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Abstract

This article briefly surveys some fundamental results concerning pseudo-Boolean
functions, i.e. real-valued functions of 0-1 variables. Hundreds of papers have been
devoted to the investigation of pseudo-Boolean functions, and a rich and diversified
theory has now emerged from this literature. The article states local optimality
conditions, outlines basic techniques for global pseudo-Boolean optimization, and
shows connections between best linear approximations of pseudo-Boolean functions
and game theory. It also describes models and applications arising in various fields,
ranging from combinatorics to management science, and points to several classes of
functions of special interest.

Keywords: integer programming, nonlinear 0-1 optimization, max-sat, max-cut, graph
stability, game theory.

1 Pseudo-Boolean functions

1.1 Definitions and representations

A pseudo-Boolean function is a mapping from {0,1}" to R, i.e. a real-valued function
of a finite number of 0-1 variables. Pseudo-Boolean functions have been introduced in
[15], and extensively studied in [16] and in numerous subsequent publications; a detailed
survey appears in [4].

Pseudo-Boolean functions generalize Boolean functions, which are exactly those pseudo-
Boolean functions whose values are in {0,1}, i.e. those f(X) for which f2(X)— f(X) =0
in {0,1}". Since the elements of {0, 1}" are in one-to-one correspondence with the subsets
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of N ={1,2,...,n}, every pseudo-Boolean function can be interpreted as a real-valued
set function defined on P(N), the power set of N = {1,2,...,n}. Viewing pseudo-
Boolean functions as defined on {0,1}", rather than on P(N), provides an algebraic
viewpoint which sometimes carries clear advantages. It is easy to see for instance that
the set of all pseudo-Boolean functions in n variables forms a vector space over R, and
that the elementary monomials [[,.,#; (A € P(N)) define a basis of this space. In
particular, every pseudo-Boolean function f(x1,xs,...,x,) can be uniquely represented
as a multilinear polynomaial of the form

f($1,$2,---,1'n)=00+20kHfﬁi, (1)
k=1

1€EAL

where ¢y, ¢, ..., ¢, are real coefficients, and Ay, As, ..., A,, are nonempty subsets of V.
When viewed as a function on [0, 1]", the right-hand side of (1) defines a continuous
extension of the pseudo-Boolean function f, to be denoted f€.

Note that every pseudo-Boolean function also admits (many) representations of the form

f($1,$2,...,l'n):bo+§:bk(HxiHTj), (2)
k=1

i€EAg JEBy

where by, by, ..., by, are real coefficients, and z; =1 —z; for j =1,2,...,n. If by > 0 for
all k =1,2,...,m, then we say that the expression (2) is a posiform of f. It is easy to see
that every pseudo-Boolean function can be expressed as a posiform. Other representations
of pseudo-Boolean functions have been recently investigated in [12].

1.2 Representative models

Besides nonlinear binary optimization, pseudo-Boolean functions can also be used to
model a wide variety of problems in different fields of appplication.

Maximum satisfiability. Consider a collection of Boolean clauses ( Viea, TiVVjep, 7j

k=1,2,... ,m). The mazimum satisfiability problem is to find a vector (z1,zs,...,x,)

in {0,1}" which satisfies the largest possible number of clauses in the collection. This
problem, which generalizes the NP-complete satisfiability problem, is equivalent to that
of minimizing the posiform (2) with by =1 for k = 1,2,...,m; see e.g. [17].

Graph theory. Consider a graph G = (N, E) with positive weights w : N — R on its
vertices, and capacities ¢ : F — R on its (undirected) edges. For every S C N, the cut
(S, N\ S) is the set of edges having exactly one endpoint in S; the capacity of this cut
is Z{i’j}e(st\S) c(i,7). The maz-cut problem is to find a cut of maximum capacity in G.
This problem is equivalent to maximizing the quadratic pseudo-Boolean function

f({L’l, o, ... ,:Bn) = Z C(i,j) (ZL’Z‘T]‘ + Til'j), (3)

1 i<j n
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under the interpretation that (zq, s, ...,z,) is the characteristic vector of S.

