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Abstract

Scientific research and private-sector technological innovation differ in objectives, constraints, and 

organizational forms. Scientific research may thus not be driven by the direct practical benefit to 

others in the way that private-sector innovation is. Alternatively, some–yet largely unexplored-

mechanisms drive the direction of scientific research to respond to the expected public benefit. We 

test these two competing hypotheses of scientific research. This is important because any coherent 

specification of what constitutes the socially optimal allocation of research requires that scientists 

take the public practical benefit of their work into account in setting their agenda. We examine 

whether the composition of medical research responds to changes in disease prevalence, while 

accounting for the quality of available research opportunities. We match biomedical publications 

data with disease prevalence data and develop new methods for estimating the quality of research 

opportunities from textual information and structural productivity parameters.

Keywords

Scientific Research; Induced Innovation; Research Opportunity; Technological Opportunity; Non-
Profit Incentives; Medicine; Textual Econometrics

1 Introduction

Scientific research and private-sector technological innovation differ in objectives, 

constraints, and organizational forms. For example, the for-profit objective that drives 

private-sector innovation is muted in much scientific research.1 This particular difference is 
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important in part because other differences are likely linked to it. For example, Aghion et al. 

(2008) view the fact that individual researchers have more control over their agenda in 

scientific research than in private-sector innovation as the defining characteristic of 

academia. They conjecture that this difference is due to the non-profit nature of scientific 

research.

A key virtue of for-profit allocation is that decisions made by for-profit firms must 

necessarily respond to changes in the market, or else risk failure. There is abundant evidence 

that for-profit producers innovate according to market demand. Non-profit allocation, on the 

other hand, imposes looser budget constraints (Lakdawalla and Philipson, 2006). In 

principle, looser constraints could divorce production decisions from demand. For example, 

the choice of topics could be driven by the prospect of influencing other scientists (e.g. 

Dasgupta and David, 1994, and Saha and Weinberg, 2008) rather than the expected social 

benefit.

These considerations raise the possibility that the direction of scientific research does not 

respond to market demand in the way that private-sector technological innovation does. 

Alternatively, some-yet largely unexplored–mechanisms drive the direction of scientific 

research to respond to the expected public benefit, as has been argued by Rosenberg (1982). 

In this paper we test these two competing hypotheses. This question is important because 

any coherent specification of what constitutes the socially optimal allocation of research 

would require that scientists take the public benefit of their work into account in setting their 

agenda.

To test these two competing hypotheses of scientific research, we examine whether the 

composition of medical research responds to changes in disease prevalence. For drug-related 

medical research we also condition on the quality of available research opportunities. We 

focus on disease-driven medical research examined here because it represents the majority 

of research in medicine at least in terms of publication output.2

Our focus on medicine is appropriate because, while there may be good reasons to insulate 

some research activities from the vagaries of the market, academic medicine is not such a 

market. There is little extant evidence that academic medicine actually does so respond to 

the market (that is, to the epidemiology of patient health) and the view of academic medicine 

as an “ivory tower” persists. The role of technological progress in producing gains against 

diseases implies that the study of factors that determine the direction and magnitude of that 

progress–including the study of what determines the direction of academic medical research-

are especially important from health and health economic perspectives.

1In the Background Appendix we examine the connections between industrial R&D and academic research in the biomedical sector 
and how pharmaceutical innovation reflects largely the functioning of for-profit incentives and academic medicine and biomedical 
publications reflect largely non-profit incentives.
2Throughout our sample period over 60% of publications in medicine are linked to a disease (this can be seen from Figure 2.1 in 
Section 7.1). Our match of publication data and disease prevalence data captures roughly 50% of all disease-linked research (see 
Section 7.1). The three measures of drug-related research that we employ (see Section 4.1) represent between 20% and 45% of all 
disease-matched research (see Section 7.1).

Bhattacharya and Packale Page 2

J Health Econ. Author manuscript; available in PMC 2017 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our analysis is agnostic about why medical research would respond to changes in disease 

prevalence and research opportunities. The available data do not enable us to differentiate 

between theories of scientific research such as altruism, prestige maximization (see e.g. 

Merton 1973 [1942], Glaeser, 2003, and Stern 2004), and the availability of government 

funding.3 The specific mechanisms are important but so is understanding the relationship 

between the direction of scientific research and characteristics that determine the socially 

optimal allocation.

Only a handful of studies have examined the determinants of scientific research and 

nonprofit innovation in general. Rosenberg (1982) emphasizes that private-sector 

technological innovation yields important inputs to scientific research. He conjectures that 

the direction of scientific research is in part driven by the quality of research opportunities 

and the expected rewards from research. Lichtenberg (1999) and Lichtenberg (2006) find a 

positive correlation between public biomedical funding and both disease prevalence and 

disease severity and between cancer prevalence and the number of biomedical publications. 

In contrast with these two analyses, we use exogenous variation in disease prevalence to 

identify the induced innovation effect. Finkelstein (2004) finds that the impact of vaccine 

policies on the number of new patent applications is small and statistically insignificant for 

both non-profit and for-profit entities. Unlike all three analyses, we condition on available 

research opportunities.4

The literature on the determinants of the direction of private-sector technological innovation 

is more extensive. The induced innovation hypothesis originated in Hicks (1932) and 

Schmookler (1966). Recent empirical studies of the induced innovation hypothesis in the 

pharmaceutical industry include Acemoglu and Linn (2004), Finkelstein (2004), Lichtenberg 

and Waldfogel (2003) and Yin (2008).5 Our research opportunity concept corresponds to the 

technological opportunity concept examined by Scherer (1965) and Schmookler (1966) as 

well as by Popp (2002).6

Our methodology to estimate the quality of research opportunities builds on the 

methodology of Caballero and Jaffe (1993), Jaffe and Trajtenberg (1996) and Popp (2002). 

Our method extends this by permitting the probability that a given knowledge cohort is used 

in research to depend not only on the quality of a given knowledge cohort but also on the 

3Throughout our sample period-based on medical researchers’ self-reports-only 11% (13%) of disease- linked research (all research) 
is supported by National Institutes of Health (NIH) or other U.S. government sources (authors’ calculations from the publications 
data). These low numbers suggest that our estimates are not necessarily driven by responses to changes in government funding 
priorities.
4Examination of the research opportunity effect and development of associated methods is important for three reasons. First, while it 
is implausible that researchers within a research field would not redirect research effort in response to changes in research 
opportunities, it is not nearly as evident that scientists would very often switch fields to take advantage of greater research 
opportunities. Second, it is obviously important to condition on research opportunities in estimating the induced innovation effect if 
the two variables are correlated. Third, from an allocative efficiency perspective it is important to understand how the research 
opportunity effect varies across organizational forms and across types of individuals.
5Newell, Jaffee and Stavins (1999) and Popp (2002) examine induced innovation in the energy sector. In addition to Acemoglu and 
Linn (2004), also DellaVigna and Pollet (2007) exploit changes in the age demographics of the population for identification.
6The previous version of this paper (Bhattacharya and Packalen, 2008a) included estimates of the induced innovation effect in 
pharmaceutical innovation, which we omit here for presentational clarity. The analyses of aging and obesity induced innovation are 
related to the empirical studies on preference externalities by Waldfogel (2003) and George and Waldfogel (2003). In a companion 
paper (Bhattacharya and Packalen, 2008b) we calculate the welfare effect of the induced innovation externality of obesity. The reader 
is also referred to this companion paper for references to the medical and economic literatures on obesity.
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quality of other existing knowledge cohorts. Also, we construct the scientific opportunity 

variable from textual information, rather than citation information. This considerably 

expands the information base from which research opportunities can be measured. For 

example, citations in scientific publications seldom capture research opportunities generated 

by private-sector technological innovation, whose role Rosenberg (1982) emphasized.7

