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Abstract. We propose a new method for learning the structure of con-
volutional neural networks (CNNs) that is more efficient than recent
state-of-the-art methods based on reinforcement learning and evolution-
ary algorithms. Our approach uses a sequential model-based optimization
(SMBO) strategy, in which we search for structures in order of increasing
complexity, while simultaneously learning a surrogate model to guide the
search through structure space. Direct comparison under the same search
space shows that our method is up to 5 times more efficient than the RL
method of Zoph et al. (2018) in terms of number of models evaluated,
and 8 times faster in terms of total compute. The structures we discover
in this way achieve state of the art classification accuracies on CIFAR-10
and ImageNet.

1 Introduction

There has been a lot of recent interest in automatically learning good neural
net architectures. Some of this work is summarized in Section 2, but at a high
level, current techniques usually fall into one of two categories: evolutionary al-
gorithms (see e.g. [28,24,35]) or reinforcement learning (see e.g., [40,41,39,5,2]).
When using evolutionary algorithms (EA), each neural network structure is en-
coded as a string, and random mutations and recombinations of the strings are
performed during the search process; each string (model) is then trained and
evaluated on a validation set, and the top performing models generate “chil-
dren”. When using reinforcement learning (RL), the agent performs a sequence
of actions, which specifies the structure of the model; this model is then trained
and its validation performance is returned as the reward, which is used to up-
date the RNN controller. Although both EA and RL methods have been able to
learn network structures that outperform manually designed architectures, they
require significant computational resources. For example, the RL method in [41]
trains and evaluates 20,000 neural networks across 500 P100 GPUs over 4 days.

In this paper, we describe a method that is able to learn a CNN which
matches previous state of the art in terms of accuracy, while requiring 5 times
fewer model evaluations during the architecture search. Our starting point is the
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structured search space proposed by [41], in which the search algorithm is tasked
with searching for a good convolutional “cell”, as opposed to a full CNN. A cell
contains B “blocks”, where a block is a combination operator (such as addition)
applied to two inputs (tensors), each of which can be transformed (e.g., using
convolution) before being combined. This cell structure is then stacked a certain
number of times, depending on the size of the training set, and the desired
running time of the final CNN (see Section 3 for details). This modular design
also allows easy architecture transfer from one dataset to another, as we will
show in experimental results.

We propose to use heuristic search to search the space of cell structures,
starting with simple (shallow) models and progressing to complex ones, pruning
out unpromising structures as we go. At iteration b of the algorithm, we have
a set of K candidate cells (each of size b blocks), which we train and evaluate
on a dataset of interest. Since this process is expensive, we also learn a model
or surrogate function which can predict the performance of a structure without
needing to training it. We expand the K candidates of size b into K ′ � K
children, each of size b + 1. We apply our surrogate function to rank all of the
K ′ children, pick the top K, and then train and evaluate them. We continue in
this way until b = B, which is the maximum number of blocks we want to use
in our cell. See Section 4 for details.

Our progressive (simple to complex) approach has several advantages over
other techniques that directly search in the space of fully-specified structures.
First, the simple structures train faster, so we get some initial results to train
the surrogate quickly. Second, we only ask the surrogate to predict the quality
of structures that are slightly different (larger) from the ones it has seen (c.f.,
trust-region methods). Third, we factorize the search space into a product of
smaller search spaces, allowing us to potentially search models with many more
blocks. In Section 5 we show that our approach is 5 times more efficient than the
RL method of [41] in terms of number of models evaluated, and 8 times faster
in terms of total compute. We also show that the structures we discover achieve
state of the art classification accuracies on CIFAR-10 and ImageNet.4

2 Related Work

Our paper is based on the “neural architecture search” (NAS) method proposed
in [40,41]. In the original paper [40], they use the REINFORCE algorithm [34] to
estimate the parameters of a recurrent neural network (RNN), which represents a
policy to generate a sequence of symbols (actions) specifying the structure of the
CNN; the reward function is the classification accuracy on the validation set of a
CNN generated from this sequence. [41] extended this by using a more structured
search space, in which the CNN was defined in terms of a series of stacked

4 The code and checkpoint for the PNAS model trained on ImageNet can be down-
loaded from the TensorFlow models repository at http://github.com/tensorflow/
models/. Also see https://github.com/chenxi116/PNASNet.TF and https://

github.com/chenxi116/PNASNet.pytorch for author’s reimplementation.

http://github.com/tensorflow/models/
http://github.com/tensorflow/models/
https://github.com/chenxi116/PNASNet.TF
https://github.com/chenxi116/PNASNet.pytorch
https://github.com/chenxi116/PNASNet.pytorch
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“cells”. (They also replaced REINFORCE with proximal policy optimization
(PPO) [29].) This method was able to learn CNNs which outperformed almost
all previous methods in terms of accuracy vs speed on image classification (using
CIFAR-10 [19] and ImageNet [8]) and object detection (using COCO [20]).

There are several other papers that use RL to learn network structures. [39]
use the same model search space as NAS, but replace policy gradient with Q-
learning. [2] also use Q-learning, but without exploiting cell structure. [5] use
policy gradient to train an RNN, but the actions are now to widen an existing
layer, or to deepen the network by adding an extra layer. This requires specifying
an initial model and then gradually learning how to transform it. The same
approach, of applying “network morphisms” to modify a network, was used in
[12], but in the context of hill climbing search, rather than RL. [26] use parameter
sharing among child models to substantially accelerate the search process.

