall or precision is less than 10%
are removed in order to minimize the impact of noise com-
monly seen in low precision and recall regions. If no oper-
ating point in this region is achieved, the AP for that class
is set to zero. We then average over matching thresholds of
D = {0.5, 1, 2, 4} meters and the set of classes C:

mAP =
1

|C||D|
∑
c∈C

∑
d∈D

APc,d (1)

True Positive metrics. In addition to AP, we measure a
set of True Positive metrics (TP metrics) for each prediction
that was matched with a ground truth box. All TP metrics
are calculated using d = 2m center distance during match-
ing, and they are all designed to be positive scalars. In the
proposed metric, the TP metrics are all in native units (see
below) which makes the results easy to interpret and com-
pare. Matching and scoring happen independently per class
and each metric is the average of the cumulative mean at
each achieved recall level above 10%. If 10% recall is not
achieved for a particular class, all TP errors for that class
are set to 1. The following TP errors are defined:

Average Translation Error (ATE) is the Euclidean cen-
ter distance in 2D (units in meters). Average Scale Error
(ASE) is the 3D intersection over union (IOU) after align-
ing orientation and translation (1 − IOU ). Average Ori-
entation Error (AOE) is the smallest yaw angle difference
between prediction and ground truth (radians). All angles
are measured on a full 360◦ period except for barriers where
they are measured on a 180◦ period. Average Velocity Error
(AVE) is the absolute velocity error as the L2 norm of the
velocity differences in 2D (m/s). Average Attribute Error
(AAE) is defined as 1 minus attribute classification accu-
racy (1 − acc). For each TP metric we compute the mean
TP metric (mTP) over all classes:

mTP =
1

|C|
∑
c∈C

TPc (2)

We omit measurements for classes where they are not
well defined: AVE for cones and barriers since they are sta-
tionary; AOE of cones since they do not have a well defined
orientation; and AAE for cones and barriers since there are
no attributes defined on these classes.



nuScenes detection score. mAP with a threshold on IOU
is perhaps the most popular metric for object detection [32,
19, 21]. However, this metric can not capture all aspects
of the nuScenes detection tasks, like velocity and attribute
estimation. Further, it couples location, size and orientation
estimates. The ApolloScape [41] 3D car instance challenge
disentangles these by defining thresholds for each error type
and recall threshold. This results in 10×3 thresholds, mak-
ing this approach complex, arbitrary and unintuitive. We
propose instead consolidating the different error types into
a scalar score: the nuScenes detection score (NDS).

NDS =
1

10
[5 mAP +

∑
mTP∈TP

(1−min(1, mTP))] (3)

Here mAP is mean Average Precision (1), and TP the set
of the five mean True Positive metrics (2). Half of NDS
is thus based on the detection performance while the other
half quantifies the quality of the detections in terms of box
location, size, orientation, attributes, and velocity. Since
mAVE, mAOE and mATE can be larger than 1, we bound
each metric between 0 and 1 in (3).

3.2. Tracking

In this section we present the tracking task setup and
metrics. The focus of the tracking task is to track all de-
tected objects in a scene. All detection classes defined in
Section 3.1 are used, except the static classes: barrier, con-
struction and trafficcone.

AMOTA and AMOTP metrics. Weng and Kitani [77]
presented a similar 3D MOT benchmark on KITTI [32].
They point out that traditional metrics do not take into ac-
count the confidence of a prediction. Thus they develop Av-
erage Multi Object Tracking Accuracy (AMOTA) and Aver-
age Multi Object Tracking Precision (AMOTP), which av-
erage MOTA and MOTP across all recall thresholds. By
comparing the KITTI and nuScenes leaderboards for de-
tection and tracking, we find that nuScenes is significantly
more difficult. Due to the difficulty of nuScenes, the tradi-
tional MOTA metric is often zero. In the updated formu-
lation sMOTAr[77]6, MOTA is therefore augmented by a
term to adjust for the respective recall:

sMOTAr = max

(
0, 1 −

IDSr + FPr + FN r − (1− r)P

rP

)
This is to guarantee that sMOTAr values span the entire

[0, 1] range. We perform 40-point interpolation in the recall
range [0.1, 1] (the recall values are denoted as R). The re-
sulting sAMOTA metric is the main metric for the tracking
task:

sAMOTA =
1

|R|
∑
r∈R

sMOTAr

6Pre-prints of this work referred to sMOTAr as MOTAR.

