Upper-Bounds for Quadratic 0 — 1 Maximization'

E. Boros,
RUTCOR — Rutgers Center for Operations Research
Rutgers University, New Brunswick, N.J., U.S.A.

Y. Crama,

Department of Quantitative Economics,
University of Limburg, Maastricht, The Netherlands

P.L. Hammer
RUTCOR — Rutgers Center for Operations Research
Rutgers University, New Brunswick, N.J., U.S.A.

March 1989
Revised: July 1989

IThe first and third authors gratefully acknowledge the partial support of NSF
(Grant ECS 85-03212) and AFOSR (Grants 85-0271 and 89-0066). This work
was partially carried out while the second author was with the Department of
Mathematical Sciences at the University of Delaware, and was supported by the
University of Delaware Research Foundation.



Abstract

In this paper, we generalize three different approaches to obtain upper
bounds for the maximum of a quadratic pseudo-Boolean function f over
{0,1}™. The original approaches (complementation, majorization and lin-
earization) were introduced by Hammer, Hansen and Simeone [9)].

Our generalization yields three upper bounds, Cy, M} and L for each
integer k > 2, where C,, = L, = M, is the maximum of f, and Cy =
Ly = My is the roof duality bound studied in [9]. We prove here that
Ci. = M;, = L, for all values of k.



1 Introduction

A pseudo-Boolean function is a real-valued function defined on {0, 1}"™. Such
a function is called quadratic if its unique expression as a multilinear polyno-
mial in its variables has degree at most 2. The quadratic 0 — 1 maximization
problem is to find the maximum over {0,1}" of a quadratic pscudo-Boolecan
function, given in polynomial form.

In [9] three possible approaches were considered to obtain good upper-
bounds on the optimal value of quadratic 0 — 1 maximization problems:
complementation, majorization and linearization (see below). It has been
shown there that these apparently distinct approaches yield in fact the same
bound.

In this paper, we propose some natural extensions of these approaches,
and we study their mutual relationships. More precisely, for every k > 2, we
define three upper-bounds C}, M} and Lj on the maximum of a quadratic
pseudo-Boolean function, such that Cy 11 < Cg, Mpy1 < My and Ly < Ly.
When k = 2, these bounds are exactly those obtained by complementation,
majorization and linearization in [9]. When k& = n, the bounds coincide with
the optimal value of f. Our main result is that C, = M}, = Ly for all k > 2.

All these bounds can, in principle, be obtained by solving some linear
programming problems, but writing these LPs can be prohibitively expensive
for large values of k. The original 0—1 quadratic maximization problem itself
can be written as a 0 — 1 linear programming problem, over the “Boolean
quadric polytope”, i.e., over the convex hull of

{(w,y)

the usual continuous relaxation of which gives the value La. We present a
correspondence between the facets of this polytope and the extremal ele-
ments of the cone of the nonnegative pseudo-Boolean functions.

In a companion paper [4], we study in more detail the bound obtained for
k = 3. We show there that the LP defining Lj is produced by adding all first
order Chvatal cuts to the LP obtained when k = 2. It follows from this result
that Cg = M3 = L3 < CQ = Mg = LQ whenever maxwe{o’l}n f(l’) < CQ.

Yij = TiTj 1<i<ji<n
zi=0orl i=1,..,n ’

2 Complementation

Let V = {x1, 29, ...,m,} denote a set of 0 — 1 variables, and V = {Z1,T o, ...,
T}, where T; = 1 — z; is the complement of x; (i =1,...,n). The elements



of L=V UV are called literals. A posiform is an expression of the form

D1y ey Xy, Ty ooy Tpy) = Z ar H u, (2.1)

TeQ ueT
where € is a collection of subsets of L, and ap > 0 for all T' € Q. The degree
of the posiform (2.1) is the maximum size of a set T' € Q.
Every posiform ¢ defines a unique pseudo-Boolean function, f, through
the natural correspondence:

[z, zn) = d(x1, 0oy X, T,y Tyy) forall (aq,...,2,) € {0,1}". (2.2)

When (2.2) holds, ¢ is said to be a posiform of f. Observe that a nonnegative
pseudo-Boolean function may have many distinct posiforms. A pseudo-
Boolean function always has a unique polynomial form

flxy,xy) = Z qr H x, (2.3)
TeA zeT
where A is now a collection of subsets of V', and g # 0 for T € A. The
function f is quadratic if the maximum size of a set T' € A is 2.

