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Abstract

Using established principles from Statistics and Information Theory, we show that invari-
ance to nuisance factors in a deep neural network is equivalent to information minimality of
the learned representation, and that stacking layers and injecting noise during training nat-
urally bias the network towards learning invariant representations. We then decompose the
cross-entropy loss used during training and highlight the presence of an inherent overfitting
term. We propose regularizing the loss by bounding such a term in two equivalent ways:
One with a Kullbach-Leibler term, which relates to a PAC-Bayes perspective; the other
using the information in the weights as a measure of complexity of a learned model, yield-
ing a novel Information Bottleneck for the weights. Finally, we show that invariance and
independence of the components of the representation learned by the network are bounded
above and below by the information in the weights, and therefore are implicitly optimized
during training. The theory enables us to quantify and predict sharp phase transitions be-
tween underfitting and overfitting of random labels when using our regularized loss, which
we verify in experiments, and sheds light on the relation between the geometry of the loss
function, invariance properties of the learned representation, and generalization error.

Keywords: Representation learning; PAC-Bayes; information bottleneck; flat minima;
generalization; invariance; independence;

1. Introduction

Efforts to understand the empirical success of deep learning have followed two main lines:
Representation learning and optimization. In optimization, a deep network is treated as
a black-box family of functions for which we want to find parameters (weights) that yield
good generalization. Aside from the difficulties due to the non-convexity of the loss function,
the fact that deep networks are heavily over-parametrized presents a theoretical challenge:
The bias-variance trade-off suggests they may severely overfit; yet, even without explicit
regularization, they perform remarkably well in practice. Recent work suggests that this is
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Figure 1: (Left) The AlexNet model of Zhang et al. (2017) achieves high accuracy (red) even
when trained with random labels on CIFAR-10. Using the IB Lagrangian to limit information in
the weights leads to a sharp transition to underfitting (blue) predicted by the theory (dashed line).
To overfit, the network needs to memorize the dataset, and the information needed grows linearly.
(Right) For real labels, the information sufficient to fit the data without overfitting saturates to
a value that depends on the dataset, but somewhat independent of the number of samples. Test
accuracy shows a uniform blue plot for random labels, while for real labels it increases with the
number of training samples, and is higher near the critical regularizer value β = 1.

related to properties of the loss landscape and to the implicit regularization performed by
stochastic gradient descent (SGD), but the overall picture is still hazy (Zhang et al., 2017).

Representation learning, on the other hand, focuses on the properties of the representa-
tion learned by the layers of the network (the activations) while remaining largely agnostic
to the particular optimization process used. In fact, the effectiveness of deep learning is
often ascribed to the ability of deep networks to learn representations that are insensitive
(invariant) to nuisances such as translations, rotations, occlusions, and also “disentangled,”
that is, separating factors in the high-dimensional space of data (Bengio, 2009). Careful
engineering of the architecture plays an important role in achieving insensitivity to sim-
ple geometric nuisance transformations, like translations and small deformations; however,
more complex and dataset-specific nuisances still need to be learned. This poses a riddle:
If neither the architecture nor the loss function explicitly enforce invariance and disen-
tangling, how can these properties emerge consistently in deep networks trained by simple
generic optimization?

In this work, we address these questions by establishing information theoretic connec-
tions between these concepts. In particular, we show that: (a) a sufficient representation
of the data is invariant if and only if it is minimal, i.e., it contains the smallest amount of
information, although may not have small dimension; (b) the information in the represen-
tation, along with its total correlation (a measure of disentanglement) are tightly bounded
by the information that the weights contain about the dataset; (c) the information in the
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weights, which is related to overfitting (Hinton and Van Camp, 1993), flat minima (Hochre-
iter and Schmidhuber, 1997), and a PAC-Bayes upper-bound on the test error (Section 6),
can be controlled by implicit or explicit regularization. Moreover, we show that adding noise
during the training is a simple and natural way of biasing the network towards invariant
representations.

Finally, we perform several experiments with realistic architectures and datasets to
validate the assumptions underlying our claims. In particular, we show that using the
information in the weights to measure the complexity of a deep neural network (DNN),
rather than the number of its parameters, leads to a sharp and theoretically predicted
transition between overfitting and underfitting regimes for random labels, shedding light on
the questions of Zhang et al. (2017).

1.1 Related work

The Information Bottleneck (IB) was introduced by Tishby et al. (1999) as a generalization
of minimal sufficient statistics that allows trading off fidelity (sufficiency) and complexity
of a representation. In particular, the IB Lagrangian reduces finding a minimal sufficient
representation to a variational optimization problem. Later, Tishby and Zaslavsky (2015)
and Shwartz-Ziv and Tishby (2017) advocated using the IB between the test data and the
activations of a deep neural network, to study the sufficiency and minimality of the resulting
representation. In parallel developments, the IB Lagrangian was used as a regularized
loss function for learning representation, leading to new information theoretic regularizers
(Achille and Soatto, 2018; Alemi et al., 2017a; Alemi et al., 2017b).

In this paper, we introduce an IB Lagrangian between the weights of a network and the
training data, as opposed to the traditional one between the activations and the test datum.
We show that the former can be seen both as a generalization of Variational Inference,
related to Hinton and Van Camp (1993), and as a special case of the more general PAC-Bayes
framework (McAllester, 2013), that can be used to compute high-probability upper-bounds
on the test error of the network. One of our main contributions is then to show that, due to
a particular duality induced by the architecture of deep networks, minimality of the weights
(a function of the training dataset) and of the learned representation (a function of the test
input) are connected: in particular we show that networks regularized either explicitly, or
implicitly by SGD, are biased toward learning invariant and disentangled representations.
The theory we develop could be used to explain the phenomena described in small-scale
experiments in Shwartz-Ziv and Tishby (2017), whereby the initial fast convergence of SGD
is related to sufficiency of the representation, while the later asymptotic phase is related
to compression of the activations: While SGD is seemingly agnostic to the property of the
learned representation, we show that it does minimize the information in the weights, from
which the compression of the activations follows as a corollary of our bounds. Practical
implementation of this theory on real large scale problems is made possible by advances in
Stochastic Gradient Variational Bayes (Kingma and Welling, 2014; Kingma et al., 2015).

Representations learned by deep networks are observed to be insensitive to complex
nuisance transformations of the data. To a certain extent, this can be attributed to the
architecture. For instance, the use of convolutional layers and max-pooling can be shown
to yield insensitivity to local group transformations (Bruna and Mallat, 2011; Anselmi

3



Achille and Soatto

et al., 2016; Soatto and Chiuso, 2016). But for more complex, dataset-specific, and in
particular non-local, non-group transformations, such insensitivity must be acquired as
part of the learning process, rather than being coded in the architecture. We show that a
sufficient representation is maximally insensitive to nuisances if and only if it is minimal,
allowing us to prove that a regularized network is naturally biased toward learning invariant
representations of the data.

Efforts to develop a theoretical framework for representation learning include Tishby
and Zaslavsky (2015) and Shwartz-Ziv and Tishby (2017), who consider representations as
stochastic functions that approximate minimal sufficient statistics, different from Bruna and
Mallat (2011) who construct representations as (deterministic) operators that are invertible
in the limit, while exhibiting reduced sensitivity (“stability”) to small perturbations of the
data. Some of the deterministic constructions are based on the assumption that the un-
derlying data is spatially stationary, and therefore work best on textures and other visual
data that are not subject to occlusions and scaling nuisances. Anselmi et al. (2016) develop
a theory of invariance to locally compact groups, and aim to construct maximal (“distinc-
tive”) invariants, like Sundaramoorthi et al. (2009) that, however, assume nuisances to be
infinite-dimensional groups (Grenander, 1993). These efforts are limited by the assump-
tion that nuisances have a group structure. Such assumptions were relaxed by Soatto and
Chiuso (2016) who advocate seeking for sufficient invariants, rather than maximal ones. We
further advance this approach, but unlike prior work on sufficient dimensionality reduction,
we do not seek to minimize the dimension of the representation, but rather its information
content, as prescribed by our theory. Recent advances in Deep Learning provide us with
computationally viable methods to train high-dimensional models and predict and quantify
observed phenomena such as convergence to flat minima and transitions from overfitting
to underfitting random labels, thus bringing the theory to fruition. Other theoretical ef-
forts focus on complexity considerations, and explain the success of deep networks by ways
of statistical or computational efficiency (Lee et al., 2017; Bengio, 2009; LeCun, 2012).
“Disentanglement” is an often-cited property of deep networks (Bengio, 2009), but seldom
formalized and studied analytically, although Ver Steeg and Galstyan (2015) has suggested
studying it using the Total Correlation of the representation, also known as multi-variate
mutual information, which we also use.

We connect invariance properties of the representation to the geometry of the optimiza-
tion residual, and to the phenomenon of flat minima (Dinh et al., 2017).

Following (McAllester, 2013), we have also explored relations between our theory and
the PAC-Bayes framework (Dziugaite and Roy, 2017). As we show, our theory can also
be derived in the PAC-Bayes framework, without resorting to information quantities and
the Information Bottleneck, thus providing both an independent and alternative derivation,
and a theoretically rigorous way to upper-bound the optimal loss function. The use of PAC-
Bayes theory to study the generalization properties of deep networks has been championed
by Dziugaite and Roy (2017), who point out that minima that are flat in the sense of
having a large volume, toward which stochastic gradient descent algorithms are implicitly
or explicitly biased (Chaudhari and Soatto, 2018), naturally relates to the PAC-Bayes loss
for the choice of a normal prior and posterior on the weights. This has been leveraged by
Dziugaite and Roy (2017) to compute non-vacuous PAC-Bayes error bounds, even for deep
networks.
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2. Preliminaries

A training set D = {x,y}, where x =
{
x(i)
}N
i=1

and y =
{
y(i)
}N
i=1

), is a collection of

N randomly sampled data points x
(i)
i and their associated (usually discrete) labels. The

samples are assumed to come from an unknown, possibly complex, distribution pθ(x, y),
parametrized by a parameter θ. Following a Bayesian approach, we also consider θ to be a
random variable, sampled from some unknown prior distribution p(θ), but this requirement
is not necessary (see Section 6). A test datum x is also a random variable. Given a test
sample, our goal is to infer the random variable y, which is therefore referred to as our task.

