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ABSTRACT 
Large scale scene generation is a computationally intensive 

operation, and added complexities arise when dynamic content 

generation is required. We propose a system capable of 

generating virtual content from non-expert input. The proposed 

system uses a 3-dimensional variational autoencoder to 

interactively generate new virtual objects by interpolating 

between extant objects in a learned low-dimensional space, as 

well as by randomly sampling in that space. We present an 
interface that allows a user to intuitively explore the latent 

manifold, taking advantage of the network’s ability to perform 

algebra in the latent space to help infer context and generalize 

to previously unseen inputs.  

 

1. INTRODUCTION 
In general, rendering virtual scenes involves a significant 

amount of in-depth, low-level manipulation of scene elements 

such as object vertices, edges, and faces. Even with modern 3D 

modeling software, iterating concept designs can be tedious and 

require extensive knowledge of the particular software package. 

A system capable of generating detailed objects from a layman-
interpretable input such as a text description, or a more intuitive 

design environment, might be able to speed up the design 

process, or even augment human knowledge by generating 

novel object configurations. 

Automatic scene generation for 3D models is a nontrivial 

problem. Most existing methods involve procedural or pars-

based modeling, requiring either explicit programming or 

extensive hand-labeled data, and are typically incapable of 

synthesizing objects from multiple classes.  

In this work, we explore a novel machine learning system 

capable of automatically learning to generate and interpolate 
between voxelized 3D models of disparate class, using entirely 

unlabeled and unsegmented training data.  

2. BACKGROUND 
Machine learning methods have recently leapt to the 

forefront of computer vision research, achieving state-of-the-art 

performance on a number of discriminative tasks, such as 

image classification [1]. Concurrent advances in generative 

image modeling using machine learning have resulted in 

surprisingly natural-looking artificial RGB images.  

In this section, we present an overview of some recently 

developed Convolutional Neural Network (ConvNet) 
architectures for image generation, such as Deep Convolutional 

Generative Adversarial Networks [2], Up-Convolutional 

Networks [3], Deep Convolutional Inverse Graphics Networks 

[4], and Variational Autoencoders [5]. 

Generative Adversarial Networks 

Deep Convolutional Generative Adversarial Networks 

(DCGANs) [2] consist of two neural networks, a Generator and 

a Discriminator. The Generator network takes a simple input 

(typically a random number and a 1-hot encoding of the object 

class to be generated) and produces an image, while the 

Discriminator network takes an image input and outputs the 

probability that the input is a natural image, or one generated 
by the Generator network. The networks are trained 

simultaneously, with the Generator trying to fool the 

Discriminator into believing its images are natural, and the 

Discriminator trying to avoid being fooled.  
DCGANs have been shown to produce remarkably detailed 

images, and also have the ability to produce realistic images 

containing multiple object classes by performing arithmetic in 

the latent space of the class variables. These composite images 

suggest the network has some representational awareness of the 

relationship between different object classes. 
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Up-Convolutional and Inverse Graphics Networks 

In [3], a ConvNet is designed an “Up-Convolutional” 

network to encode extrinsic scene variables such as lighting and 

viewpoint, as well as intrinsic object variables such as structure 

and color, and trained on images of rendered 3D chair and car 

models. This network demonstrated the ability to generalize to 
previously unseen viewpoints and entities (chairs, in this case), 

and was able to smoothly interpolate in the latent space of the 

intrinsic variables to “morph” between different models. 

Similarly, in [4], the authors developed a “Deep Convolutional 

Inverse Graphics Network” (DCIGN) that was trained end-to-

end on minibatches of face images where only one extrinsic 

scene property was varied within a minibatch. During training, 

only one variable in the latent space was allowed to vary its 

output, and only that node’s parameters were updated, forcing 

particular latents to learn to encode these factors of variation 

without requiring ground-truth labeling of the level of variation. 

Variational Autoencoders 
We briefly present the variational autoencoder (VAE) 

framework, with an explanation adopted from [6] and [5]. The 

VAE [5] is a probabilistic framework that learns a generative 

model: 

𝑝(𝑥, 𝑧) = 𝑝(𝑥 |𝑧) 𝑝𝜃(𝑧) 
Where x represents the observed data, z represents the 

latent variables which capture the principle factors of variation 

in x, θ represents the model parameter and pθ(z) is a prior 

distribution over the latents. Typically, pθ(z)  is assumed to be a 

standard Normal distribution with zero mean and identity 
covariance, and the model parameter vector θ consists of mean 

vector μθ and variance vector σθ. 