An alternative to RL is to use evolutionary algorithms (EA; “neuro-evolution”
[32]). Early work (e.g., [33]) used EA to learn both the structure and the pa-
rameters of the network, but more recent methods, such as [28,24,35,21,27], just
use EA to search the structures, and use SGD to estimate the parameters.

RL and EA are local search methods that search through the space of fully-
specified graph structures. An alternative approach, which we adopt, is to use
heuristic search, in which we search through the space of structures in a pro-
gressive way, from simple to complex. There are several pieces of prior work that
explore this approach. [25] use Monte Carlo Tree Search (MCTS), but at each
node in the search tree, it uses random selection to choose which branch to ex-
pand, which is very inefficient. Sequential Model Based Optimization (SMBO)
[17] improves on MCTS by learning a predictive model, which can be used to
decide which nodes to expand. This technique has been applied to neural net
structure search in [25], but they used a flat CNN search space, rather than our
hierarchical cell-based space. Consequently, their resulting CNNs do not per-
form very well. Other related works include [23], who focus on MLP rather than
CNNs; [33], who used an incremental approach in the context of evolutionary
algorithms; [40] who used a schedule of increasing number of layers; and [13]
who search through the space of latent factor models specified by a grammar.
Finally, [7,16] grow CNNs sequentially using boosting.

Several other papers learn a surrogate function to predict the performance
of a candidate structure, either “zero shot” (without training it) (see e.g., [4]),
or after training it for a small number of epochs and extrapolating the learning
curve (see e.g., [10,3]). However, most of these methods have been applied to fixed
sized structures, and would not work with our progressive search approach.

3 Architecture Search Space

In this section we describe the neural network architecture search space used in
our work. We build on the hierarchical approach proposed in [41], in which we
first learn a cell structure, and then stack this cell a desired number of times, in
order to create the final CNN.
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3.1 Cell Topologies

A cell is a fully convolutional network that maps an H×W×F tensor to another
H ′×W ′×F ′ tensor. If we use stride 1 convolution, then H ′ = H and W ′ = W ; if
we use stride 2, then H ′ = H/2 and W ′ = W/2. We employ a common heuristic
to double the number of filters (feature maps) whenever the spatial activation is
halved, so F ′ = F for stride 1, and F ′ = 2F for stride 2.

The cell can be represented by a DAG consisting of B blocks. Each block is a
mapping from 2 input tensors to 1 output tensor. We can specify a block b in a
cell c as a 5-tuple, (I1, I2, O1, O2, C), where I1, I2 ∈ Ib specifies the inputs to the
block, O1, O2 ∈ O specifies the operation to apply to input Ii, and C ∈ C specifies
how to combine O1 and O2 to generate the feature map (tensor) corresponding
to the output of this block, which we denote by Hc

b .

The set of possible inputs, Ib, is the set of all previous blocks in this cell,
{Hc

1 , . . . ,H
c
b−1}, plus the output of the previous cell, Hc−1

B , plus the output of

the previous-previous cell, Hc−2
B .

The operator space O is the following set of 8 functions, each of which oper-
ates on a single tensor5:

• 3x3 depthwise-separable convolution
• 5x5 depthwise-separable convolution
• 7x7 depthwise-separable convolution
• 1x7 followed by 7x1 convolution

• identity
• 3x3 average pooling
• 3x3 max pooling
• 3x3 dilated convolution

This is less than the 13 operators used in [41], since we removed the ones that
their RL method discovered were never used.

For the space of possible combination operators C, [41] considerd both el-
ementwise addition and concatenation. However, they discovered that the RL
method never chose to use concatenation, so to reduce our search space, we al-
ways use addition as the combination operator. Thus in our work, a block can
be specified by a 4-tuple.

We now quantify the size of the search space to highlight the magnitude of
the search problem. Let the space of possible structures for the b’th block be
Bb; this has size |Bb| = |Ib|2 × |O|2 × |C|, where |Ib| = (2 + b− 1), |O| = 8 and
|C| = 1. For b = 1, we have I1 = {Hc−1

B , Hc−2
B }, which are the final outputs of

the previous two cells, so there are |B1| = 256 possible block structures.

If we allow cells of up to B = 5 blocks, the total number of cell structures is
given by |B1:5| = 22 × 82 × 32 × 82 × 42 × 82 × 52 × 82 × 62 × 82 = 5.6 × 1014.
However, there are certain symmetries in this space that allow us to prune it to
a more reasonable size. For example, there are only 136 unique cells composed
of 1 block. The total number of unique cells is ∼ 1012. This is much smaller than
the search space used in [41], which has size 1028, but it is still an extremely
large space to search, and requires efficient optimization methods.

5 The depthwise-separable convolutions are in fact two repetitions of ReLU-SepConv-
BatchNorm; 1x1 convolutions are also inserted when tensor sizes mismatch.
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Fig. 1. Left : The best cell structure found by our Progressive Neural Architecture
Search, consisting of 5 blocks. Right : We employ a similar strategy as [41] when con-
structing CNNs from cells on CIFAR-10 and ImageNet. Note that we learn a single
cell type instead of distinguishing between Normal and Reduction cell.

3.2 From Cell to CNN

To evaluate a cell, we have to convert it into a CNN. To do this, we stack
a predefined number of copies of the basic cell (with the same structure, but
untied weights), using either stride 1 or stride 2, as shown in Figure 1 (right).
The number of stride-1 cells between stride-2 cells is then adjusted accordingly
with up to N number of repeats. At the top of the network, we use global
average pooling, followed by a softmax classification layer. We then train the
stacked model on the relevant dataset.