2 Theory

We present a model in which the socially optimal allocation of research across diseases is 

influenced by disease prevalence and quality of research opportunities, implying that any 

good allocation mechanism would induce research to respond to these characteristics. The 

analysis has also implications for how to measure quality of research opportunities.

2.1 A Model of the Social Benefit from Medical Research

We assume that each unit of research is identified by three characteristics: the disease i 
which the research examines, the year t in which the research is conducted, and the cohort f 
of the research opportunities that are pursued in the research.8 The benefit from research 

depends on three factors: 1) the extent of research effort (Nitf), 2) the number of people who 

benefit from the research (Mit), and 3) the quality of the research opportunities.9

The third factor, quality of research opportunities, captures the idea that the benefit from an 

inframarginal unit of research is higher when inputs to the research process provide 

researchers fertile applications compared to when inputs to the research process hold only 

potential for average or below average applications. Inputs to the research process can be 

tangible or intangible. Tangible research inputs in medicine include approved drugs 

developed by pharmaceutical companies. Ideas are an example of intangible research inputs, 

some of which are recorded as citations in publications. In existing literature research inputs 

are measured from citations. In the complementary approach developed here research inputs 

and the associated opportunities and cohorts are measured from textual content of research 

publications and the year in which a given concept first appears in the publications.10

The quality of research opportunities depends on two factors: 1) the baseline productivity of 

research inputs in the opportunity cohort f in research on the disease i, which we denote by 

αif, and 2) the elapsed time t − f since the initial discovery of the research inputs in cohort f. 
The first factor reflects the fact that the productivity of research inputs in cohort f in research 

7Related work includes Azoulay et al. (2007, 2009) who determine patentability research from the textual content of publications, and 
the graphical analysis of topic bursts by Mane and Börner (2004).
8These assumptions are, of course, simplifications as a research project in medicine does not necessarily examine only one disease and 
may rely on opportunities that do not all belong to the same opportunity cohort f. We address these issues in our empirical analysis 
(see Sections4.1–4.2).
9We thus assume that the benefit from research does not depend on the severity of the disease. This is in part due to lack of exogenous 
variation in severity over time, but is also consistent with the findings of Acemoglu and Linn (2004). From a theoretical perspective, 
for an increase in the severity of a disease to increase the expected benefit from research on the disease the increase in severity should 
be accompanied with an increase in the expected progress that could be made against the disease. The validity of latter condition is not 
evident to us given the incremental nature of technological progress.
10As an example of the research inputs that are captured using this approach, consider the active ingredient “cyclosporine”, which was 
the first effective immunosuppressant and thereby enabled transplants. Cyclosporine was first mentioned in the title/abstract of a 
medical research publication in 1981. We set the preceding year as the cohort. By 2005 it was mentioned in tite title/abstract of 17,682 
publications.
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on disease i depends on how suitable the research inputs are in research on the disease. The 

second factor reflects the fact that diffusion and exhaustion of knowledge is generally 

gradual. A new research input contributes little when it is first discovered and only a few 

researchers know about it. It will also contribute little on the margin after everyone knows 

about it and most of the potential of the knowledge cohort has been exhausted.

We assume a specific functional form for the total benefit from research across diseases:

(1)

where εitf denote factors that are observable to medical researchers but not the 

econometrician, satisfy E[εitf] = 0, and are independently distributed. Factors 

and , respectively, represent diffusion and exhaustion of opportunities in each 

cohort f.11

2.2 Socially Optimal Allocation

Let  denote the optimal allocation of research effort when allocation across input cohorts 

f within each disease i is optimal. First-order conditions for the optimum imply that

(2)

where 12 Equation (2) states that the share of research on disease i that 

relies on opportunity cohort f is equal to the ratio of the quality of the opportunity cohort f in 

research and the sum of the qualities of all available research opportunity cohorts.

Let . When allocation of research effort across opportunity cohorts f 
within a disease is optimal, expression (1) can be rewritten as 

11We do not model explicitly the effect that the amount of research in the preceding years may have on the benefit from research in a 
given year. This assumption is innocuous if marginal research in each year does not influence the quality of research opportunities in 
future years.
12The first-order condition for optimum is 

, for 

all (i, t, f, f′). Denoting  this condition can be rewritten as 

, for all (i,t,f,f′). Summing both sides of the equation , over all 

 gives  for all (i, t, f). Rearranging and using the definitions of 

citf and  gives the relationship (2).
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. First-order 

conditions for the optimal allocation of research effort across diseases imply that

(3)

holds for all (t, i). The factor  in equation 

(3) is the sum of the qualities of available research opportunity cohorts in the disease i in 

year t, and we use this sum as a measure of the quality of research opportunities in research 

on the disease i in year t. We denote this measure of the quality of research opportunities by

(4)

We can rewrite equation (3) as . Assuming 

that Nit > 0 and Kit > 0 for all (i, t) this can be rewritten as

(5)

where .

2.3 Implications for Empirical Analysis of Research Allocation

Equation (5) describes a proportional relationship between research effort in a disease and 

the quality of research opportunities, and a proportional relationship between the research 

effort in a disease and disease prevalence. With a different functional form for the overall 

benefit from research both relationships would still be positive but non-proportional. We 

allow for this possibility in our empirical framework.

So far, we have ignored the fact that a factor that changes disease prevalence may also 

change research within a disease. For example, population aging and rising obesity may shift 

research effort away from drug-related medical research on a disease and toward research 

that is still applied and disease-driven but more focused on the physiology of the disease in 

the old-age and obese populations. The estimated disease prevalence effect may then even be 

negative for drug-related research.13 We allow for this possibility in our empirical 

framework.

13Even when the total research effort on the disease changes, our measure of that effort (publications) may not change if one type of 
research (say, research that examines the physiology of the disease in a subpopulation) requires more inputs than another type of 
research (say, drug-related research).
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3 Estimation of the Quality of Research Opportunities

Our definition of the quality of research opportunities follows from our theoretical model 

and is given by (4).14 Provided that we can obtain estimates ,  and  of the parameters 

αif, β1 and β2, we can estimate the quality of research opportunities using the formula

(6)

The econometric challenge is to estimate the parameters αif, β1 and β2. We start with 

equation (2). We measure  from textual information in publications (see Section 4.2). 

