
NBER WORKING PAPER SERIES

INNOVATION NETWORK

Daron Acemoglu
Ufuk Akcigit
William Kerr

Working Paper 22783
http://www.nber.org/papers/w22783

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2016

We are grateful to Ben Jones and Paula Stephan for their very helpful directions and to seminar 
participants for their comments. We also thank Alexis Brownell for excellent research assistance. 
Finally, we gratefully acknowledge financial support from the National Science Foundation, the 
Alfred P. Sloan Foundation, the Ewing Marion Kauffman Foundation, and Harvard Business 
School. The views expressed herein are those of the authors and do not necessarily reflect the 
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Daron Acemoglu, Ufuk Akcigit, and William Kerr. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that 
full credit, including © notice, is given to the source.



Innovation Network
Daron Acemoglu, Ufuk Akcigit, and William Kerr
NBER Working Paper No. 22783
October 2016
JEL No. D85,O31,O32,O33,O34

ABSTRACT

Technological progress builds upon itself, with the expansion of invention in one domain 
propelling future work in linked fields. Our analysis uses 1.8 million U.S. patents and their 
citation properties to map the innovation network and its strength. Past innovation network 
structures are calculated using citation patterns across technology classes during 1975-1994. The 
interaction of this pre-existing network structure with patent growth in upstream technology 
fields has strong predictive power on future innovation after 1995. This pattern is consistent with 
the idea that when there is more past upstream innovation for a particular technology class to 
build on, then that technology class innovates more.
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Technological and scientific progress propels economic growth and long-term well-being.

Prominent theories depict this process as a cumulative one in which new innovations build on

past achievements, using Newton’s descriptive phrase of “standing on the shoulders of giants”

(e.g., refs 1 and 2). Several studies provide evidence supporting this view, and more generally,

knowledge development is embedded in a landscape of individual scientists, research institutes,

private sector actors, and government agencies that shape the fundamental rate and direction

of new discoveries.1 Despite this burgeoning literature, our understanding of how progress in

one technological area is linked to prior advances in upstream technological fields is limited.

Open but important questions include the long-term stability of how knowledge is shared across

technological fields, the pace and timing of knowledge transfer, and how closely connected up-

stream fields need to be to have material impact on a focal technology. This paper provides

some quantitative evidence on these and related questions.

We show that a stable innovation network acts as a conduit of this cumulative process of

technological and scientific progress. We analyze 1.8 million U.S. patents and their citation

properties to map the innovation network and its strength. Past innovation network structures

are calculated using citation patterns across technology classes during 1975—1994. The interac-

tion of this pre-existing network structure with patent growth in “ upstream”technology fields

has strong predictive power on future “downstream”innovation after 1995. Remarkably, 55% of

the aggregate variation in patenting levels across technologies for 1995—2004 can be explained

by variation in upstream patenting; this explanatory power is 14% when using panel variation

within each field (R-squared value from regressions tabulated below). Detailed sectors which

have seen more rapid patenting growth in their upstream technology fields in the last ten years

are much more likely to patent today.

This pattern is consistent with the idea that when there is more past innovation for a par-

ticular technology class to build on, then that technology class innovates more. As an example

using patent subcategories defined below, “Chemicals: Coating”and “Nuclear & X-rays”dis-

play similar patenting rates in 1975—1984. Before 1995, citation patterns indicate that “Nuclear

& X-rays” drew about 25% of its upstream innovation inputs from “Electrical Measuring &

Testing”, while “Chemicals: Coating”had a similar dependence on “Chemicals: Misc.”. The

former upstream field grew substantially less during 1985—1994 than the latter in terms of new

patenting. In the ten year period after 1995, “Chemicals: Coating”exhibits double the growth of

“Nuclear & X-rays”. The network heterogeneity further indicates that knowledge development

1For example, references (3)—(13).
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is neither global, in the sense that fields collectively share an aggregate pool of knowledge, nor

local, in the sense that each field builds only upon itself.

