
MIT Open Access Articles

Quantifying statistical interdependence by message passing 
on graphs—Part II: Multidimensional point processes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dauwels, J. et al. “Quantifying Statistical Interdependence by Message Passing on 
Graphs—Part I: One-Dimensional Point Processes.” Neural Computation 21.8 (2009): 2152-2202. 
©2009 Massachusetts Institute of Technology

As Published: http://dx.doi.org/10.1162/neco.2009.04-08-746

Publisher: MIT Press

Persistent URL: http://hdl.handle.net/1721.1/57435

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/57435


LETTER Communicated by Jonathan Victor

Quantifying Statistical Interdependence
by Message Passing on Graphs—Part II:
Multidimensional Point Processes

J. Dauwels
jdauwels@mit.edu
Laboratory for Information and Decision Systems, Massachusetts Institute of
Technology, Cambridge, MA 02139, U.S.A., and Amari Research Unit, RIKEN Brain
Science Institute, Saitama 351-0198, Japan

F. Vialatte
fvialatte@brain.riken.jp
Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute,
Saitama 351-0198, Japan

T. Weber
theo w@mit.edu
Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.

T. Musha
musha@bfl.co.jp
Brain Functions Laboratory, Yokohama 226-8510, Japan

A. Cichocki
cia@brain.riken.jp
Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute,
Saitama 351-0198, Japan

Stochastic event synchrony is a technique to quantify the similarity of
pairs of signals. First, events are extracted from the two given time se-
ries. Next, one tries to align events from one time series with events
from the other. The better the alignment, the more similar the two time
series are considered to be. In Part I, the companion letter in this is-
sue, one-dimensional events are considered; this letter concerns multi-
dimensional events. Although the basic idea is similar, the extension to
multidimensional point processes involves a significantly more difficult
combinatorial problem and therefore is nontrivial.

Also in the multidimensional case, the problem of jointly computing
the pairwise alignment and SES parameters is cast as a statistical in-
ference problem. This problem is solved by coordinate descent, more
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specifically, by alternating the following two steps: (1) estimate the SES
parameters from a given pairwise alignment; (2) with the resulting esti-
mates, refine the pairwise alignment. The SES parameters are computed
by maximum a posteriori (MAP) estimation (step 1), in analogy to the
one-dimensional case. The pairwise alignment (step 2) can no longer be
obtained through dynamic programming, since the state space becomes
too large. Instead it is determined by applying the max-product algorithm
on a cyclic graphical model.

In order to test the robustness and reliability of the SES method, it is
first applied to surrogate data. Next, it is applied to detect anomalies in
EEG synchrony of mild cognitive impairment (MCI) patients. Numerical
results suggest that SES is significantly more sensitive to perturbations
in EEG synchrony than a large variety of classical synchrony measures.

1 Introduction

The problem of detecting correlations between neural signals has attracted
quite some attention in the neuroscience community. Several studies have
related neural synchrony to attention and cognition (e.g., (Buzsáki, 2006)).
Recently it has been demonstrated that patterns of neural synchroniza-
tion flexibly trigger patterns of neural interactions (Womelsdorf et al.,
2006). Moreover, it is has frequently been reported that abnormalities in
neural synchrony lie at the heart of a variety of brain disorders such as
Alzheimer’s and Parkinson’s diseases (e.g., Matsuda, 2001; Jeong, 2004;
Uhlhaas & Singer, 2006). In response to those findings, efforts have been
made to develop novel quantitative methods to detect statistical dependen-
cies in brain signals (see, e.g., Stam, 2005; Quian Quiroga, Kraskov, Kreuz,
& Grassberger, 2002; Pereda, Quian Quiroga, & Bhattacharya, 2005).

In this letter, we extend stochastic event synchrony (SES) from one-
dimensional point processes (explored in the companion letter) to multi-
dimensional processes. The underlying principle is identical, but the
inference algorithm to compute the SES parameters is fundamentally differ-
ent. The basic idea is again the following. First, we extract events from the
two given time series. Next, we try to align events from one time series with
events from the other. The better the alignment, the more similar the two
time series are considered to be. More precisely, the similarity is quantified
by the following parameters: time delay, variance of the timing jitter, frac-
tion of “noncoincident” events, and average similarity of the aligned events.
In this letter, we mostly focus on point processes in time-frequency domain.
The average event similarity is in that case described by two parameters:
the average frequency offset between events in the time-frequency plane
and the variance of the frequency offset (frequency jitter). SES then con-
sists of five parameters, which quantify the synchrony of oscillatory events
and provide an alternative to classical synchrony measures that quantify
amplitude or phase synchrony.



Quantifying Statistical Interdependence by Message Passing—II 2205

The pairwise alignment of point processes is again cast as a statistical
inference problem. However, inference in that model cannot be carried
out by dynamic programming, since the state space is too large. Instead
we apply the max-product algorithm on a cyclic graphical model (Jordan,
1999; Loeliger, 2004; Loeliger et al., 2007); the inference method is now an
iterative algorithm. Based on a result in Bayati, Shah, and Sharma (2005;
generalized in Sanghavi, 2007, 2008), we show that this algorithm yields
the optimal alignment as long as the optimal alignment is unique.

In this letter, we consider only pairs of point processes, but the methods
may be extended to multiple point processes. That extension, however, is
nontrivial and goes beyond the scope of this letter. It will be described in a
future report.

As in the one-dimensional case, the method may be applied to any kind
of time series (e.g., finance, oceanography, seismology). However, we here
consider only electroencephalogram (EEG) signals. More specifically, we
present promising results on the early prediction of Alzheimer’s disease
based on EEG.

This letter is organized as follows. In the next section, we introduce SES
for multidimensional point processes. We describe the underlying statistical
model in section 3. Inference in that model is carried out by applying the
max-product algorithm on a factor graph of that model. That factor graph
is discussed in section 4; the inference method is outlined in section 5 and
derived in detail in appendix C. In section 6, we list several extensions
of the basic multidimensional SES model. In section 7, we investigate the
robustness and reliability of the SES inference method by means of surrogate
data. In section 8, we apply that method to detect abnormalities in the EEG
synchrony of mild cognitive impairment patients. We offer some concluding
remarks in section 9.

2 Principle

Suppose that we are given a pair of continuous-time signals, such as
EEG signals recorded from two different channels, and we wish to de-
termine the similarity of those two signals. As a first step, we extract
point processes from those signals, which may be achieved in various
ways. As an example, we generate point processes in time-frequency
domain. First, the time-frequency (“wavelet”) transform of each sig-
nal is computed in a frequency band f ∈ [ fmin, fmax]. Next, those maps
are approximated as a sum of half-ellipsoid basis functions, referred to
as “bumps” (see Figure 1; we provide more details on bump model-
ing in section 8.2.3). Each bump is described by five parameters: time
t, frequency f , width �t, height � f , and amplitude w. The result-
ing bump models e = ((t1, f1,�t1,� f1, w1), . . . , (tn, fn,�tn,� fn, wn)) and
e ′ = ((t′

1, f ′
1,�t′

1,� f ′
1, w

′
1), . . . , (t′

n′ , f ′
n′ ,�t′

n′ ,� f ′
n′ , w

′
n′ )) represent the most
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Figure 1: Two-dimensional stochastic event synchrony. (Top) Two given EEG
signals in the time-frequency domain. (Bottom) Bump models extracted from
those time-frequency maps. Stochastic event synchrony quantifies the similarity
of two such bump models.

prominent oscillatory activity in the signals at hand. This activity may
correspond to various physical or biological phenomena—for example:

� Oscillatory events in EEG and other brain signals are believed to occur
when assemblies of neurons are spiking in synchrony (Buzsáki, 2006;
Nunez & Srinivasan, 2006).

� Oscillatory events in calcium imaging data are due to oscillations of
intracellular calcium, which are believed to play an important role in
signal transduction between cells (see, e.g., Völkers et al., 2007).

� Oscillations and waves are of central interest in several fields beyond
neuroscience, such as oceanography (e.g., oceanic “normal modes”
caused by convection; Kantha & Clayson, 2000) and seismography
(e.g., free earth oscillations and earth oscillations induced by earth-
quakes, hurricanes, and human activity; Alder, Fernbach, & Roten-
berg, 1972).

In the following, we develop SES for bump models. In this setting, SES
quantifies the synchronous interplay between oscillatory patterns in two
given signals while it ignores the other components in those signals (“back-
ground activity”). In contrast, classical synchrony measures such as ampli-
tude or phase synchrony are computed from the entire signal; they make
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no distinction between oscillatory components and background activity.
As a consequence, SES captures alternative aspects of similarity and hence
provides complementary information about synchrony.

Besides bump models, SES may be applied to other sparse representa-
tions of signals—for example:

� Matching pursuit (Mallat & Zhang, 1993) and refinements such as
orthogonal matching pursuit (Tropp & Gilbert, 2007), stage-wise or-
thogonal matching pursuit (Donoho, Tsaig, Drori, & Stark, 2006), tree
matching pursuit (Duarte, Wakin, & Baraniuk, 2005) and chaining
pursuit (Gilbert, Strauss, Tropp, & Vershynin, 2006),

� Chirplets (see, e.g., O’Neill, Flandrin, & Karl, 2002; Cui, Wong, &
Mann, 2005; Cui & Wong, 2006),

� Wave atoms (Demanet & Ying, 2007),
� Curvelets (Candès & Donoho, 2002)
� Sparsification by loopy belief propagation (Sarvotham, Baron, &

Baraniuk, 2006)
� The Hilbert-Huang transform (Huang et al., 1998),
� Compressed sensing (Candès, Romberg, & Tao, 2006; Donoho, 2006).

Moreover, the point processes may be defined in spaces other than the time-
frequency plane; for example, they may occur in two-dimensional space
(e.g., images), space frequency (e.g., wavelet image coding), or space time
(e.g., movies), and they may also be defined on more complicated manifolds,
such as curves and surfaces. Such extensions may straightforwardly be
derived from the example of bump models. We consider several extensions
in section 6.

Our extension of stochastic event synchrony to multidimensional point
processes (and bump models in particular) is derived from the following
observation (see Figure 2a): bumps in one time-frequency map may not be
present in the other map (“noncoincident” bumps); other bumps are present
in both maps (“coincident bumps”) but appear at slightly different positions
on the maps. The black lines in Figure 2b connect the centers of coincident
bumps and hence visualize the offsets between pairs of coincident bumps.

Such offsets jeopardize the suitability of classical similarity measures for
time-frequency maps. For example, let us consider the Pearson correlation
coefficient r between two time-frequency maps x1(t, f ) and x2(t, f ):

r =
∑

t, f (x1(t, f ) − x̄1)(x2(t, f ) − x̄2)√∑
t, f (x1(t, f ) − x̄1)2

√∑
t, f (x2(t, f ) − x̄2)2

, (2.1)

where x̄i = ∑
t, f xi (t, f ) (i = 1, 2). Note that r , like many other classical

similarity measures, is based on pointwise comparisons. In other words,
it compares the activity at instance (t, f ) in map x1 to the activity in x2 at
the same instance (t, f ). Therefore, if the correlated activity in the maps
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Figure 2: Coincident and noncoincident activity.

x1(t, f ) and x2(t, f ) is slightly delayed or a little shifted in frequency, the
correlation coefficient r will be small, and as a result, it may not be able to
capture the correlated activity. Our approach alleviates this shortcoming,
since it explicitly handles delays and frequency offsets.
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We quantify the interdependence between two bump models by five
parameters: the parameters ρ, δt , and st introduced in the companion letter
in this issue:

� ρ: fraction of noncoincident bumps
� δt : the average timing offset (delay) between coincident bumps
� st : the variance of the timing offset between coincident bumps,

in addition to:
� δ f : the average frequency offset between coincident bumps
� s f : the variance of the frequency offset between coincident bumps.

We determine those five parameters and the pairwise alignment of e
and e ′ by statistical inference, as in the one-dimensional case (cf. sections
3 and 4 in the companion letter in this issue). We start by constructing a
statistical model that captures the relation between the two bump models
e and e ′; that model contains the five SES parameters, besides variables
related to the pairwise alignment of the bumps of e and e ′. Next, we perform
inference in that model, resulting in estimates for the SES parameters and
the pairwise alignment. More concretely, we apply coordinate descent, as
in the case of one-dimensional point processes. In the following section, we
outline our statistical model. In section 4, we describe the factor graph of
that model. From that factor graph, we derive the inference algorithm for
multidimensional SES; in section 5, we outline that inference algorithm. We
refer to appendix C for the detailed derivations. In section 6, we suggest
various extensions of our statistical model.

3 Statistical Model

In this section, we explain the statistical model that forms the foundation of
multidimensional SES. For reasons that we will explain, we represent the
model in two different ways (see equations 3.7 and 3.15). For clarity, we
list in Table 1 the most important variables and parameters that appear in
those representations. We use the notation θ = (δt, st, δ f , s f ), σt = √

st , and
σ f = √s f .

Figure 3 illustrates how we extend the generative procedure underly-
ing one-dimensional SES (cf. the companion letter) to the time-frequency
domain. As a first step, we generate a hidden point process v (dotted bumps
in Figure 3). The number � of bumps vk is also now described by a geometric
prior, in particular,

p(�) = (1 − λ̃)λ̃�, (3.1)

with λ̃ = λ(tmax − tmin)( fmax − fmin) ∈ (0, 1). (We motivate this choice of
prior in the companion letter.) The centers (t̃k, f̃k) of those bumps are
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Table 1: Variables and Parameters Associated with Models p(e, e ′, j, j ′, θ )
(Equation 3.7) and p(e, e ′, b, b ′, c, θ ) (Equation 3.15).

Symbol Explanation

e and e ′ The two given bump models
t and t′ Occurrence time of the bumps of e and e ′
f and f ′ Frequencies of the bumps of e and e ′
�t and �t′ Width of the bumps of e and e ′
� f and � f ′ Height of the bumps of e and e ′
v Hidden bump model from which the observed bump models e and e ′

are generated
ẽ and ẽ ′ Bump models obtained by shifting v over (δt/2, δ f /2) and

(−δt/2, −δ f /2), resp., and randomly perturbing the timing and
frequency of the resulting sequences (with variance st/2 and s f /2, resp.)

b and b′ Binary sequences that indicate whether bumps in e and e ′, resp.
are coincident

c Binary sequence that indicates whether a particular bump in e is
coincident with a particular bump in e ′, more precisely, ckk′ = 1
iff ek is coincident with e ′

k′ and is zero otherwise
j and j ′ Indices of the coincident bumps in e and e ′, resp.
n and n′ Length of e and e ′, resp.
� Length of v

δt and δ f Average timing and frequency offset, resp., between e and e ′
st and s f Timing and frequency jitter, resp., between e and e ′

Figure 3: Generative model for e and e ′. One first generates a hidden process v

and then makes two identical copies of v and shifts those over (−δt/2, −δ f /2) and
(δt/2, δ f /2), respectively. The events of the resulting point process are slightly
shifted (with variance (st ,s f )), and some of those events are deleted (with prob-
ability pd ), resulting in e and e ′.
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placed uniformly within the rectangle [tmin, tmax] × [ fmin, fmax], and as a
consequence,

p
(
t̃, f̃ |�) = 1

(tmax − tmin)�( fmax − fmin)�
. (3.2)

The amplitudes, widths, and heights of the bumps vk are independently and
identically distributed according to priors pw , p�t , and p� f , respectively.
Next, from bump model v, we generate the bump models e and e ′, as
follows:

1. Make two copies ẽ and ẽ ′ of bump model v.
2. Generate new amplitudes wk , widths �tk , and heights � fk for the

bumps ẽk by drawing (independent) samples from the priors pw, p�t ,
and p� f , respectively. Likewise, generate new amplitudes w′

k and
widths �t′

k and � f ′
k for bumps ẽ ′

k .
3. Shift the bumps ẽk and ẽ ′

k over (− δ̄t
2 ,− δ̄ f

2 ), and ( δ̄t
2 ,

δ̄ f

2 ), respectively,
with:

δ̄t = δt (�tk + �t′
k), (3.3)

δ̄ f = δ f (� fk + � f ′
k ). (3.4)

4. Add small, random perturbations to the position of the bumps ẽk and
ẽ ′

k (cf. Figure 3), modeled as zero-mean gaussian random vectors with
diagonal covariance matrix diag( s̄t

2 ,
s̄ f

2 ):

s̄t = st (�tk + �t′
k)2, (3.5)

s̄ f = s f (� fk + � f ′
k )2. (3.6)

5. Randomly remove bumps from ẽ and ẽ ′. Each bump is deleted with
probability pd independent of the other bumps, resulting in the bump
models e and e ′.