The quadratic pseudo-Boolean functions of n variables form a vector
space (of dimension 1+n+ (%)) over the reals. For any fixed k-clement subset
W C V of the variables, the set of quadratic pseudo-Boolean functions of
these variables form a subspace (of dimension 1+ &+ (g)) For 2 <k <n,let
Fi. denote the union of these subspaces for all k element subsets of V, i.e.,
Fj. is the set (and not a subspace, in general) of quadratic pseudo-Boolean
functions whose polynomial expression (2.3) involves at most k variables out
of z1,...,z,. Let Px be the cone generated by the nonnegative functions of
Fi. Then, Py is the set of posiforms of degree two (quadratic posiforms),
Py C Py C--- CP,, and P, is the set of all nonnegative, quadratic pseudo-
Boolean functions in n variables.

Now, let f be a (fixed) quadratic pseudo-Boolean function, and ¢ be
a rcal constant. Then, ¢ is an upper bound on the maximum of f over
{0,1}™ if and only if $ = ¢ — f is a nonnegative pseudo-Boolean function,
i.e. ¢ € P,. More generally, for every k > 2, we define

Co min{ceR|f+d=c, ¢€P}. (2.4)
Then we have,
max{f(z)|z € {0,1}"} = C, < Cpq < -+ < O3 < o
In [9], Oy is called the height of f.



Example 2.1 Consider the following quadratic pseudo-Boolean function:

f(z) = —3z1 — w3 — by + 3w122 — D123 + Dr1T4+
+3r125 + Tox3 — 3xox5 + dr3ny.

Here we have,

Co=4= [f4+301To+ 2103 +4T1T3+ 21T 4+ 4T 124
+311T 5 + T ox3 + 3roxs + 4237 4 + T 324,

and
C3=0= f + Toxsz + 3(%15255 + E1$2x5) + 5(%1%354 + 51E3x4),
and, since f(0) =0, max f = 0 is already implied. Here we used that

T1T 9T 5 + T1T2Ts = T1 — T1To — T1T5 + ToTs, and
T1X3T 4 +T 1T 34 = Tq+ T1T3 — T1T4 — T34,

thus both expressions are in Py C F3.

To see that Cj can be expressed as the optimum of a linear program-
ming problem, notice again that Pj is a cone in the vector space of all
quadratic pseudo-Boolean functions. Since the nonnegative elements of Fj
are characterized by a finite ((7)2*) system of linear inequalities, to be sat-
isfied by the coefficients of their polynomial expression, it follows that Fy
has a finite set of extremal directions, consequently P has a finite basis,
say B(Pr) = {t1,...,m}, such that every ¢ € P can be expressed as
¢ = > Nty for some reals \; > 0 (i = 1,...,m), and every basis element
b € B(Py) is a function of at most k variables. So, Cj can be expressed as

Cr =min ¢ (2.5)
s.t. ¢c— Z Ay =f
YEB(Px)
Ay >0 ¢ e B(Py). (2.7)

Since the multilinear polynomial expression of a pseudo-Boolean function
is unique, the identity (2.6) can in turn be rewritten as a set of lincar
equations in the variables ¢, Ay, (¢ € B(Py)), where each equation ex-
presses the equality of a coefficient of f with the corresponding coefficient

Of C — Z¢EB(Pk) /\ww



For each fixed k, this transformation can in principle be used to turn
(2.5)-(2.7) into a linear programming problem with O(n*) variables and
O(n?) constraints. When k = 2, the resulting LP is given by [9]. For k = 3,
it is explicitly described in [4].