It is useful to motivate our approach with the standard endogenous growth and technological

progress models in economics, which posit a production function of new ideas of the form

∆N (t) = f (N (t) , R (t)) ,

where N (t) is the stock of ideas, ∆N (t) is the flow of new ideas produced, and R (t) is the

resources that are utilized to produce these new ideas (e.g., scientists). Though some studies

estimate the impact of the stock of ideas, N(t), on the flow of new ideas (e.g., whether there

are increasing returns or “fishing out”externalities), most of the literature takes the input into

the production function of new ideas in every field to be either their own idea stock or some

aggregate stock of knowledge spanning across all fields. We take a step towards opening this

black box and measuring the heterogeneous dependence of new idea creation on the existing

stock of ideas through studying innovation networks.

We suppose that new innovations in technology j ∈ {1, 2, ..., J} depend on past innovations
in all other fields through an innovation network. Suppressing the resource variable R(t) for

simplicity and assuming a linear form, we can write

∆NJ×1 (t) = α ·MJ×J ·NJ×1 (t) ,

where ∆NJ×1 (t) and NJ×1 (t) are, respectively, the J×1 vector of innovation rates and the stock

of knowledge in the J technology classes at time t, and MJ×J is a J × J matrix representing the
innovation network– how much one class builds on the knowledge stocks of other classes. Given

the scalar α and our focus on relative growth for technologies, we can normalize the row sums of

MJ×J to one. The case in which new innovations depend symmetrically upon an economy-wide

technology stock is represented by all entries in MJ×J being equal to 1/J ; the case in which

fields only build upon their own knowledge stock is given by the identity matrix.

We analyze utility patents granted between 1975—2009 by the United States Patent and

Trademark Offi ce (USPTO). Each patent record provides information about the invention (e.g.,

technology classifications, citations of patents on which the current invention builds) and the

inventors submitting the application. We analyze 1.8 million patents applied for in 1975—2004

with at least one inventor living in a U.S. metropolitan area. The 2004 end date allows for a

five-year window for patent reviews. In our data, 98% of patent reviews are completed within

this window.
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Figure 1 describes the 1975—1984 innovation network in matrix form.2 The year restriction

refers to the dates of cited patents, and forward citing patents are required to be within ten

years of the cited patent. The ten-year window for forward citations keeps a consistent number

of observations per diffusion age. USPTO technologies are often grouped into a three-level

hierarchy: 6 categories, 36 subcategories, and 484 classes. This matrix lists subcategories and

their parent categories; our empirical analysis considers subcategory- and class-level variation.

Each row provides the composition of citations made by the citing technology field, summing

to 100% across the row. Own-citations (citations that fields make to themselves) account for

a majority of citations, and for visual purposes are given a dark shading in Figure 1. In our

empirical work, we face a dilemma: a complete growth accounting includes how cumulative tech-

nological progress in one field affects the field’s own future development. In fact, own-technology

spillovers are usually the most important channel of cumulative knowledge development and also

connect to the concept of absorptive capacity, where research in one’s own field prepares one to

absorb external knowledge from other fields (e.g., refs 18 and 19). However, it is very diffi cult to

convincingly establish the importance of the innovation network when looking within individual

fields, as technological progress for a field over time can be endogenously related to its past and

future progress, as well as outside factors, and also display serial correlation for other reasons

(e.g., rising government funding levels, dynamic industry conditions). A contribution of our

network-based analysis that uses upstream technology progress outside of an individual field, as

moderated by a pre-existing network structure, to predict future innovation is to demonstrate

the importance of this knowledge development process in an empirical setting that minimizes

these diffi cult identification challenges.

We thus present our findings below in two ways. One route is to consider the external

network only, which excludes own-citations and within-field spillovers to better isolate network

properties. We write our upcoming equations for this case. To afford the complete growth

perspective, we also report results for the complete network that includes own-field spillovers.

Formally, an entry in matrix MJ×J from a citing technology j (row) to a cited technology j′

(column) is

mj→j′ =
Citationsj→j′∑

k 6=j

Citationsj→k
.

In this representation, the notation j → j′ designates a patent citation from technology j to

2Hall et al. (14) further describe the patent data. Studies of cross-sector spillovers date to at least Scherer
(15) and Verspagen (16). Schnitzer and Watzinger (17) provide a recent example.
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j′, which in turn means knowledge flowing from technology j′ to j. For the complete network

calculation, the denominator summation includes k = j.