As in the one-dimensional case, the above generative procedure
(cf. Figure 3) may straightforwardly be extended from a pair of point
processes e and e ′ to a collection of point processes, but inference in the
resulting probabilistic model is intractable. We will present approximate
inference algorithms in a future report.

Also in the multidimensional case, event synchrony is inherently am-
biguous. Figure 4 shows two procedures to generate the same point pro-
cesses e and e ′. If st is large, with high probability, events in e and e ′ will
not be ordered in time; for example, events (1,2) and (3’,4’) in Figure 4a
are reversed in time. Ignoring this fact will result in estimates of st that are
smaller than the true value st . The SES algorithm will probably correctly in-
fer the coincident event pairs (3,3’) and (4,4’), since those pairs are far apart
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Figure 4: Inherent ambiguity in event synchrony. Two equivalent procedures
to generate the multidimensional point processes e and e ′.

in frequency and therefore, event 3 is closer to event 3’ than it is to event 4’.
However, it will probably treat (1’,2) and (1,2’) as coincident event pairs in-
stead of (1,2) and (1’,2’) (see Figure 4b), since event 1 is much closer to event
2’ than event 2. As a consequence, SES will underestimate st . However,
the bias will be smaller than in the one-dimensional case. The SES algo-
rithm will incorrectly align pairs of events only if those pairs of events have
about the same frequency (as events 1, 1’, 2, and 2’ in Figure 4); if those
events are far apart in frequency (as events 3, 3’, 4, and 4’ in Figure 4),
potential time reversals will be correctly inferred. This observation
obviously carries over to any other kind of multidimensional point
processes.

Besides timing reversals, some event deletions may be ignored. In
Figure 4a, events 5 and 6 are noncoincident; however; in the procedure
of Figure 4b, they are both coincident. The latter generative procedure is
simpler in the sense that it involves fewer deletions and the perturbations
are slightly smaller. As a result, the parameter ρ (and hence also pd ) is
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Figure 4: Continued.

generally underestimated. However, this bias will also be smaller than in
the one-dimensional case. Indeed, if events 5 and 6 had strongly differ-
ent frequencies, the SES algorithm would probably not treat them as a
coincident pair. Obviously, this observation also extends to any kind of
multidimensional point processes.

The generative procedure of Figure 3 leads to the two-dimensional exten-
sion of the one-dimensional SES model (cf. equation 3.25 in the companion
letter):

p(e, e ′, j, j ′, θ ) = γ βntot
non-co p(δt)p(st)p(δ f )p(s f )

ntot
co∏

k=1
pw(w jk )pw(w′

j ′
k
)

· p�t(�tjk )p�t(�t′
j ′
k
)p� f (� f jk )p� f (� f ′

j ′
k
)

·N (
t′

j ′
k
− tjk ; δ̄t, s̄t

)
N

(
f ′

j ′
k
− f jk ; δ̄ f , s̄ f

)
, (3.7)



2214 J. Dauwels et al.

with δ̄t = δt (�tjk + �t′
j ′
k
), δ̄ f = δ f (� f jk + � f ′

j ′
k
), s̄t = st (�tjk + �t′

j ′
k
)2, s̄ f =

s f (� f jk + � f ′
j ′
k
)2, and where the constant β is again given by

β = pd
√

λ, (3.8)

and

γ = (√
λ (1 − pd )

)n+n′
(1 − λ̃) 1

1−p2
d λ̃

, (3.9)

with λ̃ = λ(tmax − tmin)( fmax − fmin). In model 3.7, the priors pw, p�t , and p� f

for the bump parameters w jk , w′
j ′
k
, �tjk , �t′

j ′
k
, � f jk , and � f ′

j ′
k
, respectively, are

irrelevant for what follows; we therefore discard them now. We also discard
the constant γ in equation 3.7, since it does not depend on j and j ′; as a
consequence, it is not relevant for determining j , j ′ and the SES parameters.
The parameter β, however, clearly affects the inference of j , j ′ and the SES
parameters, since the exponent of β in equation 3.7 does depend on j and
j ′. We elaborate on the priors of the parameters θ = (δt, st, δ f , s f ) later.

As in the one-dimensional case, it is instructive to consider the negative
logarithm of equation 3.7:

− log p(e, e ′, j, j ′, θ ) =
ntot

co∑
k=1

[ (t′
j ′
k
− tjk − δt)2

2st(�tjk + �t′
j ′
k
)2 +

( f ′
j ′
k
− f jk − δ f )2

2s f (� f jk + � f ′
j ′
k
)2

+ 1
4

log 4π2st(�tjk + �t′
j ′
k
)2s f (� f jk + � f ′

j ′
k
)2
]

− ntot
non-co log β − log p(δt)p(st)p(δ f )p(s f ) + ζ,

(3.10)

where ζ is an irrelevant constant. Expression 3.10 may be considered a cost
function, along the lines of the one-dimensional case. The unit cost d(st)
associated with each noncoincident event equals

d(st) = − log β. (3.11)

The unit cost d(e jk , e ′
j ′
k
) of each event pair (e jk ,e ′

j ′
k
) is given by

d(e jk , e ′
j ′
k
) =

(t′
j ′
k
− tjk − δt)2

2st(�tjk + �t′
j ′
k
)2 +

( f ′
j ′
k
− f jk − δ f )2

2s f (� f jk + � f ′
j ′
k
)2

+ 1
4

log
(

4π2st(�tjk + �t′
j ′
k
)2s f (� f jk + � f ′

j ′
k
)2
)
. (3.12)
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Figure 5: Bumps 1 and 2 are farther apart than 3 and 4, although the distance
between their centers is identical. Therefore, in order to quantify the distance
between bumps, it is necessary to normalize the distance between the bump
centers by the bump widths (cf. equation 3.10).

Interestingly, the first two terms in equation 3.12 may be viewed as a
Euclidean distance. Since the point processes e and e ′ of Figure 1 are de-
fined on the time-frequency plane, the Euclidean distance is indeed a natural
metric. Note that the Euclidean distance is normalized: the timing and fre-
quency offsets are normalized by the bump width and height, due to the
particular choices 3.3 to 3.7. Figure 5 explains why normalization is crucial.

In the one-dimensional model proposed in the companion letter, the
third term in equation 3.12 is absorbed into the unit cost d(st). In the multi-
dimensional case, however, that is no longer possible. That term depends on
the width and height of the two events e jk and e ′

j ′
k

and cannot be decomposed
in a term that depends on only the parameters of e jk and a second term
that depends on only the parameters of e ′

j ′
k
. In other words, the third term

in equation 3.12 cannot be interpreted as unit costs of single events.
In our model of one-dimensional SES, we did not consider the width

of events. Instead we incorporated only the occurrence time, since that
suffices for most common applications. However, the model could easily
be extended to include event widths if necessary.

We wish to point out that the unit costs d(st), equation 3.11, and
d(e jk , e ′

j ′
k
), equation 3.12, are in general not dimensionless; the total

cost, equation 3.10, however, is dimensionless in the sense that a change
in units will affect the total cost by a constant, irrelevant term. In the one-
dimensional case considered in the companion letter, the unit costs are
dimensionless, since the third term in equation 3.12 is absorbed into the
unit cost d(st).

In principle, one may determine the sequences j and j ′ and the pa-
rameters θ by coordinate descent along the lines of the algorithm of one-
dimensional SES. In the multidimensional case, however, the alignment
cannot be solved by the Viterbi algorithm (or equivalently, the max-product
algorithm applied on a cycle-free factor graph of model 3.7). One needs to
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allow timing reversals (see Figure 4); therefore, the indices jk and j ′
k ′ are

no longer necessarily monotonically increasing, and as a consequence, the
state space becomes substantially larger.

Instead of applying the max-product algorithm on a cycle-free factor
graph of model 3.7, we apply that algorithm on a cyclic factor graph, which
will amount to a practical procedure to obtain pairwise alignments of mul-
tidimensional point processes (and bump models in particular). We will
show that it finds the optimal solution under very mild conditions. In order
to derive this procedure, we introduce a parameterization of model 3.7 that
is naturally represented by a cyclic graph. For each pair of events ek and e ′

k ′ ,
we introduce a binary variable ckk ′ that equals one if ek and e ′

k ′ form a pair of
coincident events and is zero otherwise. Since each event in e is associated
at most with one event in e ′, we have the constraints

n′∑
k ′=1

c1k ′
�= s1 ∈ {0, 1},

n′∑
k ′=1

c2k ′
�= s2 ∈ {0, 1}, . . . ,

n′∑
k ′=1

cnk ′
�= sn ∈ {0, 1}.

(3.13)

Similarly, each event in e ′ is associated at most with one event in e, which
may be expressed by a similar set of constraints. The sequences s and s ′ are
related to the sequences b and b ′ (cf. the companion letter) as follows:

bk = 1 − sk and b ′
k = 1 − s ′

k . (3.14)

From the variables ckk ′ (with k = 1, . . . , n and k ′ = 1, . . . , n′), one can also
easily determine the sequences j and j ′. Indeed, if ckk ′ = 1, the index k and
k ′ appear in j and j ′, respectively.

In this representation, the global statistical model 3.7 can be cast as

p(e, e ′, b, b ′, c, θ ) ∝
n∏

k=1

(β δ[bk − 1] + δ[bk])
n′∏

k ′=1

(β δ[b ′
k − 1] + δ[b ′

k])

·
n∏

k=1

n′∏
k ′=1

(
N

(
t′
k ′ − tk; δ̄t, s̄t

)
N

(
f ′
k ′ − fk; δ̄ f , s̄ f

))ckk′

· p(δt)p(st)p(δ f )p(s f )
n∏

k=1

(
δ

[
bk +

n′∑
k ′=1

ckk ′ − 1
])

·
n′∏

k ′=1

(
δ[b ′

k ′ +
n∑

k=1

ckk ′ − 1]
)

, (3.15)
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Figure 6: Scaled inverse chi square distributions for various values of the de-
grees of freedom ν and widths s0; s0 = 0.1 (left) and 0.3 (right).

where δ[·] is the Kronecker delta; the variables ckk ′ , bk , and bk ′ are binary; and
δ̄t = δt (�tk + �t′

k ′ ), δ̄ f = δ f (� fk + � f ′
k ′ ), s̄t = st (�tk + �t′

k ′ )2, s̄ f = s f (� fk +
� f ′

k ′ )2. The last two factors in equation 3.15 encode the expressions 3.14.
We now comment on the priors of the parameters θ = (δt, st, δ f , s f ). Since

we (usually) do not need to encode prior information about δt and δ f , we
choose improper priors p(δt) = 1 = p(δ f ). On the other hand, one may have
prior knowledge about st and s f . For example, in the case of spontaneous
EEG (see section 8), we a priori expect the frequency jitter s f to be small.
Frequency shifts can be caused only by nonlinear transformations, which
are hard to justify from a physiological perspective. Therefore, we expect
bumps to appear at about the same frequency in both time-frequency maps.
The timing jitter st may be larger, since signals often propagate over signifi-
cant distances in the brain, and therefore, timing jitter arises quite naturally.
For example, bump 1 (t = 8.2 s) should be paired with bump 2 (t = 7.4 s)
and not with bump 3 (t = 8 s), since the former is much closer in fre-
quency than the latter. One may encode such prior information by means of
conjugate priors for st and s f , that is, scaled inverse chi square distributions:

p(st) = (s0,tνt/2)νt/2

(νt/2)
e−νt s0,t/2st

s1+νt/2
t

(3.16)

p(s f ) = (s0, f ν f /2)ν f /2

(ν f /2)
e−ν f s0, f /2s f

s1+ν f /2
f

, (3.17)

where νt and ν f are the degrees of freedom and (x) is the gamma function.
In the example of spontaneous EEG, the widths s0,t and s0, f are chosen
such that s0,t > s0, f , since s f is expected to be smaller than st . Figure 6
shows the scaled inverse chi square distribution with ν = 20, 40, . . . , 100
and s0 = 0.1 and 0.3.
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Figure 7: Factor graph of model 3.15. Each edge represents a variable, and each
node corresponds to a factor of equation 3.15, as indicated by the arrows at the
right-hand side. More details on factor graphs can be found in appendix A.

4 Factor Graph

To perform inference in model 3.15, we use a factor graph of that model
(see Figure 7); each edge represents a variable, and each node corresponds
to a factor of equation 3.15, as indicated by the arrows at the right-hand
side (refer to appendix A for an introduction to factor graphs). We omitted
the edges for the (observed) variables tk , t′

k ′ , fk , f ′
k ′ , wk , w′

k ′ , �tk , �t′
k ′ , � fk ,

and � f ′
k ′ in order not to clutter the figure. In the following, we discuss the

nodes in Figure 7 (from top to bottom):

� The nodes denoted by β correspond to the factors (βδ[bk − 1] + δ[bk])
and (βδ[b ′

k − 1] + δ[b ′
k]).

� The nodes denoted by �̄ represent the factors
(
δ[bk + ∑n′

k ′=1 ckk ′ − 1]
)

and
(
δ[b ′

k ′ + ∑n
k=1 ckk ′ − 1]

)
. (See also row 4 in Table C.1.)

� The equality constraint nodes (marked by “=”) enforce the equality
of the incident variables. (See also row 3 in Table C.1.)

� The nodes N corresponds to the gaussian distributions in equation
3.15. More precisely, they correspond to the factors

gN (ckk ′ ; θ ) =
(
N

(
t′
k ′ − tk; δ̄t, s̄t

)
N

(
f ′
k ′ − fk; δ̄ f , s̄ f

))ckk′
, (4.1)

where δ̄t = δt (�tk + �t′
k ′ ), δ̄ f = δ f (� fk + � f ′

k ′ ), s̄t = st (�tk + �t′
k ′ )2,

s̄ f = s f (� fk + � f ′
k ′ )2.
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� The bottom node stands for the prior:

p(θ ) = p(δt, st, δ f , s f ) = p(δt)p(st)p(δ f )p(s f ). (4.2)

5 Statistical Inference

We determine the alignment c = (c11, c12, . . . , cnn′ ) and the parameters θ =
(δt, st, δ f , s f ) by maximum a posteriori (MAP) estimation:

(ĉ, θ̂ ) = argmax
c,θ

p(e, e ′, c, θ ), (5.1)

where p(e, e ′, c, θ ) is obtained from p(e, e ′, b, b ′, c, θ ), equation 3.15, by
marginalizing over b and b ′:

p(e, e ′, c, θ ) ∝
n∏

k=1

(
βδ

[ n′∑
k ′=1

ckk ′

]
+ δ

[
n′∑

k ′=1

ckk ′ − 1

])

·
n′∏

k ′=1

(
βδ

[ n∑
k=1

ckk ′

]
+ δ

[
n∑

k=1

ckk ′ − 1

])

·
n∏

k=1

n′∏
k ′=1

(
N

(
t′
k ′ − tk; δ̄t, s̄t

)
N

(
f ′
k ′ − fk; δ̄ f , s̄ f

))ckk′

· p(δt)p(st)p(δ f )p(s f ). (5.2)

From ĉ, we obtain the estimate ρ̂ as

ρ̂ = n + n′ − 2
∑n

k=1
∑n′

k ′=1 ĉkk ′

n + n′ =
∑n

k=1 b̂k + ∑n′
k=1 b̂ ′

k ′

n + n′ . (5.3)

The MAP estimate, equation 5.1 is intractable, and we try to obtain it by
coordinate descent. First, the parameters θ are initialized (e.g., δ̂

(0)
t = 0 =

δ
(0)
f , ŝ(0)

t = s0,t, and ŝ(0)
f = s0, f ); then one alternates the following two update

rules until convergence (or until the available time has elapsed):

ĉ(i+1) = argmax
c

p(e, e ′, c, θ̂ (i)) (5.4)

θ̂ (i+1) = argmax
θ

p(e, e ′, ĉ(i+1), θ ). (5.5)

The estimate θ̂ (i+1), equation 5.5, is available in closed form, as we show
in appendix C. In that appendix, we also show that the alignment 5.4 is
equivalent to a classical problem in combinatorial optimization known as
max-weight bipartite matching (see, e.g., Gerards, 1995; Pulleyblank, 1995;
Bayati et al., 2005; Bayati, Borgs, Chayes, & Zecchina, 2008; Huang & Jebara,
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Figure 8: Max-product message passing. The messages indicate the max-
product messages, computed according to the max-product update rule (see
appendix C).