Denoting  equation (2) may be 

rewritten as

(7)

When t − f0 is large, we have that , which modifies the definition of αit to

(8)

and the relationship (2) to

(9)

This equation forms our estimating equation for the parameters αif, β1,and β2.15

In our empirical analysis the number of parameters αif is over 5, 000. Estimating the 

parameters αif, β1,and β2 using non-linear least squares and equation (9) is therefore 

computationally quite demanding. Instead, we first estimate the parameters β1 and β2 using 

non-linear least squares applied to the equation (7) while assuming fixed values for the 

parameters αif and αit.16 We then estimate the parameters αif using the following three-step 

14Popp (2002), Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1996) each use either the formula (6) or a close equivalent. One 
advantage of our structural approach is that potential limitations in empirical work become more transparent. For example, the analysis 
reveals that if expression (1) is not a good representation of the benefit from research, the measure of the quality of research 
opportunities variable will likely be influenced by the extent of research on the disease (see Section 6.2). It is therefore important to 
examine whether such potential reverse causality influences estimates of the “research opportunity effect”. We are not aware of this 
issue having been considered in existing work.
15The innovation relative to the prior literature is that the probabilities [Inline] are allowed to depend not only on the quality of 
opportunity cohort f but also on the quality of all available opportunity cohorts through the denominator in equation (9).
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iterative procedure: Step 1. Calculate initial estimates of αit by plugging in the estimates of 

β1 and β2 as well as arbitrary starting values of αif= 1 for all i, f into (8); Step 2. Using 

estimates of αit, β1,and β2 estimate parameters αif by least squares applied to the equation 

(7) while holding αit, β1,and β2 fixed; Step 3. Recompute αit by plugging in estimates of 

αif, β1,and β2 into the expression (8). If the new value of αit is sufficiently close to the old 

value, declare convergence. If not, iterate the previous step until convergence. This iterative 

procedure yields estimates of the parameters αif, which we then combine with the estimates 

 and  to construct a measure of the quality of research opportunities using formula (6).

4 Data and Measurement of Variables

4.1 Publications Data and Match to Disease Prevalence Data

We measure research effort in medicine from the indexed MEDLINE database on 

approximately 16 million biomedical publications, from 1950 to the present. The indexing is 

done by professionals with biomedical training using the hierarchical Medical Subject 

Headings (MESH) vocabulary of over 20,000 terms. We use the MESH (2007 version) codes 

in the MEDLINE data to identify the disease(s) examined in each publication.

We construct a match between the publications data and the disease prevalence data, which 

is indexed by the ICD-9 classification system. We limit this matching effort in several ways 

that are detailed in the Data Appendix. The match, included in the previous version of this 

paper (Bhattacharya and Packalen, 2008a), yields 127 separate matches between a disease or 

a group of diseases and a MESH entry/entries. The 127 diseases belong to 12 disease 

classes. We limit the empirical analysis to these 127 diseases.

We measure the research effort related to a disease by the number of publications that are 

matched to the disease.17 A publication may be indexed to multiple diseases. We allow for 

this possibility by counting publications that are matched to more than one disease the same 

way we would count the matches if each match were from a separate publication.

We use several alternative strategies to measure drug-related medical research. First, we 

classify all publications that are matched to an active ingredient as being drug-related 

medical research and count a publication that is matched to n different cohorts of ingredients 

as n units of research. Second, we classify all publications that are matched to an ingredient 

as being drug-related medical research and count each such publication as one unit of 

research. Third we classify all publications that are indexed with the “major topic” flag and 

the qualifier term “drug therapy”, “drug effects” or “pharmacology” as being drug-related 

research and count each such publication as one unit of research. We refer to these three 

constructed measures as DRUG 1, DRUG 2, and DRUG 3, respectively.

16We assume that αif = 1 and αit = 1 for all i,t,f. The estimating equation therefore becomes 

. Omitting a multiplicative constant in this specification is both innocuous and 
necessary because the true value of the parameter β2 is typically very small and the variation in t − f is limited which make the factor 

 approximately equal to β2 × (t − f) in the sample.
17This could be generalized by employing article-specific citation or journal impact factor based quality- adjusted measures of 
research effort. We leave this generalization for future work.
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We also use several strategies to measure other medical research. First, we classify all 

publications that are not matched to an ingredient as other medical research and count each 

such publication as one unit of research. Second, we classify all publications that are 1) not 

matched to an ingredient, 2) not indexed are indexed with any of the qualifier terms “drug 

therapy”, “drug effects” or “pharmacology”, and 3) not indexed with the term “Chemicals 

and Drugs”, as other medical research and count each such publication as one unit of 

research (this method excludes most of research that is conducted using unapproved drugs 

that do not appear in our list of FDA approved ingredients). Third, we classify all research 

that is indexed with the qualifier term “surgery” or “transplantation” as other medical 

research and count each such publication as one unit of research. We refer to these three 

constructed measures as OTHER 1, OTHER 2, and OTHER 3, respectively.

4.2 Measurement of Research Inputs and their Cohort

We rely on textual information in publications to measure research opportunities, rather than 

citations as is standard in the patent literature. In principle, also an analysis of research 

inputs in scientific research could be based on citations. However, citation data are not 

always widely available (even only post-1947 U.S. patents display citation data) and while 

an important input in scientific research is private-sector innovation (Rosenberg, 1982) 

citations in scientific publications seldom reveal their presence.

To limit the scope of the data extraction exercise, we construct the measure of the quality of 

research opportunities only for drug-related medical research, for which an important (and 

easily available) subset of the research inputs is the set of approved active ingredients.18 To 

determine which ingredients are used as research inputs in each medical research 

publication, we search through the titles and abstracts of all publications for all approved 

active ingredients.19 A match between ingredient name and publication indicates that the 

ingredient was an input to the research process that led to the publication.

Our measure of drug-related research captures applied drug-related medical research.20 

Such research is primarily conducted by academic researchers and published in academic 