Figure 1 highlights the heterogeneity in technology flows. The block diagonals indicate that

subcategories within each parent category tend to be inter-related, but these flows vary sub-

stantially in strength and show important asymmetries. For example, patents in “Computers:

Peripherals”tend to pull more from “Computers: Communications”than the reverse, as “Com-

puters: Communications”builds more on electrical and electronic subcategories. There are also

prominent examples of connections across technology categories, such as the link between “Or-

ganic Compounds”and “Drugs.” Figure 2 depicts this information in a network format, which

groups in two-dimensional space the stronger relationships in nearer proximity.

The innovation network is quite stable. Calculating MJ×J for the ten-year periods of 1975—

1984, 1985—1994, and 1995—2004, the correlations and rank correlations of cell values over ten-

year horizons are both above 0.9; across a 20-year horizon, both are above 0.8. Appendix Figures

1—3 show comparable network structures when using more-stringent thresholds for including

network edges/connections, when examining raw citations without the normalization such that

every technology’s outbound citations are equally weighted, and when using longer data horizons.

Appendix Figures 4—6 show three frequently calculated diagnostics for network nodes: in-degree

importance, closeness, and betweenness. A common theme, which is also evident in Figure 2,

is that many high-profile technology areas (e.g., Drugs) are at the periphery of the innovation

network. Technologies like “Electrical Devices” and “Materials Processing/Handling” occupy

more-central positions.

We take advantage of the considerable heterogeneity in the speed at which knowledge diffuses–

how many years after invention patents in technology j′ typically receive citations from tech-

nology j. We construct our innovation network matrix to model separately each year of the

diffusion process:

CiteFlowj→j′ ,a =
Citationsj→j′ ,a
Patentsj′

,

where CiteFlow quantifies the rate at which patents in technology j cite patents in j′ (Patentsj′ )

for each of the first ten years after the latter’s invention.3 This augmented structure extends

the simple theoretical model described with the M matrix to allow for more complex knowledge

3Time lags consistently broaden the downstream technology impact. One year after invention, 81% of down-
stream citations are from the same category (62% are from the same patent class, 10% are from another patent
class within the same subcategory, and 9% from another subcategory within the same category). After ten years,
75% of citations occur within the same patent category (respectively, 51%, 12%, 12%).
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diffusion processes that depend upon invention age.4

To predict forward patents, we combine the pre-existing network with technology develop-

ment that occurs within a ten-year window before the focal year t. Define P̂j,t to be the expected

patenting in technology j for a year t after 1994. Our estimate of P̂j,t combines patents made in

the prior ten years with an added diffusion lag of a = [1, 10] years,

P̂j,t =
∑
k 6=j

10∑
a=1

CiteFlowj→k,aPk,t−a,

where Pk,t−a is the patenting in technology k at a diffusion lag a from the year t. As an example,

for a patent from technology j′ applied for in 1990, we model its impact for technology j in 1997

by looking at the average impact that occurred with a seven-year diffusion lag during the pre-

period. The double summation in the calculation of P̂j,t repeats this process for each potential

upstream technology class and diffusion lag. In addition to the network being estimated from

pre-period interactions, our calculation requires that upstream patents pre-date downstream

predictions by at least one year (i.e., a ≥ 1). For the complete network calculation, the first

summation term again includes k = j.

The first row of Panel A in Figure 3 reports the strong levels relationship between the

predicted values (P̂j,t) and actual values (Pj,t) using subcategory variation in a log format. This

estimate includes 360 observations through the analysis of 36 subcategories in each year during

1995—2004; each subcategory is weighted by its initial level of patenting. A 10% increase in

expected patenting is associated with an 8% increase in actual patenting when considering the

external network. We report standard errors that are robust against serial correlation within

a subcategory. This specification explains about 55% of the aggregate variation in 1995—2004

patenting levels. The empirical strength of the complete network estimation is even stronger,

with a 10% increase in expected patenting associated with a 9% increase in actual patenting.

While powerful, there are several potential concerns with the simple approach. First, persis-

tence in the relative sizes of technological fields may lead to overstatements of network impor-

tance. Likewise, aggregate fluctuations in the annual patenting rates of all fields could result in

over-emphasis on the importance of upstream fields. To address, we consider a panel regression

4While Figures 1 and 2 are normalized to sum to 100% for a citing technology using the network matrix
M , we leave this measure relative to baseline patenting to allow direct use with the forward patenting rates by
technology. Patents differ substantially in the number of citations that they make, and we weight citations such
that each citing patent receives the same importance. Our results are robust to different approaches for dealing
with patents that make no citations and instances where patents list multiple technologies.