We will make frequent use of the following standard information theoretic quantities
(Cover and Thomas, 2012): Shannon entropy H(x) = Ep[− log p(x)], conditional entropy
H(x|y) := Eȳ[H(x|y = ȳ)] = H(x, y)−H(y), (conditional) mutual information I(x; y|z) =
H(x|z)−H(x|y, z), Kullbach-Leibler (KL) divergence KL(p(x)||q(x)) = Ep[log p/q], cross-
entropy Hp,q(x) = Ep[− log q(x)], and total correlation TC(z), which is also known as
multi-variate mutual information and defined as

TC(z) = KL( p(z) ‖
∏
i p(zi) ),

where p(zi) are the marginal distributions of the components of z. Recall that the KL
divergence between two distributions is always non-negative and zero if and only if they are
equal. In particular TC(z) is zero if and only if the components of z are independent, in
which case we say that z is disentangled. We often use of the following identity:

I(z;x) = Ex∼p(x) KL( p(z|x) ‖ p(z) ).

We say that x, z, y form a Markov chain, indicated with x → z → y, if p(y|x, z) = p(y|z).
The Data Processing Inequality (DPI) for a Markov chain x → z → y ensures that
I(x; z) ≥ I(x; y): If z is a (deterministic or stochastic) function of x, it cannot contain
more information about y than x itself (we cannot create new information by simply ap-
plying a function to the data we already have).

2.1 General definitions and the Information Bottleneck Lagrangian

We say that z is a representation of x if z is a stochastic function of x, or equivalently if
the distribution of z is fully described by the conditional p(z|x). In particular we have the
Markov chain y → x→ z. We say that a representation z of x is sufficient for y if y |= x | z,
or equivalently if I(z; y) = I(x; y); it is minimal when I(x; z) is smallest among sufficient
representations. To study the trade-off between sufficiency and minimality, Tishby et al.
(1999) introduces the Information Bottleneck Lagrangian

L(p(z|x)) = H(y|z) + β I(z;x), (1)

where β trades off sufficiency (first term) and minimality (second term); in the limit β → 0,
the IB Lagrangian is minimized when z is minimal and sufficient. It does not impose any
restriction on disentanglement nor invariance, which we introduce next.
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2.2 Nuisances for a task

A nuisance is any random variable that affects the observed data x, but is not informative
to the task we are trying to solve. More formally, a random variable n is a nuisance for the
task y if y |= n, or equivalently I(y;n) = 0. Similarly, we say that the representation z is
invariant to the nuisance n if z |= n, or I(z;n) = 0. When z is not strictly invariant but
it minimizes I(z;n) among all sufficient representations, we say that the representation z
is maximally insensitive to n.

One typical example of nuisance is a group G, such as translation or rotation, acting
on the data. In this case, a deterministic representation f is invariant to the nuisances if
and only if for all g ∈ G we have f(g · x) = f(x). Our definition however is more general in
that it is not restricted to deterministic functions, nor to group nuisances. An important
consequence of this generality is that the observed data x can always be written as a
deterministic function of the task y and of all nuisances n affecting the data, as explained
by the following proposition.

Proposition 2.1 (Task-nuisance decomposition, Appendix C.1) Given a joint dis-
tribution p(x, y), where y is a discrete random variable, we can always find a random variable
n independent of y such that x = f(y, n), for some deterministic function f .

3. Properties of optimal representations

To simplify the inference process, instead of working directly with the observed high di-
mensional data x, we want to use a representation z that captures and exposes only the
information relevant for the task y. Ideally, such a representation should be (a) sufficient
for the task y, i.e. I(y; z) = I(y;x), so that information about y is not lost; among all
sufficient representations, it should be (b) minimal, i.e. I(z;x) is minimized, so that it
retains as little about x as possible, simplifying the role of the classifier; finally, it should
be (c) invariant to the effect of nuisances I(z;n) = 0, so that the final classifier will not
overfit to spurious correlations present in the training dataset between nuisances n and la-
bels y. Such a representation, if it exists, would not be unique, since any bijective mapping
preserves all these properties. We can use this to our advantage and further aim to make
the representation (d) maximally disentangled, i.e., choose the one(s) for which TC(z)
is minimal. This simplifies the classifier rule, since no information will be present in the
higher-order correlations between the components of z.

Inferring a representation that satisfies all these properties may seem daunting. However,
in this section we show that we only need to enforce (a) sufficiency and (b) minimality, from
which invariance and disentanglement follow naturally thanks to the stacking of noisy layers
of computation in deep networks. We will then show that sufficiency and minimality of the
learned representation can also be promoted easily through implicit or explicit regularization
during the training process.

Proposition 3.1 (Invariance and minimality, Appendix C.2) Let n be a nuisance for
the task y and let z be a sufficient representation of the input x. Suppose that z depends on
n only through x ( i.e., n→ x→ z). Then,

I(z;n) ≤ I(z;x)− I(x; y).
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Moreover, there is a nuisance n such that equality holds up to a (generally small) residual ε

I(z;n) = I(z;x)− I(x; y)− ε,

where ε := I(z; y|n) − I(x; y). In particular 0 ≤ ε ≤ H(y|x), and ε = 0 whenever y is
a deterministic function of x. Under these conditions, a sufficient statistic z is invariant
(maximally insensitive) to nuisances if and only if it is minimal.

Remark 3.2 Since ε ≤ H(y|x), and usually H(y|x) = 0 or at least H(y|x) � I(x; z), we
can generally ignore the extra term.

An important consequence of this proposition is that we can construct invariants by
simply reducing the amount of information z contains about x, while retaining the minimum
amount I(z;x) that we need for the task y. This provides the network a way to automatically
learn invariance to complex nuisances, which is complementary to the invariance imposed
by the architecture. Specifically, one way of enforcing minimality explicitly, and hence
invariance, is through the IB Lagrangian.

Corollary 3.3 (Invariants from the Information Bottleneck) Minimizing the IB La-
grangian

L(p(z|x)) = H(y|z) + β I(z;x),

in the limit β → 0, yields a sufficient invariant representation z of the test datum x for the
task y.

Remarkably, the IB Lagrangian can be seen as the standard cross-entropy loss, plus a reg-
ularizer I(z;x) that promotes invariance. This fact, without proof, is implicitly used in
Achille and Soatto (2018), who also provide an efficient algorithm to perform the optimiza-
tion. Alemi et al. (2017a) also propose a related algorithm and empirically show improved
resistance to adversarial nuisances. In addition to modifying the cost function, invariance
can also be fostered by choice of architecture:

Corollary 3.4 (Bottlenecks promote invariance) Suppose we have the Markov chain
of layers

x→ z1 → z2,

and suppose that there is a communication or computation bottleneck between z1 and z2

such that I(z1; z2) < I(z1;x). Then, if z2 is still sufficient, it is more invariant to nuisances
than z1. More precisely, for all nuisances n we have I(z2;n) ≤ I(z1; z2)− I(x; y).

Such a bottleneck can happen for example because dim(z2) < dim(z1), e.g., after a pooling
layer, or because the channel between z1 and z2 is noisy, e.g., because of dropout.

Proposition 3.5 (Stacking increases invariance) Assume that we have the Markov chain
of layers

x→ z1 → z2 → . . .→ zL,

and that the last layer zL is sufficient of x for y. Then zL is more insensitive to nuisances
than all the preceding layers.
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Notice, however, that the above corollary does not simply imply that the more layers the
merrier, as it assumes that one has successfully trained the network (zL is sufficient), which
becomes increasingly difficult as the size grows. Also note that in some architectures, such
as ResNets (He et al., 2016), the layers do not necessarily form a Markov chain because of
skip connections; however, their “blocks” still do.

Proposition 3.6 (Actionable Information) When z = f(x) is a deterministic invari-
ant, if it minimizes the IB Lagrangian it also maximizes Actionable Information (Soatto,
2013), which is H(x) := H(f(x)).

Although Soatto (2013) addressed maximal invariants, we only consider sufficient invariants,
as advocated by (Soatto and Chiuso, 2016).

Information in the weights

Thus far we have discussed properties of representations in generality, regardless of how they
are implemented or learned. Given a source of data (for example randomly generated, or
from a fixed dataset), and given a (stochastic) training algorithm, the output weight w of the
training process can be thought as a random variable (that depends on the stochasticity
of the initialization, training steps and of the data). We can therefore talk about the
information that the weights contain about the dataset D and the training procedure,
which we denote by I(w;D).

Two extreme cases consist of the trivial settings where we use the weights to memorize
the dataset (the most extreme form of overfitting), or where the weights are constant, or
pure noise (sampled from a process that is independent of the data). In between, the
amount of information the weights contain about the training turns out to be an important
quantity both in training deep networks, as well as in establishing properties of the resulting
representation, as we discuss in the next section.