When implemented as a neural network, the VAE consists 

of an encoder network, which learns an approximate posterior 

distribution qφ(z|x), mapping  the input to the latents, and a 

decoder network, which learns an approximate posterior 

distribution pθ(x|z),  mapping from the latents to a 

reconstruction of the input. In this case, the loss function is 

composed of the negative expected reconstruction error and the 

Kullback-Leibler divergence between the learned approximate 

posterior and the prior over the latents: 

ℒ =  𝔼𝑞 (𝑧|𝑥)[log𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 (𝑞𝜑(𝑧|𝑥)||𝑝𝜃(𝑥|𝑧)) 

 

Rather than using computationally expensive methods for 

directly sampling from the posterior qφ(z|x), the VAE makes use 

of a reparameterization trick that enables approximate sampling 

from qφ(z|x). The parameters of the latent layer are decomposed 

into mean μφ and variance σφ, and during training the output of 

the latent layer is given as a deterministic function of the 

learned parameters μφ and σφ, and some noise term 𝜖 drawn 

from the Normal distribution with zero mean and unit variance: 

𝑧 =  𝜇𝜑(𝑥) + 𝜎𝜑(𝑥)𝜖,       𝜖~𝒩(0, 𝐼) 
This parameterization allows the VAE to be trained using 

stochastic gradient descent and backpropagation, and permits 

inference from the learned approximate posterior to generate 

random samples.  

3. RELATED WORK 
Our system is most closely related to [7], wherein the 

authors designed a user interface for exploring the latent space 

of procedural models. Our user interface is designed to mimic 
that of [7], but differs in that it permits interpolating between 

any arbitrary shape, rather than exploring a subset of predefined 

procedural modeling parameters, and supports unconditional 

random shape generation. 

Most prior work on automatic content generation has 

focused on methods requiring segmentation of individual part 

models, or procedural modeling. The authors of [8] developed a 

system for component-based shape synthesis, making use of a 

probabilistic model to relate individual model parts to one 

another. Similarly, the authors of [9] developed an interface for 

exploring and synthesizing instances from a database of 

models, and the authors of [10] developed an evolutionary 
algorithm for generating a gallery of novel models.  

These three methods require hand-labeled segmentations of 

the training data, are only applicable to objects of the same 

class, and are constrained to swapping and deforming pre-

defined part segments between models.  Our method requires 

no such segmentation, and is able to interpolate between 

objects regardless of class. Our method requires no hand-

labeling and is able to interpolate between objects regardless of 

object class. 

 

4. APPROACH 
We present a 3D convolutional VAE for voxel-based 

generative modeling, and interface for intuitively exploring the 

latent space learned by the model. We prefer the VAE over the 

DCIGN or DCGAN because its training regime is more 

straightforward, not requiring any of the data to be organized in 

any particular fashion (as with DCIGNs) or the in-depth 

hyperparameter tuning needed to train a DCGAN. Unlike a 

DCGAN, the VAE can learn to map a data input to a latent 

representation making it suitable for interpolation as well as 

random sampling. 

We use the Modelnet-10 dataset [11] for training and 

testing. Each training model is converted into a 32x32x32 voxel 
grid, and the data is augmented by creating 11 additional copies 

of each instance, each rotated 30˚ as in [12].  

Our VAE is implemented in Theano [13], using the  

Lasagne [14] wrapper library and custom 3D convolutional 

layers. 

Our interface design closely follows that of [7], and is 

implemented using the Visualization Toolkit [15]. The interface 

supports interpolating in the encoded latent space between up to 

four models, as well as class-unconditional random shape 

generation.  
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Figure 1: Model Architecture 

Model Architecture 

The model comprises an encoder network, the latent layer, 

and a decoder network, as displayed in Figure 1. The encoder 

network consists of 4 convolutional layers and a fully 

connected layer, which is itself fully connected to the latent 

layer. The decoder network has an identical, but inverted, 

architecture. The network weights are not tied. Each 

convolutional layer has a bank of 3x3x3 filters, starting with 8 
filters in the first layer and doubling at each subsequent layer.  