2007; Sanghavi, 2007, 2008). There are many ways to solve that problem,
and we describe one of them, the max-product algorithm, in more detail
since it is arguably the simplest approach. That algorithm can be derived
by means of the graph of Figure 7. It operates by sending information
(“messages”) along the edges of that graph, as illustrated in Figure 8. The
messages, depicted by arrows, contain (probabilistic) information about
which pairs of bumps are coincident and which are not; they are com-
puted according to a generic rule (i.e., the max-product rule). Intuitively,
the nodes may be viewed as computing elements that iteratively update
their opinion about the bump matching, based on the opinions (messages)
they receive from neighboring nodes. When the max-product algorithm
eventually has converged and the nodes have found a “consensus,” the
messages are combined to obtain a decision on c, b, and b ′ and an estimate
of ρ. (In appendix C, we derive the algorithm 5.4 and 5.5, in detail; it is
summarized in Table 2. Matlab code of the algorithm is available online at
http://www.dauwels.com/SESToolbox.html.)

The computational complexity of this algorithm is in principle propor-
tional to nn′, that is, the product of both sequence lengths. If one excludes
pairs of events that are too far apart on the time-frequency map, one obtains
an algorithm with linear complexity (as in the one-dimensional case).

The fixed points of the algorithm can be characterized as follows: the
fixed point θ̂ is a stationary point of equation 5.2, and the alignment ĉ is
“neighborhood maximum,” that is, the posterior probability, equation 5.2,
of ĉ is guaranteed to be greater than all other assignments in region around
that assignment ĉ (Freeman & Weiss, 1999).

The algorithm is an instance of coordinate descent and is therefore guar-
anteed to converge if the conditional maximizations 5.4 and 5.5 have unique
solutions (Bezdek & Hathaway, 2002; Bezdek, Hathaway, Howard, Wilson,
& Windham, 1987). The conditional maximization 5.5 always has a unique



Quantifying Statistical Interdependence by Message Passing—II 2221

Table 2: Inference Algorithm for Multidimensional SES.

Input
Models e and e ′, parameters β, νt, ν f , s0,t , s0, f , δ̂

(0)
t , δ̂

(0)
f , ŝ(0)

t , and ŝ(0)
f

Algorithm
Iterate the following two steps until convergence:

(1) Update the alignment ĉ by max-product message passing
Initialize messages µ↓′(ckk′ ) = 1 = µ↓′′(ckk′ )
Iterate until convergence:
a. Upward messages:

µ↑′(ckk′ )∝µ↓′′(ckk′ )gN (ckk′ ; θ̂ (i))

µ↑′′(ckk′ )∝µ↓′(ckk′ )gN (ckk′ ; θ̂ (i)),

where

gN (ckk′ ; θ̂ (i)) =

N

(
t′k′ − tk ; δ̄

(i)
t , s̄(i)

t

)
N

(
f ′
k′ − fk ; δ̄

(i)
f , s̄(i)

f

)
ckk′

,

with δ̄
(i)
t = δ̂

(i)
t (�tk + �t′k′ ), δ̄

(i)
f = δ̂

(i)
f (� fk + � f ′

k′ ), s̄(i)
t = ŝ(i)

t (�tk + �t′k′ )2,

s̄(i)
f = ŝ(i)

f (� fk + � f ′
k′ )2

b. Downward messages:(
µ↓′(ckk′ = 0)

µ↓′(ckk′ = 1)

)
∝

(
max

(
β, max�′ 	=k′ µ↑′(ck�′ = 1)/µ↑′(ck�′ = 0)

)
1

)
(

µ↓′′(ckk′ = 0)

µ↓′′(ckk′ = 1)

)
∝

(
max

(
β, max� 	=k µ↑′′(c�k′ = 1)/µ↑′′(c�k′ = 0)

)
1

)

Compute marginals p(ckk′ ) ∝ µ↓′(ckk′ )µ↓′′(ckk′ )gN (ckk′ ; θ̂ (i))
Compute decisions ĉkk′ = argmaxckk′ p(ckk′ )

(2) Update the SES parameters:

δ̂
(i+1)
t = 1

n(i+1)

n(i+1)∑
k=1

t̂′(i+1)
k − t̂(i+1)

k

�t̂(i+1)
k + �t̂′(i+1)

k

δ̂
(i+1)
f = 1

n(i+1)

n(i+1)∑
k=1

f̂ ′(i+1)
k − f̂ (i+1)

k

� f̂ (i+1)
k + � f̂ ′(i+1)

k

ŝ(i+1)
t =

νts0,t + n(i+1) ŝ(i+1)
t,sample

νt + n(i+1) + 2

ŝ(i+1)
f =

ν f s0, f + n(i+1) ŝ(i+1)
f,sample

ν f + n(i+1) + 2
,

Output
Alignment ĉ and SES parameters ρ̂, δ̂t , δ̂ f , ŝt , ŝ f
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solution (cf. equation C.1–C.4). If the alignment 5.4 has a unique solution, the
max-product algorithm is guaranteed to find that unique optimum (Bayati
et al., 2005; Huang & Jebara, 2007; Bayati et al., 2008; Sanghavi, 2007, 2008).
Therefore, as long as equation 5.4 has a unique solution, the algorithm
of Table 2 is guaranteed to converge. In many applications, the optimum
of equation 5.4 is unique with probability one, and as a consequence, the
proposed algorithm converges. We provide numerical results in section 8.

6 Extensions

So far, we have developed multidimensional SES for the particular ex-
ample of bump models in the time-frequency domain. Here we con-
sider alternative SES models in the time-frequency domain and in other
domains. Those models are straightforward extensions of equation 3.7.
We also outline how the SES inference algorithm can be modified
accordingly.

6.1 Bump Parameters. One may incorporate differences in amplitude,
width, and height between the bumps of e and e ′ in model 3.7. In the gen-
erative process of Figure 3, those parameters are then no longer drawn
independently from certain prior distributions; instead they are obtained
by perturbing the parameters of the hidden bump model v. In particu-
lar, one may again consider gaussian perturbations, as for the timing t, t′

and frequency f, f ′ of the bumps. This leads to additional parameters δw,
δ�t , δ� f , sw, s�t , and s� f , which stand for the average offset and jitter be-
tween the bump amplitudes, widths, and heights of e and e ′, respectively;
it also leads to additional gaussian factors in model 3.7. Moreover, priors
for those additional parameters can be included in that model, leading to
the expression

p(e, e ′, j, j ′, θ ) = γ βntot
non-co p(δt)p(st)p(δ f )p(s f )p(δw)p(sw)p(δ�t)p(s�t)

· p(δ� f )p(s� f ) · N (
t′

j ′
k
− tjk ; δ̄t, s̄t

)
N

(
f ′

j ′
k
− f jk ; δ̄ f , s̄ f

)
·N (

w′
j ′
k
− w jk ; δw, sw

) · N (
�t′

j ′
k
− �tjk ; δ�t , s�t

)
·N (

� f ′
j ′
k
− � f jk ; δ� f , s� f

)
, (6.1)

where the parameters β and γ are again given by equations 3.8 and 3.9,
respectively.

The inference algorithm for this model is very similar to the one of
model 3.7 (cf. Table 2). The additional parameters δw, δ�t , δ� f , sw, s�t , and
s� f are updated similarly as δt , δ f , st , and s f . The alignment procedure
is almost identical, one merely needs to modify the upward message gN
(see step 1 in table 2). Besides the gaussian factors for the timing and
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Figure 9: Two oblique bumps ek and e ′
k′ with rotation angle αk and α′

k′ .

frequency offsets, that message contains similar factors for the offsets in
bump amplitude, width, and height (cf. equation 6.1).

6.2 Oblique Bumps. Alternatively, one may consider oblique bumps—
those that are not necessarily parallel to the time and frequency axes
(see Figure 9). Such bumps correspond to chirps (see, e.g., O’Neill et al.,
2002; Cui et al., 2005; Cui & Wong, 2006). The rotation angle of each bump
ek and e ′

k ′ is denoted by αk and α′
k ′ , respectively (with αk ,α′

k ′ ∈ [0, π/2] for
all k and k ′). Model 3.7 can take those rotations into account. First, the
normalization of the timing and frequency offsets needs to be modified
accordingly. Second, one may wish to incorporate the difference in rotation
angles αk and α′

k ′ of bump ek and e ′
k ′ , respectively. In the generative process

of Figure 3, one may include gaussian perturbations for the rotation angles.
This leads to the following extension of model 3.7:

p(e, e ′, j, j ′, θ ) = γ βntot
non-co p(δt)p(st)p(δ f )p(s f )p(δα)p(sα)

·
ntot

co∏
k=1

pw(w jk )pw(w′
j ′
k
)p�t(�tjk )p�t(�t′

j ′
k
)p� f (� f jk )p� f (� f ′

j ′
k
)

·N (
t′

j ′
k
− tjk ; δ̄t, s̄t

)
N

(
f ′

j ′
k
− f jk ; δ̄ f , s̄ f

)
N

(
α′

j ′
k
− α jk ; δα, sα

)
, (6.2)

where δα and sα are the average offset and jitter, respectively, between
the rotation angles. The parameters β and γ are again given by equa-
tions 3.8 and 3.9, respectively, δ̄t = δt (�̃tjk + �̃t′

j ′
k
), δ̄ f = δ f (�̃ f jk + �̃ f ′

j ′
k
),

s̄t = st (�̃tjk + �̃t′
j ′
k
)2, s̄ f = s f (�̃ f jk + �̃ f ′

j ′
k
)2, with

�̃tjk = cos αk �tjk + sin αk � f jk (6.3)

�̃ f jk = sin αk �tjk + cos αk � f jk (6.4)
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�̃t′
j ′
k
= cos α′

k ′ �t′
j ′
k
+ sin α′

k ′ � f ′
j ′
k

(6.5)

�̃ f ′
j ′
k
= sin α′

k ′ �t′
j ′
k
+ cos α′

k ′ � f ′
j ′
k
. (6.6)

Note that model 6.2 reduces to model 3.7 if αk = 0 = α′
k ′ for all k

and k ′. Model 6.2 does not incorporate differences in the amplitude,
width, and height of the bumps, but it could easily be extended if
necessary.

In order to extend the SES algorithm of Table 2 to oblique bumps, three
modifications are needed:

� In the upward message gN (step 1 in Table 2) and in the update of the
SES parameters (step 2), the parameters �tk, �t′

k ′ , � fk, and � f ′
k ′ are

replaced by �̃tk, �̃t′
k ′ , �̃ fk, and �̃ f ′

k ′ .
� If the prior on the parameters δα and sα is the improper prior p(δα) =

1 = p(sα), those parameters are updated similarly as δt and st :

δ̂(i+1)
α = 1

n(i+1)

n(i+1)∑
k=1

α̂
′(i+1)
k − α̂

(i+1)
k (6.7)

ŝ(i+1)
α = 1

n(i+1)

n(i+1)∑
k=1

(
α̂

′(i+1)
k − α̂

(i+1)
k − δ̂(i+1)

α

)2
. (6.8)

Since αk, α
′
k ∈ [0, π/2], one can simply add the angle differences.

� The alignment procedure is again almost identical: the upward mes-
sage gN (step 1 in Table 2) contains, in addition to the gaussian factors
for the timing and frequency offsets, a similar factor for the offsets in
bump rotation angle (cf. equation 6.2).

6.3 Point Processes in Other Spaces.

6.3.1 Euclidean Spaces. Until now we have considered bump models
in the time-frequency domain. However, the statistical model 3.7 directly
applies to point processes in other domains, for example, three-dimensional
space. Indeed, one can easily verify that the generative procedure depicted
in Figure 3 is not restricted to time-frequency domain, since at no point does
the procedure rely on particularities of time and frequency. In general, the
constants β and γ in equation 3.7 are still defined by equations 3.8 and 3.9,
respectively. The constant λ̃ in equation 3.9 is in general defined as λ̃ =
λ vol(S), where S is the space in which the point processes are defined and
vol(S) is the volume of that space. The SES algorithm can straightforwardly
be extended to more general models, along the lines of the extensions we
considered in sections 6.1 and 6.2.
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For example, in time and three-dimensional space, SES may be described
by the following statistical model:

p(e, e ′, j, j ′, θ ) = γ βntot
non-co p(δt)p(st)p(δx)p(sx)p(δy)p(sy)p(δz)p(sz)

·
ntot

co∏
k=1

pw(w jk )pw(w′
j ′
k
)p�t(�tjk )p�t(�t′

j ′
k
)p�x(�xjk )p�x(�x′

j ′
k
)

· p�y(�yjk )p�y(�y′
j ′
k
)p�z(�z jk )p�z(�z′

j ′
k
)N

(
t′

j ′
k
− tjk ; δ̄t, s̄t

)
·N (

x′
j ′
k
− xjk ; δ̄x, s̄x

)
N

(
y′

j ′
k
− yjk ; δ̄y, s̄y

)
N

(
z′

j ′
k
− z jk ; δ̄z, s̄z

)
, (6.9)

where δ̄t = δt (�tjk + �t′
j ′
k
), δ̄x = δx (�xjk + �x′

j ′
k
), δ̄y = δy (�yjk + �y′

j ′
k
), δ̄z =

δz (�z jk + �z′
j ′
k
); the parameters s̄t , s̄x , s̄y, and s̄z are defined similarly; and the

parameters β and γ are again given by equations 3.8 and 3.9, respectively.
The parameter λ̃ in equation 3.9 is now defined as

λ̃ = λ(tmax − tmin)(xmax − xmin)(ymax − ymin)(zmax − zmin). (6.10)

In model 6.9, the bumps have dispersion in time and space. In some appli-
cations, however, the bumps may have dispersion only in space, not in time.
In that case, one would need to replace δ̄t and s̄t by δt and st , respectively,
and there would be no factors p�t(�tjk ) and p�t(�t′

j ′
k
).

Note that an SES model for point processes in three-dimensional space
may be directly obtained from model 6.9. One simply needs to remove the
factors p(δt), p(st), p�t(�tjk ), p�t(�t′

j ′
k
), and N (t′

j ′
k
− tjk ; δ̄t, s̄t).

The inference algorithm for model 6.9 can be readily obtained from the
algorithm of Table 2. The parameter updates are very similar, and the same
holds for the pairwise alignment procedure. The upward message gN (step 1
in Table 2) contains a gaussian factor for the timing offsets and similar factors
for the offsets in the three spatial dimensions (cf. equation 6.9).

Interestingly, one can easily combine the above extensions. For example,
one may consider oblique bumps in time and three-dimensional space; that
model may take changes in bump orientation, amplitude, and width into
account.

