
 1 Copyright © 2016 by ASME

Proceedings of the ASME 2016 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2016
August 21-24, 2016, Charlotte, North Carolina, USA

IDETC2016-59997

CONTEXT-AWARE CONTENT GENERATION FOR VIRTUAL ENVIRONMENTS

Andrew Brock
School of Engineering & Physical Sciences

Heriot Watt University, Edinburgh, UK

Theodore Lim
School of Engineering & Physical Sciences

Heriot Watt University, Edinburgh, UK

J.M. Ritchie
School of Engineering & Physical Sciences

Heriot Watt University, Edinburgh, UK

Nick Weston
Renishaw plc

Research Ave. North, Edinburgh, UK

ABSTRACT
Large scale scene generation is a computationally intensive

operation, and added complexities arise when dynamic content

generation is required. We propose a system capable of

generating virtual content from non-expert input. The proposed

system uses a 3-dimensional variational autoencoder to

interactively generate new virtual objects by interpolating

between extant objects in a learned low-dimensional space, as

well as by randomly sampling in that space. We present an
interface that allows a user to intuitively explore the latent

manifold, taking advantage of the network’s ability to perform

algebra in the latent space to help infer context and generalize

to previously unseen inputs.

1. INTRODUCTION
In general, rendering virtual scenes involves a significant

amount of in-depth, low-level manipulation of scene elements

such as object vertices, edges, and faces. Even with modern 3D

modeling software, iterating concept designs can be tedious and

require extensive knowledge of the particular software package.

A system capable of generating detailed objects from a layman-
interpretable input such as a text description, or a more intuitive

design environment, might be able to speed up the design

process, or even augment human knowledge by generating

novel object configurations.

Automatic scene generation for 3D models is a nontrivial

problem. Most existing methods involve procedural or pars-

based modeling, requiring either explicit programming or

extensive hand-labeled data, and are typically incapable of

synthesizing objects from multiple classes.

In this work, we explore a novel machine learning system

capable of automatically learning to generate and interpolate
between voxelized 3D models of disparate class, using entirely

unlabeled and unsegmented training data.

2. BACKGROUND
Machine learning methods have recently leapt to the

forefront of computer vision research, achieving state-of-the-art

performance on a number of discriminative tasks, such as

image classification [1]. Concurrent advances in generative

image modeling using machine learning have resulted in

surprisingly natural-looking artificial RGB images.

In this section, we present an overview of some recently

developed Convolutional Neural Network (ConvNet)
architectures for image generation, such as Deep Convolutional

Generative Adversarial Networks [2], Up-Convolutional

Networks [3], Deep Convolutional Inverse Graphics Networks

[4], and Variational Autoencoders [5].

Generative Adversarial Networks

Deep Convolutional Generative Adversarial Networks

(DCGANs) [2] consist of two neural networks, a Generator and

a Discriminator. The Generator network takes a simple input

(typically a random number and a 1-hot encoding of the object

class to be generated) and produces an image, while the

Discriminator network takes an image input and outputs the

probability that the input is a natural image, or one generated
by the Generator network. The networks are trained

simultaneously, with the Generator trying to fool the

Discriminator into believing its images are natural, and the

Discriminator trying to avoid being fooled.
DCGANs have been shown to produce remarkably detailed

images, and also have the ability to produce realistic images

containing multiple object classes by performing arithmetic in

the latent space of the class variables. These composite images

suggest the network has some representational awareness of the

relationship between different object classes.

 2 Copyright © 2016 by ASME

Up-Convolutional and Inverse Graphics Networks

In [3], a ConvNet is designed an “Up-Convolutional”

network to encode extrinsic scene variables such as lighting and

viewpoint, as well as intrinsic object variables such as structure

and color, and trained on images of rendered 3D chair and car

models. This network demonstrated the ability to generalize to
previously unseen viewpoints and entities (chairs, in this case),

and was able to smoothly interpolate in the latent space of the

intrinsic variables to “morph” between different models.