Traditional metrics. We also use traditional tracking
metrics such as MOTA and MOTP [4], false alarms per
frame, mostly tracked trajectories, mostly lost trajectories,
false positives, false negatives, identity switches, and track
fragmentations. Similar to [77], we try all recall thresholds
and then use the threshold that achieves highest sMOTAr.
TID and LGD metrics. In addition, we devise two novel
metrics: Track initialization duration (TID) and longest gap
duration (LGD). Some trackers require a fixed window of
past sensor readings or perform poorly without a good ini-
tialization. TID measures the duration from the beginning
of the track until the time an object is first detected. LGD
computes the longest duration of any detection gap in a
track. If an object is not tracked, we assign the entire track
duration as TID and LGD. For both metrics, we compute
the average over all tracks. These metrics are relevant for
AVs as many short-term track fragmentations may be more
acceptable than missing an object for several seconds.

4. Experiments
In this section we present object detection and tracking

experiments on the nuScenes dataset, analyze their charac-
teristics and suggest avenues for future research.

4.1. Baselines

We present a number of baselines with different modali-
ties for detection and tracking.

Lidar detection baseline. To demonstrate the perfor-
mance of a leading algorithm on nuScenes, we train a lidar-
only 3D object detector, PointPillars [51]. We take advan-
tage of temporal data available in nuScenes by accumulat-
ing lidar sweeps for a richer pointcloud as input. A single
network was trained for all classes. The network was modi-
fied to also learn velocities as an additional regression target
for each 3D box. We set the box attributes to the most com-
mon attribute for each class in the training data.
Image detection baseline. To examine image-only 3D
object detection, we re-implement the Orthographic Fea-
ture Transform (OFT) [69] method. A single OFT network
was used for all classes. We modified the original OFT to
use a SSD detection head and confirmed that this matched
published results on KITTI. The network takes in a single
image from which the full 360◦ predictions are combined
together from all 6 cameras using non-maximum suppres-
sion (NMS). We set the box velocity to zero and attributes
to the most common attribute for each class in the train data.
Detection challenge results. We compare the results of
the top submissions to the nuScenes detection challenge
2019. Among all submissions, Megvii [90] gave the best
performance. It is a lidar based class-balanced multi-head
network with sparse 3D convolutions. Among image-only



submissions, MonoDIS [70] was the best, significantly out-
performing our image baseline and even some lidar based
methods. It uses a novel disentangling 2D and 3D detection
loss. Note that the top methods all performed importance
sampling, which shows the importance of addressing the
class imbalance problem.

Tracking baselines. We present several baselines for
tracking from camera and lidar data. From the detec-
tion challenge, we pick the best performing lidar method
(Megvii [90]), the fastest reported method at inference time
(PointPillars [51]), as well as the best performing camera
method (MonoDIS [70]). Using the detections from each
method, we setup baselines using the tracking approach de-
scribed in [77]. We provide detection and tracking results
for each of these methods on the train, val and test splits
to facilitate more systematic research. See the Supplemen-
tary Material for the results of the 2019 nuScenes tracking
challenge.

4.2. Analysis

Here we analyze the properties of the methods presented
in Section 4.1, as well as the dataset and matching function.