In the case of CIFAR-10, we use 32× 32 images. In the case of ImageNet, we
consider two settings, one with high resolution images of size 331× 331, and one
with smaller images of size 224× 224. The latter results in less accurate models,
but they are faster. For ImageNet, we also add an initial 3 × 3 convolutional
filter layer with stride 2 at the start of the network, to further reduce the cost.

The overall CNN construction process is identical to [41], except we only use
one cell type (we do not distinguish between Normal and Reduction cells, but
instead emulate a Reduction cell by using a Normal cell with stride 2), and the
cell search space is slightly smaller (since we use fewer operators and combiners).

4 Method

4.1 Progressive Neural Architecture Search

Many previous approaches directly search in the space of full cells, or worse,
full CNNs. For example, NAS uses a 50-step RNN6 as a controller to generate cell
specifications. In [35] a fixed-length binary string encoding of CNN architecture

6 5 symbols per block, times 5 blocks, times 2 for Normal and Reduction cells.
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Algorithm 1 Progressive Neural Architecture Search (PNAS).

Inputs: B (max num blocks), E (max num epochs), F (num filters in first layer),
K (beam size), N (num times to unroll cell), trainSet, valSet.
S1 = B1 // Set of candidate structures with one block
M1 = cell-to-CNN(S1, N , F ) // Construct CNNs from cell specifications
C1 = train-CNN(M1, E, trainSet) // Train proxy CNNs
A1 = eval-CNN(C1, valSet) // Validation accuracies
π = fit(S1, A1) // Train the reward predictor from scratch
for b = 2 : B do
S ′b = expand-cell(Sb−1) // Expand current candidate cells by one more block
Â′b = predict(S ′b, π) // Predict accuracies using reward predictor
Sb = top-K(S ′b, Â′b, K) // Most promising cells according to prediction
Mb = cell-to-CNN(Sb, N , F )
Cb = train-CNN(Mb, E, trainSet)
Ab = eval-CNN(Cb, valSet)
π = update-predictor(Sb, Ab, π) // Finetune reward predictor with new data

end for
Return top-K(SB , AB , 1)

is defined and used in model evolution/mutation. While this is a more direct
approach, we argue that it is difficult to directly navigate in an exponentially
large search space, especially at the beginning where there is no knowledge of
what makes a good model.

As an alternative, we propose to search the space in a progressive order,
simplest models first. In particular, we start by constructing all possible cell
structures from B1 (i.e., composed of 1 block), and add them to a queue. We
train and evaluate all the models in the queue (in parallel), and then expand
each one by adding all of the possible block structures from B2; this gives us
a set of |B1| × |B2| = 256 × 576 = 147, 456 candidate cells of depth 2. Since
we cannot afford to train and evaluate all of these child networks, we refer to a
learned predictor function (described in Section 4.2); it is trained based on the
measured performance of the cells we have visited so far. (Our predictor takes
negligible time to train and apply.) We then use the predictor to evaluate all
the candidate cells, and pick the K most promising ones. We add these to the
queue, and repeat the process, until we find cells with a sufficient number B of
blocks. See Algorithm 1 for the pseudocode, and Figure 2 for an illustration.

4.2 Performance Prediction with Surrogate Model

As explained above, we need a mechanism to predict the final performance of
a cell before we actually train it. There are at least three desired properties of
such a predictor:

– Handle variable-sized inputs: We need the predictor to work for variable-
length input strings. In particular, it should be able to predict the perfor-
mance of any cell with b+ 1 blocks, even if it has only been trained on cells
with up to b blocks.
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Fig. 2. Illustration of the PNAS search
procedure when the maximum number of
blocks is B = 3. Here Sb represents the set
of candidate cells with b blocks. We start by
considering all cells with 1 block, S1 = B1;
we train and evaluate all of these cells, and
update the predictor. At iteration 2, we ex-
pand each of the cells in S1 to get all cells
with 2 blocks, S ′2 = B1:2; we predict their
scores, pick the top K to get S2, train and
evaluate them, and update the predictor.
At iteration 3, we expand each of the cells
in S2, to get a subset of cells with 3 blocks,
S ′3 ⊆ B1:3; we predict their scores, pick the
top K to get S3, train and evaluate them,
and return the winner. Bb = |Bb| is the
number of possible blocks at level b and K
is the beam size (number of models we train
and evaluate per level of the search tree).

– Correlated with true performance: we do not necessarily need to achieve low
mean squared error, but we do want the predictor to rank models in roughly
the same order as their true performance values.

– Sample efficiency : We want to train and evaluate as few cells as possible,
which means the training data for the predictor will be scarce.

The requirement that the predictor be able to handle variable-sized strings
immediately suggests the use of an RNN, and indeed this is one of the methods
we try. In particular, we use an LSTM that reads a sequence of length 4b (repre-
senting I1, I2, O1 and O2 for each block), and the input at each step is a one-hot
vector of size |Ib| or |O|, followed by embedding lookup. We use a shared embed-
ding of dimension D for the tokens I1, I2 ∈ I, and another shared embedding
for O1, O2 ∈ O. The final LSTM hidden state goes through a fully-connected
layer and sigmoid to regress the validation accuracy. We also try a simpler MLP
baseline in which we convert the cell to a fixed length vector as follows: we em-
bed each token into an D-dimensional vector, concatenate the embeddings for
each block to get an 4D-dimensional vector, and then average over blocks. Both
models are trained using L1 loss.