Similarly, in [4], the authors developed a “Deep Convolutional

Inverse Graphics Network” (DCIGN) that was trained end-to-

end on minibatches of face images where only one extrinsic

scene property was varied within a minibatch. During training,

only one variable in the latent space was allowed to vary its

output, and only that node’s parameters were updated, forcing

particular latents to learn to encode these factors of variation

without requiring ground-truth labeling of the level of variation.

Variational Autoencoders
We briefly present the variational autoencoder (VAE)

framework, with an explanation adopted from [6] and [5]. The

VAE [5] is a probabilistic framework that learns a generative

model:

𝑝(𝑥, 𝑧) = 𝑝(𝑥 |𝑧) 𝑝𝜃(𝑧)
Where x represents the observed data, z represents the

latent variables which capture the principle factors of variation

in x, θ represents the model parameter and pθ(z) is a prior

distribution over the latents. Typically, pθ(z) is assumed to be a

standard Normal distribution with zero mean and identity
covariance, and the model parameter vector θ consists of mean

vector μθ and variance vector σθ.

When implemented as a neural network, the VAE consists

of an encoder network, which learns an approximate posterior

distribution qφ(z|x), mapping the input to the latents, and a

decoder network, which learns an approximate posterior

distribution pθ(x|z), mapping from the latents to a

reconstruction of the input. In this case, the loss function is

composed of the negative expected reconstruction error and the

Kullback-Leibler divergence between the learned approximate

posterior and the prior over the latents:

ℒ = 𝔼𝑞 (𝑧|𝑥)[log𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 (𝑞𝜑(𝑧|𝑥)||𝑝𝜃(𝑥|𝑧))

Rather than using computationally expensive methods for

directly sampling from the posterior qφ(z|x), the VAE makes use

of a reparameterization trick that enables approximate sampling

from qφ(z|x). The parameters of the latent layer are decomposed

into mean μφ and variance σφ, and during training the output of

the latent layer is given as a deterministic function of the

learned parameters μφ and σφ, and some noise term 𝜖 drawn

from the Normal distribution with zero mean and unit variance:

𝑧 = 𝜇𝜑(𝑥) + 𝜎𝜑(𝑥)𝜖, 𝜖~𝒩(0, 𝐼)
This parameterization allows the VAE to be trained using

stochastic gradient descent and backpropagation, and permits

inference from the learned approximate posterior to generate

random samples.

3. RELATED WORK
Our system is most closely related to [7], wherein the

authors designed a user interface for exploring the latent space

of procedural models. Our user interface is designed to mimic
that of [7], but differs in that it permits interpolating between

any arbitrary shape, rather than exploring a subset of predefined

procedural modeling parameters, and supports unconditional

random shape generation.

Most prior work on automatic content generation has

focused on methods requiring segmentation of individual part

models, or procedural modeling. The authors of [8] developed a

system for component-based shape synthesis, making use of a

probabilistic model to relate individual model parts to one

another. Similarly, the authors of [9] developed an interface for

exploring and synthesizing instances from a database of

models, and the authors of [10] developed an evolutionary
algorithm for generating a gallery of novel models.

These three methods require hand-labeled segmentations of

the training data, are only applicable to objects of the same

class, and are constrained to swapping and deforming pre-

defined part segments between models. Our method requires

no such segmentation, and is able to interpolate between

objects regardless of class. Our method requires no hand-

labeling and is able to interpolate between objects regardless of

object class.

4. APPROACH
We present a 3D convolutional VAE for voxel-based

generative modeling, and interface for intuitively exploring the

latent space learned by the model. We prefer the VAE over the

DCIGN or DCGAN because its training regime is more

straightforward, not requiring any of the data to be organized in

any particular fashion (as with DCIGNs) or the in-depth

hyperparameter tuning needed to train a DCGAN. Unlike a

DCGAN, the VAE can learn to map a data input to a latent

representation making it suitable for interpolation as well as

random sampling.