18Sufficient computational resources would enable one to index all words in all research publications and then determine the cohort of 
each concept represented by each new word, allowing one to identify the research opportunities associated with each publication 
without a predetermined list of research inputs. The Google Books Ngram project (Michel et al., 2011) applied a related approach to 
examine the popularity of different cultural interests over time.
By focusing on active ingredients, we ignore new concepts and technologies such as genomics and recombinant DNA which 
undoubtedly have opened new research opportunities even for drug-related research. This does not pose a problem for our analyses to 
the extent that such general technologies affect research on all diseases equally (or at least their introduction is not correlated with our 
independent variables). More importantly, despite this caveat the textual analysis developed here captures a much richer set of research 
inputs than can be captured by citation data alone.
19We identify active ingredients from the Federal Drug Administration (FDA) data on drug approvals during 1939–2006. As we 
cannot distinguish between active ingredients and their derivatives in the publications data, we consider the first word of each entry in 
the list of approved ingredients to be the ingredient name. This yields a list of 1,448 ingredients. This list includes drugs that were in 
use before the FDA was established. We do not use approval year information in the FDA data because medical research that pursues 
opportunities created by a new drug often starts before FDA approval (e.g. cyclosporine was first approved in 1983 but was mentioned 
in publications published two years earlier). Also, FDA administrative data is not always complete (e.g. the data report the approval 
year(s) of subsequent formulations, but not the base drug).
20Pharmaceutical research that leads to the discovery of new active ingredients precedes the drug-related research we examine. When 
active ingredient name is used in publications, the intended therapeutic use of the drug is already known and the associated patent 
application already filed. Pharmaceutical manufacturers apply for an active ingredient name for a drug during phase I or phase II 
clinical trials which happen after the pre-clinical testing has been completed and the drug has received an investigational drug 
application.
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journals; basic drug development research is conducted by either pharmaceutical firms or 

academics. We set the cohort f of each measured research input (active ingredient) to the 

year prior to the year when the input is first mentioned in the a publication. We lump 

together research inputs with the same cohort f. A publication may mention research inputs 

from multiple cohorts. We count such multiple matches from one publication the same way 

we would count the matches if each match was from a separate publication.

4.3 Data on Disease Prevalence

To construct population aging and obesity epidemic related measures of disease prevalence 

over time we combine cross-sectional disease prevalence data with panel data on population 

characteristics. We estimate cross-sectional disease prevalence for each age and BMI group 

from Medical Expenditure Panel Survey data for years 1996–2005. We use Surveillance 

Epidemiology and End Results data for years 1975–2004 to estimate the share of people in 

each age group in each year. For each age group we use National Health Interview Survey 

data for years 1976–2005 to estimate the share of people in each BMI group in each year.

4.4 Sample Period

We set 1975–2005 as the sample period in the regression analyses, and in estimating the 

quality of research opportunities we limit the range of research input cohorts f to 1960–2001 

and the range of publication years t to 1970–2002. Please see the data appendix for details.

5 The Empirical Models

We rely on population aging and obesity epidemic induced exogenous changes in disease 

prevalence to identify the “induced innovation effect” (see Section 6.1). Construction of the 

corresponding disease prevalence variables  and  is discussed below.21 

The employed regression model, which is based on equation (5) and the discussion in 

Section 2.3, is:

(10)

The variable Nit is a measure of medical research effort (publications) on the disease i in 

year t. We construct a measure of the quality of research opportunities, Kit, only for drug-

related medical research but include this variable also in our analyses of other medical 

research to test whether our estimate of the “research opportunity effect“ in drug-related 

research is biased by reverse causality (see Section 6.2). The variable ut is the error term.

Parameters αi and αt represent disease and year fixed effects. Year fixed effects capture 

changes in publication norms and effort associated with each publication over time. We also 

employ an alternative specification with disease fixed effects αi and disease-class specific 

year fixed effects αd,t. Parameters of interest are different in these specifications if the 

elasticity of substitution of research effort between diseases depends on whether the diseases 

21See the Data Appendix to Section 4.3 for the derivation and rationale for this decomposition.
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are in the same disease class. In the former (latter) specification the identifying variation for 

each parameter is the variation in the regressor within each disease relative to the 

corresponding variation for all other diseases (for other diseases in the same disease class).

The variable  is constructed as , 

where  is the prevalence of disease i among people in the age group j who are in the 

BMI group k,  is the share of people in the age group j in year t, and  is the share 

people in the age group j who are in the BMI group k in the initial year t0.22 Effectively, 

 reflects the prevalence of disease i in year t when age distribution varies over time 

but body weight distribution is fixed to the level seen in the initial year t0 in the sample. The 

variable  is constructed analogously as 

.

6 Identification Strategy

6.1 Identification of Induced Innovation Effects

The causal effect of potential market size (the number of people with a disease) on 

innovation cannot be inferred from the correlation between observed innovation and 

observed market size because causation runs in both directions. Acemoglu and Linn (2004) 

circumvent this problem by examining the relationship between changes in pharmaceutical 

innovation and changes in potential market size that are caused by population aging induced 

changes in disease prevalence. This identification strategy works when the effect of aging on 

disease prevalence varies across diseases, the age demographics of the population have 

changed over time, and the changes in the age demographics are mostly caused by changes 

in fertility.

We follow this general identification strategy in our analysis. However, we also take into 

account changes in the body weight distribution of the population. Using obesity as an 

exogenous source of variation is appropriate if the effect of obesity on disease prevalence 

varies across diseases, the body weight distribution of the population has changed over time, 

and the obesity epidemic is mostly exogenous to the rate of medical innovation.23 Our 

descriptive statistics show that the first two conditions hold (see Section 7.1). It is also 

reasonable to expect that the third condition holds, since both the theoretical and empirical 

literature on the obesity epidemic point to factors other than developments in medical 

technology.24

22Parameters  and  are estimated from data on disease prevalence and demographics (see Section 4.3). The age 
groups are 0–18, 18–35, 35–50, 50–65 and 65+. The BMI groups are 18.5–25, 25–30 and 30–50. As we use disease and year fixed 
effects we can ignore population size and population growth in estimating disease prevalence. Please see the Data Appendix to Section 
4.3 for further details.
23Of course, the changes in obesity (and in age demographics) must also be uncorrelated with factors captured by the error term.
24Our focus on aging and obesity is not meant to dispute that other factors also influence the extent of medical research. This focus is 
dictated by data availability and by the fact that both factors are known to have had a large impact on the prevalence of many diseases. 
Potentially important omitted factors include changes in disease severity (seefootnote 9), and changes in insurance coverage (see 
below). Also, as a population becomes wealthier its willingness to invest in developing treatments to diseases that affect mainly 
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6.2 Identification of the Research Opportunity Effect

With a different functional form for the benefit from medical research the optimal allocation 

of research effort across opportunity cohorts within a disease would depend on the extent of 

research on the disease. Consequently, changes in the level of research on a disease would 

impact estimates of the quality of research opportunities. There might thus be a positive 

empirical relationship between these two variables even if there was no causal effect from 

the quality of research opportunities on the extent of research effort.

To address this potential concern we take advantage of the fact that we examine two 

categories of medical research, namely drug-related medical research and other medical 

research. Unobserved effects that influence these two types of research are likely correlated. 

Consequently, if there is (is no) reverse causality from the level of drug-related research 

effort to the measure of quality of research opportunities in drug-related research, this 

measure of the quality of research opportunities will likely also be correlated (will likely be 

uncorrelated) with the level of other medical research. We can therefore test for the presence 

of reverse causality in our estimates of the research opportunity effect by including the 

measure of the quality of research opportunities in drug-related medical research also as a 

regressor in the analyses of the determinants of other medical research.25

7 Results

7.1 Descriptive Statistics

Changes in the age and body weight distributions in the U.S. population are well known, so 

we omit displaying them here. While the change has been gradual for both distributions, the 

change in the body weight distribution began more recently. Figure 1 shows the effects of 

these changes on the prevalence of each disease during the sample period (1975 vs. 2005). 