The case for a large benchmark dataset. One of the
contributions of nuScenes is the dataset size, and in particu-
lar the increase compared to KITTI (Table 1). Here we ex-
amine the benefits of the larger dataset size. We train Point-
Pillars [51], OFT [69] and an additional image baseline,
SSD+3D, with varying amounts of training data. SSD+3D
has the same 3D parametrization as MonoDIS [70], but use
a single stage design [53]. For this ablation study we train
PointPillars with 6x fewer epochs and a one cycle optimizer
schedule [71] to cut down the training time. Our main find-
ing is that the method ordering changes with the amount of
data (Figure 6). In particular, PointPillars performs similar
to SSD+3D at data volumes commensurate with KITTI, but
as more data is used, it is clear that PointPillars is stronger.
This suggests that the full potential of complex algorithms
can only be verified with a bigger and more diverse training
set. A similar conclusion was reached by [56, 59] with [59]
suggesting that the KITTI leaderboard reflects the data aug.
method rather than the actual algorithms.

The importance of the matching function. We compare
performance of published methods (Table 4) when using
our proposed 2m center-distance matching versus the IOU
matching used in KITTI. As expected, when using IOU
matching, small objects like pedestrians and bicycles fail to
achieve above 0 AP, making ordering impossible (Figure 7).
In contrast, center distance matching declares MonoDIS a
clear winner. The impact is smaller for the car class, but
also in this case it is hard to resolve the difference between
MonoDIS and OFT.
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Figure 6. Amount of training data vs. mean Average Precision
(mAP) on the val set of nuScenes. The dashed black line corre-
sponds to the amount of training data in KITTI [32].
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Figure 7. Average precision vs. matching function. CD: Center
distance. IOU: Intersection over union. We use IOU = 0.7 for car
and IOU = 0.5 for pedestrian and bicycle following KITTI [32].
We use CD = 2m for the TP metrics in Section 3.1.

The matching function also changes the balance be-
tween lidar and image based methods. In fact, the order-
ing switches when using center distance matching to favour
MonoDIS over both lidar based methods on the bicycle
class (Figure 7). This makes sense since the thin structures
of bicycles make them difficult to detect in lidar. We con-
clude that center distance matching is more appropriate to
rank image based methods alongside lidar based methods.

Multiple lidar sweeps improve performance. Accord-
ing to our evaluation protocol (Section 3.1), one is only al-
lowed to use 0.5s of previous data to make a detection deci-
sion. This corresponds to 10 previous lidar sweeps since the
lidar is sampled at 20Hz. We device a simple way of incor-
porating multiple pointclouds into the PointPillars baseline
and investigate the performance impact. Accumulation is
implemented by moving all pointclouds to the coordinate
system of the keyframe and appending a scalar time-stamp
to each point indicating the time delta in seconds from the
keyframe. The encoder includes the time delta as an extra
decoration for the lidar points. Aside from the advantage
of richer pointclouds, this also provides temporal informa-
tion, which helps the network in localization and enables
velocity prediction. We experiment with using 1, 5, and 10
lidar sweeps. The results show that both detection and ve-
locity estimates improve with an increasing number of lidar
sweeps but with diminishing rate of return (Table 3).



Lidar sweeps Pretraining NDS (%) mAP (%) mAVE (m/s)
1 KITTI 31.8 21.9 1.21
5 KITTI 42.9 27.7 0.34
10 KITTI 44.8 28.8 0.30
10 ImageNet 44.9 28.9 0.31
10 None 44.2 27.6 0.33

Table 3. PointPillars [51] detection performance on the val set. We
can see that more lidar sweeps lead to a significant performance
increase and that pretraining with ImageNet is on par with KITTI.

Which sensor is most important? An important ques-
tion for AVs is which sensors are required to achieve the
best detection performance. Here we compare the per-
formance of leading lidar and image detectors. We focus
on these modalities as there are no competitive radar-only
methods in the literature and our preliminary study with
PointPillars on radar data did not achieve promising results.
We compare PointPillars, which is a fast and light lidar de-
tector with MonoDIS, a top image detector (Table 4). The
two methods achieve similar mAP (30.5% vs. 30.4%), but
PointPillars has higher NDS (45.3% vs. 38.4%). The close
mAP is, of itself, notable and speaks to the recent advantage
in 3D estimation from monocular vision. However, as dis-
cussed above the differences would be larger with an IOU
based matching function.