5



that includes field and time controls,

ln(Pj,t) = β ln(P̂j,t) + φj + ηt + εj,t,

where Pj,t and P̂j,t are actual and expected patent rates for technology j in year t (εj,t is an

error term). The estimation includes fixed effects for subcategories (φj) that remove their long-

term sizes; likewise, fixed effects for years (ηt) remove aggregate changes in USPTO grant rates

common to all technologies, so that the identification of the β parameter comes only from

variations within fields. Intuitively, β captures whether the actual patenting in technology j

is abnormally high relative to its long-term rate when it is predicted to be so based upon past

upstream innovation rates. A β estimate of one would indicate a one-to-one relationship between

predicted and actual patenting after conditioning on these controls.

We estimate in the second row of Panel A a statistically significant and economically sub-

stantial value of β: 0.85 (standard error = 0.17). Though less than one, the estimated coeffi cient

shows a very strong relationship between predicted and actual patenting. Appendix Figure 7

provides visual representations of these subcategory-level estimations. This figure shows that

our results are not driven by outliers or weighting strategy.5

Panel B of Figure 3 shows very similar patterns when using variation among more-detailed

patent classes. We consider in this estimation 353 patent classes that maintain at least five

patents per annum. The levels variation is very similar to that found using subcategories in

Panel A. The panel estimates are smaller, suggesting a 3%-4% increase in patenting for every

10% increase in expected patenting, but remain quite important economically and statistically.

Appendix Figures 8-9 provide visual representations of these class-level estimations.

Panel C of Figure 3 shows a second approach to quantifying the innovation network strength.

We regress cumulative actual patenting during 1995—2004 for each class on its expected value

based upon the innovation network and a control for historical patenting levels,

ln(P 95−04j ) = β ln(P̂ 95−04j ) + γ ln(P 85−94j ) + εj.

This approach allows greater variation in how the lag structure of the innovation network im-

pacts current technological change; we now estimate a 10% increase in upstream innovation

corresponds to a 3.5% increase in forward patenting. Appendix Figure 10 provides a visual

depiction.
5For the panel estimations, we plot in these appendix figures the residualized values of actual patenting against

predicted patenting. Residualized values are calculated as the unexplained portions of a regression of ln(Pj,t) on
the fixed effects φj and ηt (similar process for predicted patenting series). Conveniently, the slope of the trend
line in this figure is equal to β.
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This cumulative approach is a good platform for robustness checks and extensions. Our first

check is to compare our expected patenting growth due to upstream stimulus with a parallel met-

ric developed using downstream stimulus. Our account emphasizes the upstream contributions

flowing through the innovation network, but it is natural to worry whether our estimates are

instead picking up broad local shocks in technology or a demand-side pull. As the innovation net-

work is asymmetric, we can test this directly, and we confirm in Figure 3 that the upstream flows

are playing the central role. Appendix Table 1 documents many additional robustness checks:

controlling for parent technology trends, adjusting sample weights, using growth formulations,

considering second-generation diffusion,6 and so on. The results are robust to dropping any sin-

gle subcategory, although they depend upon at least some computer and communication fields

being retained. We also find these results when using the International Patent Classification

system.

Finally, when introducing the MJ×J matrix, we noted two polar cases common to the liter-

ature: all entries being equal to 1/J (fields building upon a common knowledge stock) or the

identity matrix (fields building only on own knowledge). The bottom of Figure 3 and Appendix

Table 2 quantify that the truth lies in between– technologies building upon a few key classes

that provide them innovation stimulants. We find a robust connection of innovation to the

ten most important upstream patent classes, which diminishes afterwards. This relationship

is also shown using the subcategory-category structure, although this approach is cruder given

the knowledge flows across technology boundaries.7 This network heterogeneity indicates that

knowledge development is neither global, in the sense that fields collectively share an aggregate

pool of knowledge, nor local, in the sense that each field builds only upon itself.