6.3.2 Non-Euclidean Spaces. So far, we have considered gaussian pertur-
bations or, equivalently, Euclidean distances. In some applications, how-
ever, the point processes may be defined on curved manifolds, and non-
Euclidean distances are then more natural. For instance, the two point
processes may be defined on a planar closed curve. We consider such as
example in Dauwels et al. (in press), which concerns the synchrony of mor-
phological and molecular events in cell migration. More specifically, those
events are extracted from time-lapse fluorescence resonance energy transfer
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(FRET) images of Rac1 activity. The protein Rac1 is well known to induce
filamentous structures that enable cells to migrate. The morphological and
molecular events take place along the cell boundary, and since we con-
sider images, that boundary is a closed planar curve. We do not take the
dispersion of the events into account, since it is not relevant for the appli-
cation at hand. The morphological and molecular events are denoted by
e = ((t1, u1, w1), . . . , (tn, un, wn)) and e ′ = ((t′

1, u′
1, w

′
1), . . . , (t′

n′ , u′
n′ , w

′
n′ )), re-

spectively, where tk and t′
k ′ , uk and u′

k ′ , and wk and w′
k ′ denote the occurrence

time, position along the boundary, and the amplitude, respectively, of the
morphological and molecular events. The distance between morphological
and molecular events is non-Euclidean. We adopt the following statistical
model for morphological and molecular events (Dauwels et al., in press):

p(e, e ′, j, j ′, θ ) = γ βntot
non-co p(δt)p(st)p(δu)p(su)

ntot
co∏

k=1
pw(w jk )pw(w′

j ′
k
)

·N (
gt(tjk , t′

j ′
k
); δt, st

)
N

(
gu(u jk , u′

j ′
k
); δu, su

)
, (6.11)

where gt and gu are nonlinear functions that take the shape of the cell bound-
ary into account. Due to those nonlinearities, the factors N (gt(tjk , t′

j ′
k
); δt, st)

and N (gu(u jk , u′
j ′
k
); δu, su) are not gaussian distributions, and the distance

between events is non-Euclidean. The parameters β and γ are again given
by equations 3.8 and 3.9, respectively. The parameter λ̃ in equation 3.9 is
now defined as

λ̃ = λ(tmax − tmin)L , (6.12)

where L is the length of the cell boundary. Extending the algorithm of Table 2
to model 6.11 is straightforward. The parameter updates (step 2 in Table 2)
are now given by:

δ̂
(i+1)
t = 1

n(i+1)

n(i+1)∑
k=1

gt
(
t̂(i+1)
k , t̂′(i+1)

k

)
(6.13)

ŝ(i+1)
t = 1

n(i+1)

n(i+1)∑
k=1

(
gt
(
t̂(i+1)
k , t̂′(i+1)

k

) − δ̂
(i+1)
t

)2
(6.14)

δ̂(i+1)
u = 1

n(i+1)

n(i+1)∑
k=1

gu
(
û(i+1)

k , û′(i+1)
k

)
(6.15)

ŝ(i+1)
u = 1

n(i+1)

n(i+1)∑
k=1

(
gu

(
û(i+1)

k , û′(i+1)
k

) − δ̂(i+1)
u

)2
. (6.16)
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The pairwise alignment procedure is almost identical (step 1 in Table 2). We
again need only to modify the upward message gN :

gN (ckk ′ ; θ̂ (i)) = (
N

(
gt(tk, t′

k ′ ); δ̂
(i)
t , ŝ(i)

t
)
N

(
gu(uk, u′

k ′ ); δ̂
(i)
u , ŝ(i)

u
))ckk′

.

In the next sections, we use the basic model 3.7, since that suffices for our
purposes.

7 Analysis of Surrogate Data

As in the one-dimensional case (see section 6 in the companion letter), we
investigate the robustness and reliability of multidimensional SES by means
of surrogate data. We randomly generated 1000 pairs of two-dimensional
point processes (e, e ′) according to the symmetric procedure depicted in
Figure 3.

We considered several values of the parameters �, pd , δt, δ f , st (σt), and
s f (σ f ). More specifically, the length � was chosen as � = �0/(1 − pd ), where
�0 ∈ N0 is a constant. With this choice, the expected length of e and e ′ is
�0, independent of pd . We considered the values �0 = 40 and 100, pd = 0,
0.1, . . . , 0.4, δt = 0, 25, 50, σt = 10, 30, and 50, δ f = 0, 2.5, 5, σ f = 1, 2.5,
and 5, tmin = 0 s, fmin = 0 Hz, tmax = �0 · 100 ms and fmax = �0·1 Hz. With
this choice, the average event occurrence rate is about 10 Hz for all �0 and
pd . The width �tk and height � fk of all bumps is set equal to 0.5 ms and
0.5 Hz, respectively, so that (�tk + �t′

k ′ ) = 1 ms and (� fk + � f ′
k ′ ) = 1 Hz, for

all k and k ′, and hence δ̄t = δt ms, δ̄ f = δ f Hz, s̄t = st ms2, and s̄ f = s f Hz2

(cf. equations 3.3–3.6, and Table 2).
We used the initial values δ̂

(0)
t = 0, 30, and 70, δ̂(0)

f = 0, ŝ(0)
t = 302, and ŝ(0)

f =
32. The parameter β was identical for all parameter settings—β = 0.005. It
was optimized to yield the best overall results. We used an uninformative
prior for δt, δ f , st, and s f : p(δt) = p(δ f ) = p(st) = p(s f ) = 1.

In order to assess the SES measures S = st, ρ, we compute for each pa-
rameter setting the expectation E[S] and normalized standard deviation
σ [S] = σ [S]/E[S]. Those statistics are computed by averaging over 1000
pairs of point processes (e,e ′), randomly generated according to the sym-
metric procedure depicted in Figure 3.

The results are summarized in Figures 10 to 12. From those figures, we
can make the following observations:

� The estimates of st and ρ are slightly biased, especially for small �0

(in particular, �0 = 40), st ≥ 302, and pd > 0.2. More specifically, the
expected value of those estimates is slightly smaller than the true
value, which is due to the ambiguity inherent in event synchrony
(cf. Figure 4). However, the bias is significantly smaller than in the
one-dimensional case (cf. section 6 in the companion letter). The bias
increases with s f , which is in agreement with our expectations: the
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Figure 10: Results for surrogate data. The figure shows the expected value
E[σ̂t] and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the
parameter settings �0 = 40 and 100, δt = 0, 25, 50, δ f = 0, 2.5, 5, σt = 10, 30, 50,
σ f = 1 and pd = 0, 0.1, . . . , 0.4. The curves for different δt and δ f practically
coincide.
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Figure 11: Results for surrogate data. The figure shows the expected value E[σ̂t]
and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the same
parameter settings as in Figure 10, but now with σ f = 2.5. Again, the curves for
different δt and δ f practically coincide.
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Figure 12: Results for surrogate data. The figure shows the expected value E[σ̂t]
and E[ρ̂] and the normalized standard deviation σ̄ [σ̂t] and σ̄ [ρ̂] for the same
parameter settings as in Figure 10, but now with σ f = 5. Again, the curves for
different δt and δ f practically coincide.
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more frequency jitter there is, the more likely that some events are
reversed in frequency, and hence are aligned incorrectly.

� As in the one-dimensional case, the estimates of δt are unbiased for
all considered values of δt , δ f , st, s f , and pd , as are the estimates of δ f

(not shown here).
� The estimates of st only weakly depend on pd , and vice versa.
� The estimates of st and ρ do not depend on δt and δ f . They are robust

to lags δt and frequency offsets δ f , since the latter can be estimated
reliably.

� The normalized standard deviation of the estimates of δt , st , and ρ

grows with st and pd , but it remains below 30%. Those estimates are
therefore reliable.

� The expected value of st and ρ weakly depends on the length �0: The
estimates of st and ρ are less biased for larger �0. The normalized
standard deviation of the SES parameters decreases as the length �0

increases, as expected.

In summary, by means of the SES inference method, one may reliably
and robustly determine the timing dispersion st and event reliability ρ of
pairs of multidimensional point processes. We wish to reiterate, however,
that it slightly underestimates the timing dispersion and the number of
event deletions due to the ambiguity inherent in event synchrony (cf. Fig-
ure 4). Moreover, as in the one-dimensional case, it is critical to choose an
appropriate set of initial values δ̂

(0)
t , δ̂

(0)
f , ŝ(0)

t , and ŝ(0)
f .

8 Application: Diagnosis of Mild Cognitive Impairment from EEG

Several clinical studies have shown that the EEG of Alzheimer’s disease
(AD) patients is generally less coherent than of age-matched control sub-
jects. This is also the case for patients suffering from mild cognitive impair-
ment (see MCI; Jeong, 2004), for a review). In this section, we apply SES
to detect subtle perturbations in EEG synchrony of MCI patients. First we
describe the EEG data at hand (section 8.1); describe how we preprocess
the EEG, extract bump models, and apply SES (section 8.2); and present our
results (section 8.3).

8.1 EEG Data. The EEG data used here have been analyzed in pre-
vious studies concerning early diagnosis of AD (Chapman et al., 2007;
Cichocki et al., 2005; Hogan, Swanwick, Kaiser, Rowan, & Lawlor, 2003;
Musha et al., 2002; Vialatte et al., 2005).

Ag/AgCl electrodes (disks of diameter 8 mm) were placed on 21 sites
according to the 10–20 international system, with the reference electrode on
the right earlobe. EEG was recorded with Biotop 6R12 (NEC San-ei, Tokyo,
Japan) using analog bandpass filtering in the frequency range 0.5 to 250 Hz
at a sampling rate of 200 Hz. As in Chapman et al. (2007), Cichocki et al.
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(2005), Hogan et al. (2003), Musha et al. (2002), and Vialatte et al. (2005), the
signals were then digitally bandpass filtered between 4 Hz and 30 Hz using
a third-order Butterworth filter.

The subjects were in two study groups. The first consisted of a group
of 25 patients who had complained of memory problems. These subjects
were then diagnosed as suffering from MCI and subsequently developed
mild AD. The criteria for inclusion into the MCI group were a mini-mental-
state exam (MMSE) score of 24 (max score, 30), though the average score
in the MCI group was 26 (SD of 1.8). The other group was a control set
consisting of 56 age-matched, healthy subjects who had no memory or
other cognitive impairments. The average MMSE of this control group was
28.5 (SD of 1.6). The ages of the two groups were 71.9 ± 10.2 and 71.7 ± 8.3,
respectively. Finally, it should be noted that the MMSE scores of the MCI
subjects studied here are quite high compared to a number of other studies.
For example, in Hogan et al. (2003) the inclusion criterion was MMSE = 20,
with a mean value of 23.7, while in Chapman et al. (2007), the criterion was
MMSE = 22 (the mean value was not provided). The disparity in cognitive
ability between the MCI and control subjects was thus comparatively small,
making the classification task relatively difficult.

All recording sessions were conducted with the subjects in an awake but
resting state with eyes closed. The EEG technicians prevented the subjects
from falling asleep (vigilance control). After recording, the EEG data were
carefully inspected. Indeed, EEG recordings are prone to a variety of arti-
facts, for example, due to electronic smog, head movements, and muscular
activity. The EEG data were investigated by an EEG expert, blinded from
the results of this analysis. In particular, only subjects were retained in the
analysis whose EEG recordings contained at least 20 s of artifact-free data.
Based on this requirement, the number of subjects in the two groups de-
scribed was reduced to 22 and 38, respectively. From each subject, one EEG
segment of 20 s was analyzed (for each of the 21 channels).

8.2 Methods. We successively apply the following transformations to
the EEG signals:

1. Wavelet transform
2. Normalization of the wavelet coefficients
3. Bump modeling of the normalized wavelet representation
4. Aggregation of the resulting bump models in several regions.

Eventually, we compute the SES parameters for each pair of aggregated
bump models. In the following, we detail each of those five operations.

8.2.1 Wavelet Transform. In order to extract the oscillatory patterns in the
EEG, we apply a wavelet transform. More specifically, we use the complex
Morlet wavelets (Goupillaud, Grossman, & Morlet, 1984; Delprat et al.,
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1992):

ψ(t) = Aexp
(− t2/2σ 2

0

)
exp(2iπ f0t), (8.1)

where t is time, f0 is frequency, σ0 is a (positive) real parameter, and A
is a (positive) normalization factor. The Morlet wavelet, equation 8.1, has
proven to be well suited for the time-frequency analysis of EEG (see Tallon-
Baudry, Bertrand, Delpuech, & Pernier, 1996; Herrmann, Grigutsch, &
Busch, 2005). The product w0 = 2π f0 · σ0 determines the number of periods
in the wavelet (“wavenumber”). This number should be sufficiently large
(≥5); otherwise the wavelet ψ(t) does not fulfill the admissibility condition:

∫ |ψ(t)|2
t

dt < ∞, (8.2)

and as a result, the temporal localization of the wavelet becomes unsatisfac-
tory (Goupillaud et al., 1984; Delprat et al., 1992). We choose a wavenumber
w0 = 7, as in the earlier studies (Tallon-Baudry et al., 1996; Vialatte, Martin,
et al., 2007). This choice yields good temporal resolution in the frequency
range we consider in this study.

The wavelet transform x(t, s) of an EEG signal x(t) is obtained as

x(t, s) �=
K∑

t′=1

x(t′) ψ∗
(

t′ − t
s

)
, (8.3)

where ψ(t) is the Morlet “mother” wavelet (see equation 8.1), s is a scaling
factor, and K = fs T , with fs the sampling frequency and T the length of the
signal. For the EEG data at hand, we have T = 20s and fs = 200 Hz, and
hence K = 4000. The scaled and shifted “daughter” wavelet in equation 8.3
has center frequency f �= f0/s. In the following, we use the notation x(t, f )
instead of x(t, s).

Next we compute the squared magnitude s(t, f ) of the coefficients x(t, f ):

s(t, f ) �= |x(t, f )|2. (8.4)

Intuitively the time-frequency coefficients s(t, f ) represent the energy of os-
cillatory components with frequency f at time instances t. It is noteworthy
that s(t, f ) contains no information about the phase of that component.

It is well known that EEG signals have a very nonflat spectrum with
an overall 1/f shape, besides state-dependent peaks at specific frequencies.
Therefore, the map s(t, f ) contains most energy at low frequencies f . If
we directly apply bump modeling to the map s(t, f ), most bumps would
be located in the low-frequency range; in other words, the high-frequency
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range would be under-represented. Since relevant information might be
contained at high frequency, we normalize the map s(t, f ) before extracting
the bump models.

We point out that the time-frequency map s(t, f ) may be determined by
alternative methods. For example, one may compute s(t, f ) by the multita-
per method (Thomson, 1982) or by filter banks (Harris, 2004). We decided
to use the Morlet wavelet transformation for two reasons:

� Morlet wavelets have the optimal joint time-frequency resolution,
which is fundamentally limited by the uncertainty principle: the res-
olution in both time and frequency cannot be arbitrarily high simul-
taneously. It is well known that the Morlet wavelets achieve the un-
certainty relation with equality (Goupillaud et al., 1984; Delprat et al.,
1992; Mallat, 1999).

� EEG signals are typically highly nonstationary. The wavelet transform
is ideally suited for nonstationary signals (Mallat, 1999), in contrast
to approaches based on multitapers and filter banks.

However, it may also be meaningful to use a multitaper method or filter
banks. For example, the multitaper method too is optimal in some sense:
it minimizes out-of-band leakage, and all voxels of the time-frequency do-
main have the same size and shape. In addition, in the multitaper method,
all estimates are independent due to orthogonality, a property not shared
by wavelets (Mitra & Pesaran, 1999).

8.2.2 Normalization. The coefficients s(t, f ) are centered and normalized,
resulting in the coefficients z̃(t, f ):

z̃(t, f ) �= s(t, f ) − ms( f )
σs( f )

, (8.5)

where ms( f ) is obtained by averaging s(t, f ) over the whole length of the
EEG signal:

ms( f ) = 1
K

K∑
t=1

s(t, f ). (8.6)

Likewise, σ 2
s ( f ) is the variance of s(t, f ):

σ 2
s ( f ) = 1

K

K∑
t=1

(
s(t, f ) − ms( f )

)2
. (8.7)

In words, the coefficients z̃(t, f ) encode fluctuations from the baseline EEG
power at time t and frequency f . The normalization 8.5 is known as z-score
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(see, e.g., Buzsáki, 2006), and is commonly applied (Matthew & Cutmore,
2002; Martin, Gervais, Hugues, Messaoudi, & Ravel, 2004; Ohara, Crone,
Weiss, and Lenz, 2004; Vialatte, Martin, et al., 2007; Chen et al., 2007). The
coefficients z̃(t, f ) are positive when the activity at t and f is stronger than
the baseline ms( f ) and negative otherwise.

There are various approaches to apply bump modeling to the z-score
z̃(t, f ). One may first set the negative coefficients to zero and next apply
bump modeling. The bump models in that case represent peak activity.
Alternatively, one may first set the positive coefficients equal to zero, reverse
the sign of the negative coefficients, and then apply bump modeling. In that
case, the bump models represent dips in the energy maps s(t, f ).