Finally, the following result provides an alternative characterization of
the bound Cj:

Lemma 2.1 For2 <k <n,

Cr = min max l(x). (2.8)
¢ € Py x € {0,1}"
|+ ¢ =1lis linear

Proof. Since a constant c¢ is itself a linear function, the minimum value
in the lemma is not larger then Cj. To show the equality, assume that
I and ¢ achieve the minimum in the right-hand side of (2.8). Let I(z) =
lo + 321 Liwi. Then maxyeqo,1yn I(x) = lo + 32,50 li- On the other hand,
defining ¢ = ¢ + 3,50 iTi + X2j,<o(—li)wi, we have f+ ¢ =1lo + 32,50l
Here ¢ € Py, thus Cp < lo + >2;,~0li by the definition of C.

3 Majorization

In this section, we introduce a class of linear functions, all majorizing the
quadratic pseudo-Boolean function f over {0,1}", and we obtain an upper
bound of f by finding the “best” among these linear functions. A similar
approach was already taken in [9] and, for the constrained case, in [2, 3].

For a purely quadratic function h (i.c. for which A(0, ...,0)=h(1,0,...,0)=
-+ =h(0,...,0,1) = 0) of k variables, let

M(h) ¥ (1)1 lincar; h(z) < i(z) for all = € {0, 1}¥} (3.1)

denote the set of linear majorants of h over the Boolean vectors.
Now let f be a quadratic pseudo-Boolean function, k be a (possibly
small) integer, and let us consider a representation of f in the form

F=1+>" 1 (3.2)

jeJ



where [ is linear, and f; € F are purely quadratic functions of at most k
variables. Then the linear functions of the form

p=1+>_1 (3.3)

jed

with [; € M(f;) for j € J, are linear majorants of f. Let M¥(f) denote the
set of all linear majorants of f obtained in this way, varying (3.2) over all
possible representations. Then, by definition,

M(f) =M (f) 2 M H(f) D - D MP(f) D MP(f).

Defining

def

Mp = min  max p(x), (3.4)

peMFk(f) z€{0,1}"
we have
max f(z) =M, < My_1 < < My < M.

ze{0,1}m
The elements of M?(f) were called paved upper planes in [9]. It was also
shown there that the bound R, obtained by taking the minimum in (3.4)
over certain “minimal” elements p(z) of M?2(f), rather than over all of
M?2(f), is always equal to Cy. As a consequence, Mo < Cy. Later, in [12]
it has been proved that Cy = My (see also [11, 1, 6]). Here we extend these
results, and show that

Theorem 3.1 Cp = My, for 2 <k <n.

For the proof of this theorem, we need first an easy observation.

For a quadratic pseudo-Boolean function f, let [y and gy be the linear
and the purely quadratic functions, respectively, defined (uniquely) by the
equation f = ly — qy.

Remark 3.2 For any quadratic pseudo-Boolean function f, ly € M(qy) if
and only if f is nonnegative.

Proof of Theorem 3.1. Let us use Lemma 2.1, and let ¢ denote an optimal
complement of f,i.e., ¢ € Py, | = f+ ¢ is linear and max,¢ g1} [(z) = Cy.
Since Py is generated by B(Py), we can write

o= > b, a,>0,0beB(Py).
beB(Py)



Thus we have

fo=l=0=1—Y aly—q) =
beB(Py)

== Y ab)+ > o

beB(Py) beB(Py)

where [, € M(qp) by Remark 3.2. Since B(Px) contains nonnegative sub-
functions of at most k variables, I = (I — > pcp(p,) lb) + >pen(p,) Wlb
belongs to M*(f), implying M}, < C.

Conversely, let p = [4+>_ [; be an optimal linear function for the majoriza-
tion problem, ie., f =1+ > ¢ li € M(q;), and My, = max,cq,13» p(z).
Then [; — ¢; are nonnegative functions, belonging to P, by Remark 3.2;
thus, with ¢ dof Sl — qi), we get ¢ € P and | = f + ¢ is lincar. Together
with Lemma 2.1, this implies that C} < M.