A stable set in G is a set S C N such that no edge has both of its endpoints in S;
the weight of S is ) ,.qw(i). The weighted stability problem is to find a stable set of
maximum weight in G. This can be seen to be equivalent to maximizing the quadratic
pseudo-Boolean function

n

flx1, 22, ., 2,) = Z w(i)x; — (1+ 1milnnw(z)) Z ;%] (4)

i=1 1i<j n
where (x1,2s,...,x,) is the characteristic vector of S. Other connections between the
weighted stability problem and pseudo-Boolean optimization (in particular, posiforms)

have been exploited in [11].

Linear 0-1 programming. Consider the linear 0-1 program

maximize  z(x1,Ta,...,T,) = Z i, (5)
j=1
subject to Z a;x;="b, 1=12,....,m (6)
j=1
(1, g,y ..., x,) € {0,1}". (7)

This problem is equivalent to the quadratic pseudo-Boolean optimization problem

maximize  f(z1,za,...,2,) = Z cit; — MZ (Z aij; — b;)? (8)
j=1 =1 j=1
subject to (z1,Z2,...,z,) € {0,1}", (9)

for a sufficiently large M.

Management applications. Constraints of the form:
;=1 ifandonlyif y=1 i€ A

are encountered in many management applications (e.g., capital budgeting, plant loca-
tion, tool management problems, etc.; see [7, 16, 22]). Since such constraints simply
express that y = [[,. 4 z:, pseudo-Boolean formulations of such problems often arise quite
naturally by elimination of the y-variables.

Game theory. A game in characteristic function form is nothing but a pseudo-Boolean
function f. If (z1, z9, . . ., x,) is the characteristic vector of the set S, then f(z1,zs,...,x,)
is interpreted as the payoff that the players indexed in S can secure by acting together.
The multilinear representation of f and its continuous extension f¢ play an interesting
role in this context; see e.g. [2] and Section 3 below.
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1.3 Special classes of pseudo-Boolean functions

Several authors have investigated special classes of functions with “nice” properties. Let
us simply mention here monotonic functions (whose first derivatives — see below — have
constant sign on {0, 1}"), supermodular functions (whose second derivatives are nonnega-
tive on {0, 1}"™), polar functions (which have a posiform (2) such that, for every k, either
A, = 0 or By, = 0), unimodular functions (which are polar up to a switch z; < T;
on a subset of variables), (completely) unimodal functions (which have a unique local
maximizer in (every face of) {0,1}"), etc. Strongly polynomial combinatorial algorithms
for the maximization of supermodular functions have been recently proposed in [20, 21].
Unimodular functions can be maximized by max-flow algorithms [19]. Unimodal and re-
lated classes of functions have been introduced in [10], where the applicability of greedy
algorithms for their optimization has also been investigated. The recognition problem for
all these classes of functions is examined in [5].

2 Optimization

Optimization of pseudo-Boolean functions over subsets of {0,1}" is also known as non-
linear 0-1 optimization. A survey of this field is presented in [18]. We shall only mention
a few fundamental facts, restricting ourselves mostly to the unconstrained case.

2.1 Local optima

If f(z1,29,...,x,) is a pseudo-Boolean function, let us define its ith derivative A; to be
the pseudo-Boolean function

Ai - f(xla"'axifla]-axwrlw"7xn) - f(xla'"7xi71707xi+17"'7xn)'

It was shown in [16] that all the local maxima of the function f are characterized by the
system of implications:

if A; >0thenz; =1, if A;<0thenx; =0, fori=12,... n.

Let now m; and M; be arbitrary lower and upper bounds of A;, e.g. the sums of the
negative, respectively the positive, coefficients in the polynomial representation of A;.
Then it is clear that an equivalent characterization of the local maxima of the pseudo-
Boolean function f is given by the system of inequalities

A, —M;z; 0, Aj—m;T; >0, fori=1,2,...,n.



2.2 Global optima

The continuous extension f¢ has the attractive feature that its global maximizers are at
the vertices of the hypercube [0, 1] and hence, coincide with those of f (this is because (1)
is linear in every variable). This implies that continuous global optimization techniques
can be applied to f¢in order to compute the maximum of f. This approach did not prove
computationally efficient in past experiments, but remains conceptually valuable. As an
amusing corollary, one may note for instance that the optimum of the max-cut function
(3) is at least f(3) =1 >, i<j n Cli,7). Thus, we find that every graph contains a cut
of capacity at least equal to one-half the total edge capacity, a well-known result of graph
theory. Moreover, such a cut can be found efficiently.