In the application of diagnosing AD (see section 8), we will follow yet
another approach. In order to extract bump models, we wish to exploit as
much information as possible from the z̃ maps. Therefore we set only a small
fraction of the coefficients z̃(t, f ) equal to zero: the 1% smallest coefficients.
This approach was also followed in Vialatte, Martin, et al. (2007), and is
equivalent to the following transformation: we shift the coefficients 8.5 in
the positive direction by adding a constant α, and the remaining negative
coefficients are set to zero:

z(t, f ) �=
⌈

z̃(t, f ) + α
⌉+

=
⌈

s(t, f ) − ms( f )
σs( f )

+ α

⌉+

, (8.8)

where x�+ = x if x ≥ 0 and x�+ = 0 otherwise. The constant α is chosen
such that only 1% of the coefficients remain negative after addition with α;
this corresponds to α = 3.5 in the application at hand. (In Vialatte, Martin,
et al., 2007, it corresponds to α = 2.) The top row of Figure 1 shows the
normalized wavelet map z, equation 8.8, of two EEG signals.

8.2.3 Bump Modeling. Next, bump models are extracted from the coeffi-
cient maps z (see Figure 1 and Vialatte, Martin, et al., 2007). We approximate
the map z(t, f ) as a sum zbump(t, f, θ ) of a “small” number of smooth basis
functions or “bumps” (denoted by fbump):

z(t, f ) ≈ zbump(t, f, θ ) �=
Nb∑

k=1

fbump(t, f, θk), (8.9)

where θk are vectors of bump parameters and θ
�= (θ1, θ2, . . . , θNb ). The

sparse bump approximation zbump(t, f, θ ) represents regions in the time-
frequency plane where the EEG contains more power than the baseline. In
other words, it captures the most significant oscillatory activities in the EEG
signal.
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Figure 13: Learning the bump parameters by minimizing the quadratic cost
function. A given patch of the time-frequency map (Top left and right); Initial
bump (Bottom left); Bump obtained after adaptation (Bottom right).

We choose half-ellipsoid bumps since they are well suited for our pur-
poses (Vialatte, 2005; Vialatte, Martin, et al., 2007) (see Figure 13). Since
we wish to keep the number of bump parameters as low as possible, the
principal axes of the half-ellipsoid bumps are restricted to be parallel to
the time-frequency axes. As a result, each bump is described by five pa-
rameters: the coordinates of its center (i.e., time tk and frequency fk), its
amplitude wk > 0, and the extension �tk and � fk in time and frequency,
respectively, in other words, θk = (tk, fk, wk,�tk,� fk). More precisely, the
ellipsoid bump function fbump(t, f, θk) is defined as

fbump(t, f, θk) =
{

wk
√

1 − κ(t, f, θk) for 0 ≤ κ(t, f, θk) ≤ 1
0 for κ(t, f, θk) > 1,

(8.10)

where

κ(t, f, θk) = (t−tk )2

(�tk )2 + ( f − fk )2

(� fk )2 . (8.11)

For the EEG data described in section 8.1, the number of bumps Nb (cf.
equation 8.9) is typically between 50 and 100, and therefore, zbump(t, f, θ )
is fully specified by a few hundred parameters. On the other hand, the
time-frequency map z(t, f ) consists of between 104 and 105 coefficients; the
bump model zbump(t, f, θ ) is thus a sparse (but approximate) representation
of z(t, f ).

The bump model zbump(t, f, θ ) is extracted from z(t, f ) by the following
algorithm (Vialatte, 2005; Vialatte, Martin, et al., 2007):

1. Define appropriate boundaries for the map z(t, f ) in order to avoid
finite-size effects.
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2. Partition the map z(t, f ) into small zones. The size of these zones
depends on the time-frequency ratio of the wavelets and is optimized
to model oscillatory activities lasting four to five oscillation periods.
Larger oscillatory patterns are modeled by multiple bumps.

3. Find the zone Z that contains the most energy.
4. Adapt a bump to that zone. The bump parameters are determined by

minimizing the quadratic cost function (see Figure 13):

E(θk) �=
∑

t, f ∈Z

(
z(t, f ) − fbump(t, f, θk)

)2
. (8.12)

Withdraw the bump from the original map.
5. The fraction of total intensity contained in that bump is computed:

F =
∑

t, f ∈Z fbump(t, f,θk )∑
t, f ∈Z z(t, f ) . (8.13)

If F < G for three consecutive bumps (and hence those bumps contain
only a small fraction of the energy of map z(t, f )), stop modeling and
proceed to step 6; otherwise iterate step 3.

6. After all signals have been modeled, define a threshold T ≥ G, and
remove the bumps for which F < T . This allows us to trade off the
information loss and modeling of background noise. When too few
bumps are generated, information about the oscillatory activity of
the brain is lost. But if too many bumps are generated, the bump
model also contains low-amplitude oscillatory components. Since
the measurement process typically introduces a substantial amount
of noise, it is likely that the low-amplitude oscillatory components
do not stem from organized brain oscillations but are instead due to
measurement noise. By adjusting the threshold T , we try to find an
appropriate number of bumps.

In our application, we used a threshold G = 0.05. With this threshold, each
bump model contains many bumps. Some of those bumps may actually
model background noise. Therefore, we further pruned the bump models
(cf. step 6). We tested various values of the threshold T ∈ [0.2, 0.25]; as
we will show, the results depend on the specific choice of T . The optimal
separation between MCI and age-matched control subjects is obtained for
T = 0.22; the separation gradually diminishes for increasing and decreasing
values of T .

We refer to Vialatte (2005) and Vialatte, Martin, et al. (2007) for more
information on bump modeling. In particular, we used the same choice
of boundaries (step 1) and partitions (step 2) as in those references. Mat-
lab Code of the bump extraction is available online at http://www.bsp
.brain.riken.jp/%7Efvialatte/bumptoolbox/toolbox home.html.

Eventually, we obtain 21 bump models: one per EEG channel. In the
following, we describe how those models are further processed.
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Figure 14: The 21 electrodes used for EEG recording, distributed according
to the 10–20 international placement system (Nunez & Srinivasan, 2006). The
clustering into NR = 5 zones is indicated by the shading and dashed lines (1 =
frontal, 2 = left temporal, 3 = central, 4 = right temporal, and 5 = occipital).

8.2.4 Aggregation. As a next step, we group the 21 electrodes into a
small number NR of regions, as illustrated in Figure 14 for NR = 5. We
report results for NR = 3, 5, and 7. From the 21 bump models obtained by
sparsification (cf. section 8.2.3), we extract a single bump model for each
of the zones by means of the aggregation algorithm described in Vialatte,
Martin, et al. (2007).

8.2.5 Stochastic Event Synchrony. Aggregation vastly reduces the compu-
tational complexity. Instead of computing the SES parameters among all
possible pairs of 21 electrodes (210 in total), we compute those parameters
for all pairs of regions— NR(NR − 1)/2 pairs in total. In addition, in order
to obtain measures for average synchrony, we average the SES parameters
over all region pairs, resulting in one set of average SES parameters per
subject. It is noteworthy that in this setting, the SES parameters quantify
large-scale synchrony, since each region spans several tens of millimeters.
In the following, we consider only ρ and st , since those two parameters are
the most relevant.

We choose the parameters of the SES algorithm as follows. Since
we are dealing with spontaneous EEG, it is unlikely that the EEG
signals from certain channels are delayed with regard to other channels;
moreover, systematic frequency offsets are unrealistic. Therefore, we
choose the initialization δ̂

(0)
t = 0 = δ̂

(0)
f . We used the parameter settings
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ŝ(0)
t = s0,t = 0.152, 0.1752, . . . , 0.252, and ŝ(0)

f = s0, f = 0.0252, 0.0502, . . . ,

0.152. We will show results for all those parameter values. The parameters
νt and ν f are set equal to 100, which corresponds to priors for st and s f

that have a sufficiently wide support (cf. Figure 6). We have observed that
smaller values of νt and ν f are not satisfactory (e.g., νt = 50 = ν f ): the
prior takes nonnegligible values for large values of st and s f , which leads
to prohibitively large and unrealistic offsets in time and frequency. Larger
values of νt and ν f are not satisfactory either, since the priors for st and
s f then become too informative and would strongly bias the parameter
estimates.

8.3 Results. The main results are summarized in Figures 15 and 16.
They contain p-values obtained by the Mann-Whitney test for the pa-
rameters ρ and st , respectively. This test indicates whether the parame-
ters take different values for the two subject populations. More precisely,
low p-values indicate large difference in the medians of the two pop-
ulations. The p-values are shown for ŝ(0)

t = s0,t = 0.152, 0.1752, . . . , 0.252,
ŝ(0)

f = s0, f = 0.0252, 0.0502, . . . , 0.152, β = 0.01, 0.001, 0.0001, T = 0.2, 0.21,
. . . , 0.25, and the number of zones NR = 3, 5, and 7, with νt = 100 = ν f .

The lowest p-values for ρ are obtained for T = 0.22 and NR = 5
(see Figure 15). In particular, the smallest value is p =1.2 · 10−4, which occurs
for β = 0.001, ŝ(0)

t = s0,t = 0.2252, and ŝ(0)
f = s0, f = 0.052 (see Figure 19e).

It is interesting that the results depend on T (cf. section 8.2.3). That
parameter allows us to balance the information loss and modeling of back-
ground noise: when too few bumps are generated, information about the
oscillatory activity of the brain is lost. But if too many bumps are gener-
ated, the bump model also contains low-amplitude oscillatory components.
The p-values are the lowest for T = 0.22 and become gradually larger as
T decreases from T = 0.22 to 0.2 and as T increases from T = 0.22 to 0.25.
One explanation could be that the number of bumps in each bump model
is significantly smaller for MCI patients than in control subjects, with the
maximum difference at T = 0.22. If the bump models of MCI patients con-
tained fewer bumps, it would be intrinsically harder to align those models.
However, as Figure 17 shows, this is not the case. On average, the bump
models of MCI patients contain fewer bumps than the models of control
subjects, but the difference is only weakly significant at best. Moreover, the
largest difference does not consistently occur at T = 0.22. In other words,
the difference in number of bumps between both subject populations cannot
explain the dependency of the p-values on T .

This seems to suggest an alternative explanation: at T = 0.22, the opti-
mal trade-off between information loss and modeling of background noise
occurs. At lower values of T , the bump models contain more background
noise—components that are unrelated to oscillatory events in the brain
signals—and therefore the statistical differences between both populations
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Figure 15: p-values obtained by the Mann-Whitney test for the param-
eter ρ for (σ̂ (0)

t )2 = ŝ(0)
t = s0,t = 0.152, 0.1752, . . . , 0.252, (σ̂ (0)

f )2 = ŝ(0)
f = s0, f =

0.0252, 0.0502, . . . , 0.152, β = 0.01, 0.001, 0.0001, T = 0.2, 0.21, . . . , 0.25 and
the number of zones NR = 3, 5, and 7, with νt = 100 = ν f . The p-values seem to
vary little with s(0)

t , s(0)
f , and β, but are more dependent on T and the number

of zones. The lowest p-values are obtained for T = 0.22 and five zones; the
corresponding statistical differences are highly significant.

decrease. At higher values of T , the models capture fewer oscillatory events
in the brain signals, and therefore important information to distinguish both
populations is discarded. The estimated parameters become less reliable.

From Figure 15, we can conclude that the statistical differences in ρ

are highly significant, especially for T = 0.22 and NR = 5. There is a sig-
nificantly higher degree of noncorrelated activity in MCI patients, more
specifically, a high number of noncoincident, nonsynchronous oscillatory
events. Interestingly, we did not observe a significant effect on the timing
jitter st of the coincident events (see Figure 16): very few p-values for st
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Figure 16: p-values obtained by the Mann-Whitney test for the param-
eter st for (σ̂ (0)

t )2 = ŝ(0)
t = s0,t = 0.152, 0.1752, . . . , 0.252, (σ̂ (0)

f )2 = ŝ(0)
f = s0, f =

0.0252, 0.0502, . . . , 0.152, β = 0.01, 0.001, 0.0001, T = 0.2, 0.21, . . . , 0.25, and
the number of zones NR = 3, 5, and 7, with νt = 100 = ν f . Very few p-values are
smaller than 0.01, which suggests there are no significant differences in st .

are smaller than 0.01, which suggests there are no significant differences
in st . In other words, MCI seems to be associated with a significant in-
crease of noncoincident background activity, while the coincident activity
remains well synchronized. Figure 18 shows box plots for ρ and st , for
the parameter setting that leads to the lowest p-values for ρ: T = 0.22,

NR = 5, β = 0.001, ŝ(0)
t = s0,t = 0.2252, and ŝ(0)

f = s0, f = 0.052.

We now discuss how the p-values for ρ depend on ŝ(0)
t = s0,t and ŝ(0)

f =
s0, f . Figure 19 shows those p-values for ŝ(0)

t = s0,t = 0.0252, 0.0502, . . . , 0.252,
ŝ(0)

f = s0, f = 0.0252, 0.0502, . . . , 0.152, β = 0.01, 0.001, 0.0001, with T = 0.22,
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Figure 17: Average number of bumps in each bump model for MCI and control
subjects; average number (left) and p-values obtained by the Mann-Whitney
test (right).

Figure 18: Box plots of st and ρ, for MCI and control subjects, with T = 0.22,
NR = 5, β = 0.001, ŝ(0)

t = s0,t = 0.2252, and ŝ(0)
f = s0, f = 0.052. Interestingly, the

parameter ρ leads to highly significant differences (p = 0.00012), in contrast to
the parameter st (p = 0.19).

NR = 5, and νt = 100 = ν f . Note that, in order not to clutter the figures, we
show results only for ŝ(0)

t =s0,t = 0.152, 0.1752, . . . , 0.252 in Figures 15 and 16;
Figure 19 shows in addition results for ŝ(0)

t = s0,t = 0.0252, 0.0502, . . . ,

0.1252.
When both ŝ(0)

t = s0,t and ŝ(0)
f = s0, f are smaller than or equal 0.752, the

fraction of nonmatched events is usually about 70% to 80% (not shown
here), and pairs of events that are close in time and frequency are not
always matched. In other words, the obtained solutions are not satisfactory
for those values of ŝ(0)

t = s0,t and ŝ(0)
f = s0, f .

The smallest p-values occur typically for ŝ(0)
t > 0.152 and ŝ(0)

f < 0.12. This
is in agreement with our expectations. As we argued in section 3, we expect
bumps to appear at about the same frequency in both time-frequency maps,
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Figure 19: p-values (Mann-Whitney test) for the parameter ρ for (σ̂ (0)
t )2 = ŝ(0)

t =
s0,t = 0.0252, 0.0502, . . . , 0.252, (σ̂ (0)

f )2 = ŝ(0)
f = s0, f = 0.0252, 0.0502, . . . , 0.152 β =

0.01, 0.001, 0.0001, with T = 0.22, NR = 3, 5, 7, . . ., and νt = 100 = ν f .

since frequency shifts are hard to justify from a physiological perspective,
whereas timing jitter arises quite naturally.

We verified that the SES measures ρ and st are not correlated with
other synchrony measures, for example, Pearson correlation coefficient,
magnitude and phase coherence, and phase synchrony (Pearson r, p >

0.10; see Dauwels, Vialatte, & Cichocki, 2008, for more details). In con-
trast to the classical measures, SES quantifies the synchrony of oscil-
latory events instead of more conventional amplitude or phase syn-
chrony; therefore, it provides complementary information about EEG
synchrony.