To conclude, our research finds upstream technological developments play an important and

measurable role in the future pace and direction of patenting. A better accounting for the inno-

vation network and its asymmetric flows will help us model the cumulative process of scientific

discovery in a sharper manner. A better understanding of these features can be an aid to policy

makers. For example, the finding that upstream research is highly salient for growth implies

that if R&D slackens in one period the effects will be felt years later. This paper has approached

6While some network analyses consider high-order relationships (e.g., Leontief inverse in production theory),
first-order relationships are suffi cient when directly observing intermediating outcomes. As an example, consider
j → j

′ → k, with technology k being upstream from j
′
. As we directly model patenting in technology j

′
to

downstream outcomes in j, we have already included any potential upstream stimulus from k. Appendix Table
1 shows similar results using second-order diffusion when excluding the first-order relationship.

7The top 20 upstream classes account for 80% of citations and are distinct from subcategories. Among the top
ten, 27% of citations come from the same subcategory, and another 27% come from other subcategories within
the same category. Among the next ten, these figures are 16% and 30%, respectively.
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these issues in a setting that considers all patents and inventions, the development of which

might be thought of as normal or regular science and innovation. An interesting path for future

research is to consider whether large leaps behave in a similar format to that depicted here. We

also believe this can be pushed to consider regional and firm-level variation, which can further

help us understand the causal impact of patenting on economic and business outcomes.
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Figure 1: Citation matrix 1975-1984. Each row describes the field composition of citations made by the technology subcategory 
indicated on the left hand side. Entries across cited technology fields for each citing technology subcategory sum to 100%. The 
diagonals—citations of one’s own field, the majority of citations—are excluded from the calculation but given dark shading for 
reference. Appendix Figure 1 shows the 1975-2004 network and additional sub-periods.  



Figure 2: Innovation network 1975-1984. 
Network mapping of patent system using 
technology subcategories. Nodes of similar 
color are pulled from the same category of 
the USPTO system. The width of connecting 
lines indicates the strength of technological 
flows, with arrows being used in cases of 
strong asymmetry. Connections must 
account for at least 0.5% of out-bound 
citations made by a technological 
subcategory. Appendix Figures 2-6 show 
variations and network properties.



Figure 3: (A) reports regressions of actual patenting during 1995-2004 on predicted patenting calculated using the 1975-1994 innovation 
network and the growth in upstream technology subcategories predating the focal year. “Field and time controls” analysis reports a panel 
data analysis where we first remove averages from each subcategory and each year from actual and predicted values. In External Network 
Only analyses, we consider predicted patenting due to upstream patenting outside of the focal patent subcategory. (B) repeats this analysis 
for detailed patent classes maintaining over five patents per annum. (C) reports regressions using the patent class sample where we calculate 
cumulative actual and predictive patenting during 1995-2004 for a patent class. After reporting baseline effects in the cumulative format, we 
contrast the focal upstream effect with a reverse downstream effect. We next disaggregate the stimulus to demonstrate localized spillovers. 

(A) Annual Variation - Subcategories
No controls  
Field and time controls
(B) Annual Variation - Classes
No controls 
Field and time controls
(C) Cumulative Variation - Classes
Baseline upstream estimation

Upstream network effect
Downstream network effect

Top 10 class stimulus
Next 10 class stimulus
Stimulus beyond top 20 classes

-0.5 0 0.5 1

External Network Only

-0.5 0 0.5 1

Complete Network
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Appendix Figure 1a: Citation matrix 1975-2004. Extends Figure 1 to use all citation information over 1975-2004.



Appendix Figure 1b: Citation matrix 1985-1994.



Appendix Figure 1c: Citation matrix 1995-2004. 



Appendix Figure 1d: Citation matrix 1975-1994.



Appendix Figure 2: Innovation network 1975-1984, different edge cut-offs. Extends Figure 2 to 
illustrate different network cut-offs for the 1975-1984 innovation network. Nodes are colored by their 
primary technology category. (A) uses a 0.5% cut-off for edge inclusion, as shown in the main text. (B)
uses a 1.0% cut-off for edge inclusion. (C) uses a 2.0% cut-off for edge inclusion. (D) shows a network 
without normalization such that every technology’s outbound citations are equally weighted.