Class specifc performance is in Table 7-SM. PointPillars
was stronger for the two most common classes: cars (68.4%
vs. 47.8% AP), and pedestrians (59.7% vs. 37.0% AP).
MonoDIS, on the other hand, was stronger for the smaller
classes bicycles (24.5% vs. 1.1% AP) and cones (48.7% vs.
30.8% AP). This is expected since 1) bicycles are thin ob-
jects with typically few lidar returns and 2) traffic cones are
easy to detect in images, but small and easily overlooked in
a lidar pointcloud. 3) MonoDIS applied importance sam-
pling during training to boost rare classes. With similar de-
tection performance, why was NDS lower for MonoDIS?
The main reasons are the average translation errors (52cm
vs. 74cm) and velocity errors (1.55m/s vs. 0.32m/s), both
as expected. MonoDIS also had larger scale errors with
mean IOU 74% vs. 71% but the difference is small, sug-
gesting the strong ability for image-only methods to infer
size from appearance.

The importance of pre-training. Using the lidar baseline
we examine the importance of pre-training when training a
detector on nuScenes. No pretraining means weights are
initialized randomly using a uniform distribution as in [38].
ImageNet [21] pretraining [47] uses a backbone that was
first trained to accurately classify images. KITTI [32] pre-
training uses a backbone that was trained on the lidar point-
clouds to predict 3D boxes. Interestingly, while the KITTI
pretrained network did converge faster, the final perfor-
mance of the network only marginally varied between dif-
ferent pretrainings (Table 3). One explanation may be that
while KITTI is close in domain, the size is not large enough.

Method NDS mAP mATE mASE mAOE mAVE mAAE
(%) (%) (m) (1-iou) (rad) (m/s) (1-acc)

OFT [69]† 21.2 12.6 0.82 0.36 0.85 1.73 0.48
SSD+3D† 26.8 16.4 0.90 0.33 0.62 1.31 0.29

MDIS [70]† 38.4 30.4 0.74 0.26 0.55 1.55 0.13
PP [51] 45.3 30.5 0.52 0.29 0.50 0.32 0.37

Megvii [90] 63.3 52.8 0.30 0.25 0.38 0.25 0.14

Table 4. Object detection results on the test set of nuScenes.
PointPillars, OFT and SSD+3D are baselines provided in this pa-
per, other methods are the top submissions to the nuScenes detec-
tion challenge leaderboard. (†) use only monocular camera images
as input. All other methods use lidar. PP: PointPillars [51], MDIS:
MonoDIS [70].

Better detection gives better tracking. Weng and Ki-
tani [77] presented a simple baseline that achieved state-
of-the-art 3d tracking results using powerful detections on
KITTI. Here we analyze whether better detections also im-
ply better tracking performance on nuScenes, using the im-
age and lidar baselines presented in Section 4.1. Megvii,
PointPillars and MonoDIS achieve an sAMOTA of 17.9%,
3.5% and 4.5%, and an AMOTP of 1.50m, 1.69m and
1.79m on the val set. Compared to the mAP and NDS de-
tection results in Table 4, the ranking is similar. While the
performance is correlated across most metrics, we notice
that MonoDIS has the shortest LGD and highest number
of track fragmentations. This may indicate that despite the
lower performance, image based methods are less likely to
miss an object for a protracted period of time.

5. Conclusion
In this paper we present the nuScenes dataset, detection

and tracking tasks, metrics, baselines and results. This is the
first dataset collected from an AV approved for testing on
public roads and that contains the full 360◦ sensor suite (li-
dar, images, and radar). nuScenes has the largest collection
of 3D box annotations of any previously released dataset.
To spur research on 3D object detection for AVs, we in-
troduce a new detection metric that balances all aspects of
detection performance. We demonstrate novel adaptations
of leading lidar and image object detectors and trackers on
nuScenes. Future work will add image-level and point-
level semantic labels and a benchmark for trajectory pre-
diction [63].
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nuScenes: A multimodal dataset for autonomous driving
Supplementary Material