We applied a variety of classical synchrony measures to the same EEG
data set (Dauwels et al., 2008). Most measures yield (weakly) significantly
different values for the MCI and control subjects. Some differences are
highly significant; the most significant results were obtained with the
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Figure 20: Combining ρ with ffDTF as features to distinguish MCI from age-
matched control subjects. Note that ffDTF is a similarity measure, whereas ρ is a
dissimilarity measure. The (ffDTF, ρ) pairs of the MCI and control subjects tend
toward the left top corner and bottom right corner, respectively. The piecewise-
linear decision boundary (solid) yields a classification rate of about 85%.

full-frequency direct transfer function (ffDTF), which is a Granger mea-
sure (Pereda et al., 2005), resulting in a p-value of about 10−3 (Mann-
Whitney test). We combined ρ with ffDTF as features to distinguish MCI
from control subjects (see Figure 20). We used the parameter setting of the
SES algorithm that leads to the smallest p-value for ρ (p = 1.2 · 10−4); we
verified that all parameter settings with T = 0.22 and NR = 5 yield about
the same classification results. About 85% of the subjects are correctly clas-
sified, which is a promising result. However, it is too weak to allow us to
predict AD reliably. To this end, we would need to combine those two syn-
chrony measures with complementary features, for example, derived from
the slowing effect of MCI on EEG, or perhaps from different modalities such
as PET, MRI, or biochemical indicators. We wish to point out, however, that
in the data set at hand, patients did not carry out any specific task. In addi-
tion, we considered recordings of 20 s, which are rather short. It is plausible
that the sensitivity of EEG synchrony could be further improved by in-
creasing the length of the recordings and recording the EEG before, while,
and after patients carry out specific tasks, such as, working memory tasks.
As such, the classifier displayed in Figure 20 might be applied to screen
a population for MCI, since it requires only an EEG recording system, a
relatively simple and low-cost technology, available in most hospitals.

We tried to verify whether the small p-value of ρ is due to a decrease in
coincident oscillatory events or whether it can be attributed to an effect not
related to synchrony or perhaps to an artifact. To this end, we generated
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Figure 21: Distribution of the p-value of parameter ρ for 1000 surrogate EEG
data sets. The p-value of ρ for the actual EEG data set (p = 0.00012) is indicated
by a cross. All surrogates yielded p-values larger than 0.00012.

and investigated surrogate data. From a given bump model, we obtain a
surrogate bump model by shuffling the bumps over time. The center tk of
the bumps is chosen randomly; more precisely, it is drawn uniformly over
the support of the bump model, and the other bump parameters are kept
fixed. We created 1000 such bump models for each subject and obtained as
a result 1000 surrogate EEG data sets. The distribution of the p-values of
ρ for those 1000 surrogates is shown in Figure 21. The p-value of ρ for the
actual EEG data set (p = 0.00012) is indicated by a cross. All the surrogates
yielded p-values larger than 0.00012. We interpret this result as follows.
If the p-values of the surrogate data were on average about 0.00012, we
would be able to conclude that synchrony alone cannot explain the observed
significant decrease in ρ. Since the p-values of the surrogates are on average
much larger than 0.00012, it is less likely that other effects besides decrease
of coincident neural activity result in the lower ρ in MCI patients.

We analyzed the convergence of the proposed inference algorithm (cf.
Table 2). A histogram of the number of iterations (steps 1 and 2 in Table 2)
required for convergence is shown in Figure 22, computed over all subjects,
all pairs of regions, and all parameter settings. The algorithm converged af-
ter at most 23 iterations, and on average, after about 4 iterations. We allowed
a maximum number of 50 iterations, and therefore, Figure 22 indicates that
the algorithm always converged for the EEG data set at hand, as suggested
by the theory of section 5.

Besides the algorithm of Table 2, we also implemented an algorithm in
which the alignment 5.4 is carried out by a linear programming relaxation
instead of the max-product algorithm. Since that algorithm is more com-
plicated, we will not describe it here. We observed that both algorithms
always converged to the same results. Moreover, since the max-product
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Figure 22: Histogram of the number of iterations (step 1 and 2 in Table 2)
required for convergence, computed over all subjects and all pairs of regions.
The algorithm converged after at most 23 iterations, and on average, after about
4 iterations. We allowed a maximum number of 50 iterations, and the histogram
shows that the algorithm always converged for the EEG data set at hand.

algorithm always converged in our experiments, we can deduce that the
optimal solution of the linear programming relaxation of equation 5.4 was
every time unique (Bayati et al., 2005, 2008; Huang & Jebara, 2007; Sanghavi,
2007, 2008). Since it is well known that the linear programming relaxation is
tight for bipartite max-weight matching (Gerards, 1995; Pulleyblank, 1995),
we can conclude that in our experiments, both the max-product algorithm
and linear programming relaxation of equation 5.4 resulted in the unique
optimal alignment.

9 Conclusion

We have presented an alternative method to quantify the similarity of two
time series, referred to as stochastic event synchrony (SES). The first step is
to extract events from both time series, resulting in two point processes. The
events in those point processes are then aligned. The better the alignment,
the more similar the original time series are considered to be. We focused
on multidimensional point processes in this letter.

Through the analysis of surrogate data, we verified that SES can also dis-
tinguish timing dispersion from event reliability in the multidimensional
case. However, it typically underestimates the timing dispersion and over-
estimates event reliability; this is due to the ambiguous nature of the syn-
chrony of point processes. The bias tends to be smaller for multidimensional
point processes than for one-dimensional point processes.



Quantifying Statistical Interdependence by Message Passing—II 2247

Also in the multidimensional case, it is crucial to extract suitable events
from the given time series. Only if those events are characteristic for the
time series may SES yield meaningful results. As we have shown, for spon-
taneous EEG signals, it is natural to consider oscillatory events from the
time-frequency representation; in particular, we considered bump models
extracted from time-frequency maps of the EEG. However, depending on
the nature of the EEG, there might be interesting alternatives, for example,
based on matching pursuit or chirplets.

Since the proposed similarity measure does not take the entire time
series into account but focuses exclusively on certain events, it provides
complementary information about synchrony. Therefore, we believe that
it may prove to be useful to blend our similarity measure with classical
measures such as the Pearson correlation coefficient, Granger causality, or
phase synchrony indices. We have shown that such a combined approach
yields interesting results for the concrete application of diagnosing MCI
from EEG: we computed ρ, the fraction of nonmatched oscillatory events,
and full-frequency directed transfer function (ffDTF) from spontaneous
EEG and used those two (dis)similarity measures as features to distinguish
MCI from control subjects, resulting in a classification rate of about 85%.
Moreover, we observed that there are significantly more nonmatched os-
cillatory events in the EEG of MCI subjects than in control subjects. The
timing jitter st of the matched oscillatory events, however, is not different in
the two subject groups. In future work, we will analyze additional data sets
and incorporate other modalities such as fMRI and DTI into the analysis.

We wish to underline that the SES measures proposed in this letter are
applicable only to pairs of signals. However, extensions to an arbitrary
number of signals are feasible. Moreover, the SES parameters here are as-
sumed to be constant; SES may be extended to time-varying parameters.
Such extensions will be the subject of future reports.

Finally, we wish to outline another potential extension. In the generative
process of SES, the events of the hidden point process are sampled indepen-
dently and uniformly in the space at hand. However, in some applications,
those events may naturally occur in clusters. More generally, the events
may be statistically dependent. For example, it has been shown that spe-
cific frequency bands in EEG are sometimes coupled. Such couplings lead
to correlations between the bumps in time-frequency domain. Our current
analysis ignores such correlations. By taking those dependencies into ac-
count, we may be able to further improve our classification results and gain
further insights about MCI and AD.

Appendix A: Factor Graphs

In this appendix, we provide some basic information on graphical mod-
els, in particular, factor graphs. We closely follow Loeliger (2004) and
Loeliger et al. (2007). Graphical models are graphical representations of
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Figure 23: Factor graph of function without structure— f (x1, x2, x3) (left)—and
a function with structure— f (x1, x2, x3) �= f A(x1, x2) fB(x2, x3) (right).

multivariate functions. Examples are Markov random fields (or Markov net-
works), Bayesian networks (or belief networks), and factor graphs (Loeliger,
2004; Jordan, 1999; Loeliger et al., 2007). We use factor graphs in this letter—
more specifically, Forney-style factor graphs or “normal” graphs, since
they are more flexible than other types of graphical models. Moreover,
the sum-product and max-product algorithm can be formulated most eas-
ily in the factor graph notation (see Loeliger, 2004, for a more detailed
argumentation).

Graphical models (and factor graphs in particular) represent functions.
Let us look at some examples.

Example 1: Factor Graph of a Function without Structure. The factor
graph of the function f (x1, x2, x3) is shown in Figure 23 (left): edges repre-
sent variables, and nodes represent factors. An edge is connected to a node if
and only if the corresponding variable is an argument of the corresponding
function.

The concept of factor graphs becomes interesting as soon as the function
has structure, that is, when it factors.

Example 2: Factor Graph of a Function with Structure. Let us as-
sume that the function f (x1, x2, x3) of example 1 factors as f (x1, x2, x3) �=
f A(x1, x2) fB(x2, x3). The factor graph of Figure 23 (right) represents this
factorization. We call f the global function and f A and fB local functions.

Example 3: The (global) function

f (x1, x2, x3, x4, x5, x6) �= f A(x1, x2) fB(x3, x4) fC (x2, x4, x5) fD(x5, x6)

(A.1)

is represented by the factor graph in Figure 24.

More formally, a Forney-style factor graph (FFG) is defined as follows:
� Factor graph. An FFG represents a function f and consists of nodes

and edges. We assume that f can be written as a product of factors.
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Figure 24: An example factor graph, representing the function A.1. Each node
corresponds to a factor in that function— f A, fB , fC , and fD—each edge corre-
sponds to a variable—X1, X2, . . . , X6.

� Global functions. The function f is called the global function.
� Nodes/local functions. There is a node for every factor, also called local

function.
� Edges/variables. There is an edge or half-edge for every variable.
� Connections. An edge (or half-edge) representing some variable X is

connected to a node representing some factor f if and only if f is a
function of X.

� Configuration. A configuration is a particular assignment of values to
all variables. We use capital letters for unknown variables and low-
ercase letters for particular values. This imitates the notation used in
probability theory to denote chance or random variables and realiza-
tions thereof.

� Configuration space. The configuration space � is the set of all configu-
rations: it is the domain of the global function f . One may regard the
variables as functions of the configuration ω, just as we would with
random or chance variables.

� Valid configuration. A configuration ω ∈ � will be called valid if f (ω) 	=
0.

Implicit in the previous definition is the assumption that no more than
two edges are connected to one node. This restriction is easily circumvented
by introducing variable replication nodes (also referred to as “equality con-
straint nodes”). An equality constraint node represents the factorization
δ(x − x′)δ(x′ − x′′), and is depicted in Figure 25 (left). It enforces the equal-
ity of the variables X, X′, and X′′. The (single) equality constraint node
generates two replicas of X: X′ and X′′. If more replicas are required, one
can concatenate single nodes as shown in Figure 25 (middle); Combin-
ing those single nodes leads to a compound equality constraint node (see
Figure 25 (right).
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Figure 25: Equality constraint node used for variable replication. (Left) Single
node. (Right) Compound node. (Middle) The compound node as concatenation
of single nodes.

Appendix B: Summary Propagation Algorithm

This appendix aims at giving a brief review of the summary-propagation
algorithm on a generic level. Also here we closely follow Loeliger (2004) and
Loeliger et al. (2007). One of the most important operations that can be per-
formed on factor graphs is marginalization: the computation of marginals of
probability functions. Marginalization lies at the heart of many algorithms
in signal processing, coding, and machine learning. As we will show, com-
puting marginals amounts to passing messages (“summaries”) along the
edges in the factor graph of the system at hand. We describe this generic
message-passing algorithm, called the sum(mary)-product algorithm (SPA).

B.1 Summary Propagation on Factor Trees.

Example 4: Marginalization of a Factored Function. Let us consider again
the global function f (x1, x2, x3, x4, x5, x6) of example 3. Suppose we are
interested in the marginal function

f (x5) �=
∑

x1,x2,x3,x4,x6

f (x1, x2, x3, x4, x5, x6). (B.1)

With the factorization (see equation A.1), we have:

f (x5) =
∑

x1,x2,x3,x4,x6

f A(x1, x2) · fB(x3, x4) · fC (x2, x4, x5) · fD(x5, x6)

=
∑
x2,x4

fC (x2, x4, x5)

(∑
x1

f A(x1, x2)

)
︸ ︷︷ ︸

µ f A→x2 (x2)

·
(∑

x3

fB(x3, x4)

)
︸ ︷︷ ︸

µ fB→x4 (x4)︸ ︷︷ ︸
µ fC →x5 (x5)

·
(∑

x6

fD(x5, x6)

)
︸ ︷︷ ︸

µ fD→x5 (x5)

. (B.2)
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Figure 26: Summary propagation for computing f (x5). The arrows correspond
to intermediate results, referred to as “messages” (see equation B.2).

The idea behind equation B.2 is to “push” the summations as much right
as possible. For example, when summing with regard to X6, we can push the
summation sign to the right side of every factor except fD(x5, x6), since this
factor depends on X6. As a result, instead of carrying out a high-dimensional
sum, it suffices to carry out simpler ones (one- and two-dimensional in our
example). The intermediate terms µ f j →xi (xi ) are functions of Xi . The domain
of such a function is the alphabet of Xi . Their meaning becomes obvious
when looking at Figure 26.

The intermediate results can be interpreted as messages flowing along
the edges of the graph. For example, the message µ f A→x2 (x2), which is
the sum

∑
x1

f A(x1, x2), can be interpreted as a message leaving node f A

along edge X2. If both µ f A→x2 (x2) and µ fB→x4 (x4) are available, the message
µ fC →x5 (x5) can be computed as the output message of node fC toward
edge X5. The final result of equation B.2 is

f (x5) = µ fC →x5 (x5) · µ fD→x5 (x5). (B.3)

It is the product of the two messages along the same edge.
Each message can be regarded as a “summary” of what lies “be-

hind” it, as illustrated by the boxes in Figure 26. Computing a message
means “closing” a part of the graph (“box”). The details inside such a
box are “summed out”; only a summary is propagated (hence the name
summary-propagation). In the first step, the dark-shaded areas in Figure 26
are summarized (resulting in µ f A→x2 (x2) and µ fD→x5 (x5)). Afterward, the
lighter-shaded box is closed (amounting to µ fC →x2 (x2)), until we arrive at
equation B.3.

Half-edges (such as X1) do not carry a message toward the connected
node; alternatively, the edge may be thought of as carrying a message
representing a neutral factor 1. With this in mind, we notice that every
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Figure 27: Message along a generic edge.

Figure 28: Message out of a leaf node.

message (i.e., every intermediate result) of equation B.2 is computed in the
same way. Consider the generic node depicted in Figure 27 with messages
arriving along its edges X1, . . . , XN.

The message toward edge Y is computed by the following sum-product
rule:

µ f →y(y) �=
∑

x1,...,xN

f (y, x1, . . . , xN)µx1→ f (x1) · · · µxN→ f (xN). (B.4)

In words, the message out of a node f along the edge Y is the product of
the function f and all messages toward f along all other edges, summa-
rized over all variables except Y. This is the sum-product rule. In general,
messages are computed out of any edge; there is no preferential direction.
The message out of a leaf node f along edge Y is the function f itself, as
illustrated in Figure 28.

Example 5: Maximization of a Factored Function. Let us consider again
the global function f (x1, x2, x3, x4, x5, x6) of example 4. Assume we are now
interested in the function (“max-marginal”)

f (x5) �= max
x1,x2,x3,x4,x6

f (x1, x2, x3, x4, x5, x6). (B.5)
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With the factorization A.1, we have:

f (x5) = max
x1,x2,x3,x4,x6

f A(x1, x2) · fB(x3, x4) · fC (x2, x4, x5) · fD(x5, x6)

= max
x2,x4

fC (x2, x4, x5)
(

max
x1

f A(x1, x2)
)

︸ ︷︷ ︸
µ f A→x2 (x2)

· (max
x3

fB(x3, x4)
)

︸ ︷︷ ︸
µ fB→x4 (x4)︸ ︷︷ ︸

µ fC →x5 (x5)

· (max
x6

fD(x5, x6)
)

︸ ︷︷ ︸
µ fD→x5 (x5)

. (B.6)

It is noteworthy that every message of equation B.6 is computed according
to the same rule. The max-product rule is as follows:

µ f →y(y) �= max
x1,...,xN

f (y, x1, . . . , xN)µx1→ f (x1) · · · µxN→ f (xN). (B.7)

The sum-product and max-product rules can be considered as instances
of the following single rule:

Summary-product rule: The message µ f →y(y) out of a factor
node f (y, . . .) along the edge Y is the product of f (y, . . .) and all mes-
sages toward f along all edges except Y, summarized over all variables
except Y.