All layers use the exponential linear unit [16] nonlinearity, 

with the exception of the final layer, which uses a sigmoid 

nonlinearity. The output of each element of the final layer can 

be interpreted as the predicted probability that a voxel is 

present at a given location.  

Downsampling in the encoder network is accomplished via 

strided convolutions (as opposed to pooling) in every second 

layer. Upsampling in the decoder network is accomplished via 

fractionally strided convolutions, implemented as the gradient 

of an equivalent strided convolution, in every second layer[17]. 
The network is initialized with Glorot Initialization [18], 

and all but the output layer are Batch Normalized[19]. The 

variance and mean parameters of the latent layer are 

individually batch normalized, such that the output of the latent 

layer during training is still subject to random noise under the 

VAE parameterization trick.  

Loss Function 

The loss function consists of the KL divergence prior on 

the latents, L2 weight regularization, and the reconstruction 

error, for which we use a specialized form of Binary Cross-

Entropy (BCE).  The standard BCE loss is:  

ℒ =  −𝑡 log(𝑜) − (1 − 𝑡) log(1 − 𝑜) 
Where t is the target value in {0,1} and o is the output of 

the network in (0,1) at each output element. The derivative of 

the BCE with respect to o asymptotically approaches zero as o 

approaches t, which results in small gradients that can cause the 

network to prematurely stop learning during training.  

Additionally, the standard BCE weights false positives and 

false negatives equally. Because ~95% of the voxel grid in the 

training data is empty, the network tends to confidently plunge 

into a local optimum of the standard BCE by outputting all 

negatives. 

We make two key modifications to the BCE to improve 
training. First, we change the range of the target to {-1,2}, 

increasing the magnitude of the loss gradient throughout the 

domain of o when t is negative, and reducing the probability of 

vanishing gradients. Second, we add a hyperparameter γ which 

weights the relative importance of false positives against false 

negatives: 

ℒ =  −𝛾𝑡 log(𝑜) − (1 − 𝛾)(1 − 𝑡) log(1 − 𝑜) 
The derivative of the BCE with respect to the output is 

plotted in Figure 2, for the case of a negative target value and 

γ=0.5. 

 
Figure 2: Comparison of Binary Cross-Entropy Derivatives  
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During training, we set γ to 0.97, strongly penalizing false 

negatives while reducing the penalty for false positives. Setting 

γ too high results in noisy reconstructions, while setting γ too 

low results in reconstructions which neglect salient object 

details and structure. 

Training 
The model is trained using stochastic gradient descent with 

Nesterov momentum [reference] for 100 epochs, or until the 

error on a held-out validation set bottoms out. The learning rate 

is set to 0.0001 for the first epoch, then increased to 0.001 for 

the remaining 99 epochs. The data is augmented by adding 

random jitter noise to each training example, as in [12]. A 

combination of corrupted and uncorrupted data is used as both 

the input and the target of the system, as opposed to using the 

uncorrupted data as the target example. By training the network 

to reconstruct the corrupted data, we force it to learn invariance 

to small structural variations, and additionally increase  

Experiments 
We first validate our modification to the BCE by 

comparing the validation errors of two identical networks, one 

trained with the standard BCE, and one trained with our 

modification. The reconstruction error is plotted against 

training epochs in Figure 3. Interestingly, we note that the 

validation error is lower than the training error for this 

particular training run. 
  

 
Figure 3: Comparison of Training Regimes 

 

We experiment with a number of different model 

architectures and training regimes before converging on the 

final architecture detailed above. In particular, we experiment 

with augmenting the training objective by adding a 10-unit 

fully connected softmax layer for classification in parallel with 
latent estimation, as well as a denoising objective, corrupting 

the input with random jitter noise and using the uncorrupted 

input as the reconstruction target. Neither of these changes 

result in an improvement in performance.  

After training for 100 epochs, the model achieves 99.01% 

mean reconstruction accuracy on the test set. Table 1displays 

the confusion matrix for the test set. 