When training the predictor, one approach is to update the parameters of
the predictor using the new data using a few steps of SGD. However, since the
sample size is very small, we fit an ensemble of 5 predictors, each fit (from
scratch) to 4/5 of all the data available at each step of the search process. We
observed empirically that this reduced the variance of the predictions.

In the future, we plan to investigate other kinds of predictors, such as Gaus-
sian processes with string kernels (see e.g., [1]), which may be more sample
efficient to train and produce predictions with uncertainty estimates.
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5 Experiments and Results

5.1 Experimental Details

Our experimental setting follows [41]. In particular, we conduct most of our
experiments on CIFAR-10 [19]. CIFAR-10 has 50,000 training images and 10,000
test images. We use 5000 images from the training set as a validation set. All
images are whitened, and 32 × 32 patches are cropped from images upsampled
to 40 × 40. Random horizontal flip is also used. After finding a good model on
CIFAR-10, we evaluate its quality on ImageNet classification in Section 5.5.

For the MLP accuracy predictor, the embedding size is 100, and we use 2 fully
connected layers, each with 100 hidden units. For the RNN accuracy predictor,
we use an LSTM, and the hidden state size and embedding size are both 100.
The embeddings use uniform initialization in range [-0.1, 0.1]. The bias term in
the final fully connected layer is initialized to 1.8 (0.86 after sigmoid) to account
for the mean observed accuracy of all b = 1 models. We use the Adam optimizer
[18] with learning rate 0.01 for the b = 1 level and 0.002 for all following levels.

Our training procedure for the CNNs follows the one used in [41]. During the
search we evaluate K = 256 networks at each stage (136 for stage 1, since there
are only 136 unique cells with 1 block), we use a maximum cell depth of B = 5
blocks, we use F = 24 filters in the first convolutional cell, we unroll the cells
for N = 2 times, and each child network is trained for 20 epochs using initial
learning rate of 0.01 with cosine decay [22].

5.2 Performance of the Surrogate Predictors

In this section, we compare the performance of different surrogate predictors.
Note that at step b of PNAS, we train the predictor on the observed performance
of cells with up to b blocks, but we apply it to cells with b+1 blocks. We therefore
consider predictive accuracy both for cells with sizes that have been seen before
(but which have not been trained on), and for cells which are one block larger
than the training data.

More precisely, let Ub,1:R be a set of randomly chosen cells with b blocks,
where R = 10, 000. (For b = 1, there are only 136 unique cells.) We convert each
of these to CNNs, and train them for E = 20 epochs. (Thus in total we train

Algorithm 2 Evaluating performance of a predictor on a random dataset.

for b = 1 : B − 1 do
for t = 1 : T do
Sb,t,1:K = random sample of K models from Ub,1:R
πb,t = fit(Sb,t,1:K , A(Sb,t,1:K)) // Train or finetune predictor
Âb,t,1:K = predict(πb,t, Sb,t,1:K) // Predict on same b
Ãb+1,t,1:R = predict(πb,t, Ub+1,1:R) // Predict on next b

end for
end for
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Fig. 3. Accuracy of MLP-ensemble predictor. Top row: true vs predicted accuracies
on models from the training set over different trials. Bottom row: true vs predicted
accuracies on models from the set of all unseen larger models. Denoted is the mean
rank correlation from individual trials.

b = 1 b = 2 b = 3 b = 4
Method ρ̂1 ρ̃2 ρ̂2 ρ̃3 ρ̂3 ρ̃4 ρ̂4 ρ̃5

MLP 0.938 0.113 0.857 0.450 0.714 0.469 0.641 0.444
RNN 0.970 0.198 0.996 0.424 0.693 0.401 0.787 0.413
MLP-ensemble 0.975 0.164 0.786 0.532 0.634 0.504 0.645 0.468
RNN-ensemble 0.972 0.164 0.906 0.418 0.801 0.465 0.579 0.424

Table 1. Spearman rank correlations of different predictors on the training set, ρ̂b,
and when extrapolating to unseen larger models, ρ̃b+1. See text for details.

∼ (B − 1) × R = 40, 000 models for 20 epochs each.) We now use this random
dataset to evaluate the performance of the predictors using the pseudocode in
Algorithm 2, where A(H) returns the true validation set accuracies of the models
in some set H. In particular, for each size b = 1 : B, and for each trial t = 1 : T
(we use T = 20), we do the following: randomly select K = 256 models (each
of size b) from Ub,1:R to generate a training set Sb,t,1:K ; fit the predictor on the
training set; evaluate the predictor on the training set; and finally evaluate the
predictor on the set of all unseen random models of size b+ 1.

The top row of Figure 3 shows a scatterplot of the true accuracies of the
models in the training sets, A(Sb,1:T,1:K), vs the predicted accuracies, Âb,1:T,1:K

(so there are T×K = 20×256 = 5120 points in each plot, at least for b > 1). The
bottom row plots the true accuracies on the set of larger models, A(Ub+1,1:R),

vs the predicted accuracies Ãb+1,1:R (so there are R = 10K points in each plot).
We see that the predictor performs well on models from the training set, but



10 C. Liu et al.

Fig. 4. Comparing the relative efficiency of NAS, PNAS and random search under the
same search space. We plot mean accuracy (across 5 trials) on CIFAR-10 validation set
of the top M models, for M ∈ {1, 5, 25}, found by each method vs number of models
which are trained and evaluated. Each model is trained for 20 epochs. Error bars and
the colored regions denote standard deviation of the mean.

not so well when predicting larger models. However, performance does increase
as the predictor is trained on more (and larger) cells.