We use the Modelnet-10 dataset [11] for training and

testing. Each training model is converted into a 32x32x32 voxel
grid, and the data is augmented by creating 11 additional copies

of each instance, each rotated 30˚ as in [12].

Our VAE is implemented in Theano [13], using the

Lasagne [14] wrapper library and custom 3D convolutional

layers.

Our interface design closely follows that of [7], and is

implemented using the Visualization Toolkit [15]. The interface

supports interpolating in the encoded latent space between up to

four models, as well as class-unconditional random shape

generation.

 3 Copyright © 2016 by ASME

Figure 1: Model Architecture

Model Architecture

The model comprises an encoder network, the latent layer,

and a decoder network, as displayed in Figure 1. The encoder

network consists of 4 convolutional layers and a fully

connected layer, which is itself fully connected to the latent

layer. The decoder network has an identical, but inverted,

architecture. The network weights are not tied. Each

convolutional layer has a bank of 3x3x3 filters, starting with 8
filters in the first layer and doubling at each subsequent layer.

All layers use the exponential linear unit [16] nonlinearity,

with the exception of the final layer, which uses a sigmoid

nonlinearity. The output of each element of the final layer can

be interpreted as the predicted probability that a voxel is

present at a given location.

Downsampling in the encoder network is accomplished via

strided convolutions (as opposed to pooling) in every second

layer. Upsampling in the decoder network is accomplished via

fractionally strided convolutions, implemented as the gradient

of an equivalent strided convolution, in every second layer[17].
The network is initialized with Glorot Initialization [18],

and all but the output layer are Batch Normalized[19]. The

variance and mean parameters of the latent layer are

individually batch normalized, such that the output of the latent

layer during training is still subject to random noise under the

VAE parameterization trick.

Loss Function

The loss function consists of the KL divergence prior on

the latents, L2 weight regularization, and the reconstruction

error, for which we use a specialized form of Binary Cross-

Entropy (BCE). The standard BCE loss is:

ℒ = −𝑡 log(𝑜) − (1 − 𝑡) log(1 − 𝑜)
Where t is the target value in {0,1} and o is the output of

the network in (0,1) at each output element. The derivative of

the BCE with respect to o asymptotically approaches zero as o

approaches t, which results in small gradients that can cause the

network to prematurely stop learning during training.

Additionally, the standard BCE weights false positives and

false negatives equally. Because ~95% of the voxel grid in the

training data is empty, the network tends to confidently plunge

into a local optimum of the standard BCE by outputting all

negatives.

We make two key modifications to the BCE to improve
training. First, we change the range of the target to {-1,2},

increasing the magnitude of the loss gradient throughout the

domain of o when t is negative, and reducing the probability of

vanishing gradients. Second, we add a hyperparameter γ which

weights the relative importance of false positives against false

negatives:

ℒ = −𝛾𝑡 log(𝑜) − (1 − 𝛾)(1 − 𝑡) log(1 − 𝑜)
The derivative of the BCE with respect to the output is

plotted in Figure 2, for the case of a negative target value and

γ=0.5.

Figure 2: Comparison of Binary Cross-Entropy Derivatives

 4 Copyright © 2016 by ASME

During training, we set γ to 0.97, strongly penalizing false

negatives while reducing the penalty for false positives. Setting

γ too high results in noisy reconstructions, while setting γ too

low results in reconstructions which neglect salient object

details and structure.

Training
The model is trained using stochastic gradient descent with

Nesterov momentum [reference] for 100 epochs, or until the

error on a held-out validation set bottoms out. The learning rate

is set to 0.0001 for the first epoch, then increased to 0.001 for

the remaining 99 epochs. The data is augmented by adding

random jitter noise to each training example, as in [12]. A

combination of corrupted and uncorrupted data is used as both

the input and the target of the system, as opposed to using the

uncorrupted data as the target example. By training the network

to reconstruct the corrupted data, we force it to learn invariance

to small structural variations, and additionally increase

Experiments
We first validate our modification to the BCE by

comparing the validation errors of two identical networks, one

trained with the standard BCE, and one trained with our

modification. The reconstruction error is plotted against

training epochs in Figure 3. Interestingly, we note that the

validation error is lower than the training error for this

particular training run.