A. The nuScenes dataset

In this section we provide more details on the nuScenes
dataset, the sensor calibration, privacy protection approach,
data format, class mapping and annotation statistics.
Sensor calibration. To achieve a high quality multi-
sensor dataset, careful calibration of sensor intrinsic and ex-
trinsic parameters is required. These calibration parameters
are updated around twice per week over the data collection
period of 6 months. Here we describe how we perform sen-
sor calibration for our data collection platform to achieve a
high-quality multimodal dataset. Specifically, we carefully
calibrate the extrinsics and intrinsics of every sensor. We
express extrinsic coordinates of each sensor to be relative to
the ego frame, i.e. the midpoint of the rear vehicle axle. The
most relevant steps are described below:

• Lidar extrinsics: We use a laser liner to accurately
measure the relative location of the lidar to the ego
frame.

• Camera extrinsics: We place a cube-shaped calibration
target in front of the camera and lidar sensors. The cal-
ibration target consists of three orthogonal planes with
known patterns. After detecting the patterns we com-
pute the transformation matrix from camera to lidar by
aligning the planes of the calibration target. Given the
lidar to ego frame transformation computed above, we
compute the camera to ego frame transformation.

• Radar extrinsics: We mount the radar in a horizon-
tal position. Then we collect radar measurements by
driving on public roads. After filtering radar returns
for moving objects, we calibrate the yaw angle using
a brute force approach to minimize the compensated
range rates for static objects.

• Camera intrinsic calibration: We use a calibration tar-
get board with a known set of patterns to infer the in-
trinsic and distortion parameters of the camera.

Privacy protection. It is our priority to protect the pri-
vacy of third parties. As manual labeling of faces and li-
cense plates is prohibitively expensive for 1.4M images, we
use state-of-the-art object detection techniques. Specifically
for plate detection, we use Faster R-CNN [67] with ResNet-
101 backbone [39] trained on Cityscapes [19]7. For face
detection, we use [87]8. We set the classification thresh-
old to achieve an extremely high recall (similar to [31]). To
increase the precision, we remove predictions that do not
overlap with the reprojections of the known pedestrian and

7https://github.com/bourdakos1/Custom-Object-Detection
8https://github.com/TropComplique/mtcnn-pytorch

General nuScenes class Detection class Tracking class
animal void void
debris void void

pushable pullable void void
bicycle rack void void
ambulance void void

police void void
barrier barrier void
bicycle bicycle bicycle

bus.bendy bus bus
bus.rigid bus bus

car car car
construction construction vehicle void
motorcycle motorcycle motorcycle

adult pedestrian pedestrian
child pedestrian pedestrian

construction worker pedestrian pedestrian
police officer pedestrian pedestrian

personal mobility void void
stroller void void

wheelchair void void
trafficcone traffic cone void

trailer trailer trailer
truck truck truck

Table 5. Mapping from general classes in nuScenes to the classes
used in the detection and tracking challenges. Note that for brevity
we omit most prefixes for the general nuScenes classes.

vehicle boxes in the image. Eventually we use the predicted
boxes to blur faces and license plates in the images.
Data format. Contrary to most existing datasets [32, 61,
41], we store the annotations and metadata (e.g. localiza-
tion, timestamps, calibration data) in a relational database
which avoids redundancy and allows for efficient access.
The nuScenes devkit, taxonomy and annotation instructions
are available online9.
Class mapping. The nuScenes dataset comes with anno-
tations for 23 classes. Since some of these only have a
handful of annotations, we merge similar classes and re-
move classes that have less than 10000 annotations. This
results in 10 classes for our detection task. Out of these, we
omit 3 classes that are mostly static for the tracking task. Ta-
ble 5-SM shows the detection classes and tracking classes
and their counterpart in the general nuScenes dataset.
Annotation statistics. We present more statistics on the
annotations of nuScenes. Absolute velocities are shown in
Figure 11-SM. The average speed for moving car, pedes-
trian and bicycle categories are 6.6, 1.3 and 4 m/s. Note
that our data was gathered from urban areas which shows
reasonable velocity range for these three categories.