Figure 3 shows the results using an ensemble of MLPs. The scatter plots
for the other predictors look similar. We can summarize each scatterplot using
the Spearman rank correlation coefficient. Let ρ̂b = rank-correlation(Âb,1:T,1:K ,

A(Sb,1:T,1:K)) and ρ̃b+1 = rank-correlation(Ãb+1,1:R, A(Ub+1,1:R)). Table 1 sum-
marizes these statistics across different levels. We see that for predicting the
training set, the RNN does better than the MLP, but for predicting the perfor-
mance on unseen larger models (which is the setting we care about in practice),
the MLP seems to do slightly better. This will be corroborated by our end-to-
end test in Section 5.3, and is likely due to overfitting. We also see that for the
extrapolation task, ensembling seems to help.

5.3 Search Efficiency

In this section, we compare the efficiency of PNAS to two other methods: random
search and the NAS method. To perform the comparison, we run PNAS for B =
5, and at each iteration b, we record the set Sb of K = 256 models of size b that
it picks, and evaluate them on the CIFAR-10 validation set (after training for
20 epochs each). We then compute the validation accuracy of the top M models
for M ∈ {1, 5, 25}. To capture the variance in performance of a given model due
to randomness of the parameter initialization and optimization procedure, we
repeat this process 5 times. We plot the mean and standard error of this statistic
in Figure 4. We see that the mean performance of the top M ∈ {1, 5, 25} models
steadily increases, as we search for larger models. Furthermore, performance is
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B Top Accuracy # PNAS # NAS Speedup (# models) Speedup (# examples)

5 1 0.9183 1160 5808 5.0 8.2
5 5 0.9161 1160 4100 3.5 6.8
5 25 0.9136 1160 3654 3.2 6.4

Table 2. Relative efficiency of PNAS (using MLP-ensemble predictor) and NAS under
the same search space. B is the size of the cell, “Top” is the number of top models
we pick, “Accuracy” is their average validation accuracy, “# PNAS” is the number
of models evaluated by PNAS, “# NAS” is the number of models evaluated by NAS
to achieve the desired accuracy. Speedup measured by number of examples is greater
than speedup in terms of number of models, because NAS has an additional reranking
stage, that trains the top 250 models for 300 epochs each before picking the best one.

better when using an MLP-ensemble (shown in Figure 4) instead of an RNN-
ensemble (see supplementary material), which is consistent with Table 1.

For our random search baseline, we uniformly sample 6000 cells of size B = 5
blocks from the random set of models U5,1:R described in Section 5.2. Figure 4
shows that PNAS significantly outperforms this baseline.

Finally, we compare to NAS. Each trial sequentially searches 6000 cells of size
B = 5 blocks. At each iteration t, we define Ht to be the set of all cells visited so
far by the RL agent. We compute the validation accuracy of the top M models
in Ht, and plot the mean and standard error of this statistic in Figure 4. We see
that the mean performance steadily increases, but at a slower rate than PNAS.

To quantify the speedup factor compared to NAS, we compute the number
of models that are trained and evaluated until the mean performance of PNAS
and NAS are equal (note that PNAS produces models of size B after evaluating
|B1|+ (B − 1)×K models, which is 1160 for B = 5). The results are shown in
Table 2. We see that PNAS is up to 5 times faster in terms of the number of
models it trains and evaluates.

Comparing the number of models explored during architecture search is one
measure of efficiency. However, some methods, such as NAS, employ a secondary
reranking stage to determine the best model; PNAS does not perform a rerank-
ing stage but uses the top model from the search directly. A more fair compari-
son is therefore to count the total number of examples processed through SGD
throughout the search. Let M1 be the number of models trained during search,
and let E1 be the number of examples used to train each model.7 The total
number of examples is therefore M1E1. However, for methods with the addi-
tional reranking stage, the top M2 models from the search procedure are trained
using E2 examples each, before returning the best. This results in a total cost of

7 The number of examples is equal to the number of SGD steps times the batch
size. Alternatively, it can be measured in terms of number of epoch (passes through
the data), but since different papers use different sized training sets, we avoid this
measure. In either case, we assume the number of examples is the same for every
model, since none of the methods we evaluate use early stopping.
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Model B N F Error Params M1 E1 M2 E2 Cost

NASNet-A [41] 5 6 32 3.41 3.3M 20000 0.9M 250 13.5M 21.4-29.3B
NASNet-B [41] 5 4 N/A 3.73 2.6M 20000 0.9M 250 13.5M 21.4-29.3B
NASNet-C [41] 5 4 N/A 3.59 3.1M 20000 0.9M 250 13.5M 21.4-29.3B

Hier-EA [21] 5 2 64 3.75±0.12 15.7M 7000 5.12M 0 0 35.8B9

AmoebaNet-B [27] 5 6 36 3.37±0.04 2.8M 27000 2.25M 100 27M 63.5B10

AmoebaNet-A [27] 5 6 36 3.34±0.06 3.2M 20000 1.13M 100 27M 25.2B11

PNASNet-5 5 3 48 3.41±0.09 3.2M 1160 0.9M 0 0 1.0B

Table 3. Performance of different CNNs on CIFAR test set. All model comparisons
employ a comparable number of parameters and exclude cutout data augmentation
[9]. “Error” is the top-1 misclassification rate on the CIFAR-10 test set. (Error rates
have the form µ± σ, where µ is the average over multiple trials and σ is the standard
deviation. In PNAS we use 15 trials.) “Params” is the number of model parameters.
“Cost” is the total number of examples processed through SGD (M1E1 +M2E2) before
the architecture search terminates. The number of filters F for NASNet-{B, C} cannot
be determined (hence N/A), and the actual E1, E2 may be larger than the values in
this table (hence the range in cost), according to the original authors.