O

As a corollary of this theorem, we can obtain a computationally simpler
form of Problem (3.4).

Using again the notation b = I, — g, for b € B(Py), where [, denotes the
linear part of b, and ¢ is purely quadratic, we get

M, = min max |l -+ aplp | . (3.5)
lis linear, ap >0 @€{01}" ;,e;ak) ]
=14+ > o
bEB(Pk)

4 Linearization

A standard technique to linearize the quadratic 0 — 1 maximization problem
is as follows (see the survey [10]).

Let us introduce new variables y;; and impose the identities y;; = z;z;,
for 1 < i < j < n. This can be done by prescribing the conditions

vij = 0
i v = 0y e 4.1
., W2 ) zi<iza (4.1)

-y —x; +yy = -1



z; €{0,1}, i=1,..,n. (4.2)

In this way, we have a natural one-to-one correspondence between the quad-
ratic pseudo-Boolean functions over {0,1}"

n
def
f(x) = qo+ E qix; + E qijT;T;
i=1 1<i<j<n

and the linear functions over R"+(Z), given by:

n
def
Ly(z,y) = qo+ E q;x; + E qijYij
i=1 1<i<j<n

where (z,y) denotes the vector (z1,...,Tn, Y12, s Yn—1,n) € R (3),
The maximization of f(z) over {0,1}" can be reformulated as a linear
programming problem

maxL¢(z,y) st. (z,y) € QP, (4.3)
where QP denotes the Boolean Quadric polytope, introduced in [13], as the

n

convex hull of the points (z,y) € R (2) satisfying (4.1) — (4.2). Equiva-
lently,

QP f conv {(:17, Y) (4.4)

Yij = xiwj 1 <6 <j<m
z; €{0,1},i=1,..,n [’

Omitting the integrality constraints (4.2), introducing the polyhedron
SL as the set of vectors satisfying (4.1), and defining
L, max Ly(z,y) st. (z,y) € SL, (4.5)

we get the standard linearization of the maximization problem for f. Clearly,
QP C SL, hence Lo is an upper bound on the maximum of f over {0, 1}".
This bound was introduced in [9], where it was shown that Cy = Lo.

We shall describe here a hierarchical way of adding new constraints to
SL, and thus, improving Lo.

We say that a linear function

Wa,y) =lo+ > Lzi+ > lijyi
i=1 1<i<j<n
induces a valid inequality for QP if
V(z,y) € QP : I(z,y) > 0.

The following observation is immediate, using the bijection f <> Ly.

7



Remark 4.1 A quadratic function f is nonnegative, (i.e., f € Py, )if and
only if Ly induces a valid inequality for QP. Moreover, f € B(Py) if and
only if Ly induces a facet for QP.

Let us define the polyhedron SLIF! as the set of vectors (x,y) satisfying
the conditions
Ly(z,y) >0 Vg€ B(P), (4.6)

and let

for k = 2,...,n. Obviously, SL = SLP, SL" = QP and Ly, < Ly,
k=2..,n-—1

Theorem 4.2 L, = C}, for2 <k <n.

Proof. If f+ ¢ = C for some ¢ € Py, then there are nonnegative reals ay
such that ¢ = Ebeg(pk) apb. Therefore Lo, ;= EbeB(’Pk) apLy, and hence
Cr > Ly is a linear consequence of (4.6), implying L, < C,.

Conversely, since the system of inequalities in (4.6) has full rank (B(P2) C
B(Py) for any k > 2, and B(P») clearly has full rank), the inequality L, > Ly
is a linear consequence of (4.6) by linear programming duality. That means,
there are nonnegative reals 3, such that Ly —Ly = >, B(Py) BpLy. Therefore

Ly = [+ Xven(p,) Bob implying Cy < Ly.