The following example shows how several marginals can be obtained
simultaneously in an efficient manner.

Example 6: Recycling Messages. Suppose we are also interested in the
max-marginal function f (x2) of the global function f (x1, x2, x3, x4, x5, x6) of
example 4:

f (x2) �= max
x1,x3,x4,x5,x6

f (x1, x3, x4, x5, x6).

This max-marginal can be computed by the max-product algorithm de-
picted in Figure 29. Note that we have already computed the mes-
sages µ f A→x2 (x2), µ fB→x4 (x4), and µ fD→x5 (x5) in equation B.6. They can be
“reused” for computing f (x2). Eventually f (x2) is obtained as

f (x2) = µ f A→x2 (x2)µ fC →x2 (x2). (B.8)
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Figure 29: Summary propagation for computing f (x2). Note that we have al-
ready computed the messages µ f A→x2 (x2), µ fB →x4 (x4), and µ fD→x5 (x5) for com-
puting f (x5) (see Figure 26). They can be “reused” for computing f (x2).

From example 6, we learn that the two messages associated with an edge
are the same for the computation of each (max-)marginal. It is therefore
sufficient to compute each message once. The (max-)marginal f (y) of a
certain variable Y is the product of the two messages on the corresponding
edge, such as equations B.3 and B.8. In general, it is

f (y) = µ f A→y(y) · µ fB→y(y), (B.9)

where f A and fB are the two nodes attached to edge Y. For half-edges, the
message coming from the open end carries a neutral factor 1. Therefore,
the message from the node toward the edge is already the marginal of the
corresponding variable.

In its general form, the summary-propagation algorithm (SPA) com-
putes two messages on every edge. For factor graphs without loops (factor
trees), the marginals can obtained in an optimal number of computations
as follows.1 One starts the message computation from the leaves and pro-
ceeds with nodes whose input messages become available. In this way, each
message is computed exactly once, as illustrated in Figure 30. When the
algorithm stops, exact marginals, such as equation B.9, are available for all
variables simultaneously.

In summary:
� Marginals such as equation B.5 can be computed as the product of

two messages as in equation B.9.
� Such messages are summaries of the subgraph behind them.
� All messages (except those out of terminal nodes) are computed from

other messages according to the summary-product rule.

1The number of computations may be reduced by additional information about the
structure of the local node functions. This is the case when the factor nodes themselves
may be expressed by (nontrivial) factor trees.
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Figure 30: The SPA computes two messages along each edge. Those messages
are required for calculating the marginal functions f (x1), f (x2), f (x3), f (x4),
f (x5), and f (x6). The circled numbers indicate the order of the message compu-
tations.

If the summaries are computed by the sum-product rule, the above
algorithm is referred to as sum-product algorithm or belief propagation.
And if the summaries are computed according to the max-product rule, it
is known as the max-product algorithm.

If rule B.4 or B.7 is applied, the values of the messages often quickly tend
to zero, and the algorithm becomes instable. Therefore, it is advisable to
scale the message. Instead of the message µ(.), a modified message µ̃(.) �=
γµ(.) is computed, where the scale factor γ may be chosen as one wishes.
The final result, equation B.9, will then be known up to a scaling factor,
which is often not a problem.

A message update schedule says when one has to calculate what mes-
sage. For factor trees, there is an optimal message update schedule, as we
explained previously; for cyclic factor graphs, this is not the case.

B.2 Summary Propagation on Cyclic Factor Graphs. The situation be-
comes quite different when the graph has cycles. In this case, the summary-
propagation algorithm becomes iterative: a new output message at some
node can influence the inputs of the same node through another path in the
graph. The algorithm does not amount to the exact marginal functions. In
fact, there is no guarantee that the algorithm converges. Astonishingly, ap-
plying the summary-product algorithm on cyclic graphs works excellently
in the context of coding and signal processing, and machine learning. In
many practical cases, the algorithm reaches a stable point, and the obtained
marginal functions are satisfactory: decisions based on those marginals are
often close enough to the “optimal” decisions.

Summary propagation on cyclic graphs consists of the following steps:

1. All edges are initialized with a neutral message—a factor µ(.) = 1.
2. All messages are recursively updated according to some schedule.

This schedule may vary from step to step.



2256 J. Dauwels et al.

3. After each step, the marginal functions are computed according to
equation B.9.

4. One makes decisions based on the current marginal functions.
5. The algorithm is halted when the available time is over or when some

stopping criterion is satisfied (e.g., when all messages varied less than
some small ε over the last iterations).

Appendix C: Derivation of the SES Inference Algorithm

In this appendix, we derive the inference algorithm for multidimensional
SES, summarized in Table 2.

The estimate θ̂ (i+1), equation 5.5, is available in closed form; indeed, it
is easily verified that the point estimates δ̂

(i+1)
t and δ̂

(i+1)
f are the (sample)

mean of the timing and frequency offset, respectively, computed over all
pairs of coincident events:

δ̂
(i+1)
t

�= 1
n(i+1)

n(i+1)∑
k=1

t̂′(i+1)
k − t̂(i+1)

k

(�t̂(i+1)
k + �t̂′(i+1)

k )2
(C.1)

δ̂
(i+1)
f

�= 1
n(i+1)

n(i+1)∑
k=1

f̂′(i+1)
k − f̂ (i+1)

k

(� f̂ (i+1)
k + � f̂ ′(i+1)

k )2
, (C.2)

where n(i+1) is the number of coincident bump pairs in alignment ĉ(i+1), and
where we used the shorthand notation t̂(i+1)

k = tĵ (i+1)
k

, f̂ (i+1)
k = f ĵ (i+1)

k
, �t̂(i+1)

k =
�tĵ (i+1)

k
, � f̂ (i+1)

k = � f ĵ (i+1)
k

, and likewise t̂′(i+1)
k , f̂ ′(i+1)

k , �t̂′(i+1)
k , � f̂ ′(i+1)

k .

The estimates ŝ(i+1)
t and ŝ(i+1)

f are obtained as

ŝ(i+1)
t =

νts0,t + n(i+1)ŝ(i+1)
t,sample

νt + n(i+1) + 2
(C.3)

ŝ(i+1)
f =

ν f s0, f + n(i+1)ŝ(i+1)
f,sample

ν f + n(i+1) + 2
, (C.4)

where νt , ν f , s0,t , and s0, f are the parameters of the conjugate priors 3.16
and 3.17, and st,sample and s f,sample are the (sample) variance of the timing
and frequency offset, respectively, computed over all pairs of coincident
events:

ŝ(i+1)
t,sample

�= 1
n(i+1)

n(i+1)∑
k=1

(t̂′(i+1)
k − t̂(i+1)

k − δ̂
(i+1)
t )2

(�t̂(i+1)
k + �t̂′(i+1)

k )2
(C.5)
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ŝ(i+1)
f,sample

�= 1
n(i+1)

n(i+1)∑
k=1

( f̂ ′(i+1)
k − f̂ (i+1)

k − δ̂
(i+1)
f )2

(� f̂ (i+1)
k + � f̂ ′(i+1)

k )2
. (C.6)

Now we address the update, equation 5.4, i.e., finding the optimal pairwise
alignment c for given values θ̂ (i) of the parameters θ . In the following,
we will show that it is equivalent to a standard problem in combinatorial
optimization, that is, max-weight bipartite matching see, e.g., (Gerards,
1995; Pulleyblank, 1995; Bayati et al., 2005, 2008; Huang & Jebara, 2007;
Sanghavi, 2007, 2008). First, let us point out that in equation 5.2, there is a
factor β for every noncoincident bump; the total number of factors β is hence
nnon-co = n + n′ − 2nco, where nco is the number of coincident bump pairs.
For each pair of coincident bumps, there is a factor N (·; δ̄t, s̄t)N (·; δ̄ f , s̄ f ).
In total there are nco such factors. Therefore, we can rewrite equation 5.2 as

p(e, e ′, c, θ ) ∝
n∏

k=1

n′∏
k ′=1

(
N

(
t′
k ′ − tk; δ̄t, s̄t

)
N

(
f ′
k ′ − fk; δ̄ f , s̄ f

)
β−2

)ckk′

· I (c)p(δt)p(st)p(δ f )p(s f ), (C.7)

where we omitted the factor βn+n′
since it is an irrelevant constant, and

I (c) =
n∏

k=1

(
δ

[
n′∑

k ′=1

ckk ′

]
+ δ

[
n′∑

k ′=1

ckk ′ − 1

])

·
n′∏

k ′=1

(
δ
[ n∑

k=1

ckk ′

]
+ δ

[
n∑

k=1

ckk ′ − 1

])
. (C.8)

The factor I (c) encodes the constraints 3.13. The maximization 5.4 is equiv-
alent to

ĉ(i+1) = argmax
c

log p(e, e ′, c, θ̂ (i)). (C.9)

Using equation C.7, we can rewrite equation C.9 as

ĉ(i+1) = argmax
c

∑
kk ′

wkk ′ ckk ′ + log I (c) + ζ, (C.10)

where ζ is an irrelevant constant and

wkk ′ =−
(
t′
k ′ − tk − δ̂

(i)
t
)2

2st(�tk + �t′
k ′ )2 −

(
f ′
k ′ − fk − δ̂

(i)
f

)2

2s f (� fk + � f ′
k ′ )2 − 2 log β

− 1/2 log 2πst(�tk + �t′
k ′ )2 − 1/2 log 2πs f (� fk + � f ′

k ′ )2, (C.11)
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where the weights wkk ′ can be positive or negative. If weight wkk ′ is neg-
ative, then ckk ′ = 0. Indeed, setting ckk ′ equal to one would decrease
log p(e, e ′, c, θ̂ (i)). Bump pairs (ek, e ′

k ′ ) with large weights wkk ′ are likely to
be coincident. The closer the bumps (ek, e ′

k ′ ) on the time-frequency plane,
the larger their weight wkk ′ . From the definition of β, equation 3.8, we can
also see that the weights increase as the prior for a deletion pd decreases.
Indeed, the fewer deletions, the more likely that a bump ek is coincident
with a bump e ′

k . In addition, the weights wkk ′ grow as the concentration λ

of bumps on the time-frequency plane decreases. Indeed, if there are few
bumps in each model (per square unit) and a bump ek of e happens to be
close to a bump e ′

k ′ of e ′, they are probably a coincident bump pair, since
most likely, there are only a few other bumps in e ′ that are close to ek .

One can naturally associate a bipartite graph with the optimization prob-
lem, equation C.10. The latter is a graph whose nodes can be divided into
two disjoint sets V1 and V2 such that every edge connects a node in V1 and
one in V2, that is, there is no edge between two vertices in the same set. As
a first step, one associates a node to each bump in e, resulting in the set of
nodesV1, and one associates a node to each bump in e ′, resulting in the set of
nodes V2. Next, one draws edges between each node of V1 and V2, resulting
in the bipartite graph depicted in Figure 31a. At last, one assigns a weight
to every edge. More precisely, the edge between node k of V1 and node k ′ of
V2 has weight wkk ′ . Let us now look back at problem C.10: one maximizes
a sum of weights wkk ′ subject to the constraints 3.3. This problem is equiv-
alent to finding the heaviest disjoint set of edges in the bipartite graph of
Figure 31a. This set of edges does not need to be connected to every node;
some nodes may not be matched. For example, in Figure 31b, the second
node of V1 is not matched. The latter problem is known as imperfect max-
weight bipartite matching and can be solved in at least three different ways:

� By the Edmonds-Karp (Edmonds & Karp, 1972) or auction algo-
rithm (Bertsekas & Tsitsiklis, 1989)

� By using the tight LP relaxation to the integer programming formu-
lation of bipartite max-weight matching (Gerards, 1995; Pulleyblank,
1995)

� By applying the max-product algorithm (Bayati et al., 2005, 2008;
Huang & Jebara, 2007; Sanghavi, 2007, 2008).

The Edmonds-Karp (Edmonds & Karp, 1972) and auction algorithm
(Bertsekas & Tsitsiklis, 1989) both result in the optimum solution of equa-
tion C.10. The same holds for the linear programming relaxation approach
and the max-product algorithm as long as the optimum solution is unique.
If the latter is not unique, the linear programming relaxation method may
result in noninteger solutions, and the max-product algorithm will not
converge, as shown in (Sanghavi, 2007, 2008). Note that in many practi-
cal problems, the optimum matching C.10 is unique with probability one.
This is in particular the case for bump models (see section 8.2). Since the
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Figure 31: Bipartite max-weight matching. The weighted bipartite graph (left)
is obtained as follows. First, one associates a node to each bump in e, resulting
in the set of nodes V1 (nodes at the left), and one associates a node to each
bump in e ′, resulting in the set of nodes V2 (nodes at the right). Next, one draws
edges between each node of V1 and V2 and associates a weight wkk′ to each edge.
Problem C.10 is equivalent to finding the heaviest disjoint set of edges in that
weighted bipartite graph. Note that some nodes may not be connected to edges
of that subset, that is, the matching may be nonperfect (right).

max-product algorithm is arguably the simplest algorithm in the list, we
will describe only that algorithm.

Before we can apply the max-product algorithm on the graph of Figure 7
in order to find the optimal alignment, equation 5.4, we first need to slightly
modify that graph. Indeed, the alignment c is computed for given θ = θ̂ (i),
that is, one computes c conditioned on θ = θ̂ (i). Generally if one performs
inference conditioned on a variable X, the edge(s) X need to be removed
from the factor graph of the statistical model at hand. Therefore, for the
purpose of computing equation 5.4, one needs to remove the θ edges (and
the two bottom nodes in Figure 7), resulting in the factor graph depicted
in Figure 8. It is noteworthy that the N -nodes have become leaf nodes and
that θ in gN , equation 4.1, is replaced by the estimate θ̂ (i).

Before applying the max-product algorithm to Figure 8, we briefly de-
scribe it in general terms. The max-product algorithm is an optimization
procedure that operates on a factor graph (or any other kind of graphical
model; Jordan, 1999; Loeliger, 2004; Loeliger et al., 2007); local information
(referred to as “messages”) propagates along the edges in the graph and is
computed at each node according to the generic max-product computation
rule. After convergence or after a fixed number of iterations, one combines
the messages in order to obtain decisions (Loeliger, 2004; Loeliger et al.,
2007)). If the graph is cycle free, one obtains an optimal solution of the op-
timization problem; if the graph is cyclic, the max-product algorithm may
not converge, and if it converges, the resulting decisions are not necessarily
optimal (Loeliger, 2004; Loeliger et al., 2007). However, for certain problems
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that involve cyclic graphs, it has been shown that the max-product algo-
rithm is guaranteed to find the optimum solution. As we pointed out earlier,
this is in particular the case for the max-weight matching problem (Bayati
et al., 2005, 2008; Huang & Jebara, 2007; Sanghavi, 2007, 2008). We refer to
appendix B for more information on the max-product algorithm.

The messages in the graph of Figure 8 are iteratively updated according
to the max-product update rule, which is stated in row 1 of Table 3 for a
generic node g. We now apply that generic rule to the nodes in Figure 8. Let
us first consider the β- andN -nodes, which are leaf nodes. The max-product
message leaving a leaf node is nothing but the node function itself (see
row 2 of Table 3). Therefore, the messages µ↓(bk) and µ↓(b ′

k), propagating
downward along the edges Bk and B ′

k , respectively, are given by

µ↓(bk) = gβ (bk) = βδ[bk − 1] + δ[bk] (C.12)

µ↓(b ′
k) = gβ (b ′

k) = βδ[b ′
k − 1] + δ[b ′

k], (C.13)

and similarly, the messages µ↑(ckk ′ ), propagating upward along the edges
Ckk ′ :

µ↑(ckk ′ ) = gN (ckk ′ ; θ̂ (i)) (C.14)

=
(
N

(
t′
k ′ − tk; δ̄

(i)
t , s̄(i)

t
)
N

(
f ′
k ′ − fk; δ̄

(i)
f , s̄(i)

f

))ckk′
, (C.15)

where δ̄
(i)
t = δ̂

(i)
t (�tk + �t′

k ′ ), δ̄
(i)
f = δ̂

(i)
f (� fk + � f ′

k ′ ), s̄(i)
t = ŝ(i)

t (�tk + �t′
k ′ )2,

and s̄(i)
f = ŝ(i)

f (� fk + � f ′
k ′ )2. Note that the messages µ↓(bk) and µ↓(b ′

k) never
change; they do not need to be recomputed in the course of the max-product
algorithm.