M1E1 +M2E2. For NAS and PNAS, E1 = 900K for NAS and PNAS since they
use 20 epochs on a training set of size 45K. The number of models searched to
achieve equal top-1 accuracy is M1 = 1160 for PNAS and M1 = 5808 for NAS.
For the second stage, NAS trains the top M2 = 250 models for E2 = 300 epochs
before picking the best.8 Thus we see that PNAS is about 8 times faster than
NAS when taking into account the total cost.

5.4 Results on CIFAR-10 Image Classification

We now discuss the performance of our final model, and compare it to the
results of other methods in the literature. Let PNASNet-5 denote the best CNN
we discovered on CIFAR using PNAS, also visualized in Figure 1 (left). After

8 This additional stage is quite important for NAS, as the NASNet-A cell was originally
ranked 70th among the top 250.

9 In Hierarchical EA, the search phase trains 7K models (each for 4 times to reduce
variance) for 5000 steps of batch size 256. Thus, the total computational cost is 7K
× 5000 × 256 × 4 = 35.8B.

10 The total computational cost for AmoebaNet consists of an architecture search and
a reranking phase. The architecture search phase trains over 27K models each for
50 epochs. Each epoch consists of 45K examples. The reranking phase searches over
100 models each trained for 600 epochs. Thus, the architecture search is 27K × 50
× 45K = 60.8B examples. The reranking phase consists of 100 × 600 × 45K = 2.7B
examples. The total computational cost is 60.8B + 2.7B = 63.5B.

11 The search phase trains 20K models each for 25 epochs. The rest of the computation
is the same as AmoebaNet-B.
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we have selected the cell structure, we try various N and F values such that the
number of model parameters is around 3M, train them each for 300 epochs using
initial learning rate of 0.025 with cosine decay, and pick the best combination
based on the validation set. Using this best combination of N and F , we train it
for 600 epochs on the union of training set and validation set. During training
we also used auxiliary classifier located at 2/3 of the maximum depth weighted
by 0.4, and drop each path with probability 0.4 for regularization.

The results are shown in Table 3. We see that PNAS can find a model with
the same accuracy as NAS, but using 21 times less compute. PNAS also outper-
forms the Hierarchical EA method of [21], while using 36 times less compute.
Though the the EA method called “AmoebaNets” [27] currently give the highest
accuracies (at the time of writing), it also requires the most compute, taking 63
times more resources than PNAS. However, these comparisons must be taken
with a grain of salt, since the methods are searching through different spaces.
By contrast, in Section 5.3, we fix the search space for NAS and PNAS, to make
the speedup comparison fair.

5.5 Results on ImageNet Image Classification

We further demonstrate the usefulness of our learned cell by applying it to Ima-
geNet classification. Our experiments reveal that CIFAR accuracy and ImageNet
accuracy are strongly correlated (ρ = 0.727; see supplementary material).

To compare the performance of PNASNet-5 to the results in other papers,
we conduct experiments under two settings:

– Mobile: Here we restrain the representation power of the CNN. Input image
size is 224× 224, and the number of multiply-add operations is under 600M.

– Large: Here we compare PNASNet-5 against the state-of-the-art models on
ImageNet. Input image size is 331× 331.

In both experiments we use RMSProp optimizer, label smoothing of 0.1,
auxiliary classifier located at 2/3 of the maximum depth weighted by 0.4, weight
decay of 4e-5, and dropout of 0.5 in the final softmax layer. In the Mobile setting,
we use distributed synchronous SGD with 50 P100 workers. On each worker,
batch size is 32, initial learning rate is 0.04, and is decayed every 2.2 epochs
with rate 0.97. In the Large setting, we use 100 P100 workers. On each worker,
batch size is 16, initial learning rate is 0.015, and is decayed every 2.4 epochs
with rate 0.97. During training, we drop each path with probability 0.4.

The results of the Mobile setting are summarized in Table 4. PNASNet-5
achieves slightly better performance than NASNet-A (74.2% top-1 accuracy for
PNAS vs 74.0% for NASNet-A). Both methods significantly surpass the previous
state-of-the-art, which includes the manually designed MobileNet [14] (70.6%)
and ShuffleNet [37] (70.9%). AmoebaNet-C performs the best, but note that this
is a different model than their best-performing CIFAR-10 model. Table 5 shows
that under the Large setting, PNASNet-5 achieves higher performance (82.9%
top-1; 96.2% top-5) than previous state-of-the-art approaches, including SENet
[15], NASNet-A, and AmoebaNets under the same model capacity.
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Model Params Mult-Adds Top-1 Top-5

MobileNet-224 [14] 4.2M 569M 70.6 89.5
ShuffleNet (2x) [37] 5M 524M 70.9 89.8

NASNet-A (N = 4, F = 44) [41] 5.3M 564M 74.0 91.6
AmoebaNet-B (N = 3, F = 62) [27] 5.3M 555M 74.0 91.5
AmoebaNet-A (N = 4, F = 50) [27] 5.1M 555M 74.5 92.0
AmoebaNet-C (N = 4, F = 50) [27] 6.4M 570M 75.7 92.4

PNASNet-5 (N = 3, F = 54) 5.1M 588M 74.2 91.9

Table 4. ImageNet classification results in the Mobile setting.