A B

C D



Appendix Figure 3a: Innovation network 1975-2004, full data period. Extends Figure 2 and Appendix 
Figure 2 to illustrate different network cut-offs for the 1975-2004 innovation network. Nodes are 
colored by their primary technology category. (A) uses a 0.5% cut-off for edge inclusion. (B) uses a 
1.0% cut-off for edge inclusion. (C) uses a 2.0% cut-off for edge inclusion. (D) shows a network without 
normalization such that every technology’s outbound citations are equally weighted.

A B

C D



Appendix Figure 3b: Innovation network 1975-2004, by time period. Extends Figure 2 and Appendix 
Figure 3a to illustrate different time periods and innovation network stability. (A) uses 1975-1984, as 
shown in the main text. (B) uses 1985-1994. (C) uses 1995-2004. (D) uses 1975-1994.

A B

C D



Appendix Figure 4: Innovation network 1975-1984, in-degree importance. The in-degree of a node in 
the innovation network is the weighted share of patents in other subcategories that are citing patents 
in the focal node. (The out-degree of a node is not defined in our primary case given the outbound 
citation normalization for each technology.) Nodes are colored by their importance using the scale at 
the bottom. (A) uses a 0.5% cut-off for edge inclusion. (B) uses a 1.0% cut-off for edge inclusion. (C)
uses a 2.0% cut-off for edge inclusion. (D) shows a network without normalization such that every 
technology’s outbound citations are equally weighted.

A B

C D

StrongerWeaker



Appendix Figure 5: Innovation network 1975-1984, closeness. The closeness of a node is the average 
shortest-path distance between that node and all the other nodes in the network. Specifically, 
Closenessn =  [1/(g-1)] Σm path(n,m), where g is the number of nodes in the network and m is any node 
other than n. A lower closeness score indicates a more important node in the sense of being closer on 
average to the rest of the nodes in the network. Nodes are colored by their importance using the scale 
at the bottom. (A) uses a 0.5% cut-off for edge inclusion. The closeness scores in the innovation 
network range from 1.06 (Misc-Chemical and Misc-Other) to 1.75 (Organic Compounds). (B) uses a 
1.0% cut-off for edge inclusion. (C) uses a 2.0% cut-off for edge inclusion. (D) shows a network without 
normalization such that every technology’s outbound citations are equally weighted.

A B

C D

StrongerWeaker



Appendix Figure 6: Innovation network 1975-1984, betweenness. Betweenness measures how often 
a node links two other nodes. Identifying the shortest paths between every pair of nodes in the graph, 
the betweenness score of a given node n is the number of those shortest paths that include n (not 
including paths where n is one of the endpoints). If there are multiple different shortest paths between 
two nodes, the contribution to the betweenness score of a node on any of the paths is inversely 
proportional to the number of paths. Nodes are colored by their importance using the scale at the 
bottom. (A) uses a 0.5% cut-off for edge inclusion. The betweenness scores in the innovation network 
range from 0.21 (Information Storage) to 38.23 (Misc-Chemical). (B) uses a 1.0% cut-off for edge 
inclusion. (C) uses a 2.0% cut-off for edge inclusion. (D) shows a network without normalization such 
that every technology’s outbound citations are equally weighted.

A B

C D

StrongerWeaker



Appendix Figure 7: Network strength at subcategory level. (A) 
shows actual patenting during 1995-2004 against predicted 
patenting calculated using the 1975-1994 innovation network and 
the growth in upstream technology subcategories predating the 
focal year. Observations represent a subcategory-year pair, color-
coded by parent technological category, and the 45-degree line is 
shown for reference. (B) shows a panel data analysis where we 
first remove averages from each subcategory and each year from 
actual and predicted values and plot the residuals. The color 
scheme is the same as (A). (C) shows a version of (B) that weights 
observations by their initial size in terms of patenting during 
1985-1994. Bubble size indicates weight. This is equivalent to the 
panel regression findings reported in the text. Reported trend 
lines are calculated with standard errors clustered by subcategory.



Appendix Figure 8: Network strength at patent class level. Figure 
repeats Appendix Figure 7 at the patent class level for patent 
classes maintaining over five patents per annum during 1975-
2004.



Appendix Figure 9: Network strength at patent class level among 
large patent classes. Figure repeats Appendix Figure 8 for patent 
classes maintaining over 50 patents per annum.