Figure 3: Comparison of Training Regimes

We experiment with a number of different model

architectures and training regimes before converging on the

final architecture detailed above. In particular, we experiment

with augmenting the training objective by adding a 10-unit

fully connected softmax layer for classification in parallel with
latent estimation, as well as a denoising objective, corrupting

the input with random jitter noise and using the uncorrupted

input as the reconstruction target. Neither of these changes

result in an improvement in performance.

After training for 100 epochs, the model achieves 99.01%

mean reconstruction accuracy on the test set. Table 1displays

the confusion matrix for the test set.

Table 1: Test Set Reconstruction Confusion Matrix

Test Predicted: Negative Predicted: Positive

Actual: Negative 99.39% 0.61%

Actual: Positive 7.64% 92.36%

5. DISCUSSION
The network achieves passable reconstruction accuracy,

and learns to smoothly interpolate between arbitrary, previously

unseen shapes. The network is additionally capable of

generating random shapes with consistent structure, indicating

that the learned latent space is successful in disentangling the

factors of structural variation, though these new shapes.

The network performs well for dense objects, particularly

thick dense objects such as sofas and toilets, but occasionally
struggles to reconstruct objects with long, thin members, such

as tables or chairs with thin legs. Presumably, these features are

too small to activate in the receptive field of the appropriate

latents, and are lost in favor of denser features which weigh

more heavily in the loss function.

The network also struggles to reproduce crisp edges,

preferring to output smooth, rounded edges. This is analogous

to the way in which a 2D autoencoder will tend to output

images with blurry edges rather than crisp edges to avoid

overconfidently making incorrect predictions.

Interpolation
The system is capable of smoothly interpolating between

reconstructions, indicating that it learns a representation which

captures the underlying factors of structural variation. For

example, when interpolating between two objects of the same

class but slightly different orientation, the model will make

only minimal changes in the output during interpolation, rather

than completely deconstructing and reconstructing the output

(i.e. passing through zero in the latent space), as can be seen in

the last row of Figure 5.

When interpolating between drastically different objects,

the interface exhibits a “flowing water” effect, wherein

preexisting voxels will appear to smoothly shift between
shapes, rather than appearing at random, as can be seen in the

first three rows of Figure 5.

Random Object Generation

By sampling a random latent vector from the standard

multivariate normal, we generate class-unconditional random

objects, shown in Figure 4. These objects consistently bear a

semblance of structure, with few to no free-floating voxels,

suggesting that the decoder network has learned to maintain

output voxel connectivity regardless of the latent configuration.

 5 Copyright © 2016 by ASME

Figure 4: Randomly Generated Objects

Figure 5: Example Interpolations. The rightmost and left most images are the original objects, the adjacent images are the

network’s reconstruction, and the images between show interpolations in the latent space.

 6 Copyright © 2016 by ASME

Figure 6: Interpolating with the interface

Figure 7: Unconditional Random Generation with the interface

 7 Copyright © 2016 by ASME

6. USER INTERFACE
We present a graphical user interface modeled after [7].

The interface, implemented using VTK [15], supports

interpolating between up to four different models, as well as

class-unconditional random shape generation. The models are

randomly selected from the Modelnet test set at runtime, and
the entire Modelnet test set can be randomly cycled through by

tapping the arrow keys. Figure 6 shows a screenshot of the

interface, where the center object is shown while interpolating

between a monitor and a chair, and Figure 7 shows

unconditional random generation.

When a new set of models is loaded into the interface, the

system immediately runs the models through the encoder

network to obtain the deterministic latent representation of each

model, and stores those latent values in memory. The user may

then click and drag the center object between the four

interpolant endpoint objects, interpolating linearly between the

latent representations of those endpoints. As the user
interpolates in the latent space, the decoder network runs

inference in real time and outputs the interpolated object. A

video of the interface in action is available online [20].