9https://github.com/nutonomy/nuscenes-devkit

https://github.com/nutonomy/nuscenes-devkit
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Figure 8. Top: Number of annotations per category. Bottom:
Attributes distribution for selected categories. Cars and adults are
the most frequent categories in our dataset, while ambulance is
the least frequent. The attribute plot also shows some expected
patterns: construction vehicles are rarely moving, pedestrians are
rarely sitting while buses are commonly moving.

Figure 9. Left: Bounding box size distributions for car. Right:
Category count in each keyframe for car, pedestrian, and bicycle.

We analyze the distribution of box annotations around
the ego-vehicle for car, pedestrian and bicycle categories
through a polar range density map as shown in Figure 12-
SM. Here, the occurrence bins are log-scaled. Generally,
the annotations are well-distributed surrounding the ego-
vehicle. The annotations are also denser when they are
nearer to the ego-vehicle. However, the pedestrian and bi-
cycle have less annotations above the 100m range. It can
also be seen that the car category is denser in the front and
back of the ego-vehicle, since most vehicles are following
the same lane as the ego-vehicle.

In Section 2 we discussed the number of lidar points in-
side a box for all categories through a hexbin density plot,
but here we present the number of lidar points of each cat-
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Figure 10. Top: radial distance of objects from the ego vehicle.
Bottom: orientation of boxes in box coordinate frame.
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Figure 11. Absolute velocities. We only look at moving objects
with speed > 0.5m/s.

egory as shown in Figure 13-SM. Similarly, the occurrence
bins are log-scaled. As can be seen, there are more lidar
points found inside the box annotations for car at varying
distances from the ego-vehicle as compared to pedestrian
and bicycle. This is expected as cars have larger and more
reflective surface area than the other two categories, hence
more lidar points are reflected back to the sensor.

Scene reconstruction. nuScenes uses an accurate lidar
based localization algorithm (Section 2). It is however dif-
ficult to quantify the localization quality, as we do not have
ground truth localization data and generally cannot perform
loop closure in our scenes. To analyze our localization
qualitatively, we compute the merged pointcloud of an en-
tire scene by registering approximately 800 pointclouds in
global coordinates. We remove points corresponding to the
ego vehicle and assign to each point the mean color value of
the closest camera pixel that the point is reprojected to. The
result of the scene reconstruction can be seen in Figure 15,
which demonstrates accurate synchronization and localiza-
tion.
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Figure 13. Hexbin log-scaled density plots of the number of lidar points inside a box annotation stratified by categories (car, pedestrian
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Figure 14. Hexbin log-scaled density plots of the number of lidar
and radar points inside a box annotation. The black line represents
the mean number of points for a given distance wrt the ego-vehicle.

Figure 15. Sample scene reconstruction given lidar points and
camera images. We project the lidar points in an image plane with
colors assigned based on the pixel color from the camera data.

B. Implementation details

Here we provide additional details on training the lidar
and image based 3D object detection baselines.

PointPillars implementation details. For all experi-
ments, our PointPillars [51] networks were trained using a
pillar xy resolution of 0.25 meters and an x and y range of
[−50, 50] meters. The max number of pillars and batch size
was varied with the number of lidar sweeps. For 1, 5, and
10 sweeps, we set the maximum number of pillars to 10000,
22000, and 30000 respectively and the batch size to 64, 64,
and 48. All experiments were trained for 750 epochs. The
initial learning rate was set to 10−3 and was reduced by a
factor of 10 at epoch 600 and again at 700. Only ground
truth annotations with one or more lidar points in the accu-
mulated pointcloud were used as positive training examples.
Since bikes inside of bike racks are not annotated individ-
ually and the evaluation metrics ignore bike racks, all lidar
points inside bike racks were filtered out during training.

OFT implementation details. For each camera, the Or-
thographic Feature Transform [69] (OFT) baseline was
trained on a voxel grid in each camera’s frame with an
lateral range of [−40, 40] meters, a longitudinal range of
[0.1, 50.1] meters and a vertical range of (−3, 1) meters.