Note that in general we do not need to compute and optimize the quantity of information
in the weights. Instead, we show that we can control it, for instance by injecting noise in the
weights, drawn from a chosen distribution, in an amount that can be modulated between
zero (thus in theory allowing full information about the training set to be stored in the
weights) to an amount large enough that no information is left. We will leverage this
property in the next sections to perform regularization.

4. Learning minimal weights

In this section, we let pθ(x, y) be an (unknown) distribution from which we randomly sample
a dataset D. The parameter θ of the distribution is also assumed to be a random variable
with an (unknown) prior distribution p(θ). For example pθ can be a fairly general generative
model for natural images, and θ can be the parameters of the model that generated our
dataset. We then consider a deep neural network that implements a map x 7→ fw(x) :=
q( · |x,w) from an input x to a class distribution q(y|x,w).1 In full generality, and following
a Bayesian approach, we let the weights w of the network be sampled from a parametrized

1. We use p to denote the real (and unknown) data distribution, while q denotes approximate distributions
that are optimized during training.
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distribution q(w|D),whose parameters are optimized during training.2 The network is then
trained in order to minimize the expected cross-entropy loss3

Hp,q(y|x, w) = ED=(x,y)Ew∼q(w|D)

N∑
i=1

− log q(y(i)|x(i), w),

in order for q(y|x,w) to approximate pθ(y|x).

One of the main problems in optimizing a DNN is that the cross-entropy loss in noto-
riously prone to overfitting. In fact, one can easily minimize it even for completely ran-
dom labels (see Zhang et al. (2017), and Figure 1). The fact that, somehow, such highly
over-parametrized functions manage to generalize when trained on real labels has puzzled
theoreticians and prompted some to wonder whether this may be inconsistent with the intu-
itive interpretation of the bias-variance trade-off theorem, whereby unregularized complex
models should overfit wildly. However, as we show next, there is no inconsistency if one
measures complexity by the information content, and not the dimensionality, of the weights.

To gain some insights about the possible causes of over-fitting, we can use the following
decomposition of the cross-entropy loss (we refer to Appendix C for the proof and the precise
definition of each term):

Hp,q(y|x, w) = H(y|x, θ)︸ ︷︷ ︸
intrinsic error

+ I(θ; y|x, w)︸ ︷︷ ︸
sufficiency

+Ex,w KL( p(y|x, w) ‖ q(y|x, w) )︸ ︷︷ ︸
efficiency

− I(y;w|x, θ)︸ ︷︷ ︸
overfitting

.

(2)
The first term of the right-hand side of (8) relates to the intrinsic error that we would
commit in predicting the labels even if we knew the underlying data distribution pθ; the
second term measures how much information that the dataset has about the parameter θ is
captured by the weights, the third term relates to the efficiency of the model and the class
of functions fw with respect to which the loss is optimized. The last, and only negative,
term relates to how much information about the labels, but uninformative of the underlying
data distribution, is memorized in the weights. Unfortunately, without implicit or explicit
regularization, the network can minimize the cross-entropy loss (LHS), by just maximizing
the last term of eq. (8), i.e., by memorizing the dataset, which yields poor generalization.

To prevent the network from doing this, we can neutralize the effect of the negative
term by adding it back to the loss function, leading to a regularized loss L = Hp,q(y|x, w)+
I(y;w|x, θ). However, computing, or even approximating, the value of I(y, w|x, θ) is at
least as difficult as fitting the model itself.

We can, however, add an upper bound to I(y;w|x, θ) to obtain the desired result.
In particular, we explore two alternate paths that lead to equivalent conclusions under
different premises and assumptions: In one case, we use a PAC-Bayes upper-bound, which is
KL( q(w|D) ‖ p(w) ) where p(w) is an arbitrary prior. In the other, we use the IB Lagrangian

2. Note that, while the two are somewhat related, here by q(w|D) we denote the output distribution of the
weights after training with our choice algorithm on the dataset D, and not the Bayesian posterior of the
weights given the dataset, which would be denoted p(w|D). When q(w|D) is a Dirac delta at a point,
we recover the standard loss function for a MAP estimate of the weights.

3. Note that for generality here we treat the dataset D as a random variable. In practice, when a single
dataset is given, the expectation w.r.t. the dataset can be ignored.
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and upper-bound it with the information in the weights I(w;D). We discuss this latter
approach now, and look at the PAC-Bayes approach in Section 6.

Notice that to successfully learn the distribution pθ, we only need to memorize in w
the information about the latent parameters θ, that is we need I(D;w) = I(D; θ) ≤ H(θ),
which is bounded above by a constant. On the other hand, to overfit, the term I(y;w|x, θ) ≤
I(D;w|θ) needs to grow linearly with the number of training samples N . We can exploit
this fact to prevent overfitting by adding a Lagrange multiplier β to make the amount of
information a constant with respect to N , leading to the regularized loss function

L(q(w|D)) = Hp,q(y|x, w) + βI(w;D), (3)

which, remarkably, has the same general form of an IB Lagrangian, and in particular is
similar to (1), but now interpreted as a function of the weights w rather than the activations
z. This use of the IB Lagrangian is, to the best of our knowledge, novel, as the role of the
Information Bottleneck has thus far been confined to characterizing the activations of the
network, and not as a learning criterion. Equation (3) can be seen as a generalization of
other suggestions in the literature:

IB Lagrangian, Variational Learning and Dropout. Minimizing the information
stored at the weights I(w;D) was proposed as far back as Hinton and Van Camp (1993) as
a way of simplifying neural networks, but no efficient algorithm to perform the optimization
was known at the time. For the particular choice β = 1, the IB Lagrangian reduces to the
variational lower-bound (VLBO) of the marginal log-likelihood p(y|x). Therefore, minimiz-
ing eq. (3) can also be seen as a generalization of variational learning. A particular case of
this was studied by Kingma et al. (2015), who first showed that a generalization of Dropout,
called Variational Dropout, could be used in conjunction with the reparametrization trick
Kingma and Welling (2014) to minimize the loss efficiently.

Information in the weights as a measure of complexity. Just as Hinton and
Van Camp (1993) suggested, we also advocate using the information regularizer I(w;D)
as a measure of the effective complexity of a network, rather than the number of parame-
ters dim(w), which is merely an upper bound on the complexity. As we show in experiments,
this allows us to recover a version of the bias-variance trade-off where networks with lower
information complexity underfit the data, and networks with higher complexity overfit. In
contrast, there is no clear relationship between number of parameters and overfitting (Zhang
et al., 2017). Moreover, for random labels the information complexity allows us to precisely
predict the overfitting and underfitting behavior of the network (Section 7).

4.1 Computable upper-bound to the loss

Unfortunately, computing I(w,D) = ED KL( q(w|D) ‖ q(w) ) is still too complicated, since
it requires us to know the marginal q(w) over all possible datasets and trainings of the
network. To avoid computing this term, we can use the more general upper-bound

ED KL( q(w|D) ‖ q(w) ) ≤ ED KL( q(w|D) ‖ q(w) ) + KL( q(w) ‖ p(w) )

= ED KL( q(w|D) ‖ p(w) ),
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where p(w) is any fixed distribution of the weights. Once we instantiate the training set,
we have a single sample of D, so the expectation over D becomes trivial. This gives us the
following upper bound to the optimal loss function

L(q(w|D)) = Hp,q(y|x, w) + βKL( q(w|D) ‖ p(w) ) (4)

Generally, we want to pick p(w) in order to give the sharpest upper-bound, and to be a fully
factorized distribution, i.e., a distribution with independent components, in order to make
the computation of the KL term easier. The sharpest upper-bound to KL( q(w|D) ‖ q(w) )
that can be obtained using a factorized distribution p is obtained when p(w) := q̃(w) =∏
i q(wi) where q(wi) denotes the marginal distributions of the components of q(w). Notice

that. once a training procedure is fixed, this may be approximated by training multiple
times and approximating each marginal weight distribution. With this choice of prior, our
final loss function becomes

L(q(w|D)) = Hp,q(y|x, w) + βKL( q(w|D) ‖ q̃(w) ) (5)

for some fixed distribution q̃ that approximates the real marginal distribution q(w). The
IB Lagrangian for the weights in eq. (3) can be seen as a generally intractable special case
of eq. (5) that gives the sharpest upper-bound to our desired loss in this family of losses.

In the following, to keep the notation uncluttered, we will denote our upper bound
KL( q(w|D) ‖ q̃(w) ) to the mutual information I(w;D) simply by Ĩ(w;D), where

Ĩ(w;D) := KL( q(w|D) ‖ q̃(w) ) = KL( q(w|D) ‖
∏
i q(wi) ).

4.2 Bounding the information in the weights of a network

To derive precise and empirically verifiable statements about Ĩ(w;D), we need a setting
where this can be expressed analytically and optimized efficiently on standard architectures.
To this end, following Kingma et al. (2015), we make the following modeling choices.

Modeling assumptions. Let w denote the vector containing all the parameters (weights)
in the network, and let W k denote the weight matrix at layer k. We assume an improper log-
uniform prior on w, that is q̃(wi) = c/|wi|. Notice that this is the only scale-invariant prior
(Kingma et al., 2015), and closely matches the real marginal distributions of the weights
in a trained network (Achille and Soatto, 2018); we parametrize the weight distribution
q(wi|D) during training as

wi|D ∼ εiŵi,

where ŵi is a learned mean, and εi ∼ logN (−αi/2, αi) is i.i.d. multiplicative log-normal
noise with mean 1 and variance exp(αi)−1.4 Note that while Kingma et al. (2015) uses this
parametrization as a local approximation of the Bayesian posterior for a given (log-uniform)
prior, we rather define the distribution of the weights w after training on the dataset D to
be q(w|D).