7. LIMITATIONS AND FUTURE WORK
The primary limitation of the system in its current form is

its inability to perform class-conditional random object

generation. Future work will focus on augmenting the latent

space with a class-conditional encoding to permit generation of

objects which clearly resemble objects such as chairs and

tables. Additionally, future work will experiment with

modifications to the network’s loss function to deal with the

network’s tendency to neglect certain object features, i.e. by
making use of an adaptive γ parameter or perceptual similarity

metrics [6].

8. CONCLUSION
We present a method for training and evaluating generative

voxel models using 3D convolutional variational autoencoders.

Our method works with entirely unlabeled and unsegmented

data, and is capable of interpolating between objects of

disparate class. We develop an interface that allows users to

interactively explore a geometrically coherent latent space. This

intuitive interface provides the user with direct control over the

content generated, without requiring extensive low-level

manipulation of geometric primitives.

ACKNOWLEDGMENT
This research was made possible by grants and support

from Renishaw plc and the Edinburgh Centre For Robotics. The

work presented herein is also partially funded under the

European H2020 Programme BEACONING project, Grant

Agreement nr. 687676.

REFERENCES
[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going

deeper with convolutions. CVPR, 2015.

[2] A. Radford, L. Metz, and S. Chintala. Unsupervised

representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[3] A. Dosovitskiy, J.T. Springenberg,and T. Brox. Learning to

generate chairs with convolutional neural networks. arXiv

preprint arXiv:1411.5928, 2014

[4] T. Kulkarni, W. Whitney, P. Kohli, Pushmeet, and J.

Tenenbaum, Deep convolutional inverse graphics network. In

Neural Information Processing Systems, 2015.

[5] D.P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. arXiv: 1412.6980, December 2014.

[6] A. Lamb, V. Dumoulin, and A. Courville. Discriminative

Regularization for Generative Models. arXiv: 1602.03220v4,

2016.

[7] M. Yumer, P. Asente, R. Mech, and L. Kara. Procedural

Modeling Using Autoencoder Networks. In Proceedings of the

28th annual ACM Symposium on User Interface Software and

Technology, 2015.

[8] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A

probabilistic model for component-based shape synthesis. ACM

Transactions on Graphics (TOG), 31(4), 55, 2015.

[9] M. Averkiou, V. G. Kim, Y. Zhen, and N. J. Mitra.

Shapesynth: Parameterizing model collections for coupled

shape exploration and synthesis. Computer Graphics Forum

(Eurographics) 33, 2014.

[10] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen. Fit and

diverse: set evolution for inspiring 3D shape galleries. ACM

Transactions on Graphics (TOG), 31(4), 57, 2012.

[11] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao, 3D Shapenets: A deep representation for volumetric

shape modeling. CVPR, 2015.

[12] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional

Neural Network for Real-Time Object Recognition. IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), 2015.

[13] The Theano Development Team. Theano: A Python

framework for fast computation of mathematical expressions.
arXiv: 1605.02688, 2016.

[14] Lasagne: A Lightweight Library to Build and Train Neural

Networks in Theano. https://github.com/Lasagne/Lasagne

[15] W. Schroeder, K. Martin and B. Lorenson. The

Visualization Toolkit, 4th edition. Kitware, ISBN 978-1-930934-

19-1. 2006.

 8 Copyright © 2016 by ASME

[16] D. Clevert et al. Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs). arXiv:

1511.07289, 2015.

[17]. V. Dumoulin and F. Visin. A guide to convolution

arithmetic for deep learning. arXiv preprint, arXiv: 1603.07285.

2016.

[18] X. Glorot and Y. Bengio. Understanding the Difficulty of

Training Deep Feedforward Neural Networks. In Proc.

AISTATS, 2010, pp. 249–256.

[19] S. Ioffe and C. Szegedy. Batch Normalization:

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. arXiv:1502.03167, 2015.

[20] Accompanying video: https://youtu.be/k_6hb63f6FY