O

In [7, 13] some classes of facets of QP have been described. We shall
give a unified description of those using the above relation between facets of
QP and extremal elements of P,,.

Let U C L be an arbitrary subset of literals, and let o be an arbitrary
integer. The function, by, defined by

b . (Z’U,EU U — O[)
U = 9
a(a—1)

is clearly a nonnegative quadratic pseudo-Boolean function. ((3) = =5,
hence (5) > 0 for any integer a, except for a = 0 or a = 1, when it is 0.) It
is also clear that if U = {@|u € U}, then by = by U—a—1-




Example 4.1 Using the fact that for 0 — 1 variables x> = x we can obtain
a simple form of such a function, e.g., if U = {x,5} and a = 1, then
(z+y —1)(z+y —2)

begyy =" 2
2247y 24220y —3(x+y ) +2

2
=ay —z—7y +1
=TYy.

Remark 4.3 If U C L is a subset of the literals, not containing a comple-
mented pair, o is an integer, 1 < o < |U| =2 for |[U| > 3 or a =1 for
|U| =2, then by,o € B(Py) for k> |U|.

This remark is casy to check, and also is a consequence of [13]. These
functions provide a simpler description of the facet classes of QP described
in [13].

5 Sharpness of the bounds

For a given quadratic pseudo-Boolean function f(x), the bounds Cj (k =
2,...,n) approach the maximum of f(z) when k approaches n. Morcover,
for every fixed k, C) can (in principle) be computed in polynomial time, as
the optimum of some associated linear programming problem. But clearly,
the computational burden of computing C} grows exponentially with k.

These observations raise the problem of finding a reasonable stopping
point in the computation of the sequence Cs, Cj, ..., C),. More specifically,
one would like to be able to answer questions like: (i) is Cy sharp, i.c., is
Cr = max,eqo13 f(2)? (ii) if not, does Cyy1 improve on Cy?

For k = 2, these two questions were previously answered as follows. The
paper [9] presented an O(n?) algorithm to decide the sharpness of Cy. In
case (5 is not sharp, [5] showed how to compute efficiently another bound
U on the maximum of f(x) such that U < Cs. It is very casy to see from
their result that C5 < U (but one may have C3 < U). In [4], we give a direct
proof that C3 < Cy when C5 is not sharp.

Thus, we may say that Cs is “worth” computing if C5 is not sharp.

By contrast, [5] showed that checking the sharpness of U is an NP-
complete problem. A similar proof shows that deciding the sharpness of
(5 is also NP-complete. For the sake of completeness, we repeat here the
argument:



Theorem 5.1 Deciding whether C3 = max o 1y» f(v) is NP-complete.

Proof. The problem is clearly in NP. Consider now the NP-complete prob-
lem NOT-ALL-EQUAL 3SAT (see [8]), defined by:
INSTANCE: set V of variables, collection of clauses E\, ..., Ep, E; C VUV,
|E;| =3 (i=1,...,m).
QUESTION: is there a truth assignment such that each clause E; has at
least one true literal and at least one false literal?

Given an instance I of NOT-ALL-EQUAL 3SAT, we define the quadratic
pseudo-Boolean function:

f(a:):—i(H u—+ HU)

1=1 \uekFE; uek;

It is easy to see that I is a yes-instance if and only if max,c o 13» f(z) = 0.
Moreover, since ¢(z) = — f () is a cubic posiform, and f(x) + ¢(x) = 0, we
have C3 < 0.

Now, if C3 < 0, then I is a no-instance. If C3 = 0, then we have trans-
formed the problem of deciding whether I is a yes-instance to the problem
of deciding whether Cj5 is sharp.

O

From Theorem 5.1, and from the fact that computing Cy is polynomial,
we conclude that there must exist quadratic pseudo-Boolean functions f for
which max f < C3 = Cy4 (unless P=NP). For such functions, computing C4
would prove a wasted effort.

More properties of the bound C3 are studied in the companion paper [4].
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