Method Singapore Rain Night
OFT [69]† 6% 10% 55%

MDIS [70]† 8% -3% 58%
PP [51] 1% 6% 36%

Table 6. Object detection performance drop evaluated on subsets
of the nuScenes val set. Performance is reported as the relative
drop in mAP compared to evaluating on the entire val set. We
evaluate the performance on Singapore data, rain data and night
data for three object detection methods. Note that the MDIS re-
sults are not directly comparable to other sections of this work,
as a ResNet34 [39] backbone and a different training protocol are
used. (†) use only monocular camera images as input. PP uses
only lidar.

We trained only on annotations that were within 50 meters
of the car’s ego frame coordinate system’s origin. Using
the ‘visibility’ attribute in the nuScenes dataset, we also fil-
tered out annotations that had visibility less than 40%. The
network was trained for 60 epochs using a learning rate of
2 × 10−3 and used random initialization for the network
weights (no ImageNet pretraining).

C. Experiments

In this section we present more detailed result analysis
on nuScenes. We look at the performance on rain and night
data, per-class performance and semantic map filtering. We
also analyze the results of the tracking challenge.
Performance on rain and night data. As described in
Section 2, nuScenes contains data from 2 countries, as well
as rain and night data. The dataset splits (train, val, test)
follow the same data distribution with respect to these cri-
teria. In Table 6 we analyze the performance of three object
detection baselines on the relevant subset of the val set. We
can see a small performance drop for Singapore as com-
pared to the overall val set (USA and Singapore), particu-
larly for vision based methods. This is likely due to dif-
ferent object appearance in the different countries, as well
as different label distributions. For rain data we see only a
small decrease in performance on average, with worse per-
formance for OFT and PP, and slightly better performance
for MDIS. One reason is that the nuScenes dataset annotates
any scene with raindrops on the windshield as rainy, regard-
less of whether there is ongoing rainfall. Finally, night data
shows a drastic performance relative drop of 36% for the
lidar based method and 55% and 58% for the vision based
methods. This may indicate that vision based methods are
more affected by worse lighting. We also note that night
scenes have very few objects and it is harder to annotate ob-
jects with bad visibility. For annotating data, it is essential
to use camera and lidar data, as described in Section 2.
Per-class analysis. The per class performance of Point-
Pillars [51] is shown in Table 7-SM (top) and Figure 17-SM.
The network performed best overall on cars and pedestrians
which are the two most common categories. The worst per-

PointPillars
Class AP ATE ASE AOE AVE AAE

Barrier 38.9 0.71 0.30 0.08 N/A N/A
Bicycle 1.1 0.31 0.32 0.54 0.43 0.68

Bus 28.2 0.56 0.20 0.25 0.42 0.34
Car 68.4 0.28 0.16 0.20 0.24 0.36

Constr. Veh. 4.1 0.89 0.49 1.26 0.11 0.15
Motorcycle 27.4 0.36 0.29 0.79 0.63 0.64
Pedestrian 59.7 0.28 0.31 0.37 0.25 0.16

Traffic Cone 30.8 0.40 0.39 N/A N/A N/A
Trailer 23.4 0.89 0.20 0.83 0.20 0.21
Truck 23.0 0.49 0.23 0.18 0.25 0.41

Mean 30.5 0.52 0.29 0.50 0.32 0.37
MonoDIS

Class AP ATE ASE AOE AVE AAE
Barrier 51.1 0.53 0.29 0.15 N/A N/A
Bicycle 24.5 0.71 0.30 1.04 0.93 0.01

Bus 18.8 0.84 0.19 0.12 2.86 0.30
Car 47.8 0.61 0.15 0.07 1.78 0.12

Constr. Veh. 7.4 1.03 0.39 0.89 0.38 0.15
Motorcycle 29.0 0.66 0.24 0.51 3.15 0.02
Pedestrian 37.0 0.70 0.31 1.27 0.89 0.18

Traffic Cone 48.7 0.50 0.36 N/A N/A N/A
Trailer 17.6 1.03 0.20 0.78 0.64 0.15
Truck 22.0 0.78 0.20 0.08 1.80 0.14