Model Image Size Params Mult-Adds Top-1 Top-5

ResNeXt-101 (64x4d) [36] 320× 320 83.6M 31.5B 80.9 95.6
PolyNet [38] 331× 331 92M 34.7B 81.3 95.8
Dual-Path-Net-131 [6] 320× 320 79.5M 32.0B 81.5 95.8
Squeeze-Excite-Net [15] 320× 320 145.8M 42.3B 82.7 96.2

NASNet-A (N = 6, F = 168) [41] 331× 331 88.9M 23.8B 82.7 96.2
AmoebaNet-B (N = 6, F = 190) [27] 331× 331 84.0M 22.3B 82.3 96.1
AmoebaNet-A (N = 6, F = 190) [27] 331× 331 86.7M 23.1B 82.8 96.1
AmoebaNet-C (N = 6, F = 228) [27] 331× 331 155.3M 41.1B 83.1 96.3

PNASNet-5 (N = 4, F = 216) 331× 331 86.1M 25.0B 82.9 96.2

Table 5. ImageNet classification results in the Large setting.

6 Discussion and Future Work

The main contribution of this work is to show how we can accelerate the search
for good CNN structures by using progressive search through the space of in-
creasingly complex graphs, combined with a learned prediction function to ef-
ficiently identify the most promising models to explore. The resulting models
achieve the same level of performance as previous work but with a fraction of
the computational cost.

There are many possible directions for future work, including: the use of
better surrogate predictors, such as Gaussian processes with string kernels; the
use of model-based early stopping, such as [3], so we can stop the training of
“unpromising” models before reaching E1 epochs; the use of “warm starting”,
to initialize the training of a larger b+1-sized model from its smaller parent; the
use of Bayesian optimization, in which we use an acquisition function, such as
expected improvement or upper confidence bound, to rank the candidate models,
rather than greedily picking the top K (see e.g., [31,30]); adaptively varying the
number of models K evaluated at each step (e.g., reducing it over time); the
automatic exploration of speed-accuracy tradeoffs (cf., [11]), etc.



Progressive Neural Architecture Search 15

Acknowledgements

We thank Quoc Le for inspiration, discussion and support; George Dahl for
many fruitful discussions; Gabriel Bender, Vijay Vasudevan for the development
of much of the critical infrastructure and the larger Google Brain team for the
support and discussions. CL also thanks Lingxi Xie for support.

References

1. Baisero, A., Pokorny, F.T., Ek, C.H.: On a family of decomposable kernels on
sequences. CoRR abs/1501.06284 (2015)

2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. In: ICLR (2017)

3. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search
using performance prediction. CoRR abs/1705.10823 (2017)

4. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture
search through hypernetworks. In: ICLR (2018)

5. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by
network transformation. In: AAAI (2018)

6. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: NIPS
(2017)

7. Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., Yang, S.: Adanet: Adaptive
structural learning of artificial neural networks. In: ICML (2017)

8. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

9. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017)

10. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparame-
ter optimization of deep neural networks by extrapolation of learning curves. IJCAI
(2015)

11. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: PPP-Net: Platform-aware
progressive search for pareto-optimal neural architectures. In: ICLR Workshop
(2018)

12. Elsken, T., Metzen, J.H., Hutter, F.: Simple and efficient architecture search for
convolutional neural networks. CoRR abs/1711.04528 (2017)

13. Grosse, R.B., Salakhutdinov, R., Freeman, W.T., Tenenbaum, J.B.: Exploiting
compositionality to explore a large space of model structures. In: UAI (2012)

14. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR abs/1704.04861 (2017)

15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR
abs/1709.01507 (2017)

16. Huang, F., Ash, J.T., Langford, J., Schapire, R.E.: Learning deep resnet blocks
sequentially using boosting theory. CoRR abs/1706.04964 (2017)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based optimization
for general algorithm configuration. In: Intl. Conf. on Learning and Intelligent
Optimization. pp. 507–523. Lecture Notes in Computer Science (2011)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)



16 C. Liu et al.

19. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009)

20. Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: ECCV (2014)

21. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. In: ICLR (2018)

22. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with restarts. In:
ICLR (2017)

23. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards
Automatically-Tuned neural networks. In: ICML Workshop on AutoML. pp. 58–65
(Dec 2016)

24. Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., Francon, O.,
Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving deep neural
networks. CoRR abs/1703.00548 (2017)

25. Negrinho, R., Gordon, G.J.: Deeparchitect: Automatically designing and training
deep architectures. CoRR abs/1704.08792 (2017)

26. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. CoRR abs/1802.03268 (2018)

27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. CoRR abs/1802.01548 (2018)

28. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: ICML (2017)

29. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017)

30. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE 104(1), 148–175 (2016)

31. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS (2012)