A combinatorial variable elimination algorithm for pseudo-Boolean optimization was pro-
posed by Hammer, Rosenberg and Rudeanu [15, 16]. The following streamlined version
and an efficient implementation of this algorithm are described in [8]. Let f(z1,za,...,zy)
be the function to be maximized. We can write

flz, 2o, 2y) = 1A (29, 23, . .., ) + h(zo, 23, .. ., Ty),

where h and the first derivative A; do not depend on z;. Clearly, there exists a maximizer
of f, say (x3,3,...,x}), with the property that =7 = 1 if and only if Ay (z3, 23,...,2%) >
0. This suggests to introduce a function t(zy,zs,...,z,) such that t(zs, z3,...,z,) =
Ay(x9, 3, ..., xy) if Ay(zg,x3,...,2,) > 0 and t(za,x3,...,2,) = 0 otherwise. Letting
fi = t+ h, we have reduced the maximization of the original function f in n variables
to the maximization of f;, which only depends on n — 1 variables. Repeating n times
this elimination process eventually allows to determine a maximizer of f. An efficient
implementation of this algorithm is proposed in [8], where it is also proved that the

algorithm runs in polynomial time on pseudo-Boolean functions with bounded tree-width.

Another classical approach consists in transforming the problem max{f(X) : X € {0,1}"}
into an equivalent linear 0-1 programming problem by substituting a variable y;, for the kth
monomial T} of (1) (or (2)) and setting up a collection of linear constraints which enforce
the equality y, = Tr. The continuous relaxation of this linear formulation yields an easily
computable upper-bound on the maximum of f. Properties of this upper-bound and of
related formulations of f have been investigated in [1, 13] and in a series of subsequent
paper; see [6] for a brief account and Section 2.3 for related considerations.

2.3 Quadratic 0-1 optimization

Quadratic 0-1 optimization is an important special case of pseudo-Boolean optimization,
both because numerous applications appear in this form, and because the more general
case is easily reduced to it. Indeed, consider a function f of the form (1), assume that
|A;| > 2 and select j,l € A;. Then, the function

g(z1, 29, ..., 20, y) = co+cl( H xi)y + Z Cr H z; — M(zjz — 2y — 221y + 3y)
i€ A1\{j,l} k=2 1€AL



where y is a new variable, and M is large enough, has the same maximum value as f
(y = xjz; in every maximizer of g). Applying recursively this procedure yields eventually
a function of degree 2.

Best linear majorants and minorants of pseudo-Boolean functions can provide important
information on the function. It was shown in [13] that for any quadratic pseudo-Boolean
function f, one can construct a linear function

1(1'1,1'2,...,1'”) = lo + Zl]‘l‘j,
=1

called the roof dual of f, majorizing f(z1,xs,...,x,) in every binary point (z1, zs, ..., Z,)
and having the following property of strong persistency: if [; is strictly positive (resp.
negative), then x; must be equal to 1 (resp. 0) in every maximizer of f. In other words, roof
duality allows the determination of the optimal values of a subset of variables. Moreover,
max{f(X): X € {0,1}"} = max{l(X) : X € {0,1}"} if and only if an associated 2-SAT
problem is satisfiable. While the determination of the roof dual in [13] was accomplished
via linear programming, it was shown later [3] that this problem can be reduced to a
maxflow problem in an associated network.

3 Linear approximations

In order to find the best linear approximation L(f) of a pseudo-Boolean function f in the
norm Lo, it is sufficient to know how to determine the best linear Lo-approximation of a
monomial. Indeed, considering the polynomial representation (1), it is clear that

—co—l—ch (H )

1€A

On the other hand, it was shown in [14] that

(HIBZ> = 2|A‘ (1-— |A|—{—2§3:)ﬁZ for all A C N.

€A i€A

It was shown in the same paper that the best quadratic, cubic,... Ls-approximations can
also be obtained by similar simple closed formulas.

Important game-theoretical applications of best Lo-approximations consist in finding the
Banzhaf indices of the players of a simple game, or the Shapley values of the players of an
n-person characteristic function game. Indeed, as shown in [14], these indices are simply
the coefficients of best (weighted) linear Lo-approximations of pseudo-Boolean functions
describing these games.

Another important application of these results allows the efficient determination of excel-
lent heuristic solutions of unconstrained nonlinear binary optimization problems [9)].
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