We now turn to the messages at the �̄-nodes. Row 4 of Table 3 considers
a generic �̄-node. Its (generic) incident edges X1, . . . , Xm are replaced by
C1k ′ , . . . , Cnk ′ or Ck1, . . . , Ckn′ in Figure 8. For convenience, we now compute
the messages in terms of X1, . . . , Xm; later we will formulate them in terms of
Ckk ′ (more specifically, in equations C.22, C.23, C.30, and C.32). The message
µ↑(b), propagating upward along the edge B, is computed as

µ↑(b) = max
x1,...,xm

δ
[
b +

m∑
k=1

xk − 1
]
µ↑(x1) . . . µ↑(xm) (C.16)

=µ↑(x1 = 0) . . . µ↑(xm = 0)

·
(
δ[b − 1] + δ[b] max

k
µ↑(xk = 1)/µ↑(xk = 0)

)
, (C.17)

where X1, . . . , Xm, B ∈ {0, 1} and µ↑(xk) are the messages propagating up-
ward along the edges Xk . In row 4 of Table 3, we have written the message



Quantifying Statistical Interdependence by Message Passing—II 2261

Table 3: Max-Product Computation Rules for the Nodes in the Factor Graph
of Figure 8.
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µ↑(b) componentwise. The messages µ↓(xk), propagating downward along
the edges Xk , are computed similarly:

µ↓(xk) = max
b,x1,...,xk−1,xk+1...,xm

δ

[
b +

m∑
k=1

xk − 1
]
µ↓(b)µ↑(x1) . . . µ↑(xk−1)

·µ↑(xk+1) . . . µ↑(xm) (C.18)

= µ↑(b = 0)µ↑(x1 = 0) . . . µ↑(xk−1 = 0)µ↑(xk+1 = 0)

. . . µ↑(xm = 0) ·
[
δ[xk − 1] + δ[xk] max

(
µ↓(b = 1)/µ↓(b = 0),

max
� 	=k

µ↑(x� = 1)/µ↑(x� = 0)
)]

, (C.19)

where µ↓(b) is the message propagating downward along the edge B. The
componentwise formulation of µ↓(xk) is also listed in row 4 of Table 3.

At last, we turn to the messages computed at the equality constraint
nodes in Figure 8. The (generic) equality constraint node is considered in
row 3 of Table 3. The message µ(y), leaving this node along the edge Y, is
computed as follows:

µ(y) = max
x1,...,xm

δ[x1 − x2] . . . δ[xm−1 − xm]δ[xm − y] µ(x1) . . . µ(xm) (C.20)

= µ(x1 = y) . . . µ(xm = y), (C.21)

where X1, . . . , Xm, Y ∈ {0, 1}. Since the equality constraint node is symmet-
ric, the other messages leaving the equality constraint node (along the edges
X1, . . . , Xm) are computed analogously.

We now use equations C.12 to C.21 to derive the update rules for the
messages µ↑(bk), µ↑(b ′

k), µ↓(ckk ′ ), µ↑′(ckk ′ ), µ↓′(ckk ′ ), µ↑′′(ckk ′ ), and µ↓′′(ckk ′ )
in Figure 8:

� The messages µ↑(bk) and µ↑(b ′
k) propagate upward along the edges

bk and b ′
k respectively, toward the β-nodes.

� The messages µ↓(ckk ′ ) propagate downward along the edges Ckk ′ ,
leaving the equality constraint nodes.

� The messages µ↑′(ckk ′ ) and µ↑′′(ckk ′ ) propagate upward along the
edges Ckk ′ , toward the �̄-nodes connected to the edges Bk and B ′

k ′ ,
respectively (see Figure 8, left-hand side).

� The messages µ↓′(ckk ′ ) and µ↓′′(ckk ′ ) propagate downward along the
edges Ckk ′ , leaving the �̄-nodes connected to the edges Bk and B ′

k ′ ,
respectively.



Quantifying Statistical Interdependence by Message Passing—II 2263

We start with the messages µ↑(bk):

µ↑(bk) =µ↑′(ck1 = 0) . . . µ↑′(ckn′ = 0)

·
(
δ[bk − 1] + δ[bk] max

k ′
µ↑′(ckk ′ = 1)/µ↑′(ckk ′ = 0)

)
, (C.22)

where we used equation C.17, and

µ↑(b ′
k ′ ) = µ↑′′(c1k ′ = 0) . . . µ↑′′(cnk ′ = 0)

·
(
δ[b ′

k ′ − 1] + δ[b ′
k ′ ] max

k
µ↑′′(ckk ′ = 1)/µ↑′′(ckk ′ = 0)

)
. (C.23)

The messages µ↓(ckk ′ ) are derived as follows:

µ↓(ckk ′ ) = µ↓′(ckk ′ )µ↓′′(ckk ′ ), (C.24)

where we used equation C.21.
The messages µ↑′(ckk ′ ) are derived as follows:

µ↑′(ckk ′ ) ∝ µ↓′′(ckk ′ )µ↑(ckk ′ ) = µ↓′′(ckk ′ )gN (ckk ′ ; θ̂ (i)) (C.25)

= µ↓′′(ckk ′ )
(
N

(
t′
k ′ − tk; δ̄

(i)
t , s̄(i)

t
)
N

(
f ′
k ′ − fk; δ̄

(i)
f , s̄(i)

f

))ckk′
, (C.26)

where we used equations C.15 and C.21 and where δ̄
(i)
t = δ̂

(i)
t (�tk + �t′

k ′ ),
δ̄

(i)
f = δ̂

(i)
f (� fk + � f ′

k ′ ), s̄(i)
t = ŝ(i)

t (�tk + �t′
k ′ )2, and s̄(i)

f = ŝ(i)
f (� fk + � f ′

k ′ )2.
Similarly, we have:

µ↑′′(ckk ′ ) ∝ µ↓′(ckk ′ )µ↑(ckk ′ ) = µ↓′(ckk ′ )gN (ckk ′ ; θ̂ (i)) (C.27)

= µ↓′(ckk ′ )
(
N

(
t′
k ′ − tk; δ̄

(i)
t , s̄(i)

t
)
N

(
f ′
k ′ − fk; δ̄

(i)
f , s̄(i)

f

))ckk′
. (C.28)

The messages µ↑′(ckk ′ ) and µ↑′′(ckk ′ ) depend on the messages µ↓′′(ckk ′ ) and
µ↓′(ckk ′ ), respectively. The latter are computed as follows:

µ↓′(ckk ′ ) ∝
(
δ[ckk ′ − 1] + δ[ckk ′ ] max

(
µ↓(bk = 1)/µ↓(bk = 0),

max
�′ 	=k ′

µ↑′(ck�′ = 1)/µ↑′(ck�′ = 0)
))

(C.29)

=
(
δ[ckk ′ − 1] + δ[ckk ′ ] max

(
β,

max
�′ 	=k ′

µ↑′(ck�′ = 1)/µ↑′(ck�′ = 0)
))

, (C.30)
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where we used equations C.12 and C.19, and

µ↓′′(ckk ′ ) ∝
(
δ[ckk ′ − 1] + δ[ckk ′ ] max

(
µ↓(b ′

k = 1)/µ↓(b ′
k = 0),

max
� 	=k

µ↑′′(c�k ′ = 1)/µ↑′′(c�k ′ = 0)
))

(C.31)

=
(
δ[ckk ′ − 1] + δ[ckk ′ ] max

(
β,

max
� 	=k

µ↑′′(c�k ′ = 1)/µ↑′′(c�k ′ = 0)
))

. (C.32)

The messages µ↓′′(ckk ′ ) and µ↓′(ckk ′ ) depend on µ↑′(ckk ′ ) and µ↑′′(ckk ′ ), and
vice versa (as we pointed out earlier). Therefore, a natural way to determine
all of those messages is to first initialize µ↓′(ckk ′ ) = 1 = µ↓′′(ckk ′ ) and then
iterate the updates, equations C.26 to C.30, until convergence. This can also
be understood from Figure 8: since the graph is cyclic, the max-product
algorithm becomes an iterative procedure.

After convergence or after a fixed number of iterations, we compute the
marginals p(ckk ′ ) as follows:

p(ckk ′ ) ∝ µ↓(ckk ′ )µ↑(ckk ′ ) (C.33)

=µ↓′(ckk ′ )µ↓′′(ckk ′ )

·
(
N

(
t′
k ′ − tk; δ̄

(i)
t , s̄(i)

t
)
N

(
f ′
k ′ − fk; δ̄

(i)
f , s̄(i)

f

))ckk′
, (C.34)

where we used equations C.15 and C.24. The decisions ĉkk ′ are then obtained
as

ĉkk ′ = argmaxckk′ p(ckk ′ ). (C.35)
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Delprat, N., Escudié, B., Guillemain, P., Kronland-Martinet, R., Tchamitchian, P.,
& Torrésani, B. (1992). Asymptotic wavelet and Gabor analysis: Extraction of
instantaneous frequencies. IEEE Trans. Information Theory, 38, 644–664.

Demanet, L., & Ying, L. (2007). Wave atoms and sparsity of oscillatory patterns. In
Appl. Comput. Harmon. Anal., 23, 368–387.

Donoho, D. (2006). Compressed sensing. IEEE Trans. Information Theory, 52(4), 1289–
1306.

Donoho, D., Tsaig, I., Drori, I., & Stark, J-C. (2006). Sparse solution of underdetermined
linear equations by stagewise orthogonal matching pursuit (Tech. Rep. 2006.2). Palo
Alto, CA: Department of Statistical, Stanford University.

Duarte, M. F., Wakin, M. B., & Baraniuk, R. G. (2005). Fast reconstruction of piece-
wise smooth signals from random projections. In Proc. of the Workshop on Signal
Processing with Adaptive Sparse Structured Representations. Piscataway, NJ: IEEE
Press.

Edmonds, J., & Karp, R. (1972). Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19(2), 248–264.

Freeman, W. T., & Weiss, Y. (1999). On the fixed points of the max-product algorithm.
(Tech. Rep. 1999-039). Cambridge, MA: Mitsubishi Electric Research Laboratories.

Gerards, A. M. H. (1995). Matching: Handbooks in operations research and management
science. 7, Dordrecht: North-Holland.

Gilbert, A. C., Strauss, M. J., Tropp, J., & Vershynin, R. (2006). Algorithmic linear
dimension reduction in the �1 norm for sparse vectors. In Proc. 44th Annual Allerton
Conf. Communication, Control, and Computing. N.p.

Goupillaud, P., Grossman, A., & Morlet, J. (1984). Cycle-octave and related trans-
forms in seismic signal analysis. Geoexploration, 23, 85–102.

Harris, F. J. (2004). Multirate signal processing for communication systems. Upper Saddle
River, NJ: Prentice Hall.

Herrmann, C. S., Grigutsch, M., & Busch, N. A. (2005). EEG oscillations and wavelet
analysis. In T. Handy (Ed.), Event-related potentials: A methods handbook (pp. 229–
259). Cambridge, MA: MIT Press.

Hogan, M. J., Swanwick, G. R. J., Kaiser, J., Rowan, M., & Lawlor, B. (2003).
Memory-related EEG power and coherence reductions in mild Alzheimer’s dis-
ease. Int. J. Psychophysiol. 49, 147–163.

Huang, B., & Jebara, T. (2007). Loopy belief propagation for bipartite
maximum weight b-matching. In Proc. Eleventh International Conference



Quantifying Statistical Interdependence by Message Passing—II 2267

on Artificial Intelligence and Statistics (AISTATS). Available online at
http://www.stat.umn.edu/aistat/proceedings/start.htm.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998).
The empirical mode decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 454(1971), 903–995.

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neuro-
physiology, 115, 1490–1505.

Jordan, M. I. (Ed.). (1999). Learning in graphical models. Cambridge, MA: MIT Press.
Kantha, L., & Clayson, C. (2000). Numerical models of oceans and oceanic processes.

Orlando, FL: Academic Press.
Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Processing Mag-

azine, 21, 28–41.
Loeliger, H.-A., Dauwels, J., Hu, J., Korl, S., Li, Ping, & Kschischang, F. (2007). The

factor graph approach to model-based signal processing. Proceedings of the IEEE,
95(6), 1295–1322.

Mallat, S. (1999). A wavelet tour of signal processing. Orlando, FL: Academic Press.
Mallat, S., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries.

IEEE Transactions on Signal Processing, 41(12), 3397–3415.
Martin, C., Gervais, R., Hugues, E., Messaoudi, B., & Ravel, N. (2004). Learning

modulation of odor-induced oscillatory responses in the rat olfactory bulb: A
correlate of odor recognition? Journal of Neuroscience, 24(2), 389–397.

Matsuda, H. (2001). Cerebral blood flow and metabolic abnormalities in Alzheimer’s
disease. Ann. Nucl. Med., 15, 85–92.

Matthew, B., & Cutmore, T. (2002). Low-probability event-detection and separation
via statistical wavelet thresholding: An application to psychophysiological de-
noising. Clinical Neurophysiology, 113, 1403–1411.

Mitra, P., & Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical
Journal, 76, 2, 691–708.

Musha, T., Asada, T., Yamashita, F., Kinoshita, T., Chen, Z., Matsuda, H., et al. (2002).
A new EEG method for estimating cortical neuronal impairment that is sensitive
to early stage Alzheimer’s disease. Clin. Neurophysiol, 113, 1052–1058.

Nunez, P., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG.
New York: Oxford University Press.

Ohara, S., Crone, N. E., Weiss, N., & Lenz, F. A. (2004). Attention to a painful cuta-
neous laser stimulus modulates electrocorticographic event-related desynchro-
nization in humans. Clinical Neurophysiology, 115, 1641–1652.

O’Neill, J. C., Flandrin, P., & Karl, W. C. (2002). Sparse representations with chirplets
via maximum likelihood estimation. Physical Review E, 65, 041903.1–041903.14.

Pereda, E., Quian Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinear multivariate
analysis of neurophsyiological signals. Progress in Neurobiology, 77, 1–37.

Pulleyblank, W. (1995). Matchings and extension: Handbook of combinatorics. Dordrecht:
North-Holland.

Quian Quiroga, R. Q., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance
of different synchronization measures in real data: A case study on EEG signals.
Physical Review E, 65, 041903.1–041903.14.



2268 J. Dauwels et al.

Sanghavi, S. (2007). Equivalence of LP relaxation and max-product for weighted
matching in general graphs. In Proc. IEEE Information Theory Workshop. Piscat-
away, NJ: IEEE Press.

Sanghavi, S. (2008). Linear programming analysis of loopy belief propagation for
weighted matching. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances
in neural information processing systems, 20. Cambridge, MA: MIT Press.

Sarvotham, S., Baron, D., & Baraniuk, R. G. (2006). Compressed sensing reconstruc-
tion via belief propagation. (Tech. Rep. ECE-06-01). Houston, TX: Electrical and
Computer Engineering Department, Rice University.

Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an
emerging field. Clinical Neurophysiology, 116, 2266–2301.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity
of phase-locked and non-phase-locked 40Hz visual responses in human. Journal
of Neuroscience, 16, 4240–4249.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the
IEEE, 70, 1055–1096.

Tropp, J., & Gilbert, A. C. (2007). Signal recovery from partial information via orthog-
onal matching pursuit. IEEE Transactions on Information Theory, 53, 4655–4666.

Uhlhaas, P., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for
cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.

Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T., Rutkowski, T. M., & Gervais, R.
(2005). Blind source separation and sparse bump modelling of time-frequency
representation of EEG signals: New tools for early detection of Alzheimer’s dis-
ease. In Proc. IEEE Workshop on Machine Learning for Signal Processing (pp. 27–32).
Piscataway, NJ: IEEE Press.

Vialatte, F. (2005). Modélisation en bosses pour l’analyse des motifs oscillatoires repro-
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