For both variables there is considerable variation in the effect (from −10% to +20%). These 

identifying variations are also not so correlated that the effects cannot be separately 

identified.

Figure 2.1 depicts the count of all publications and the count of publications with an abstract 

by the year of publication. The graph also shows the count of publications that are indexed 

with a disease (Publications Indexed with a Disease) and the count of publications that are 

indexed with a disease that is matched to an ICD-9 disease by our match (Publications 
Matched). Their comparison reveals that our match captures roughly 50% of all disease-

linked medical research. The count of matches of publications to a disease (Publication-
Disease Matches) is higher than the number of publications matched to at least one disease 

(Publications Matched) as a publication may be indexed to multiple diseases.

financially vulnerable populations may change. It is also possible that the attitudes toward these (or other populations such as children) 
change over time for not yet understood reasons, and that these changes influence the allocation of research.
Using data on insurance coverage from the NHIS, we conducted additional analyses to examine whether taking public and private 
insurance coverage into account in constructing the disease prevalence variables changes the results. This approach did not 
qualitatively change the estimates or their statistical significance.
25If the estimate of the research opportunity parameter βK is close to zero when the dependent variable is a measure of other medical 
research, it is an indication that a positive estimate of the coefficient βK when the dependent variable is a measure of drug-related 
medical research is not a result of reverse causality.
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The two panels of Figures 2.2 depict the counts of publication-disease matches for each 

measure of drug-related medical research and other medical research in each year.26 The 

count of publications for each measure is an important determinant of the precision of our 

estimates because the variance of the share of publications that are matched to a disease is 

expected to be inversely related to the count of publications and the estimated effects are 

identified from the effects on the share of publications that are matched to each disease. This 

is also the reason why we report weighted regression results.27

7.2 Estimates of the Quality of Research Opportunities

We estimate the quality of research opportunities,  using formula (6) and the iterative 

procedure described in Section 3. The estimates of the diffusion and exhaustion parameters 

are  = 0.0628 (s.e. 0.0045) and  = 0.0027 (s.e. 0.0004). Figure 2.3 shows that the 

predicted probability that is calculated based on these estimates tracks the observed 

probability closely except for when the ingredient age is 35 and over.28

7.3 Induced Innovation and Research Opportunity Effects

7.3.1 All Medical Research—Results for all medical research are shown in Table 1. The 

count of all publications  corresponds to the measure Publication-Disease Matches in 

Figure 2.1.29 Columns 1 and 2 show that aging-induced increases in disease prevalence have 

increased research effort. By contrast, there is no evidence of a corresponding effect for 

obesity-induced changes in disease prevalence. Columns 3 and 4 show a positive 

relationship between the quality of research opportunities variable and the amount of total 

research.

Columns 3 and 4 also show that inclusion of the research opportunity variable renders the 

effect of aging-induced changes in disease prevalence statistically insignificant. However, a 

careful examination of residual plots from these regression (see Bhattacharya and Packalen, 

2008a) suggests that, with the exception of the outlier disease 299 (Child Development 

Diseases in the Mental Disorders class) there is a robust positive relationship between aging-

induced changes in disease prevalence and the changes in the overall research effort in the 

disease. Columns 5 and 6 show that when the disease 299 and the two other children’s 

mental health diseases (314 and 315) are excluded, the relationship between aging-induced 

changes in disease prevalence and the overall research effort is again statistically significant. 

Because the change in the age distribution has had such an unusual effect on the predicted 

disease prevalence for the disease 299 (see Figure 1) and because the dramatic increases in 

26Their comparison with the count of matches of publications to a disease (Publication-Disease Matches) in Figure 2.1 shows that 
throughout the sample period the broadest (narrowest) measures of drug-related research and other research, respectively, represent 
roughly 45% and 55% (20% and 10%) of total matches.
27While we do not report the unweighted regressions, the residual graphs shown in Bhattacharya and Packalen (2008a) serve the same 
purpose and also show that the results are not the product of outliers.
28The share of publications that use ingredients aged 35 and over is artificially inflated by the fact that the publications data consists 
mostly of publications published after 1950. Our methodology of assigning the discovery year thus assigns cohorts between 1950 and 
1965 for a disproportionate number of ingredients, as can be seen from Figure 2e in Bhattacharya and Packalen (2008a).
29The observations are weighted by the total count of publications matched to the disease during the sample period. That is, each 

observation is weighted by . The number of observations varies across columns because an observation is omitted if 

either  or .
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the number of diagnoses and research interest in the children’s mental health diseases have 

been well recognized but without agreement over causes, in the subsequent analyses we 

exclude the three children’s mental health diseases.30

The magnitude of our estimates of the impact of aging-induced changes in disease 

prevalence on medical research in columns 5 and 6 is similar to the magnitude of the 

corresponding estimate in Acemoglu and Linn (2004) for aging-induced pharmaceutical 

innovation. These estimates in our study and in Acemoglu and Linn (2004) are larger than 

the estimates in Finkelstein (2004) for the impact of vaccine policies on the number of new 

clinical trials.31

7.3.2 Drug-Related Medical Research—Results for the three measures of drug-related 

medical research are shown in Table 2.32 There is robust evidence for aging-induced 

changes in the composition of drug-related medical research across diseases. By contrast, 

there is no evidence for a positive relationship between obesity-induced changes in disease 

prevalence and the amount of drug-related research on the disease. If anything, results 

suggest a negative relationship. Further below we examine a potential explanation for this 

(see Section 7.3.4).

There is also robust evidence for the hypothesis that the quality of opportunities influences 

the allocation of drug-related medical research effort across diseases.33 As expected, 

estimates of this effect in Table 2 are larger compared to the case when the dependent 

variable is constructed from all medical research (see columns 3–6 in Table 1). Our 

estimates of this effect demonstrate-for the first time in the literature-that the direction of 

scientific research responds to changes in the quality of opportunities. The magnitude of this 

response relative to aging-induced changes in research effort can reflect either the possibility 

that the true response is indeed relatively weak, as changes in the quality of opportunities 

may be hard to identify at the time, or measurement error in the opportunity variable.

One potential problem is that mismeasurement and exclusion of the opportunity variable will 

lead to upward bias in estimates of the induced innovation effect if the opportunity variable 

and the variable associated with the induced innovation effect are correlated. To address this 

concern we estimated a constrained regression corresponding to the specification in column 

30Research on children’s mental health diseases has increased dramatically since the early 1990s and this increase is undoubtedly tied 
with the increase in the number of diagnoses for these diseases during the same period. While the unusual increase in the interest in 
these diseases is well known there is no agreement on why the increase has occurred. One explanation is that the increase in the 
diagnoses and the increase in research to the children’s mental health diseases are consequences of the availability of dramatically 
better treatment options for these diseases, especially in the form of better knowledge of the effects of several drugs such as 
methylphenidate (ritalin). Methylphenidate was discovered in the 1950s and our measure of the quality of research opportunity is 
unable to predict the increase in research to these diseases because the increase happens 40 years after the discovery of the drug. An 
alternative explanation for why children’s mental health diseases are outliers is that during the sample period there may have been a 
general disproportionate increase in research in diseases that primarily affect the children. We plan to explore this possibility in future 
research.
31Finkelstein’s (2004) estimates too are derived from a difference-in-difference methodology. They reflect the impact on the 
composition of innovation rather than impact on the total extent of innovation. Acemoglu and Linn (2004) note this and emphasize 
that the responses to changes in relative market sizes across diseases and changes in total market size can be quite different. For this 
reason we do not use our estimates to construct an estimate of the dynamic welfare impact of induced medical research. Another 
interesting question left for future research is whether the responses are closer to optimal for private or public sector actors.