4. For a log-normal logN (µ, σ2) mean and variance are respectively exp(µ+σ2/2) and [exp(σ2)−1] exp(2µ+
σ2).
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Proposition 4.1 (Information in the weights, Theorem C.4) Under the previous mod-
eling assumptions, the upper-bound to the information that the weights contain about the
dataset is

I(w;D) ≤ Ĩ(w;D) = −1

2

dim(w)∑
i=1

logαi + C,

where the constant C is arbitrary due to the improper prior.

Remark 4.2 (On the constant C) To simplify the exposition, since the optimization is
unaffected by any additive constant, in the following we abuse the notation and, under the

modeling assumptions stated above, we rather define Ĩ(w;D) := −1
2

∑dim(w)
i=1 logαi. Nek-

lyudov et al. (2017) also suggest a principled way of dealing with the arbitrary constant by
using a proper log-uniform prior.

Note that computing and optimizing this upper-bound to the information in the weights is
relatively simple and efficient using the reparametrization trick of Kingma et al. (2015).

4.3 Flat minima have low information

Thus far we have suggested that adding the explicit information regularizer I(w;D) pre-
vents the network from memorizing the dataset and thus avoid overfitting, which we also
confirm empirically in Section 7. However, real networks are not commonly trained with
this regularizer, thus seemingly undermining the theory. However, even when not explic-
itly present, the term I(w;D) is implicit in the use of SGD. In particular, Chaudhari and
Soatto (2018) show that, under certain conditions, SGD introduces an entropic bias of a
very similar form to the information in the weights described thus far, where the amount
of information can be controlled by the learning rate and the size of mini-batches.

Additional indirect empirical evidence is provided by the fact that some variants of SGD
(Chaudhari et al., 2017) bias the optimization toward “flat minima”, that are local minima
whose Hessian has mostly small eigenvalues. These minima can be interpreted exactly
as having low information I(w;D), as suggested early on by Hochreiter and Schmidhuber
(1997): Intuitively, since the loss landscape is locally flat, the weights may be stored at lower
precision without incurring in excessive inference error. As a consequence of previous claims,
we can then see flat minima as having better generalization properties and, as we will see
in Section 5, the associated representation of the data is more insensitive to nuisances and
more disentangled. For completeness, here we derive a more precise relationship between
flatness (measured by the nuclear norm of the loss Hessian), and the information content
based on our model.

Proposition 4.3 (Flat minima have low information, Appendix C.5) Let ŵ be a lo-
cal minimum of the cross-entropy loss Hp,q(y|x, w), and let H be the Hessian at that point.
Then, for the optimal choice of the posterior w|D = ε� ŵ centered at ŵ that optimizes the
IB Lagrangian, we have

I(w;D) ≤ Ĩ(w;D) ≤ 1

2
K[log ‖ŵ‖22 + log ‖H‖∗ −K log(K2β/2)]

where K = dim(w) and ‖ · ‖∗ denotes the nuclear norm.
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Notice that a converse inequality, that is, low information implies flatness, needs not
hold, so there is no contradiction with the results of Dinh et al. (2017). Also note that for
Ĩ(w;D) to be invariant to reparametrization one has to consider the constant C, which we
have ignored (Remark 4.2). The connection between flatness and overfitting has also been
studied by Neyshabur et al. (2017), including the effect of the number of parameters in the
model.

In the next section, we prove one of our main results, that networks with low information
in the weights realize invariant and disentangled representations. Therefore, invariance and
disentanglement emerge naturally when training a network with implicit (SGD) or explicit
(IB Lagrangian) regularization, and are related to flat minima.

5. Duality of the Bottleneck

The following proposition gives the fundamental link in our model between information in
the weights, and hence flatness of the local minima, minimality of the representation, and
disentanglement.

Proposition 5.1 (Appendix C.6) Let z = Wx, and assume as before W = ε � Ŵ ,
with εi,j ∼ logN (−αi/2, αi). Further assume that the marginals of p(z) and p(z|x) are
both approximately Gaussian (which is reasonable for large dim(x) by the Central Limit
Theorem). Then,

I(z;x) + TC(z) = −1

2

dim(z)∑
i=1

Ex log
α̃iŴ

2
i · x2

Ŵi · Cov(x)Ŵi + α̃iŴ 2
i · E(x2)

, (6)

where Wi denotes the i-th row of the matrix W , and α̃i is the noise variance α̃i = exp(αi)−1.
In particular, I(z;x) + TC(z) is a monotone decreasing function of the weight variances αi.

The above identity is difficult to apply in practice, but with some additional hypotheses,
we can derive a cleaner uniform tight bound on I(z;x) + TC(z).

Proposition 5.2 (Uniform bound for one layer, Appendix C.7) Let z = Wx, where
W = ε�Ŵ , where εi,j ∼ logN (−α/2, α); assume that the components of x are uncorrelated,
and that their kurtosis is uniformly bounded.5 Then, there is a strictly increasing function
g(α) s.t. we have the uniform bound

g(α) ≤ I(x; z) + TC(z)

dim(z)
≤ g(α) + c,

where c = O(1/ dim(x)) ≤ 1, g(α) = − log (1 − e−α)/2 and α is related to Ĩ(w;D) by
α = exp {−I(W ;D)/dim(W )}. In particular, I(x; z)+TC(z) is tightly bounded by Ĩ(W ;D)
and increases strictly with it.

5. This is a technical hypothesis, always satisfied if the components xi are IID, (sub-)Gaussian, or with
uniformly bounded support.

13



Achille and Soatto

The above theorems tells us that whenever we decrease the information in the weights,
either by explicit regularization, or by implicit regularization (e.g., using SGD), we auto-
matically improve the minimality, and hence, by Proposition 3.1, the invariance, and the
disentanglement of the learner representation. In particular, we obtain as a corollary that
SGD is biased toward learning invariant and disentangled representations of the data. Using
the Markov property of the layers, we can easily extend this bound to multiple layers:

Corollary 5.3 (Multi-layer case, Appendix C.8) Let W k for k = 1, ..., L be weight
matrices, with W k = εk � Ŵ k and εki,j = logN (−αk/2, αk), and let zi+1 = φ(W kzk), where
z0 = x and φ is any nonlinearity. Then,

I(zL;x) ≤ min
k<L

{
dim(zk)

[
g(αk) + 1

]}
where αk = exp

{
−I(W k;D)/ dim(W k)

}
.

Remark 5.4 (Tightness) While the bound in Proposition 5.2 is tight, the bound in
the multilayer case needs not be. This is to be expected: Reducing the information in
the weights creates a bottleneck, but we do not know how much information about x will
actually go through this bottleneck. Often, the final layers will let most of the information
through, while initial layers will drop the most.

Remark 5.5 (Training-test transfer) We note that we did not make any (explicit)
assumption about the test set having the same distribution of the training set. Instead, we
make the less restrictive assumption of sufficiency: If the test distribution is entirely different
from the training one – one may not be able to achieve sufficiency. This prompts interesting
questions about measuring the distance between tasks (as opposed to just distance between
distributions), which will be studied in future work.

6. Connection with PAC-Bayes bounds

In this section we show that using a PAC-Bayes bound, we arrive at the same regularized
loss function eq. (5) we obtained using the Information Bottleneck, without the need of any
approximation. By Theorem 2 of McAllester (2013), we have that for any fixed λ > 1/2,
prior p(w), and any weight distribution q(w|D), the test error Ltest(q(w|D)) that the network
commits using the weight distribution q(w|D) is upper-bounded in expectation by

ED[Ltest(q(w|D))] ≤ 1

N(1− 1
2λ)

(
Hp,q(y|x, w) + λLmaxED[KL( q(w|D) ‖ p(w) )]

)
, (7)

where Lmax is the maximum per-sample loss function, which for a classification problem we
can assume to be upper-bounded, for example by clipping the cross-entropy loss at chance
level. Notice that right hand side coincides, modulo a multiplicative constant, with eq. (4)
that we derived as an approximation of the IB Lagrangian for the weights (eq. (3)).

Now, recall that since we have

ED[KL( q(w|D) ‖ q(w) )] = ED[KL( q(w|D) ‖ p(w) )]−KL( q(w) ‖ p(w) )

≤ ED[KL( q(w|D) ‖ p(w) )],
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the sharpest PAC-Bayes upper-bound to the test error is obtained when p(w) = q(w), in
which case eq. (7) reduces (modulo a multiplicative constant) to the IB Lagrangian of the
weights. That is, the IB Lagrangian for the weights can be considered as a special case of
PAC-Bayes giving the sharpest bound.

Unfortunately, as we noticed in Section 4, the joint marginal q(w) of the weights is not
tractable. To circumvent the problem, we can instead consider that the sharpest PAC-Bayes
upper-bound that can be obtained using a tractable factorized prior p(w), which is obtained
exactly when p(w) = q̃(w) =

∏
i q(wi) is the product of the marginals, leading again to our

practical loss eq. (5).

On a last note, recall that under our modeling assumptions the marginal q̃(w) is assumed
to be an improper log-uniform distribution. While this has the advantage of being a non-
informative prior that closely matches the real marginal of the weights of the network, it
also has the disadvantage that it is only defined modulo an additive constant, therefore
making the bound on the test error vacuous under our model.

The PAC-Bayes bounds has also been used by Dziugaite and Roy (2017) to study the
generalization property of deep neural networks and their connection with the optimization
algorithm. They use a Gaussian prior and posterior, leading to a non-vacuous generalization
bound.