Appendix Figure 10: Network strength in cumulative format. (A) 
shows the panel result in a format where we calculated 
cumulative actual and predictive patenting during 1995-2004 for 
a patent class. Figure presents residual values from regressions 
that control for initial patenting levels by classes during 1985-
1994. (B) shows a version where residuals are prepared after also 
including subcategory fixed effects in the regressions, effectively 
isolating class-level variation within each subcategory. (C) restricts 
panel (A) to patent classes that have 50+ patents granted per year 
during 1975-2004.



Base 
regression

Clustering 
standard 
errors by 

patent 
subcategory

Including 
patent 

category 
fixed effects

Including 
patent 

subcategory 
fixed effects

Using second 
application 

of innovation 
matrix

Using second-
generation 

citation 
matrix

Using log 
patent class 

weights

Dropping 
patent class 

weights

Using 
constrained 

growth 
formulation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log cumulative patents 0.678 0.678 0.779 0.768 0.800 0.785 0.722 0.744 [1.0]
1985-1994 (0.061) (0.102) (0.047) (0.048) (0.062) (0.063) (0.057) (0.058)

Log expected patenting 0.345 0.345 0.190 0.197 0.217 0.229 0.271 0.242 0.104
from network stimulus (0.052) (0.094) (0.045) (0.048) (0.054) (0.051) (0.053) (0.055) (0.028)

Log cumulative patents 0.785 0.785 0.829 0.739 0.923 0.915 0.816 0.827 [1.0]
1985-1994 (0.083) (0.097) (0.060) (0.070) (0.083) (0.082) (0.072) (0.071)

Log expected patenting 0.265 0.265 0.145 0.184 0.130 0.133 0.232 0.223 0.121
from network stimulus (0.066) (0.083) (0.052) (0.060) (0.067) (0.060) (0.060) (0.060) (0.038)

Appendix Table 1: Regression analysis of innovation network

B. Analysis with 175 patent classes maintaining 50 or more patents per annum

Notes:  Table quantifies the relationship between log patenting 1995-2004 by patent class and the stimulus provided by the innovation network. Estimations control for log 
initial patenting in the patent class during 1985-1994. Estimations report robust standard errors and weight classes by the patent count in the class during 1985-1994. Column 
headers report specification variants. In Column 5, second-generation stimulus is estimated through a second application of the core innovation network matrix to the predicted 
patenting. In Column 6, second-generation stimulus is estimated through direct measure of a second-generation citation matrix restricted to ten years.

A. Analysis with 353 patent classes maintaining 5 or more patents per annum

Dependent variable is log cumulative patent counts in patent class 1995-2004



(1) (2) (3) (4) (5) (6)

0.678 0.732 0.840 0.785 0.806 0.905
(0.061) (0.055) (0.066) (0.083) (0.069) (0.079)

0.345 0.265
(0.052) (0.066)

0.298 0.294
(0.056) (0.066)

0.067 -0.041
(0.074) (0.091)

-0.061 -0.032
(0.054) (0.068)

0.077 0.043
(0.029) (0.037)

0.105 0.097
(0.037) (0.047)

-0.004 0.012
(0.048) (0.054)

Appendix Table 2: Disaggregated analysis of innovation network

Dependent variable is log cumulative patent counts in patent class 1995-2004

Notes:  See Appendix Table 1. In Columns 2 and 5, we separate the upstream stimulus provided by the ten most-important upstream classes, the next ten 
upstream classes, and those beyond. These upstream classes are defined by citation shares made by the focal class during the pre-1995 period. In two cases, 
the patent class cites fewer than ten upstream categories and is excluded. Columns 3 and 6 alternatively rely on the USPTO classification system of 
subcategories and categories, which is naturally cruder since it is less-tailored to an individual technology's citation patterns. The disaggregated results do 
not add up to the total network effect due to the log transformations.

Log cumulative patents 1985-1994

Log expected patenting from network 
stimulus

Log expected patenting from network 
stimulus within subcategory

Log expected patenting from network 
stimulus within rest of category

Log expected patenting from network 
stimulus outside of category

Log expected patenting from network 
stimulus due to top 10 upstream classes

Log expected patenting from network 
stimulus due to next 10 upstream classes

Log expected patenting from network 
stimulus outside of top 20 upstream classes

Full sample with >5 per annum Restricted sample with >50 per annum
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