32For the measure DRUG k, where k ∈ {1,2,3}, each observation is weighted by .
33Figure 3d in Bhattacharya and Packalen (2008a) shows that this result is not driven by outliers.
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6 of Table 2 with the coefficient on the opportunity variable fixed at 1.48 (two times its 

estimated value). In this constrained regression the coefficient on the aging variable 

decreases to 2.30 (from 4.06) but remains statistically significant at the 5% level. While this 

speaks to the robustness of the results to some measurement error in the opportunity 

variable, it must be interpreted with caution: if the true value of the coefficient on the 

opportunity variable is lower than the constrained value and the opportunity and disease 

prevalence variables are correlated, then the constrained estimates of the induced innovation 

effect will likely be biased downward. Extending methodologies relating to the measurement 

of the opportunity variable, as we have done in this paper, is therefore important also from 

the perspective of estimating induced innovation effects.

7.3.3 Other Medical Research—Results for the three measures of other medical 

research are shown in Table 3.34 The coefficients on the quality of research opportunities in 

drug-related research are much smaller in Table 3 than the estimates of the coefficient on the 

same variable are in the analyses of drug-related research (see Table 2). These estimates are 

now also statistically insignificant, except in column 1 in which the dependent variable is the 

most inclusive measure of other medical research and which is thus the most likely of the 

three measures of other medical research to include some drug-related publications. As we 

argued in Section 6.2, such a null finding is evidence against the concern that reverse 

causality is the reason for the observed positive research opportunity effect for drug-related 

research.35

Columns 1–4 provide evidence of aging-induced changes in the composition of other 

medical research across diseases but again show no evidence of similar obesity-induced 

changes. Results for surgery-related research (the measure OTHER 3) in columns 5 and 6 

show that the relationship between aging-induced changes in disease prevalence and the 

extent of surgery-related research on the disease is positive but not statistically significant. 

Results in columns 5–6 also suggest a possible negative relationship between obesity-

induced changes in disease prevalence and the extent of surgery-related research on the 

disease. We examine a potential explanation for this next.

7.3.4 Effects on the Composition of Medical Research Within Diseases—
Changes in disease prevalence may also have effects on the composition of research within 

diseases and such changes may influence estimates of the determinants of the extent of 

research effort across diseases (see Section 2.3). Accordingly, in Table 4 we report estimates 

of the determinants of the composition of research within diseases.36

34For the measure OTHER k, where k ∈ {1,2,3}, each observation is weighted by .
35The power of this reverse causality test of course depends on the correlation between the unobserved factors that influence the 
extent of drug-related medical research and the unobserved factors that influence other medical research. The correlation between the 
residuals from the regression of the extent of drug-related medical research on disease prevalence and the opportunity variable and the 
residuals from the regression of other medical research on the same variables (or on only the disease prevalence variable) is between .
26 and .44 depending on the fixed effects specification and the chosen measures of drug-related and other medical research. The 
relationship is highly (p < 0.001) statistically significant in all cases.

36In columns 1–2 (columns 3–4) each observation is weighted by  (by ).
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In columns 1 and 2, the dependent variable is the logarithm of the ratio of the most 

restrictive measure of drug-related research to all research. As expected, the results indicate 

a positive relationship between the opportunity variable and the share of research that is 

drug-related. The positive but statistically insignificant point estimate on the aging variable 

leaves open the possibility that drug-related research reacts to aging-induced changes in 

disease prevalence more strongly than all medical research. The negative but statistically 

insignificant coefficient on obesity-induced changes in disease prevalence implies that an 

obesity-induced increase in the prevalence of a disease may decrease the share of research 

on the disease that is drug-related and increase the share of research on the disease that is 

still applied but focused on the physiology of disease in the obese.

In columns 3 and 4, the dependent variable is the logarithm of the ratio of surgery-related 

research to all research. The negative estimate of the opportunity effect is additional 

evidence against the aforementioned reverse causality concern. Further, it is evidence that an 

increase in the quality of research opportunities in drug-related research shifts research effort 

away from other types research to drug-related research. We find no relationship between 

aging-induced changes in disease prevalence and the ratio of research that is surgery-related. 

The negative coefficient on obesity-induced changes in disease prevalence again suggests the 

possibility that an obesity-induced increase in the prevalence of a disease shifts resources 

away from general research to obesity-specific research on the disease.

8 Conclusion

Our results show that the composition of medical research across diseases responds to 

population aging induced changes in disease prevalence. This result is robust to the inclusion 

of a carefully constructed control measuring the quality of research opportunities in drug-

related medical research. The results also suggest that obesity induced increase in the 

prevalence of a disease shifted research away from more general drug-related medical 

research and from more general surgery-related research on the disease, toward obesity-

specific research on the disease.

These results provide support for the hypothesis that the direction of scientific research in 

medicine (conducted primarily in academic medical centers) responds to changes in the 

downstream market for that research, namely patients, just as private-sector technological 

innovation does. The distinction between scientific research and private-sector technological 

innovation is important because the two can differ in many ways, including for-profit vs. 

non-profit status and the level of control that individual researchers have.

While we do not examine the mechanisms that induce the direction of scientific research to 

respond to these factors, our analysis shows that these-yet largely unexplored–mechanisms 

have a desirable property in the sense that they induce scientific research to respond to 

factors that in part determine the socially optimal allocation of research resources. Our 

analysis is an important input into analyses of these mechanisms as it refutes the view of 

scientific medical research as an ivory tower in which scientists’ desire to influence other 

scientists is the primary determinant of the direction of research. We expect that future 

research on these mechanisms, on how far or close the allocation of scientific research is 
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from the socially optimal allocation, and on what factors besides opportunities and societal 

benefits are important drivers of the direction of scientific research, will be both fertile and 

worthy.
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Data Appendix

Data Appendix to Section 4.1

We limit the match effort to diseases for which the MEPS disease incidence data includes at 

least 100 observations.37 We do not match ICD-9 codes that include either the word “Other” 

or the word ’Unspecified” in the title because these ICD-9 codes typically include a variety 

of different diseases and are therefore difficult to match to the MESH vocabulary. Neither do 

we match diseases in the pregnancy category (class 11), in the congenital category (class 

14), in the perinatal category (class 15), in the symptoms category (class 16), in the injuries 

category (class 17) or in the services category (class V). These classes are excluded from the 

match effort both in order to limit the scope of our match effort and because of the difficulty 

of matching diseases in these categories. If a match from an individual disease to a MESH 

entry/entries is not possible we try to match a group of ICD-9 codes to a MESH entry/

entries. The 127 matched diseases account for 377,482 of the 745,355 disease mentions in 

the MEPS disease incidence data.