7. Empirical validation

7.1 Transition from overfitting to underfitting

As pointed out by Zhang et al. (2017), when a standard convolutional neural network
(CNN) is trained on CIFAR-10 to fit random labels, the network is able to (over)fit them
perfectly. This is easily explained in our framework: It means that the network is complex
enough to memorize all the labels but, as we show here, it has to pay a steep price in
terms of information complexity of the weights (Figure 2) in order to do so. On the other
hand, when the information in the weights is bounded using and information regularizer,
overfitting is prevented in a theoretically predictable way.

In particular, in the case of completely random labels, we have I(y;w|x, θ) = I(y;w) ≤
I(w;D), where the first equality holds since y is by construction random, and therefore
independent of x and θ. In this case, the inequality used to derive eq. (3) is an equality, and
the IBL is an optimal regularizer, and, regardless of the dataset size N , for β > 1 it should
completely prevent memorization, while for β < 1 overfitting is possible. To see this, notice
that since the labels are random, to decrease the classification error by log |Y|, where |Y|
is the number of possible classes, we need to memorize a new label. But to do so, we need
to store more information in the weights of the network, therefore increasing the second
term I(w;D) by a corresponding quantity. This trade-off is always favorable when β < 1,
but it is not when β > 1. Therefore, the theoretically the optimal solution to eq. (1) is to
memorize all the labels in the first case, and not memorize anything in the latter.

As discussed, for real neural networks we cannot directly minimize eq. (1), and we need
to use a computable upper bound to I(w;D) instead (Section 4.2). Even so, the empirical
behavior of the network, shown in Figure 1, closely follows this prediction, and for various
sizes of the dataset clearly shows a phase transition between overfitting and underfitting
near the critical value β = 1. Notice instead that for real labels the situation is different:
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Figure 2: (Left) Plot of the training error on CIFAR-10 with random labels as a function of
the parameter β for different models (see the appendix for details). As expected, all models
show a sharp phase transition from complete overfitting to underfitting before the critical
value β = 1. (Right) We measure the quantity of information in the weights necessary to
overfit as we vary the percentage of corrupted labels under the same settings of Figure 1.
To fit increasingly random labels, the network needs to memorize more information in the
weights; the increase needed to fit entirely random labels is about the same magnitude as
the size of a label (2.30 nats/sample).

The model is still able to overfit when β < 1, but importantly there is a large interval
of β > 1 where the model can fit the data without overfitting to it. Indeed, as soon as
βN ∝ I(w;D) is larger than the constant H(θ), the model trained on real data fits real
labels without excessive overfitting (Figure 1).

Notice that, based on this reasoning, we expect the presence of a phase transition
between an overfitting and an underfitting regime at the critical value β = 1 to be largely
independent on the network architecture: To verify this, we train different architectures on
a subset of 10000 samples from CIFAR-10 with random labels. As we can see on the left
plot of Figure 2, even very different architectures show a phase transition at a similar value
of β. We also notice that in the experiment ResNets has a sharp transition close to the
critical β.

In the right plot of Figure 2 we measure the quantity information in the weights for
different levels of corruption of the labels. To do this, we fix β < 1 so that the network
is able to overfit, and for various level of corruption we train until convergence, and then
compute I(w;D) for the trained model. As expected, increasing the randomness of the
labels increases the quantity of information we need to fit the dataset. For completely
random labels, I(w;D) increases by ∼ 3 nats/sample, which the same order of magnitude
as the quantity required to memorize a 10-class labels (2.30 nats/sample), as shown in
Figure 2.

7.2 Bias-variance trade-off

The Bias-Variance trade-off is sometimes informally stated as saying that low-complexity
models tend to underfit the data, while excessively complex models may instead overfit,
so that one should select an adequate intermediate complexity. This is apparently at odds
with the common practice in Deep Learning, where increasing the depth or the number of
weights of the network, and hence increasing the “complexity” of the model measured by

16



Emergence of Invariance and Disentanglement

105 106 107

Number of weights

9.0%

10.0%

11.0%

12.0%

T
es

t
er

ro
r

All-CNN Generalization vs Weights

10−3 10−2 10−1 100 101 102

Value of β

8.0%

8.5%

9.0%

9.5%

T
es

t
er

ro
r

All-CNN Generalization vs β

Figure 3: Plots of the test error obtained training the All-CNN architecture on CIFAR-10
(no data augmentation). (Left) Test error as we increase the number of weights in the
network using weight decay but without any additional explicit regularization. Notice that
increasing the number of weights the generalization error plateaus rather than increasing.
(Right) Changing the value of β, which controls the amount of information in the weights,
we obtain the characteristic curve of the bias-variance trade-off. This suggests that the
quantity of information in the weights correlates well with generalization.

the number of parameters, does not seem to induce overfitting. Consequently, a number
of alternative measures of complexity have been proposed that capture the intuitive bias-
variance trade-off curve, such as different norms of the weights (Neyshabur et al., 2015).

From the discussion above, we have seen that the quantity of information in the weights,
or alternatively its computable upperbound Ĩ(w;D), also provides a natural choice to mea-
sure model complexity in relation to overfitting. In particular, we have already seen that
models need to store increasingly more information to fit increasingly random labels (Fig-
ure 2). In Figure 3 we show that by controlling Ĩ(w;D), which can be done easily by
modulating β, we recover the right trend for the bias-variance tradeoff, whereas models
with too little information tend to underfit, while models memorizing too much informa-
tion tend to overfit.

7.3 Nuisance invariance

Corollary 5.3 shows that by decreasing the information in the weights I(w;D), which can
be done for example using eq. (3), the learned representation will be increasingly minimal,
and therefore insensitive to nuisance factors n, as measured by I(z;n). Here, we adapt a
technique from the GAN literature Sønderby et al. (2017) that allows us to explicitly mea-
sure I(z;n) and validate this effect, provided we can sample from the nuisance distribution
p(n) and from p(x|n); that is, if given a nuisance n we can generate data x affected by that
nuisance. Recall that by definition we have

I(z;n) = En∼p(n) KL( p(z|n) ‖ p(z) )

= En∼p(n)Ez∼p(z|n) log[p(z|n)/p(z)].

To approximate the expectations via sampling we need a way to approximate the likelihood
ratio log p(z|n)/p(z). This can be done as follows: Let D(z;n) be a binary discriminator
that given the representation z and the nuisance n tries to decide whether z is sampled
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Figure 4: (Left) A few training samples generated adding nuisance clutter n to the MNIST
dataset. (Right) Reducing the information in the weights makes the representation z
learned by the digit classifier increasingly invariant to nuisances (I(n; z) decreases), while
sufficiency is retained (I(z; y) = I(x; y) is constant). As expected, I(z;n) is smaller but has
a similar behavior to the theoretical bound in Theorem 5.3.

from the posterior distribution p(z|n) or from the prior p(z). Since by hypothesis we can
generate samples from both distributions, we can generate data to train this discriminator.
Intuitively, if the discriminator is not able to classify, it means that z is insensitive to
changes of n. Precisely, since the optimal discriminator is

D∗(z;n) =
p(z)

p(z) + p(z|n)
,

if we assume that D is close to the optimal discriminator D∗, we have

log
p(z|n)

p(z)
= log

1−D∗(z;n)

D∗(z;n)
' log

1−D(z;n)

D(z;n)
.

therefore we can use D to estimate the log-likelihood ratio, and so also the mutual infor-
mation I(z;n). Notice however that this comes with no guarantees on the quality of the
approximation.

To test this algorithm, we add random occlusion nuisances to MNIST digits (Figure 4).
In this case, the nuisance n is the occlusion pattern, while the observed data x is the
occluded digit. For various values of β, we train a classifier on this data in order to learn
a representation z, and, for each representation obtained this way, we train a discriminator
as described above and we compute the resulting approximation of I(z;n). The results
in Figure 4 show that decreasing the information in the weights makes the representation
increasingly more insensitive to n.

8. Discussion and conclusion

In this work, we have presented bounds, some of which are tight, that connect the amount
of information in the weights, the amount of information in the activations, the invariance
property of the network, and the geometry of the residual loss. These results leverage the
structure of deep networks, in particular the multiplicative action of the weights, and the
Markov property of the layers. This leads to the surprising result that reducing information
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stored in the weights about the past (dataset) results in desirable properties of the learned
internal representation of the test datum (future).

Our notion of representation is intrinsically stochastic. This simplifies the computation
as well as the derivation of information-based relations. However, note that even if we start
with a deterministic representation w, Proposition 4.3 gives us a way of converting it to
a stochastic representation whose quality depends on the flatness of the minimum. Our
theory uses, but does not depend on, the Information Bottleneck Principle, which dates
back to over two decades ago, and can be re-derived in a different frameworks, for instance
PAC-Bayes, which yield the same results and additional bounds on the test error.

This work focuses on the inference and learning of optimal representations, that seek to
get the most out of the data we have for a specific task. This does not guarantee a good
outcome since, due to the Data Processing Inequality, the representation can be easier to use
but ultimately no more informative than the data themselves. An orthogonal but equally
interesting issue is how to get the most informative data possible, which is the subject of
active learning, experiment design, and perceptual exploration. Our work does not address
transfer learning, where a representation trained to be optimal for a task is instead used for
a different task, which will be subject of future investigations.

Acknowledgments

Supported by ONR N00014-17-1-2072, ARO W911NF-17-1-0304, AFOSR FA9550-15-1-
0229 and FA8650-11-1-7156. We wish to thank our reviewers and David McAllester, Kevin
Murphy, Alessandro Chiuso for the many insightful comments and suggestions.

References

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representa-
tions through noisy computation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), PP(99):1–1, 2018.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational
information bottleneck. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2017a.

Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin
Murphy. Fixing a Broken ELBO. ArXiv e-prints, November 2017b.

Fabio Anselmi, Lorenzo Rosasco, and Tomaso Poggio. On invariance and selectivity in
representation learning. Information and Inference, 5(2):134–158, 2016.

Zhaojun Bai, Gark Fahey, and Gene Golub. Some large-scale matrix computation problems.
Journal of Computational and Applied Mathematics, 74(1-2):71–89, 1996.

Yoshua Bengio. Learning deep architectures for ai. Foundations and trends in Machine
Learning, 2(1):1–127, 2009.

Sterling K. Berberian. Borel spaces, April 1988.

19



Achille and Soatto
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Appendix A. Details of the experiments

A.1 Random labels

We use a similar experimental setup as Zhang et al. (2017). In particular, we train a
small version of AlexNet on a 28×28 central crop of CIFAR-10 with completely random
labels. The dataset is normalized using the global channel-wise mean and variance, but no
additional data augmentation is performed. The exact structure of the network is in Table 1.
As common in practice we use batch normalization before all the ReLU nonlinearities, except
for the first layer. Optimization of the IB Lagrangian loss function is performed similarly
to Kingma et al. (2015) and Molchanov et al. (2017). We found that constraining the
variance αi of the weights to be the same for all weights in the same filter helps stabilizing
the training process. We train with learning rates η ∈ {0.02, 0.005} and select the best
performing network of the two. Generally, we found that a higher learning rate is needed to
overfit when the number of training samples N is small, while a lower learning rate is needed
for larger N . We train with SGD with momentum 0.9 for 360 epochs reducing the learning
rate by a factor of 10 every 140 epochs. We use a large batch-size of 500 to minimize the
noise coming from SGD. No weight decay or other regularization methods are used.

The final plot is obtained by triangulating the convex envelope of the data points, and
by interpolating their value on the resulting simplexes. Outside of the convex envelope
(where the accuracy is mostly constant), the value was obtained by inpainting.

To measure the information content of the weights as the percentage of corrupted labels
varies, we fix β = 0.1, N = 30000 and η = 0.005 and train the network on different
corruption levels with the same settings as before.

To test the phase transition on multiple architectures, we train the Small AlexNet, the
AllCNN network and a ResNet (see Table 1). For all architectures, we train with N = 10000
random labels, η = 0.05 and different values of β log-uniformly spaced in [10−2, 102].

A.2 Bias-variance trade-off

For this experiment we train the AllCNN architecture (Table 1) on the CIFAR-10 dataset
with ZCA whitening Krizhevsky and Hinton (2009) and without any additional data aug-
mentation. First, we train a standard network and change the number of filters (we mul-
tiplying the number of filters of all layers by the same constant) and train with η = 0.05,
batch size 128, weight decay 0.001. Then, we use the standard number of layers and train
instead with the IBL loss function with different values of β.

A.3 Nuisance invariance

The cluttered MNIST dataset is generated by adding ten 4×4 squares uniformly at random
on the digits of the MNIST dataset (LeCun et al., 1998). For each level of β, we train the
classifier in Table 1 on this dataset. The weights of all layers, excluding the first and last
one, are threated as a random variable with multiplicative Gaussian noise (Appendix B)
and optimized using the local reparameterization trick of Kingma et al. (2015). We use the
last convolutional layer before classification as representation z.

The discriminator network used to estimate the log-likelihood ratio is constructed as fol-
lows: the inputs are the nuisance pattern n, which is a 28×28×1 image containing 10 random
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Input 32x32
conv 64
ReLU

MaxPool 2x2
conv 64 + BN

ReLU
MaxPool 2x2

FC 3136x384 + BN
ReLU

FC 384x192 + BN
ReLU

FC 192x10
softmax

Input 28x28
conv 96 + BN + ReLU
conv 96 + BN + ReLU

conv 192 s2 + BN + ReLU
conv 192 + BN + ReLU
conv 192 + BN + ReLU

conv 192 s2 + BN + ReLU
conv 192 + BN + ReLU
conv 192 + BN + ReLU

conv 1x1x10
Average pooling 7x7

softmax

Input 28x28
conv 64

block 64 s1
block 128 s2
block 256 s3
block 512 s3

Average pooling 4x4
linear 10
softmax

Table 1: (Left) The Small AlexNet model used in the random label experiment, adapted
from Zhang et al. (2017). All convolutions have a 5×5 kernel. The use of batch normaliza-
tion makes the training procedure more stable, but did not significantly change the results
of the experiments. (Center) All Convolutional Network (Springenberg et al., 2014) used
as a classifier in the experiments. All convolutions but the last one use a 3×3 kernel, “s2”
denotes a convolution with stride 2. The final representation we use are the activations of
the last “conv 192” layer. (Right) The ResNet architecture (He et al., 2016) on which we
test the phase transition. Each block with f filters and stride s is structured as follows:
BN -> ReLU -> conv f stride s -> BN -> ReLU -> conv f with a skip connection be-
tween first ReLU and the output.

occluding squares, and the 7×7×192 representation z obtained from the classifier. First we
preprocess n using the following network: conv 48 → conv 48 → conv 96 s2 → conv

96 → conv 96 → conv 96 s2, where each conv block is a 3×3 convolution followed by
batch normalization and ReLU. Then, we concatenate the 7×7×96 result with z along the
feature maps, and the final discriminator output is obtained by applying the following net-
work: conv 192 → conv 192 → conv 1×1×192 → conv 1×1×1 → AvgPooling 7×7
→ sigmoid.

A.4 Visualizing the representation

Even when we cannot generate data affected by nuisances like in the previous section, we
can still visualize the information content of z to learn what nuisances are discarded in the
representation. To this end, given a representation z, we want to learn to sample from a
distribution q(x̂|z) of images that are maximally likely to have z as their representation.
Formally, this means that we want a distribution q(x̂|z) that maximizes the amortized
maximum a posteriori estimate of z:

EzEx̂∼q(x̂|z)[log p(x̂|z)] =Ez Ex̂∼q(x̂|z)[log p(z|x̂)]︸ ︷︷ ︸
Reconstruction error

+Ex̂∼q(x̂)[log p(x̂)]︸ ︷︷ ︸
Distance from prior

+C.
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Figure 5: For different values of β, we show the image x̂ reconstructed from a representation
z ∼ p(z|x) of the original image x in the first column. For small β, z contains more
information regarding x, thus the reconstructed image x̂ is close to x, background included.
Increasing β decreases the information in the weighs, thus the representation z becomes
more invariant to nuisances: Reconstructed image matches important details in x that
are preserved in z (i.e., hair color, sex, expression), but background, hair style, and other
nuisances are generated anew.

Unfortunately, the term p(x̂) in the expression is difficult to estimate. However, Sønderby
et al. (2017) notice that the modified gain function

EzEx̂∼q(x̂|z)[log p(x̂|z)] + H(p(x̂)) = EzEx̂∼q(x̂|z)[log p(z|x̂)] − KL( q(x̂) ‖ p(x̂) ) + C,

differs from the amortizes MAP only by a term H(p(x̂)), which has the positive effect of
improving the exploration of the reconstruction, and contains the term KL( q(x̂) ‖ p(x̂) ),
which can be estimated easily using the discriminator network of a GAN Sønderby et al.
(2017). To maximize this gain, we can simply train a GAN with an additional reconstruction
loss − log p(z|x̂).

To test this algorithm, we train a representation z to classify the 40 binary attributes in
the CelebA face dataset (Yang et al., 2015), and then use the above loss function to train
a GAN network to reconstruct an input image x̂ from the representation z. The results in
Figure 5 show that, as expected, increasing the value of β, and therefore reducing I(w;D),
generates samples that have increasingly more random backgrounds and hair style (nui-
sances), while retaining facial features. In other words, the representation z is increasingly
insensitive to nuisances affecting the data, while information pertaining the task is retained
in the reconstruction x̂.

More precisely, we first train a classifier on the images from the CelebA datasets resized
to 32×32, where the task is to recover the 40 binary attributes associated to each image.
The classifier network is the same as the one in Table 1 with the following modifications:
we use Exponential Linear Units (Clevert et al., 2015) for the activations, instead of ReLU,
since invertible activations generally perform better when training a GAN, and we divide
by two the number of output filters in all layers to reduce the training time. A sigmoid
nonlinearity is applied to the final 40-way output of the network.

To generate the image x̂ given the 8×8×96 representation z computed by the clas-
sifier, we use a similar structure to DCGAN (Radford et al., 2016), namely z → conv

256 → ConvT 256s2 → ConvT 128s2 → conv 3 → tanh, where ConvT 256s2 denotes
a transpose convolution with 256 feature maps and stride 2. All convolutions have a batch
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normalization layer before the activations. Finally, the discriminator network is given by x̂
→ conv 64s2 → conv 128s2 → ConvT 256s2 → conv 1 → sigmoid. Here, all con-
volutions use batch normalization followed by Leacky ReLU activations.

In this experiment, we use Gaussian multiplicative noise which is slightly more stable
during training (Appendix B). To stabilize the training of the GAN, we found useful to (1)
scale down the “reconstruction error” term in the loss function and (2) slowly increase the
weight of the reconstruction error up to the desired value during training.