32. Stanley, K.O.: Neuroevolution: A different kind of deep learning (Jul 2017)
33. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting

topologies. Evol. Comput. 10(2), 99–127 (2002)
34. Williams, R.: Simple statistical gradient-following algorithms for connectionist re-

inforcement learning. Machine Learning 8, 229–256 (1992)
35. Xie, L., Yuille, A.L.: Genetic CNN. In: ICCV (2017)
36. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transforma-

tions for deep neural networks. In: CVPR (2017)
37. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices. CoRR abs/1707.01083 (2017)
38. Zhang, X., Li, Z., Loy, C.C., Lin, D.: Polynet: A pursuit of structural diversity in

very deep networks. In: CVPR (2017)
39. Zhong, Z., Yan, J., Liu, C.L.: Practical network blocks design with Q-Learning. In:

AAAI (2018)
40. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:

ICLR (2017)
41. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures

for scalable image recognition. In: CVPR (2018)



Progressive Neural Architecture Search
(Supplementary Material)

Chenxi Liu1?, Barret Zoph2, Maxim Neumann2, Jonathon Shlens2, Wei Hua2,
Li-Jia Li2, Li Fei-Fei2,3, Alan Yuille1, Jonathan Huang2, and Kevin Murphy2

1 Johns Hopkins University
2 Google AI

3 Stanford University

A Search Efficiency of PNAS with RNN-ensemble

In Section 5.3 of the paper, we focused on the performance of MLP-ensemble as
the surrogate model. Here we provide analysis of RNN-ensemble as well.

Fig. 1. Comparing the relative efficiency of PNAS (using RNN-ensemble) with NAS
and random search under the same search space.

B Top Accuracy # PNAS # NAS Speedup (# models) Speedup (# examples)

5 1 0.9161 1160 2222 1.9 5.1
5 5 0.9148 1160 2489 2.1 5.4
5 25 0.9128 1160 2886 2.5 5.7

Table 1. Relative efficiency of PNAS (using RNN-ensemble predictor) and NAS under
the same search space.

? Work done while an intern at Google.
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Again, each method is repeated 5 times to reduce the randomness in neural
architecture search, and both performance mean and the variance are plotted in
Figure 1. A more quantitative breakdown is given in Table 1. We see that PNAS
with RNN-ensemble is about twice as efficient than NAS in terms of number
of models trained and evaluated, and five times as efficient by the number of
examples. Speedup measured by number of examples is greater than speedup
in terms of number of models, because NAS has an additional reranking stage,
that trains the top 250 models for 300 epochs each before picking the best one.

B Searching Cells with More Blocks

Using the MLP-ensemble predictor, we tried to continue the progressive search
beyond cells with 5 blocks, all the way till B = 10. The result of this experiment
is visualized in Figure 2, which extends Figure 4 of the main paper. As can
be seen, PNAS is able to find good performing models over the much larger
search spaces of B > 5. Note that the unconstrained search space size increases
by about 4 orders of magnitude for every B level, reaching ∼ 1033 possible
model configurations at B = 10. This is one of the main advantages of PNAS,
to examine a highly focused search space of arbitrary size progressively. Notice
that the NAS curve for comparison is still for B = 5, and if we search cells with
more blocks using NAS, this curve is likely to go down, because of the growth
in search space.

Fig. 2. Running PNAS (using MLP-ensemble) from cells with 1 block to cells with 10
blocks.

C Intermediate Level PNASNet Models

Our Progressive Neural Architecture Search algorithm explores cells from simple
to complex by growing the number of blocks. We choose B = 5, and indeed the



Progressive Neural Architecture Search 19

best model found in the final level (PNASNet-5; visualized in the left plot of
Figure 1) demonstrates state-of-the-art performance. In this section, however,
we are interested in the best models found in smaller, intermediate levels, namely
b = 1, 2, 3, 4. We call these models PNASNet-{1, 2, 3, 4}.
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Fig. 3. Cell structures used in PNASNet-{1, 2, 3, 4}.

Model B N F Error Params M1 E1 M2 E2 Cost

PNASNet-4 4 4 44 3.50±0.10 3.0M 904 0.9M 0 0 0.8B
PNASNet-3 3 6 32 3.70±0.12 1.8M 648 0.9M 0 0 0.6B
PNASNet-2 2 6 32 3.73±0.09 1.7M 392 0.9M 0 0 0.4B
PNASNet-1 1 6 44 4.01±0.11 1.6M 136 0.9M 0 0 0.2B

Table 2. Image classification performance on CIFAR test set. “Error” is the top-1
misclassification rate on the CIFAR-10 test set. (Error rates have the form µ ± σ,
where µ is the average over multiple trials and σ is the standard deviation. In PNAS
we use 15 trials.) “Params” is the number of model parameters. “Cost” is the total
number of examples processed through SGD (M1E1 + M2E2) before the architecture
search terminates.
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We visualize their cell structures in Figure 3, and report their performances
on CIFAR-10 in Table 2. We see that the test set error rate decreases as we
progress from b = 1 to b = 5, and the performances of these PNASNets with
smaller number of blocks are still competitive.

D Transferring from CIFAR-10 to ImageNet

Figure 4 shows that the accuracy on CIFAR-10 (even for models which are only
trained for 20 epochs) is strongly correlated with the accuracy on ImageNet,
which proves that searching for models using CIFAR-10 accuracy as a fast proxy
for ImageNet accuracy is a reasonable thing to do.

Fig. 4. Relationship between performance on CIFAR-10 and ImageNet for differ-
ent neural network architectures. The high rank correlation of 0.727 (top-1) suggests
that the best architecture searched on CIFAR-10 is general and transferable to other
datasets. (Note, however, that rank correlation for the higher-value points (with CIFAR
score above 0.89) is a bit lower: 0.505 for top-1, and 0.460 for top-5.)
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