Because MESH is a hierarchical vocabulary, we also count all research that is indexed to any 

subnode of a matched MESH term as research that is related to the matched disease or group 

of diseases.38 As the MESH vocabulary has changed over the years we make an effort to 

check that the MESH terms for the matched diseases have not changed in a way that would 

influence the research effort estimate. For the diseases for which the related publications 

from a year during the sample period are likely to have been indexed by terms other than the 

matched MESH entry/entries we exclude the observations from such years and from any of 

the preceding years. In Bhattacharya and Packalen (2008a) the match for such diseases is 

marked with an asterisk and the year prior to which any observations are excluded.

Data Appendix to Section 4.3

To estimate disease incidence for each age and BMI group we use the Medical Expenditure 

Panel Survey (MEPS) data from years 1996–2005.39 Each subject is followed in MEPS for 

two years. For each subject we aggregate the observations in each year into one observation. 

37We exclude HIV/AIDS because the disease does not appear in the publications database until the early 1980s and because the 
variations in the incidence of HIV/AIDS are obviously not mainly driven by aging or the obesity epidemic.
38We manually remove several matches of ICD-9 diseases to terms for neoplasms in MESH when the same neoplasm term is also 
mapped to a disease in the ICD-9 disease class 2 (neoplasms). MESH has 4982 disease terms. The match maps 1338 terms in MESH 
to the 127 diseases. 51 of the matched terms are mapped to 2 diseases and one term in MESH is mapped to 3 diseases. All other terms 
are mapped to only 1 disease.
39Because the trends in the changes in the age and body weight distributions have been similar across the developed nations we do not 
believe that using data on disease incidence, age demographics and obesity for the United States but data on world-wide publications 
is a significant concern.
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MEPS includes a list of self-reported diseases that are coded by the International 

Classification of Diseases, Ninth Revision (ICD-9). MEPS does not include BMI 

information for years 1996–2000. We therefore use the National Health Interview Survey 

(NHIS) data from years 1996–2000 and the match between NHIS and MEPS to obtain BMI 

information for the observations in those years. Except for subjects in the age group 0–18 we 

exclude subjects without either age or BMI information.40 The resulting MEPS data 

includes 262,958 observations on 149,737 subjects.

We use the Surveillance Epidemiology and End Results (SEER) data from years 1975–2004 

to estimate the share of people in each age group in each year.41 For each age group we use 

the NHIS data from years 1976–2005 to estimate the share of people in each BMI group in 

each year.42

In estimating the disease incidence parameters  (see Section 5) we allow these 

parameters to vary by sex, race (black/non-black), insurance status (private/not private) and 

year but for expositional simplicity we omit these issues in the main text. As we don’t 

measure changes in insurance coverage across time we do not examine the effect that 

changes in the insurance coverage across time may have on the benefit from medical 

research and on the extent of research.

The decomposition of changes in disease incidence to population aging and obesity 

epidemic induced changes (see Section 5) arises as follows. Let  denote the incidence of 

disease i in the initial year t0. Let  denote the effect of aging alone on the incidence 

of disease i so that if only population aging affected the incidence of disease i the incidence 

of disease i would be  in year t. Let  denote the additional effect of 

the obesity epidemic on the incidence of disease i so that if only aging and obesity affected 

the incidence of disease i the incidence of disease i would be 

in year t. Let  denote the effect of obesity alone on the incidence of disease i so 

that if only obesity affected the incidence of disease i the incidence of disease i would be 

 in year t. Because  is small, . Therefore, 

. We can therefore 

decompose the total effect  into an aging effect 

and an obesity effect . Because the empirical specifications include either 

disease fixed effects, we can use the variables  and –

40Interpreting BMI of children is not as straightforward as interpreting BMI of adults. Hence, we do not distinguish the disease 

incidence by body weight for the age group 0–18. Consequently, we set ,  and  for all t. Because people 
the age group 0–18 have small average expenditures and also the effect of the obesity epidemic on disease incidence is small for this 
age group, ignoring the effect of the obesity epidemic on the disease incidence of this age group has a negligible influence on the 

potential market size variable .
41We impute the values for 2005 by assuming that the change in the population in each age group from 2004 to 2005 was the same as 
it was from 2003 to 2004.
42We impute the values for 1975 by assuming the the body weight distribution was the same in 1975 as it was in 1976.
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instead of the variables  and –as regressors. In the text these 

variables  and  are denoted by  and 

, respectively.

This decomposition reflects the fact that the effect that an obesity-induced change in disease 

incidence has had on the extent of research may be different than the effect that a 

corresponding aging-induced change in disease incidence has had on the extent of research. 

These two effects would be different, for example, if the implications of aging on disease 

incidence have been better understood than the implications of obesity on disease incidence, 

or if the change in age demographics was more expected than the obesity epidemic.

Data Appendix to Section 4.4

As our discussion of the descriptive statistics in Section 7.1 shows, there is a discontinuous 

jump in the share of publications with abstracts in the database from 1974 to 1975. 

Moreover, a number of diseases are indexed with different MESH terms before 1975 and 

especially before 1970 than they are after 1975. For these reasons we choose 1975–2005 as 

our sample period.

We determine the cohort of an ingredient (the year before the first mention of the ingredient-

see Section 4.3) from the publications in years 1906–2005. In estimating the parameters that 

govern the quality of research opportunities (see Section 4) we limit the range of cohorts f to 

years 1960–2001 because there is a discontinuous jump in 1950 in the number of 

publications that are indexed in MEDLINE and because there is a discontinuous fall in the 

number of ingredients in a cohort from 2001 to 2002 due to the lag between the year in 

which an ingredient is first mentioned in the publications database and the year of FDA 

approval of the ingredient.43 Because of this lag, because many of the diseases are indexed 

with different terms before 1970, and because in the subsequent analysis our focus is on the 

sample period 1975–2005, in estimating the quality of research opportunities (see Section 4) 

we limit the range of the years t to 1970–2002.

Background Appendix: Non-Profit Nature of Publications in Medicine

The intertwined nature of industrial R&D activity and academic research activity is well 

established. The two are connected in many ways, especially in the biomedical sector. In this 

appendix we discuss each of these connections. And in each case we argue that despite the 

connection, pharmaceutical innovation reflects largely the functioning of for-profit 

incentives and biomedical publications reflect largely the functioning of non-profit 

incentives.