Appendix B. Gaussian multiplicative noise

In developing the theory, we chose to use log-normal multiplicative noise for the weights:
The main benefit is that with this choice the information in the weights I(w;D) can be
expressed in closed form, up to an arbitrary constant C which does not matter during the
optimization process (but see also Neklyudov et al. (2017) for a principled approach to this
problem that uses a proper log-uniform prior). Another possibility, suggested by Kingma
et al. (2015) is to use Gaussian multiplicative noise with mean 1. Unfortunately, there is
no analytical expression for I(w;D) when using Gaussian noise, but I(w;D) can still be
approximated numerically with high precision (Molchanov et al., 2017), and it makes the
training process slightly more stable. The theory holds with minimal changes also in this
case, and we use this choice in some experiments.

Appendix C. Proofs of theorems

Lemma C.1 (Task-nuisance decomposition) Given a joint distribution p(x, y), where
y a discrete random variable, we can always find a random variable n independent of y such
that x = f(y, n), for some deterministic function f .

Proof Fix n ∼ Uniform(0, 1) to be the uniform distribution on [0, 1]. We claim that, for
a fixed value of y, there is a function Φy(n) such that x|y = Φy∗(n), where (·)∗ denotes
the push-forward map of measures. Given the claim, let Φ(y, n) = (y,Φy(n)). Since y is
a discrete random variable, Φ(y, n) is easily seen to be a measurable function and by con-
struction (x, y) ∼ Φ∗(y, n). To see the claim, notice that, since there exists a measurable
isomorphism between Rn and R (Theorem 3.1.1 of Berberian (1988)), we can assume with-
out loss of generality that x ∈ R. In this case, by definition, we can take Φy(n) = F−1

y (n)
where Fy(t) = P[x < t | y] is the cumulative distribution function of p(x|y).

Proposition C.2 (Invariance and minimality) Let n be a nuisance for the task y and
let z be a sufficient representation of the input x. Suppose that z depends on n only through
x ( i.e., n→ x→ z). Then,

I(z;n) ≤ I(z;x)− I(x; y).

Moreover, there exists a nuisance n such that equality holds up to a (generally small) residual
ε

I(z;n) = I(z;x)− I(x; y)− ε,
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where ε := I(z; y|n) − I(x; y). In particular 0 ≤ ε ≤ H(y|x), and ε = 0 whenever y is
a deterministic function of x. Under these conditions, a sufficient statistic z is invariant
(maximally insensitive) to nuisances if and only if it is minimal.

Proof By hypothesis, we have the Markov chain (y, n) → x → z; therefore, by the
DPI, we have I(z; y, n) ≤ I(z;x). The first term can be rewritten using the chain rule as
I(z; y, n) = I(z;n) + I(z; y|n), giving us

I(z;n) ≤ I(z;x)− I(z; y|n).

Now, since y and n are independent, I(z; y|n) ≥ I(z; y). In fact,

I(z; y|n) = H(y|n)−H(y|z, n)

= H(y)−H(y|z, n)

≥ H(y)−H(y|z) = I(y; z).

Substituting in the inequality above, and using the fact that z is sufficient, we finally obtain

I(z;n) ≤ I(z;x)− I(z; y) = I(z;x)− I(x; y).

Moreover, let n be as in Lemma 2.1. Then, since x is a deterministic function of y and n,
we have

I(z;x) = I(z;n, y) = I(z;n) + I(z; y|n),

and therefore
I(z;n) = I(z;x)− I(z; y|n) = I(z;x)− I(x; y)− ε.

with ε defined as above. Using the sufficiency of z, the previous inequality for I(z; y|n), the
DPI, we get the chain of inequalities

ε = I(z; y|n)− I(x; z) ≤ I(x; y|n)− I(x; y)

≤ H(y|n)−H(y|n, z)−H(y) +H(y|x)

≤ H(y)−H(y|n, z)−H(y) +H(y|x)

= H(y|x)−H(y|n, z)
≤ H(y|x)

from which we obtain the desired bounds for ε.

While the proof of the following theorem is quite simple, some clarifications on the
notation are in order: We assume, following a Bayesian perspective, that the data is
generated by some generative model p(x,y|θ), where the parameters θ of the model are
sampled from some (unknown) prior p(θ). Given the parameters θ, the training dataset
D = (x,y) ∼ p(x, y|θ) is composed of i.i.d. samples from the unknown distribution p(x, y|θ).
The output of the training algorithm on the dataset D is a (generally simple, e.g., normal or
log-normal) distribution q(w|x,y) over the weights. Putting everything together, we have
a well-defined joint distribution p(x,y, θ, w) = p(θ)p(x,y|θ)q(w|x,y).
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Given the weights w, the network then defines an inference distribution q(y|x, w), which
we know and can compute explicitly. Another distribution, which instead we do not know,
is p(y|x, w), which is obtained from p(x,y, θ, w) and express the optimal inference we could
perform on the labels y using the information contained in the weights. In a well trained
network, we want the distribution approximated by the network to match the optimal
distribution q(y|x, w) = p(y|x, w).

Finally, recall that the conditional entropy is defined as

Hp(y|z) := Ey,z∼p(y,z)[− log p(y|z)],

where z can be one random variable or a tuple of random variables. When not specified,
it is assumed that the cross-entropy is computed with respect to unknown underlying data
distribution p(x,y, w, θ). Similarly, the conditional cross-entropy is defined as

Hp,q(y|z) :=Ey,z∼p(y,z)[− log q(y|z)]

=Ey,z∼p(y,z)[− log p(y|z)] + Ey,z∼p(y,z)[log
p(y|z)
q(y|z)

]

=Hp(y|z) + Ez∼p(z)KL( p(y|z) ‖ q(y|z) ).

Proposition C.3 (Information Decomposition) Let D = (x,y) denote the training
dataset, then for any training procedure, we have

Hp,q(y|x, w) = H(y|x, θ)+I(θ; y|x, w)+Ex,w KL( p(y|x, w) ‖ q(y|x, w) )−I(y;w|x, θ). (8)

Proof Recall that cross-entropy can be written as

Hp,q(y|x, w) = Hp(y|x, w) + Ex,w KL( p(y|x, w) ‖ q(y|x, w) ),

so we only have to prove that

Hp(y|x, w) = Hp(y|x, θ) + I(y; θ|x, w)− I(y;w|x, θ),

which is easily done using the following identities:

I(y; θ|x, w) = Hp(θ,y|w)−Hp(y|θ,x, w),

I(y;w|x, θ) = Hp(y|x, θ)−Hp(y|x, θ, w).

Proposition C.4 (Information in the weights) Under the previous modeling assump-
tions, the upper-bound to the information that the weights contain about the dataset is

I(w;D) ≤ Ĩ(w;D) = −1

2

dim(w)∑
i=1

logαi + C,

where the constant C is arbitrary due to the improper prior.
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Proof Recall that we defined the upperbound Ĩ(w;D) as

Ĩ(w;D) = KL( q(w|D) ‖ q̃(w) ),

where q̃(w) is a factorized log-uniform prior. Since the KL divergence is reparametrization
invariant, we have:

KL( q(w|D) ‖ q̃(w) ) = KL( logN (µ, α) ‖ log Uniform )

= KL(N (µ, α) ‖Uniform )

= H(N (µ, α)) + const

= −
dim(w)∑
i=1

1

2
log(αi) + const,

where we have used the formula for the entropy of a Gaussian and the fact that the KL
divergence of a distribution from the uniform prior is the entropy of the distribution modulo
an arbitrary constant.

Proposition C.5 (Flat minima have low information) Let ŵ be a local minimum of
the cross-entropy loss Hp,q(y|x, w), and let H be the Hessian at that point. Then, for the
optimal choice of the posterior w|D = ε� ŵ centered at ŵ that optimizes the IB Lagrangian,
we have

I(w;D) ≤ Ĩ(w;D) ≤ 1

2
K[log ‖w‖22 + log ‖H‖∗ −K log(K2β/2)]

where K = dim(w) and ‖ · ‖∗ denotes the nuclear norm.

Proof First, we switch to a logarithmic parametrization of the weights, and let h := log |w|
(we can ignore the sign of the weights since it is locally constant). In this parametrization,
we can approximate the IB Lagrangian to second order as

L =Eh∼p(h|D)[H0 + [(h− h0)� w]TH[(h− h0)� w]− β

2

∑
i

logαi

where H0 = H(y|x, ŵ). Now, notice that since q(w|D) is a log-normal distribution, we have
q(h|D) ∼ N (h0, α).6 Therefore, can compute the expectation exactly as

L = H0 +

dim(w)∑
i=1

αiw
2
iHii −

β

2

∑
i

logαi.

Optimizing w.r.t. αi we get

αi =
β

2w2
iHii

,

6. Note that for simplicity we have ignored the offset α/2 in the mean of the log-normal distribution.
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and plugging it back in the expression for Ĩ(w;D) that we obtained in the previous propo-
sition, we have

Ĩ(w;D) = −1

2

∑
i

logαi =
1

2

∑
i

log(w2
i ) + log(Hii)− log(β/2).

Finally, by Jensen’s inequality, we have

Ĩ(w;D) ≤ 1

2
K[log(

∑
i

w2
i ) + log(

∑
i

Hii)− log(K2β/2)]

=
1

2
K[log(‖w‖22) + log(‖H‖∗)− log(K2β/2)],

as we wanted.

Proposition C.6 Let z = Wx, and assume as before W = ε�Ŵ , with εi,j ∼ logN (−αi/2, αi).
Further assume that the marginals of q(z) and q(z|x) are both approximately Gaussian
(which is reasonable for large dim(x) by the Central Limit Theorem). Then,

I(z;x) + TC(z) = −1

2

dim(z)∑
i=1

Ex log
α̃iŴ

2
i · x2

Ŵi · Cov(x)Ŵi + α̃iŴ 2
i · E(x2)

,

where Wi denotes the i-th row of the matrix W , and α̃i is the noise variance α̃i = exp(αi)−1.
In particular, I(z;x) + TC(z) is a monotone decreasing function of the weight variances αi.