 

Table 1: Test Set Reconstruction Confusion Matrix 

Test Predicted: Negative Predicted: Positive 

Actual: Negative 99.39% 0.61% 

Actual: Positive 7.64% 92.36% 

5. DISCUSSION 
The network achieves passable reconstruction accuracy, 

and learns to smoothly interpolate between arbitrary, previously 

unseen shapes. The network is additionally capable of 

generating random shapes with consistent structure, indicating 

that the learned latent space is successful in disentangling the 

factors of structural variation, though these new shapes. 

The network performs well for dense objects, particularly 

thick dense objects such as sofas and toilets, but occasionally 
struggles to reconstruct objects with long, thin members, such 

as tables or chairs with thin legs. Presumably, these features are 

too small to activate in the receptive field of the appropriate 

latents, and are lost in favor of denser features which weigh 

more heavily in the loss function.  

The network also struggles to reproduce crisp edges, 

preferring to output smooth, rounded edges. This is analogous 

to the way in which a 2D autoencoder will tend to output 

images with blurry edges rather than crisp edges to avoid 

overconfidently making incorrect predictions. 

Interpolation 
The system is capable of smoothly interpolating between 

reconstructions, indicating that it learns a representation which 

captures the underlying factors of structural variation. For 

example, when interpolating between two objects of the same 

class but slightly different orientation, the model will make 

only minimal changes in the output during interpolation, rather 

than completely deconstructing and reconstructing the output 

(i.e. passing through zero in the latent space), as can be seen in 

the last row of Figure 5. 

When interpolating between drastically different objects, 

the interface exhibits a “flowing water” effect, wherein 

preexisting voxels will appear to smoothly shift between 
shapes, rather than appearing at random, as can be seen in the 

first three rows of Figure 5. 

Random Object Generation 

By sampling a random latent vector from the standard 

multivariate normal, we generate class-unconditional random 

objects, shown in Figure 4. These objects consistently bear a 

semblance of structure, with few to no free-floating voxels, 

suggesting that the decoder network has learned to maintain 

output voxel connectivity regardless of the latent configuration. 
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Figure 4: Randomly Generated Objects 

 
Figure 5: Example Interpolations. The rightmost and left most images are the original objects, the adjacent images are the 

network’s reconstruction, and the images between show interpolations in the latent space. 
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Figure 6:  Interpolating with the interface  

 
Figure 7: Unconditional Random Generation with the interface 
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6. USER INTERFACE 
We present a graphical user interface modeled after [7]. 

The interface, implemented using VTK [15], supports 

interpolating between up to four different models, as well as 

class-unconditional random shape generation. The models are 

randomly selected from the Modelnet test set at runtime, and 
the entire Modelnet test set can be randomly cycled through by 

tapping the arrow keys. Figure 6 shows a screenshot of the 

interface, where the center object is shown while interpolating 

between a monitor and a chair, and Figure 7 shows 

unconditional random generation. 

When a new set of models is loaded into the interface, the 

system immediately runs the models through the encoder 

network to obtain the deterministic latent representation of each 

model, and stores those latent values in memory. The user may 

then click and drag the center object between the four 

interpolant endpoint objects, interpolating linearly between the 

latent representations of those endpoints. As the user 
interpolates in the latent space, the decoder network runs 

inference in real time and outputs the interpolated object.  A 

video of the interface in action is available online [20]. 

  

7. LIMITATIONS AND FUTURE WORK 
The primary limitation of the system in its current form is 

its inability to perform class-conditional random object 

generation. Future work will focus on augmenting the latent 

space with a class-conditional encoding to permit generation of 

objects which clearly resemble objects such as chairs and 

tables. Additionally, future work will experiment with 

modifications to the network’s loss function to deal with the 

network’s tendency to neglect certain object features, i.e. by 
making use of an adaptive γ parameter or perceptual similarity 

metrics [6]. 

 

8. CONCLUSION 
We present a method for training and evaluating generative 

voxel models using 3D convolutional variational autoencoders. 

Our method works with entirely unlabeled and unsegmented 

data, and is capable of interpolating between objects of 

disparate class. We develop an interface that allows users to 

interactively explore a geometrically coherent latent space. This 

intuitive interface provides the user with direct control over the 

content generated, without requiring extensive low-level 

manipulation of geometric primitives.  
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