43We multiply the initially estimated research opportunity by a factor that compensates for truncation. We assume that the average 
baseline productivity is the same before and after any truncation point. That is, the estimates are multiplied by 

 for all years t ≤ 2001. For t > 2001 
we also compensate for truncation due to the upper bound.
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1. Pharmaceutical Innovation Reflects Mostly For-Profit Incentives

First, many of the innovations that are introduced by pharmaceutical companies are based on 

knowledge generated in the public sector (see e.g. Cockburn and Henderson, 1998 and Ward 

and Dranove, 1995). This fact is at odds with the interpretation in the related literature on the 

determinants of pharmaceutical innovation (e.g. Acemoglu and Linn, 2004), where research 

in the pharmaceutical industry is often taken as an example of innovation in the for-profit 

sector. However, we believe that, to a first approximation, it is reasonable to consider the 

majority of pharmaceutical innovation as reflective of the functioning of for-profit 

incentives. The alternative-that pharmaceutical firms do not make substantial choices about 

which lines of research to pursue but decide their research agenda mainly on the basis of 

prior basic research done in the public sector–seems to us less reasonable.

2. Research Publications Are Mostly from Academic Research Institutions

Second, individuals employed in pharmaceutical companies also publish in academic 

journals and co-author research papers with university researchers (see e.g. Cockburn and 

Henderson, 1998 and Adams and Clemons, 2008). Biomedical publishing will therefore 

reflect, in part, how for-profit incentives respond to determinants of innovation. 

Unfortunately no comprehensive study exists on what part of biomedical publishing can be 

attributed to industry. However, Adams and Clemons (2006) present summary statistics on 

the origin of scientific publications in a database of over 5000 journals across the sciences 

during the time period 1980–1999. Their analysis shows that during this time period the top 

110 U.S. universities published 800,000 papers in medicine and the top 200 U.S. R&D firms 

published less than 30,000 papers in medicine. While this comparison is not comprehensive 

because it does not compare the biomedical publications of all U.S. universities with the 

biomedical publications of all pharmaceutical and biotechnology firms, the comparison 

suggests that the contribution of industry to academic publishing during this time period is 

substantially less voluminous than the contribution of research universities to academic 

publishing.

This conclusion is also supported by a National Science Foundation study which mentions 

that in 2003 in the science and engineering sector the academic sector accounted for almost 

three quarters of the publications originating in the U.S.44 The remaining one quarter of the 

publications is attributed to industry, government and non-profits. The study also finds that 

only 6.0% of the publications that have at least one academic author have an industry 

coauthor. The available evidence thus suggests that the results in our analysis and the results 

in any other analysis that examines the determinants of publications in medicine in a 

comprehensive manner mainly reflect the publishing behavior of academic research 

institutions and the associated non-profit incentives as opposed to the publishing behavior of 

industry and the associated for-profit incentives.

44National Science Foundation, Division of Science Resources Statistics (NSF/SRS) 2006, “Industrial Funding of Academic R&D 
Continues to Decline in FY 2004,” NSF 06–315.
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3. Academic Researchers in Medicine Mostly Do Not Patent

Third, in addition to publishing their work in academic publications university researchers 

also apply for patents. If patents and the associated for-profit incentives are a significant 

driving force behind academic biomedical research then biomedical publishing as the other 

product of biomedical research would also reflect the functioning of for-profit incentives. 

However, the analysis of patenting in medicine by Azoulay et al. (2007b) shows that during 

the period from 1981 to 2000 only 5% of faculty members in medical schools applied for a 

patent that was successfully granted.45 Especially when this already low percentage figure is 

combined with the fact that most patented innovations bring no revenue to the patentee, we 

conclude that patenting and the associated for-profit incentives are likely not a significant 

determinant of biomedical research and publishing. Moreover, this conclusion is even 

stronger for our analysis as we only consider biomedical publications that are applied 

biomedical research in the sense that the publication is related to a specific disease and 

Azoulay et al. (2007b) find that biomedical patenting is much more common for basic 

research than for applied research.

Because patenting is not very common in medicine and particularly in the applied research 

that is our focus, patenting by other researchers is unlikely to influence the direction of 

research much in medicine. This is somewhat in contrast with the analysis of the 

anticommons hypothesis in biotechnology by Murray and Stern (2007) who find a modest 

anticommons effect. However, their analysis was based on selecting the biomedical 

publication (Nature Biotechnology) in which, ex ante, patenting by other researchers was the 

likeliest to have an effect on publication behavior. We also note that, to the best of our 

knowledge, in-force patents on approved drugs are not known to hinder the type of disease-

driven medical research that we examine here.

4. Academic R&D is Mostly Funded by Non-Industry Sources

Fourth, some of the research activities of academic institutions are financed by industry. If 

industry funding is a major source of funding for academic R&D, the direction of academic 

R&D might simply reflect the direction of industry R&D and the associated for-profit 

incentives. However, a National Science Foundation study shows that in science and 

engineering during 1993–2004 academic R&D funds provided by industry have been less 

than 8% of all R&D funding.46 The industry funding of academic R&D was $2.1 billion in 

2004. This figure is substantially less than total university research expenditures ($43.0 

billion in 2004) and federal support for university research expenditures ($27.4 billion in 

2004). That figure is also substantially less than university research expenditures in medical 

sciences alone ($14 billion in 2004) and federal support for medical sciences ($9.4 billion in 

2004). Considering the balance of the evidence, we conclude that research in academic 

medicine largely (though not exclusively) exemplifies the products of non-profit incentives.

45The analysis also shows that academic biomedical patents accounted for only 25% of total biomedical patenting even during the 
peak period of academic biomedical patenting (the late 1990s).
46National Science Foundation, Division of Science Resources Statistics (NSF/SRS) 2006, “Where Has All the Money Gone? 
Declining Industrial Support of Academic R&D,” NSF 06–328.
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Figure 1. 
Predicted Effects of Changes in Age and Body Weight Distributions on Disease Prevalence.

Bhattacharya and Packale Page 24

J Health Econ. Author manuscript; available in PMC 2017 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2.1. 
Publications in the MEDLINE Database by Year.
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Figure 2.2. 
Matches to Drug-Related and Other Publications in the MEDLINE Database by Year.
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Figure 2.3. 
Predicted and Actual Probability of Opportunity Cohort Use as a Function of Cohort Age.
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Table 4

Determinants of the Allocation of Medical Research Across Research Types Within Diseases.

(1) (2) (3) (4)

Dependent variable:

0.53
[0.21]

pwild = 0.005

0.54
[0.21]

pwild = 0.001

−0.25
[0.14]

pwild = 0.043

−0.20
[0.12]

pwild = 0.089

0.79
[1.06]

pwild = 0.494

1.58
[1.05]

pwild = 0.196

−0.62
[1.04]

pwild = 0.563

−0.77
[0.92]

pwild = 0.459

−1.69
[1.28]

pwild = 0.242

−1.76
[1.07]

pwild = 0.105

−0.65
[0.46]

pwild = 0.248

−0.89
[0.48]

pwild = 0.073

Fixed effects Disease, Class × Year Disease, Year Disease, Class × Year Disease, Year

Number of observations 3697 3697 3723 3723

Children’s mental health diseases (299, 314, 315) are omitted. See the footnote to Table 1 for an explanation of the standard errors and p-values.
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