Proof First, we consider the case in which dim(z) = 1, and so w := W is a single row
vector. By hypothesis, q(z) is approximately Gaussian, with mean and variance

µ1 := E[z] = E[
∑
i

εiŵixi] =
∑
i

ŵiE[xi] = ŵ · E[x]

σ2
1 := var[z] = E[(

∑
i

εiŵixi)
2]− (E[

∑
i

εiŵixi])
2,

= E[
∑
i,j

εiεjŵiŵjxixj ]−
∑
i,j

ŵiŵjE[xi]E[xj ]

= α̃
∑
i

ŵ2
iE[xi]

2 +
∑
i,j

ŵiŵj (E[xixj ]− E[xi]E[xj ])

= α̃ŵ2 · E[x2] + ŵ · Cov(x)ŵ.

A similar computation gives us mean and variance of q(z|x):

µ0 := E[z|x] = ŵ · x,
σ2

0 := var[z|x] = α̃ŵ2 · x2.
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Since we are assuming dim(z) = 1, we trivially have TC(z) = 0, so we are only left with
I(z;x) which is given by

I(z;x) = Ex KL( q(z|x) ‖ q(z) )

= Ex KL(N (µ0, σ
2
0) ‖N (µ1, σ

2
1) )

=
1

2
Ex
α̃ŵ2 · x2 + (ŵ · x− ŵ · E[x])2

σ2
1

− 1− log
σ2

0

σ2
1

= −1

2
Ex log

α̃ŵ2 · x2

ŵ · Cov(x)ŵ + α̃ŵ2 · E[x2]
.

Now, for the general case of dim(z) ≥ 1, notice that

I(z; x) + TC(z) = Ex KL(
∏
k

q(zi|x) ‖
∏
k

q(zi) )

=

dim(z)∑
i=1

Ex KL( q(zi|x) ‖ q(zi) ),

where q(zi) is the marginal of the k-th component of z. We can then use the previous result
for each component separately, and sum everything to get the desired identity.

Proposition C.7 (Uniform bound for one layer) Let z = Wx, where W = ε � Ŵ ,
where εi,j ∼ logN (−α/2, α); assume that the components of x are uncorrelated, and that
their kurtosis is uniformly bounded. Then, there is a strictly increasing function g(α) s.t.
we have the uniform bound

g(α) ≤ I(x; z) + TC(z)

dim(z)
≤ g(α) + c,

where c = O(1/ dim(x)) ≤ 1, g(α) = log (1 − e−α)/2 and α is related to I(w;D) by α =
exp {−I(W ;D)/dim(W )}. In particular, I(x; z)+TC(z) is tightly bounded by I(W ;D) and
increases strictly with it.

Proof To simplify the notation we do the case dim z = 1, the general case being identical.
Let w := W be the only row of W . First notice that, since x is uncorrelated, we have

ŵ · Cov(x)ŵ =
∑
i

w2
i (E[x2

i ]− E[xi]
2) ≤ w2 · E[x2]

Therefore,

I(x; z) =− 1

2
Ex log

α̃ŵ2 · x2

ŵ · Cov(x)ŵ + α̃ŵ2 · E[x2]

≤− 1

2
Ex log

α̃ŵ2 · x2

(1 + α̃)ŵ2 · E[x2]

=
1

2
log(1 + α̃−1)

− 1

2
Ex log

[
1 +

ŵ2 · (x2 − E[x2])

ŵ2 · E[x2]

]
.
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To conclude, we want to approximate the expectation of the logarithm using a Taylor
expansion, but we first need to check that the variance of the term inside the logarithm
is low, which is where we need the bound on the kurtosis. In fact, since the kurtosis is
bounded, there is some constant C such that for all i

E(x2
i − E[x2

i ])
2

E[x2
i ]

2
≤ C.

Now,

var
ŵ2 · (x2 − E[x2])

ŵ2 · E[x2]
=

∑
i ŵ

4
iE(x2 − E[x2])2∑

i,j ŵ
2
i ŵ

2
jE[x2

i ]E[x2
j ]

≤ C
∑

i ŵ
4
iE[x2

i ]
2∑

i,j ŵ
2
i ŵ

2
jE[x2

i ]E[x2
j ]

= O(1/ dim(x)).

Therefore, we can conclude

I(x; z) ≤ 1

2
log(1 + α̃−1) +O(1/ dim(x)).

Corollary C.8 (Multi-layer case) Let W k for k = 1, ..., L be weight matrices, with
W k = εk � Ŵ k and εki,j = logN (−αk/2, αk), and let zi+1 = φ(W kzk), where z0 = x
and φ is any nonlinearity. Then,

I(zL;x) ≤ min
k<L

{
dim(zk)

[
g(αk) + 1

]}
where αk = exp

{
−I(W k;D)/ dim(W k)

}
.

Proof Since we have the Markov chain x → z1 → . . . → zL, by the Data Processing
Inequality we have I(zL;x) ≤ min {I(zL; zL−1), I(zL−1;x)}. Iterating this inequality, we
have

I(zL;x) ≤ min
k<L

I(zk+1, zk).

Now, notice that I(zk+1; zk) ≤ I(φ(W kzk); zk) ≤ I(W kzk; zk), since applying a determinis-
tic function can only decrease the information. But I(W kzk; zk) is exactly the quantity we
bounded in Corollary 5.2, leading us to the desired inequality.

Appendix D. Q&A

It is well-known that overfitting relates to the “effective number of degrees of
freedom” that can be measured in a number of ways (Friedman et al., 2001,
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Chapter 7). Why should we use the information in the weights? The infor-
mation in the weights is indeed one particular choice of measure of complexity. One nice
aspect is that it plays a central role in many different frameworks (minimum description
length, variational inference, PAC-Bayes), and correlates well with the performance of a
real network.

How do you compute the nuclear norm of the Hessian? It sounds expensive!
We do not need to. What we show is that, if the optimization algorithm happens to find
flat minima (nuclear norm being a proxy), then it automatically limits the information in
the weights - which promotes good generalization. However, if one wanted to approximate
the trace of the Hessian, it could be done in linear time (Bai et al., 1996, Prop 4.1).

A nuisance n should convey no information on y given x, so why imposing
I(y;n) = 0 rather than I(y;n|x) = 0? While I(y;n|x) = 0 may seem intuitively the
right condition, it is actually too weak. Suppose for example that y is a deterministic
function of x (i.e., the labels are perfectly determined by the data, as often is the case).
Then, we would have I(y;n|x) = 0 for any n, which would imply that everything is a
nuisance for the task, which of course is not intuitively the case.

Why is the dataset a random variable, if we only have one realization of it?
The theory is almost identical in both the case of a fixed dataset and a randomly sampled
dataset. We consider the case of a randomly sampled dataset since it is simpler and at the
same time more general. Some expressions simplify slightly and are easier to interpret, but
in the end a fixed training set is given either way.

The use of KL(q(w|D)||q̃(w)) where q(w|D) is a “posterior” defined by a learning
algorithm that returns w and q̃(w) is a log-uniform prior is the basic PAC-
Bayes bound, that, however, gives an vacuous generalization bound due to the
improper prior. A generalization bound could be stated in terms of the length
of a finite interval approximation of log-uniform prior. Indeed, this is the case.
However, in the limit of the interval length going to infinity, the KL divergence would still
be infinite, and the optimization would be slightly more complex. As simpler option to
have a generalization-bound would be to use Gaussian prior and posterior Dziugaite and
Roy (2017). However, computing a good PAC-Bayes upper-bound is outside the scope of
the paper, and the use of a non-informative, scale invariant prior matches the empirical
behavior of networks and simplifies the theoretical analysis.

Of course a minimal representation should be invariant to nuisance variation
since that’s what it means to be minimal for the task. While the result may be
intuitive to some, compression and invariance are not the same thing, and we are unaware
of an existing proof of the claim other than for special tasks like clustering, and for small
perturbations.

How do you compute the information in the weights, since you only have a
sample (one set of weights that the network converged to for a given dataset)?
And how do you optimize it? That looks hard! We do not need to compute the
information in the weights, since we can control it. Even if we do not do so explicitly,
optimizing cross-entropy with SGD yields the right solution (the solution that minimizes
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the IBL for the weights). We only have one sample of the weights if we anneal the learning
rate to zero, but otherwise SGD produces a posterior distribution of the weights, even if we
do not impose additional stochasticity. In many cases we do, for instance using Information
Dropout (Achille and Soatto (2018)) or its simpler version, Dropout. A special case of the
theory can be re-derived assuming an instantiated dataset and a set of weights, with the
same results.
The use of I(w;D) does not seem to upper bound the PAC-Bayes bound. The
direction of inequality is the opposite. The IB Lagrangian for the weights is a particu-
lar case that gives the sharpest PAC-Bayes bound. Choosing q(w) requires some attention:
Once we fix a training procedure, we can (in theory) compute/approximate the marginal
distribution q(w) over the stochasticity of the data (if any) as well as the stochasticity of
the training procedure. This marginal can then be used in the PAC-Bayes bound: This
gives the sharpest bound (McAllester, 2013) and is also equivalent to an IBL since the term
ED KL( q(w|D) ‖ q(w) ) measures the mutual information between the training procedure
and the weights. Since in general it is not possible to explicitly compute this bound, in
practice we use less tight a bound based on a factorized approximation of the marginal.
This opportunistic choice later turns out to play a role in disentanglement.
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