Mean 30.4 0.74 0.26 0.55 1.55 0.13

Table 7. Detailed detection performance for PointPillars [51]
(top) and MonoDIS [70] (bottom) on the test set. AP: average
precision averaged over distance thresholds (%), ATE: average
translation error (m), ASE: average scale error (1-IOU), AOE: av-
erage orientation error (rad), AVE: average velocity error (m/s),
AAE: average attribute error (1− acc.), N/A: not applicable (Sec-
tion 3.1). nuScenes Detection Score (NDS) = 45.3% (PointPillars)
and 38.4% (MonoDIS).

forming categories were bicycles and construction vehicles,
two of the rarest categories that also present additional chal-
lenges. Construction vehicles pose a unique challenge due
to their high variation in size and shape. While the trans-
lational error is similar for cars and pedestrians, the orien-
tation error for pedestrians (21◦) is higher than that of cars
(11◦). This smaller orientation error for cars is expected
since cars have a greater distinction between their front and
side profile relative to pedestrians. The vehicle velocity es-
timates are promising (e.g. 0.24 m/s AVE for the car class)
considering the typical speed of a vehicle in the city would
be 10 to 15 m/s.

Semantic map filtering. In Section 4.2 and Table 7-SM
we show that the PointPillars baseline achieves only an AP
of 1% on the bicycle class. However, when filtering both
the predictions and ground truth to only include boxes on
the semantic map prior10, the AP increases to 30%. This
observation can be seen in Figure 16-SM, where we plot the
AP at different distances of the ground truth to the semantic
map prior. As seen, the AP drops when the matched GT is

10Defined here as the union of roads and sidewalks.



Method sAMOTA AMOTP sMOTAr MOTA MOTP TID LGD
(%) (m) (%) (%) (m) (s) (s)

Stan [16] 55.0 0.80 76.8 45.9 0.35 0.96 1.38
VVte 37.1 1.11 68.4 30.8 0.41 0.94 1.58

Megvii [90] 15.1 1.50 55.2 15.4 0.40 1.97 3.74
CeOp 10.8 0.99 26.7 8.5 0.35 1.72 3.18
CeVi† 4.6 1.54 23.1 4.3 0.75 2.06 3.82
PP [51] 2.9 1.70 24.3 4.5 0.82 4.57 5.93

MDIS [70]† 1.8 1.79 9.1 2.0 0.90 1.41 3.35

Table 8. Tracking results on the test set of nuScenes. PointPillars, MonoDIS (MaAB) and Megvii (MeAB) are submissions from the
detection challenge, each using the AB3DMOT [77] tracking baseline. StanfordIPRL-TRI (Stan), VVte (VV-team), CenterTrack-Open
(CeOp) and CenterTrack-Vision (CeVi) are the top submissions to the nuScenes tracking challenge leaderboard. (†) use only monocular
camera images as input. CeOp uses lidar and camera. All other methods use only lidar.

Figure 16. PointPillars [51] detection performance vs. semantic
prior map location on the val set. For the best lidar network (10 li-
dar sweeps with ImageNet pretraining), the predictions and ground
truth annotations were only included if within a given distance of
the semantic prior map.

farther from the semantic map prior. Again, this is likely
because bicycles away from the semantic map tend to be
parked and occluded with low visibility.
Tracking challenge results. In Table 8 we present the re-
sults of the 2019 nuScenes tracking challenge. Stan [16]
use the Mahalanobis distance for matching, significantly
outperforming the strongest baseline (+40% sAMOTA)
and setting a new state-of-the-art on the nuScenes track-
ing benchmark. As expected, the two methods using
only monocular camera images perform poorly (CeVi and
MDIS). Similar to Section 4, we observe that the metrics are
highly correlated, with notable exceptions for MDIS LGD
and CeOp AMOTP. Note that all methods use a tracking-by-
detection approach. With the exception of CeOp and CeVi,
all methods use a Kalman filter [44].
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Figure 17. Per class results for PointPillars on the nuScenes test
set taken from the detection leaderboard.


